Conference Paper

Self-emission glucose monitoring system with single chip guided-mode resonance filters

Authors:
To read the full-text of this research, you can request a copy directly from the authors.

Abstract

In this study, we designed and simulated an array of bandpass filters as a spectral separator for mid-infrared self-emission noninvasive glucose monitoring, using the human body as the background radiation emitter. The filters were based on the guided-mode resonance (GMR) effect. The human body is a good black body radiator that provides a stable temperature and continuous radiation energy in the mid-infrared range. We can thus use self-emission from the human body to measure certain fingerprint peaks of glucose spectrum between 8 μm to 10 μm, which allows estimation of glucose concentration. The GMR filter set includes at least four filters on one chip fabricated at the same time. By using fixed thicknesses and the same thin-film material for all the filters on the chip, a structure period adjustment alone can theoretically achieve multiple bandpass filters between the glucose fingerprint ranges - and achieve these coplanar filters on a single chip. By using all CMOS-compatible materials, COMSOL simulations show that a series of peaks with transmittances up to 70% and bandwidths of around 200nm can be achieved. This filter set can be fabricated with just a few thin layers that can simplify the typical thin-film deposition process. The proposed GMR filter array can then be combined with a thermometer array to achieve the non-invasive glucose monitoring. We compare the results obtained with the first version of the fabricated filter set with the measurements of Fourier transform infrared (FT-IR) spectroscopy.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

Article
Clinically, blood sample analysis has been widely used for health monitoring. In hospitals, arterial and venous blood are utilized to detect various disease biomarkers. However, collection methods are invasive, painful, may result in injury and contamination, and skilled workers are required, making these methods unsuitable for use in a resource-limited setting. In contrast, capillary blood is easily collected by a minimally invasive procedure and has excellent potential for use in point-of-care (POC) health monitoring. In this review, we first discuss the differences among arterial blood, venous blood, and capillary blood in terms of the puncture sites, components, sample volume, collection methods, and application areas. Additionally, we review the most recent advances in capillary blood-based commercial products and microfluidic instruments for various applications. We also compare the accuracy of microfluidic-based testing with that of laboratory-based testing for capillary blood-based disease diagnosis at the POC. Finally, we discuss the challenges and future perspectives for developing capillary blood-based POC instruments.
Article
Full-text available
Fourier-transform infrared transmission spectroscopy has been used for the determination of glucose concentration in whole blood samples from 28 patients. A 4-vector partial least-squares calibration model, using the spectral range 950–1200 cm−1, yielded a standard-error-of-prediction of 0.59 mM for an independent test set. For blood samples from a single patient, we found that the glucose concentration was proportional to the difference between the values of the second derivative spectrum at 1082 cm−1 and 1093 cm−1. This indicates that spectroscopy at these two specific wavenumbers alone could be used to determine the glucose concentration in blood plasma samples from a single patient, with a prediction error of 0.95 mM.
Article
Full-text available
The capability of FT-IR transmission spectrometry was examined for the direct determination of glucose in whole blood without any sample preparation. For these investigations, the whole blood samples were automatically aspirated by a syringe pump into the transmission cell. Infrared spectra were recorded in the 1500-900 cm-1 range. Despite the high water background absorption and the complex blood matrix, significant spectral changes due to different glucose concentrations were observed. Chemometric (partial leastsquares) models were applied for the determination of glucose. A standard error of calibration of 13.8 mg/dL was obtained by using a partial least-squares calibration model containing five ranks. The residues for an independent test set were less than 15 mg/dL.
Article
Full-text available
To evaluate the precision and accuracy of a new advanced prototype of a noninvasive blood glucose monitor across a wide range of serum glucose concentrations. An advanced handheld noninvasive glucose monitor prototype was calibrated and tested using patients recruited by the General Research Center of the University of Connecticut Health Center. The monitor, developed by Infratec, uses principles of thermal emission spectroscopy. The noninvasive measurement of tympanic membrane glucose concentration was calibrated to the serum glucose concentration using 432 paired measurements from 20 subjects with insulin-requiring diabetes. This calibration was subsequently tested (results of power analyses) in a blind fashion with 126 paired measurements from six diabetic subjects who require insulin. In vivo measurements demonstrated the reproducibility of the methodology of the noninvasive glucose monitor. Based on the calibration model, predicted glucose concentrations for six subjects were as follows (for 126 data points): SD = 32 mg/dl, mean absolute relative error (%MARE) = 11.6, with a correlation coefficient of r = 0.87. Noninvasive glucose results were also compared with laboratory reference measurements using an error-in-variables method. Clark error grid analysis showed that 100% of the measurements fell within zones A and B (90% in zone A and 10% in zone B). The SD for all noninvasive measured concentrations was 27 mg/dl, %MARE was 8.6, and the correlation coefficient was r = 0.94. This first independent clinical study of an advanced noninvasive blood glucose prototype based on thermal emission in the mid-infrared spectral region has demonstrated glucose measurements with clinically acceptable accuracy but without the necessity of individual daily calibration.
Article
Full-text available
We report the first successful study of the use of Raman spectroscopy for quantitative, noninvasive ("transcutaneous") measurement of blood analytes, using glucose as an example. As an initial evaluation of the ability of Raman spectroscopy to measure glucose transcutaneously, we studied 17 healthy human subjects whose blood glucose levels were elevated over a period of 2-3 h using a standard glucose tolerance test protocol. During the test, 461 Raman spectra were collected transcutaneously along with glucose reference values provided by standard capillary blood analysis. A partial least squares calibration was created from the data from each subject and validated using leave-one-out cross validation. The mean absolute errors for each subject were 7.8%+/-1.8% (mean+/-std) with R2 values of 0.83+/-0.10. We provide spectral evidence that the glucose spectrum is an important part of the calibrations by analysis of the calibration regression vectors.
Article
By taking a sinusoidal surface-relief grating as an example, the physical principle and the condition limit for resonance anomalies were discussed. The physical analysis show that the basic (approximate) formulae of resonance are the waveguide eigenvalue equation. According to these formulae, the regularity and multi-value property of resonance peak were studied, and the condition for single peak was obtained. Its quantitative relation with the grating film thickness, angle of incidence, and grating period were also analyzed. The results are consistent with those calculated with the rigorous theory. All of these show that the resonance wavelength can be well controlled.
Article
The chief principles and properties of optical reflection and transmission guided-mode resonance (GMR) filters are presented. These devices are based on GMR effects in dielectric structures comprising gratings and homogeneous thin films. Detailed characteristics are calculated using rigorous coupled-wave analysis for bandpass filters operating in reflection and transmission for TE- and TM- polarized incident waves. High resonance efficiency with narrow or wide linewidths is achievable with near-zero reflectance or transmittance sidebands over extended wavelength ranges. To illustrate the potential of this technology, example GMR reflection and transmission characteristics are presented for filters operating in the visible spectral region. Excellent reflection-filter features are found when antireflection conditions prevail away from the resonance wavelength. Furthermore, long-range, low sidebands are found to be obtainable for a single-layer GMR reflection filter with a TM-polarized plane wave incident at the Brewster angle. The transmission filter is optimized when the structure is highly reflective off resonance. GMR filter fabrication tolerances are discussed with examples illustrating the sensitivity of the filter center wavelength to variations in layer thickness, grating shape, and incident angle. GMR filters are found to exhibit loss-dependent wavelength shifts such that the reflection peak occurs at a different wavelength than the corresponding transmission notch. However, under antireflection conditions, the resonance location becomes insensitive to loss. Finally, reflective GMR thin-film structures that support multiple waveguide modes are studied. These devices exhibit unique characteristic angular and spectral signatures.
Article
A theoretical characterization of the guided‐mode resonance properties of planar dielectric waveguide gratings is presented. Efficient exchange of energy between forward and backward propagating diffracted waves is shown to be possible with smooth line shapes. The linewidths of the resonances can be controlled by the grating modulation amplitude. Due to the inherent separation between the TE and TM modes associated with the waveguide grating, these elements can provide polarization separation. Applications to polarization sensitive filtering and to electro‐optic switching are suggested. The guided‐mode resonance filter represents a basic new optical element.
Article
Detection of cerebral hypoxia-ischemia in infants remains problematic, as current monitors in clinical practice are impractical, insensitive, or nonspecific. Our study develops a multiwavelength spatial domain construct for near-infrared spectroscopy (NIRS) to detect cerebral hypoxia-ischemia and evaluates the construct in several models. The NIRS probe contains photodiode detectors 2, 3, and 4 cm from a three-wavelength, light-emitting diode. A construct determines cerebral O(2) saturation based on spatial domain principles. Device performance and construct validity are examined in in-vitro models simulating the brain, and in piglets subjected to hypoxia, hypoxia-ischemia, and hyperoxic conditions using a weighted average of arterial and cerebral venous O(2) saturation measured by CO-oximetry. The results in the brain models verify key equations in the construct and demonstrate reliable performance of the device. In piglets, the device measures cerebral O(2) saturation with bias +/-4% and precision +/-8%. In conclusion, this NIRS device accurately detects cerebral hypoxia-ischemia and is of a design that is practical for clinical application.