Climate change analysis with monthly data (Clic-MD)

Book · February 2016with 325 Reads
Publisher: 1
Publisher: 978-607-96883-5-6
Publisher: Skiu
Cite this publication
Abstract
The climate change is an issue of global concern in all areas of life, the global discourse has been well understood and disseminated; however, there is little understanding of the magnitude and direction of climate change locally. It is at this level where the mitigation and adaptation measures are taken, so is URGENT the knowledge through data of the current and local situation. THE CLIC-MD SOFTWARE DEVELOPED IN UNAM FACILITATES: 1. The organization, storage and processing of millions of climate data (monthly temperature and precipitation). 2. The calculation more accurate of potential evapotranspiration. 3. The calculation of agroclimatic indices: humidity, aridity, erosion by rainwater, among others; improving agricultural activities and reducing damage to the environment. 4. The calculation of the continuous rainy season, which is vital to choose crop varieties, optimizing the rainwater uses (helping the conservation of aquifers) and achieves a greatest economic yield. 5. Identifying the trends of climate change at the local level (meaning and magnitude), which allows the prevention of adverse effects and harnessing the positive effects of this climate change.
Figures - uploaded by Francisco Bautista
Author content
All content in this area was uploaded by Francisco Bautista
Content may be subject to copyright.
1
Climate change analysis with monthly data
(Clic-MD)
Concepts, equations and system use
Francisco Bautista1
Aristeo Pacheco2
Dorian Antonio Bautista-Hernández2
Febrero 2016
1
Centro de Investigaciones en Geografía Ambiental, Universidad Nacional Autónoma de México
2
Skiu, Scientific knowledge in use, www.actswithscience.com
2
Bautista F., A. Pacheco., D.A. Bautista-Hernández. 2016. Climate change analysis with
monthly data (Clic-MD) Skiu. 57 pp.
ISBN: 978-607-96883-5-6
DR @ 2016. Skiu, Scientific Knowledge In Use ©
All rights reserved in accordance with the law. No part of this work may be reproduced by
any means, without written consent of Skiu or of the corresponding holders.
The authors are also grateful to Dr. Ma. Del Carmen Delgado Carranza and Eng. Oscar
Álvarez Arriaga.
This document was assessed by:
Dr. Oscar Frausto Martínez Universidad de Quintana Roo
Dr. Jorge L. Leirana Alcocer. Universidad Autónoma de Yucatán.
Dra. Elvira Díaz Pereira. Centro de Edafología y Biología Aplicada del Segura-Consejo
Superior de Investigaciones Científicas, Murcia, España.
3
TABLE OF CONTENTS
1. INTRODUCTION ........................................................................................................................................ 6
2. VARIABLES INPUT ................................................................................................................................... 8
3. CLIC-MD INSTALLATION....................................................................................................................... 9
4. CLIC-MD SYSTEM OPERATION ...........................................................................................................12
4.1 CLIMATOLOGICAL STATIONS MENU ............................................................................................ 14
4.2 CAPTURE MENU ............................................................................................................................... 15
4.3 THE REVIEW MENU .......................................................................................................................... 18
4.4 EDIT MENU ......................................................................................................................................... 19
4.5 CALCULATION MENU ....................................................................................................................... 20
4.5.1 POTENTIAL EVAPOTRANSPIRATION .........................................................................................21
4.5.2. AGROCLIMATIC INDICES ...........................................................................................................25
4.5.3. CLIMOGRAM .................................................................................................................................28
4.5.4. LENGTH OF GROWING PERIOD (LPC) .....................................................................................31
4.5.5 MONTHLY RAINFAILL PROBABILITY .........................................................................................33
4.5.6. ANALYSIS OF TRENDS OF CLIMATE CHANGE ........................................................................36
4.5.7 IDENTIFICATION OF CLIMATIC ANOMALIES ..........................................................................45
4.5.8 GRAPHICS OF ANNUAL INCREASES AND DECREASES OF CLIMATIC ELEMENTS .............47
4.5.9 DESCRIPTIVE MONTHLY STATISTICS OF CLIMATIC ELEMENTS ..........................................49
4.5.10. CLIMATIC AND AGROCLIMATIC DATA SUMMARY ...............................................................50
5. OPTIONS MENU ........................................................................................................................................51
6. HELP MENU ...............................................................................................................................................52
6.1 ABOUT CLIC-MD ..............................................................................................................................52
APPENDIX I ....................................................................................................................................................55
4
Index of Tables and Figures
Figure 1. Clic-MD input and output variables…………………………………... 7
Figure 2.a. Installation screen ……………………………………………………. 9
Figure 2.b. Default installation directory screen ……………………………. 10
Figure 2.c. Installation progress screen………………………………………….. 10
Figure 2.d. Installation completed screen………………………………………... 11
Figure 3.a. Select language to work with Clic-MD………………………............. 12
Figure 3.b. Clic-MD, startup screen……………………………………………….. 12
Figure 4. Clic-MD, main screen....................................................................... 13
Figure 4.1.a. Climatological Stations………………………………………………... 14
Figure 4.1.b. Enter a new climatological station…………………………………… 14
Figure 4.2.a. Data entry by years group……………………………………............. 16
Figure 4.2.b. Data entry by year……………………………………………………... 17
Figure 4.2.c. Select Excel data spreadsheet………………………………............. 18
Figure 4.3. Review of data to check don't overlapping …………………… 19
Figure 4.4. Edit data……………………………………………………………….. 20
Figure 4.5. Calculation menu…………………………………………..……..... 21
Figure 4.5.2. Agroclimatic indices calculation…………………………………….. 28
Figure 4.5.3.a. Climogram of rainfall and temperature………………………….. 29
Figure 4.5.3.b. Graph of monthly averages………….………………………… 30
Figure 4.5.3.c. Monthly thermal amplitude ……………………………………….. 30
Figure 4.5.4. Length of growing period………………………………..………... 31
Figure 4.5.5.a. Graph of rainfall probability in a wet month ……………………. 34
Figure 4.5.5.b. Graph of rainfall probability in a dry month …………............. 35
Figure 4.5.6.a. Data set to analyze………………………………………………….. 39
Figure 4.5.6.b. Results with Mann Kendall test with annual data………………. 40
Figure 4.5.6.c. Results with Mann Kendall test with monthly data……………… 40
Figure 4.5.6.d. Z values in the Mann Kendall test………………………………. 41
Figure 4.5.6.e. Graph of the Mann Kendall test …………………………………… 42
Figure 4.5.6.f. Linear correlation of monthly climatic elements………………… 43
Figure 4.5.6.g. Linear correlation with annual data of agroclimatic indices and
5
climatic elements………………………………………………………………. 44
Figure 4.5.7.a. Temperature anomalies and extreme events…………………….. 45
Figure 4.5.7.b. Normal distribution of two periods of maximum temperature (May)
…………………………………………………………………………………………… 45
Figure 4.5.8.a. Graph of increases and decreases relative to average; maximum
temperature of April in Progreso, Yucatán…………………………………. 48
Figure 4.5.8.b. Graph of increases and decreases relative to average; September
rainfall in Peto, Yucatán………………………………………………………. 48
Figure 4.5.9. Descriptive statistics table of climate elements by month…………. 48
Figure 4.5.10.a. Monthly averages of the elements of weather and annual
agroclimatic indices ……………………………………………………………. 49
Figure 4.5.10.b. Summary of the monthly climate change trends ……………. 50
Figure 5. Menu Options…………………………………………………............. 50
Figure 6. About Clic-MD…………………………………………………………... 51
Manual clic-Ing-Incompleto.pdf
3.74 MB

Supplementary resources

  • Article
    Full-text available
    Michoacán is among the states with higher rainfed agriculture production in México, and has substantial impact on the national economy. Despite the agricultural importance of this state, no agroclimatic studies have been perform to identify the Length of the Growing Period (LGP), which is the number of months when the climatic conditions are suitable for the establishment of rainfed agriculture. In the present study, we aimed to perform an agroclimatic analysis for the state of Michoacán to determine the LGP for bioclimatic zones. In order to achieve our objective, we calculated the LGP for 112 meteorological stations located within Michoacán. We calculated the humidity index (HUi) using evapotranspiration by two methods: 1) Thornthwaite (ET0-T) and 2) Hargreaves (ET-H). The values with a HUi higher than 0.5 were used to determine the number of months with continuous rainfall, which constitute the LGP; these data were extrapolated to a map of bioclimatic zones. As a result, the agroclimatic analysis to determine the LGP, allowed us to identify the zones with 6, 5, 4 and 3 months of continuous rainfall. Based on the resulting map, we can to recommend areas with climatic potentials suitable to the requirements of the crops. Our map could also prove useful in the face of climate change by allowing us to relocate the rainfed crops to the zones with an adequate number of months of continuous rainfall.
  • Article
    Condensed summary: While changes in the long-term mean state of climate will have many important consequences on a range of environmental, social, and economic sectors, the most significant impacts of climate change are likely to be generated by shifts in the intensity and frequency of extreme weather events. Indeed, insurance costs resulting from extreme weather events have been steadily rising since the 1970s, essentially in response to increases in population pressures in regions that are at risk, but also in part because of recent changes in the frequency and severity of certain forms of extreme. Regions that are now safe from catastrophic windstorms, heat waves, and floods could suddenly become vulnerable in the future. Under such circumstances, the costs of the associated damage could be extremely high. This chapter provides an overview of certain climate extremes that in recent years have had very costly impacts in the Swiss Alps – namely, heat waves and strong convective precipitation – and how these events may change as climate warms in response to increased greenhouse gas concentrations. Introduction: If climate warms as projected during the course of the twenty-first century, the thermal energy that drives many atmospheric processes will be enhanced and, as a consequence, many types of extreme event may increase in frequency and/or intensity. Although this intuitive reasoning has a physical basis, current climate trends do not unequivocally show that atmospheric warming in the past century has been accompanied by greater numbers of extreme events. © Cambridge University Press 2008 and Cambridge University Press, 2009.
  • Article
    The purpose of this paper is to establish principles for determining the quantitative relationships between climate and plant growth. It is known that the amount of dry matter produced by any plant and the water it transpires are proportional, and that this relation is constant for each plant species or variety under a given set of growing conditions. Using the experimental data of earlier workers, dry-matter production is plotted against water use—separately for each level of soil fertility—and equations are formulated to show the relationships under different conditions. This new analysis of the published data shows that a correction based on atmospheric humidity accounts for about 90 per cent of the variation in the ratio of dry-matter production to transpiration when soil fertility is constant, and that a correction for soil fertility accounts for about 75 per cent of the variation when climate is constant. These principles are applied to the interpretation of field experiments dealing with water use by plants. They may be useful in determining the most advantageous allocation of limited amounts of irrigation water in different climatic regions, and in many other ways.
  • Book
    Full-text available
    La presente Guía constituye uno de los productos preliminares del Proyecto liderado por el Centro del Agua para Zonas Áridas y Semiáridas de América Latina y El Caribe (CAZALAC), para la elaboración del Mapa de Zonas Áridas, Semiáridas y Subhúmedas secas de América Latina y El Caribe. Esta iniciativa representa el esfuerzo de diferentes instituciones: Gobierno de Flandes, Bélgica; Programa Hidrológico Internacional (PHI – UNESCO) y CAZALAC, así como de profesionales que estudian la problemática de la aridez e índices relacionados. Este documento está dirigido a: • Expertos en cambio climático y cambio global y sus consecuencias • Expertos e instituciones que estudian los procesos de degradación de tierras y desertificación • Profesionales relacionados con estudios de uso de la tierra, manejo y conservación de suelos y aguas, manejo del recurso agua, y otros sectores relacionados. • Planificadores y tomadores de decisión con respecto al uso de la tierra, para el conocimiento y entendimiento de los problemas relacionados con la aridez y los riesgos de desertificación. La Guía consta de una parte introductoria, de carácter conceptual, que resume la importancia de la delimitación de los regímenes de humedad de la Región de América Latina y El Caribe, así como los objetivos de la misma. A continuación se presenta en el Capítulo I la propuesta metodológica que incluye los criterios y métodos adoptados para la delimitación de las Zonas Áridas, Semiáridas y Subhúmedas secas de la Región. Se incluyen los índices a mapear y la información requerida para el cálculo de los mismos. El Capítulo II se refiere al Análisis Exploratorio de datos, incluyendo algunos ejemplos de este. En el Capítulo III se presentan diferentes métodos para la estimación y completación de datos de precipitación faltantes. En el Capítulo IV se muestran algunos métodos de estimación de precipitaciones areales, incluyendo ejemplos y un análisis crítico de los mismos. El Capítulo V resume algunas opciones para el cálculo de la Evapotranspiración de Referencia (ET0), cuando no se dispone de la información para realizarlo utilizando el protocolo de FAO/Penman-Monteith. El documento contiene cinco anexos: Anexo 1, que presenta los métodos cartográficos para la creación del Mapa de Regímenes Hídricos, y presenta además una versión preliminar del Mapa. El anexo 2, se refiere al Protocolo de Calculo de la Evapotranspiración de Referencia mediante la ecuación FAO/Penman-Monteith. El anexo 3 contiene los Símbolos y Unidades, mientras que el anexo 4 contiene las Equivalencias de Unidades. En el anexo 5 se presentan las Referencias Bibliográficas. La presente Guía tiene que ser entendida como un documento marco, cuyo uso podría requerir un enfoque más flexible para la adaptación a condiciones específicas. Esta Guía está acompañada del Sistema CIRH, software para el Cálculo de Índices del Régimen Hídrico.
  • Article
    Full-text available
    A evapotranspiração de referência (ETo) representa a perda de água do solo vegetado para a atmosfera devido à evaporação e à transpiração. O modelo de Penman-Monteith demanda variados elementos meteorológicos em sua solução, o que dificulta sua aplicação em estudos agrometeorológicos e hidrológicos em regiões com poucas estações meteorológicas, como a bacia do rio Jacupiranga, SP, Brasil. O estudo foi realizado com o objetivo de se verificar a precisão dos métodos de estimativa de ETo propostos por Camargo, Blaney-Criddle, Hamon, Hargreaves, Thornthwaite e Kharrufa, definindo-se coeficientes de ajuste regional. Dados meteorológicos de duas estações climatológicas locais foram usados nas estimativas. Na comparação das equações com o método FAO Penman-Monteith, analisaram-se coeficientes de determinação, correlação concordância, confiança e erro padrão experimental. Os resultados obtidos indicam que, na região, os métodos de Hargreaves e Camargo podem ser aplicados tanto na forma original como na formulação modificada. A equação de Hargreaves com coeficientes regionais apresentou índices de confiança superiores a 0,995 para a bacia do rio Jacupiranga e é recomendada devido às suas exeqüibilidade e simplicidade.
  • Article
    Many forms of the Penman combination equation have been proffered for estimating daily evapotranspiration (ET) by the agricultural reference crops grass and alfalfa (Medicago sativa L.). This study was conducted to evaluate popular forms of the Penman equation, and to develop and evaluate general relationships for estimating daily average values of canopy and aerodynamic resistance parameters required by the Penman-Monteith equation. For simplicity and ease of use, resistance relationships were expressed as linear and logarithmic functions of mean plant height. The Penman-Monteith and other forms of the Penman equation were compared at 11 international lysimeter sites, with the Penman-Monteith method and a Penman equation with variable wind function developed at Kimberly, ID providing the best estimates of reference ET across the sites. Ratios of computed alfalfa to grass reference ET during peak months at various locations averaged 1.32, and ranged from 1.12 to 1.43. Values of computed ratios were related to local wind and humidity conditions. The development of relationships for canopy and aerodynamic resistances as functions of reference crop height allowed use of the Penman-Monteith equation in an operational mode, and improved transferability of this resistance form of the Penman equation to a wide variety of climates. This investigation was supported by the Utah Agric. Exp. Stn. Please view the pdf by using the Full Text (PDF) link under 'View' to the left. Copyright © . .