Binding of metals to macromolecular organic acids in natural waters. Does organic matter?

Source: OAI


Trace metal speciation and bioavailability have become keys to current day toxicity and risk assessments. For many metals, macromolecular organic acids constitute the major ligand in fresh water and soil solution. Therefore, understanding their characteristics and behaviour is necessary for understanding trace metal behaviour. This study comprises investigations of the proton- and copper-binding properties of hydrophobic and hydrophilic dissolved organic matter fractions, and competition effects of iron(III) and aluminium. The solutions studied were a forest floor solution and a municipal solid waste incinerator bottom ash leachate. Two geochemical models (SHM and NICA-Donnan) were tested and calibrated against the experimental data. A structural analysis of the binding mode of iron(III) to fulvic acid in acid aqueous solutions was made using extended X-ray absorption fine structure (EXAFS) spectroscopy. Dissolved organic carbon (DOC) in the bottom ash leachate had fulvic acid-like properties and was dominated by the hydrophilic acid fraction. Three organic fractions (hydrophobic, transphilic and hydrophilic) were isolated from the forest floor solution using an XAD-8/XAD-4 tandem. All fractions were characterised by distinct but differing proton-binding properties, suggesting a more acidic character than 'generic' fulvic acid. The copper-binding isotherms were very similar for all three fractions and suggested strong copper binding to a small number of sites. In general, both models tested could be adjusted to obtain good fits to data on both proton- and copper-binding, but iron(III) and aluminium competition was better predicted by the SHM than the NICA-Donnan model. Only mononuclear iron(III) complexes were included in the model calculations, as the EXAFS study showed that these ¬dominated in the aqueous phase. Studies on untreated soil solution indicated that the three isolated fractions were the only contributors to the observed copper binding and together constitute the 'active' DOC fraction. Thus, combination of Leenheer fractionation data with the model parameters derived in this study is recommended for improved predictions of trace metal speciation in soil solutions. However, further studies along this research line, including other samples and trace metals, are highly recommended.

Download full-text


Available from: Joris van Schaik
  • [Show abstract] [Hide abstract]
    ABSTRACT: Naturally occurring and artificially produced radionuclides in the environment may be present in different physico-chemical forms (i.e., radionuclide species) varying in size (nominal molecular mass), charge properties and valence, oxidation state, structure and morphology, density, degree of complexation, etc. Low molecular mass (LMM) species are believed to be mobile and potentially bioavailable, while high molecular mass (HMM) species such as colloids, polymers, pseudocolloids and particles are considered inert. Due to time-dependent transformation processes such as mobilisation of radionuclide species from solid phases or interactions of mobile and reactive radionuclide species with components in soils and sediments, the original distribution of radionuclides deposited in ecosystems will change over time. To assess the environmental impact from radionuclide contamination, information on radionuclide species deposited, interactions within affected ecosystems and the time-dependent distribution of radionuclide species influencing mobility and biological uptake is essential. The development of speciation techniques to characterize radionuclide species in waters, soils and sediments should therefore be essential for improving the prediction power of impact and risk assessment models. The present paper reviews available fractionation techniques which can be utilised for radionuclide speciation purposes.
    No preview · Article · Feb 2009 · Journal of Environmental Radioactivity
  • [Show abstract] [Hide abstract]
    ABSTRACT: The application of X-ray fluorescence techniques to the determination of the mineral profile of foods has been reviewed with regard to the tremendous possibilities of these methodologies to provide fast and environmentally friendly alternative methods for evaluating the presence of essential and toxic elements or, at least, to provide screening of the mineral composition of foods and their safety for human nutrition. Special attention has been paid to modern methods of analysis that permit improvements in the analytical sensitivity of measurements or favour the use of low-cost portable instrumentation.
    No preview · Chapter · Dec 2013