Chapter
To read the full-text of this research, you can request a copy directly from the authors.

Abstract

Metabolic acidosis is common among persons with chronic kidney disease due to an inability to excrete the daily acid load. A more subtle or low-grade acidosis also occurs in otherwise healthy individuals due to the effects of aging and the high acid-forming potential of the Western diet. This has numerous sequelae, including effects on skeletal muscle. Chronic metabolic acidosis increases skeletal muscle protein breakdown and may impair protein synthesis as well. This is partly mediated by impaired signaling via the insulin receptor substrate/phosphatidylinositol 3-kinase/Akt pathway, which triggers a cascade of proteolytic events involving activation of caspase-3 and the ubiquitin-proteasome system. Over time, this likely results in a loss of lean mass and skeletal muscle wasting, which has been associated with morbidity and mortality. Recent evidence has also associated metabolic acidosis with impaired physical function. Correction of acidosis reduces muscle protein degradation in humans, preserves muscle mass, and may improve muscle strength and functional performance.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

... The catabolic effects of metabolic acidosis on skeletal muscle are mediated, in part, by impaired insulin signaling involving the insulin/insulin receptor (IR)/IR substrate pathway and phosphatidylinositol 3-kinase/Akt pathway. Subsequently, metabolic acidosis-mediated impairment of insulin signaling activates the ubiquitin-proteasome system and caspase-3, enhancing protein catabolism [58]. Another catabolic factor relating to metabolic acidosis is the myostatin signaling pathway. ...
Article
Full-text available
Sarcopenia is a condition characterized by the loss of muscle mass and function. It is a risk factor for adverse clinical outcomes, including falls, disability, and mortality in patients with chronic kidney disease (CKD). The progression of CKD leads to metabolic disturbances and pathophysiological changes. These alterations, such as metabolic acidosis, dysregulated muscle proteostasis, and excessive inflammation, contribute to accelerated muscle wasting, resulting in sarcopenia. Proper nutritional interventions are essential in the management of sarcopenia in patients with CKD. Appropriate dietary intake of protein and specific micronutrients, carefully considering the needs and restrictions of CKD, may help maintain muscle mass and function. Specific dietary patterns, such as an anti-inflammatory diet, Dietary Approaches to Stop Hypertension diet, and a plant-based diet, may be beneficial for attenuating muscle wasting in CKD patients. The underlying mechanisms of how these dietary patterns affect sarcopenia are multifaceted, including inflammation, oxidative stress, and defects in muscle protein homeostasis. This review summarizes the current evidence on the relationship between dietary patterns and sarcopenia, as well as the underlying mechanisms of how dietary patterns modulate sarcopenia in CKD patients.
Article
Full-text available
Metabolic acidosis is a common complication of chronic kidney disease and is believed to contribute to a number of sequelae, including bone disease, altered protein metabolism, skeletal muscle wasting, and progressive glomerular filtration rate loss. Small trials in animal models and humans suggest a role for alkali therapy to lessen these complications. Recent studies support this notion, although more definitive evidence is needed on the long-term benefits of alkali therapy and the optimal serum bicarbonate level. The role of dietary modification also should be given greater consideration. In addition, potential adverse effects of alkali treatment must be taken into consideration, including sodium retention and the theoretical concern of promoting vascular calcification. This teaching case summarizes the rationale for and benefits and complications of base therapy in patients with chronic kidney disease.
Article
Full-text available
Background and objectives: Current guidelines recommend Na(+)-based alkali for CKD with metabolic acidosis and plasma total CO2 (PTCO2) < 22 mM. Because diets in industrialized societies are typically acid-producing, we compared base-producing fruits and vegetables with oral NaHCO3 (HCO3) regarding the primary outcome of follow-up estimated GFR (eGFR) and secondary outcomes of improved metabolic acidosis and reduced urine indices of kidney injury. Design, setting, participants, & measurements: Individuals with stage 4 (eGFR, 15-29 ml/min per 1.73 m(2)) CKD due to hypertensive nephropathy, had a PTCO2 level < 22 mM, and were receiving angiotensin-converting enzyme inhibition were randomly assigned to 1 year of daily oral NaHCO3 at 1.0 mEq/kg per day (n=35) or fruits and vegetables dosed to reduce dietary acid by half (n=36). Results: Plasma cystatin C-calculated eGFR did not differ at baseline and 1 year between groups. One-year PTCO2 was higher than baseline in the HCO3 group (21.2±1.3 versus 19.5±1.5 mM; P<0.01) and the fruits and vegetables group (19.9±1.7 versus 19.3±1.9 mM; P<0.01), consistent with improved metabolic acidosis, and was higher in the HCO3 than the fruits and vegetable group (P<0.001). One-year urine indices of kidney injury were lower than baseline in both groups. Plasma [K(+)] did not increase in either group. Conclusions: One year of fruits and vegetables or NaHCO3 in individuals with stage 4 CKD yielded eGFR that was not different, was associated with higher-than-baseline PTCO2, and was associated with lower-than-baseline urine indices of kidney injury. The data indicate that fruits and vegetables improve metabolic acidosis and reduce kidney injury in stage 4 CKD without producing hyperkalemia.
Article
Full-text available
Lower levels of serum bicarbonate and a higher anion gap have been associated with insulin resistance and hypertension in the general population. Whether these associations extend to other cardiovascular disease risk factors is unknown. To clarify this, we examined the association of serum bicarbonate and anion gap with cardiorespiratory fitness in 2714 adults aged 20-49 years in the 1999-2004 National Health and Nutrition Examination Survey. The mean serum bicarbonate was 24.6 mEq/l and the mean anion gap was 10.26 mEq/l, with fitness determined by submaximal exercise testing. After multivariable adjustment, gender, length of fasting, soft drink consumption, systolic blood pressure, serum phosphate, and hemoglobin were independently associated with both the serum bicarbonate and the anion gap. Low fitness was most prevalent among those in the lowest quartile of serum bicarbonate or highest quartile of anion gap. After multivariable adjustment, a 1 s.d. higher serum bicarbonate or anion gap was associated with an odds ratio for low fitness of 0.80 (95% CI 0.70-0.91) and 1.30 (95% CI 1.15-1.48), respectively. The association of bicarbonate with fitness may be mediated by differences in lean body mass. Thus, lower levels of serum bicarbonate and higher levels of anion gap are associated with lower cardiorespiratory fitness in adults aged 20-49 years in the general population.
Article
Full-text available
The neutralization of dietary acid with sodium bicarbonate decreases kidney injury and slows the decline of the glomerular filtration rate (GFR) in animals and patients with chronic kidney disease. The sodium intake, however, could be problematic in patients with reduced GFR. As alkali-induced dietary protein decreased kidney injury in animals, we compared the efficacy of alkali-inducing fruits and vegetables with oral sodium bicarbonate to diminish kidney injury in patients with hypertensive nephropathy at stage 1 or 2 estimated GFR. All patients were evaluated 30 days after no intervention; daily oral sodium bicarbonate; or fruits and vegetables in amounts calculated to reduce dietary acid by half. All patients had 6 months of antihypertensive control by angiotensin-converting enzyme inhibition before and during these studies, and otherwise ate ad lib. Indices of kidney injury were not changed in the stage 1 group. By contrast, each treatment of stage 2 patients decreased urinary albumin, N-acetyl β-D-glucosaminidase, and transforming growth factor β from the controls to a similar extent. Thus, a reduction in dietary acid decreased kidney injury in patients with moderately reduced eGFR due to hypertensive nephropathy and that with fruits and vegetables was comparable to sodium bicarbonate. Fruits and vegetables appear to be an effective kidney protective adjunct to blood pressure reduction and angiotensin-converting enzyme inhibition in hypertensive and possibly other nephropathies.
Article
Full-text available
Several studies have shown that muscle mass loss is an important pathogenic issue in heart failure (HF). Atrogin-1 is a F-box protein selectively expressed in cardiac and skeletal muscle tissue, which plays a pivotal role in muscle wasting regulation. The aim of this study was to investigate the expression of Atrogin-1 and the molecular pathway involved in Atrogin-1 regulation in human HF. Cardiac tissue from patients with HF (HF group: n=10) or with normal left ventricular function (control group: n=9) was studied by western blot and real time-PCR analysis. Linear regression analysis between patients left ventricular ejection fraction (LVEF) and Atrogin1 or its regulator Forkhead box O 3a (Foxo3a) myocardial expression was performed to test correlations between protein expression and LVEF. Western blot analysis revealed that the myocardial expression of Atrogin-1 in the HF group was 2.5-fold increased compared with controls (P=0.007). Accordingly, Atrogin-1 mRNA was 1.5 higher than in controls (P=0.003). The expression of Foxo3a and its up-stream regulator AKT were also measured. Western blot analysis demonstrated in the HF group a 2.56-fold reduction of AKT phosphorylation and a 3.32-fold increase of Foxo3a as compared with controls (P=0.002 and P=0.001, respectively). Finally, linear regression showed a significant relationship between Foxo3a or Atrogin-1 expression and LVEF (R=0.976, P<0.0001 and R=0.895, P=0.003, respectively). Our results suggest that in human HF, the activity of AKT decreases, with activation of Foxo3a and induction of Atrogin-1, thereby leading to a molecular state that favours heart muscle loss and left ventricular dysfunction.
Article
Full-text available
Between the 1950s and 1980s, scientists were focusing mostly on how the genetic code is transcribed to RNA and translated to proteins, but how proteins are degraded has remained a neglected research area. With the discovery of the lysosome by Christian de Duve it was assumed that cellular proteins are degraded within this organelle. Yet, several independent lines of experimental evidence strongly suggested that intracellular proteolysis is largely non-lysosomal, but the mechanisms involved remained obscure. The discovery of the ubiquitin-proteasome system resolved the enigma. We now recognize that degradation of intracellular proteins is involved in regulation of a broad array of cellular processes, such as cell cycle and division, regulation of transcription factors, and assurance of the cellular quality control. Not surprisingly, aberrations in the system have been implicated in the pathogenesis of human disease, such as malignancies and neurodegenerative disorders, which led subsequently to an increasing effort to develop mechanism-based drugs.
Article
Full-text available
This study describes the impact of bicarbonate treatment for 3 months on net acid excretion (NAE), nitrogen excretion, and muscle performance in older men and women. Bicarbonate reduced NAE, and the decrement was associated with a decrease in nitrogen excretion. Treatment also improved muscle power and endurance in the women. Bicarbonate enhances muscle performance during strenuous exercise, but its effect on performance during normal activity in older subjects is unknown. In this trial, healthy subjects age 50 and older were randomized to 67.5 mmol of bicarbonate or to no bicarbonate daily for 3 months. Changes in lower-extremity muscle power, endurance, urinary nitrogen, and NAE were compared across treatment groups in the 162 participants included in the analyses. In the men and the women, bicarbonate was well tolerated, and as expected, it significantly decreased NAE. The change in NAE correlated with change in nitrogen excretion in women (r = 0.32, P = 0.002) with a similar trend in men (r = 0.23, P = 0.052). In the women, bicarbonate increased double leg press power at 70% one repetition maximum by 13% (P = 0.003) compared with no bicarbonate and improved other performance measures. Treatment with bicarbonate had no significant effect on muscle performance in the men. Ingestion of bicarbonate decreased nitrogen excretion and improved muscle performance in healthy postmenopausal women. The bicarbonate-induced decline in NAE was associated with reduced nitrogen excretion in both men and women. These findings suggest that bicarbonate merits further evaluation as a safe, low-cost intervention that may attenuate age-related loss of muscle performance and mass in the elderly.
Article
Full-text available
Although the mechanism of muscle wasting in end-stage renal disease is not fully understood, there is increasing evidence that acidosis induces muscle protein degradation and could therefore contribute to the loss of muscle protein stores of patients on hemodialysis, a prototypical state of chronic metabolic acidosis (CMA). Because body protein mass is controlled by the balance between synthesis and degradation, protein loss can occur as result of either increased breakdown, impaired synthesis, or both. Correction of acidosis may therefore help to maintain muscle mass and improve the health of patients with CMA. We evaluated whether alkalizing patients on hemodialysis might have a positive effect on protein synthesis and on nutritional parameters. Eight chronic hemodialysis patients were treated daily with oral sodium bicarbonate (NaHCO(3)) supplementation for 10-14 days, yielding a pre-dialytic plasma bicarbonate concentration of 28.6 +/-1.6 mmol/l. The fractional synthesis rates (FSR) of muscle protein and albumin were obtained by the L-[(2)H(5)ring]phenylalanine flooding technique. Oral NaHCO(3 )supplementation induced a significant increase in serum bicarbonate (21.5 +/- 3.4 vs. 28.6 +/- 1.6 mmol/l; p = 0.018) and blood pH (7.41 vs. 7.46; p = 0.041). The FSR of muscle protein and the FSR of albumin did not change significantly (muscle protein: 2.1 +/- 0.2 vs. 2.0 +/- 0.5% per day, p = 0.39; albumin: 8.3 +/- 2.2 vs. 8.6 +/- 2.5% per day, p = 0.31). Plasma concentrations of insulin-like growth factor 1 decreased significantly (33.4 +/- 21.3 vs. 25.4 +/- 12.3 nmol/l; p = 0.028), whereas thyroid-stimulating hormone, free thyroxin and free triiodothyronine did not change significantly and nutritional parameters showed no improvement. In contrast to other findings, raising the blood pH of dialysis patients was not associated with a positive effect on albumin and muscle protein synthesis, or nutritional and endocrinal parameters.
Article
Full-text available
Protein is an essential component of muscle and bone. However, the acidic byproducts of protein metabolism may have a negative impact on the musculoskeletal system, particularly in older individuals with declining renal function. We sought to determine whether adding an alkaline salt, potassium bicarbonate (KHCO3), allows protein to have a more favorable net impact on intermediary indices of muscle and bone conservation than it does in the usual acidic environment. We conducted a 41-d randomized, placebo-controlled, double-blind study of KHCO3 or placebo with a 16-d phase-in and two successive 10-d metabolic diets containing low (0.5 g/kg) or high (1.5 g/kg) protein in random order with a 5-d washout between diets. The study was conducted in a metabolic research unit. Nineteen healthy subjects ages 54-82 yr participated. KHCO3 (up to 90 mmol/d) or placebo was administered for 41 d. We measured 24-h urinary nitrogen excretion, IGF-I, 24-h urinary calcium excretion, and fractional calcium absorption. KHCO3 reduced the rise in urinary nitrogen excretion that accompanied an increase in protein intake (P = 0.015) and was associated with higher IGF-I levels on the low-protein diet (P = 0.027) with a similar trend on the high-protein diet (P = 0.050). KHCO3 was also associated with higher fractional calcium absorption on the low-protein diet (P = 0.041) with a similar trend on the high-protein diet (P = 0.064). In older adults, KHCO3 attenuates the protein-induced rise in urinary nitrogen excretion, and this may be mediated by IGF-I. KHCO3 may also promote calcium absorption independent of the dietary protein content.
Article
Full-text available
Nitrogen and potassium balance studies were conducted in six nondialyzed uremic patients. Each patient was investigated before and after supplementation with sodium bicarbonate and sodium chloride. Every period of the study lasted longer than 1 wk. Each patient had the same calorie and protein intake during the whole study. Urea nitrogen appearance was correlated with protein intake for the assessment of the compliance of patients with their diets. There was a significant decrease of blood urea nitrogen (p = 0.014) of 36% during bicarbonate supplementation and both metabolic balance studies improved significantly (p = 0.0005 and 0.0096). However, there was no significant improvement during sodium chloride administration indicating that the effect of bicarbonate was the result of the correction of metabolic acidosis and not of the expansion of the extracellular volume.
Article
Full-text available
Chronic metabolic acidosis has been previously shown to stimulate protein degradation. To evaluate the effects of chronic metabolic acidosis on nitrogen balance and protein synthesis we measured albumin synthesis rates and urinary nitrogen excretion in eight male subjects on a constant metabolic diet before and during two different degrees of chronic metabolic acidosis (NH4Cl 2.1 mmol/kg body weight, low dose group, and 4.2 mmol/kg body weight, high dose group, orally for 7 d). Albumin synthesis rates were measured by intravenous injection of [2H5ring]phenylalanine (43 mg/kg body weight, 7.5 atom percent and 15 atom percent, respectively) after an overnight fast. In the low dose group, fractional synthesis rates of albumin decreased from 9.9 +/- 1.0% per day in the control period to 8.4 +/- 0.7 (n.s.) in the acidosis period, and from 8.3 +/- 1.3% per day to 6.3 +/- 1.1 (P < 0.001) in the high dose group. Urinary nitrogen excretion increased significantly in the acidosis period (sigma delta 634 mmol in the low dose group, 2,554 mmol in the high dose group). Plasma concentrations of insulin-like growth factor-I, free thyroxine and tri-iodothyronine were significantly lower during acidosis. In conclusion, chronic metabolic acidosis causes negative nitrogen balance and decreases albumin synthesis in humans. The effect on albumin synthesis may be mediated, at least in part, by a suppression of insulin-like growth factor-I, free thyroxine and tri-iodothyronine.
Article
Full-text available
In normal subjects, a low level of metabolic acidosis and positive acid balance (the production of more acid than is excreted) are typically present and correlate in degree with the amount of endogenous acid produced by the metabolism of foods in ordinary diets abundant in protein. Over a lifetime, the counteraction of retained endogenous acid by base mobilized from the skeleton may contribute to the decrease in bone mass that occurs normally with aging. To test that possibility, we administered potassium bicarbonate to 18 postmenopausal women who were given a constant diet (652 mg [16 mmol] of calcium and 96 g of protein per 60 kg of body weight). The potassium bicarbonate was given orally for 18 days in doses (60 to 120 mmol per day) that nearly completely neutralized the endogenous acid. During the administration of potassium bicarbonate, the calcium and phosphorus balance became less negative or more positive--that is, less was excreted in comparison with the amount ingested (mean [+/- SD] change in calcium balance, +56 +/- 76 mg [1.4 +/- 1.9 mmol] per day per 60 kg; P = 0.009; change in phosphorus balance, +47 +/- 64 mg [1.5 +/- 2.1 mmol] per day per 60 kg; P = 0.007) because of reductions in urinary calcium and phosphorus excretion. The changes in calcium and phosphorus balance were positively correlated (P < 0.001). Serum osteocalcin concentrations increased from 5.5 +/- 2.8 to 6.1 +/- 2.8 ng per milliliter (P < 0.001), and urinary hydroxyproline excretion decreased from 28.9 +/- 12.3 to 26.7 +/- 10.8 mg per day (220 +/- 94 to 204 +/- 82 mumol per day; P = 0.05). Net renal acid excretion decreased from 70.9 +/- 10.1 to 12.8 +/- 21.8 mmol per day, indicating nearly complete neutralization of endogenous acid. In postmenopausal women, the oral administration of potassium bicarbonate at a dose sufficient to neutralize endogenous acid improves calcium and phosphorus balance, reduces bone resorption, and increases the rate of bone formation.
Article
Full-text available
To assess the effect of hemodialysis on protein metabolism, leucine flux was measured in seven patients before, during, and after high efficiency hemodialysis using cuprophane dialyzers and bicarbonate dialysate during a primed-constant infusion of L-[1-13C]leucine. The kinetics [mumol/kg per h, mean +/- SD] are as follows: leucine appearance into the plasma leucine pool was 86 +/- 28, 80 +/- 28, and 85 +/- 25, respectively, before, during, and after dialysis. Leucine appearance into the whole body leucine pool, derived from plasma [1-13C]alpha-ketoisocaproate enrichment, was 118 +/- 31, 118 +/- 31, and 114 +/- 28 before, during, and after dialysis, respectively. In the absence of leucine intake, appearance rate reflects protein degradation, which was clearly unaffected by dialysis. Leucine oxidation rate was 17.3 +/- 7.8 before, decreased to 13.8 +/- 7.8 during, and increased to 18.9 +/- 10.3 after dialysis (P = 0.027). Leucine protein incorporation was 101 +/- 26 before, was reduced to 89 +/- 23 during, and returned to 95 +/- 23 after dialysis (P = 0.13). Leucine net balance, the difference between leucine protein incorporation and leucine release from endogenous degradation, was -17.3 +/- 7.8 before, decreased to -28.5 +/- 11.0 during, and returned to -18.9 +/- 10.3 after dialysis (P < 0.0001). This markedly more negative leucine balance during dialysis was accountable by dialysate leucine loss, which was 14.4 +/- 6.2 mumol/kg per h. These data suggest that hemodialysis using a cuprophane membrane did not acutely induce protein degradation. It was, nevertheless, a net catabolic event because protein synthesis was reduced and amino acid was lost into the dialysate.
Article
Full-text available
Chronic renal failure (CRF) is associated with negative nitrogen balance and loss of lean body mass. To identify specific proteolytic pathways activated by CRF, protein degradation was measured in incubated epitrochlearis muscles from CRF and sham-operated, pair-fed rats. CRF stimulated muscle proteolysis, and inhibition of lysosomal and calcium-activated proteases did not eliminate this increase. When ATP production was blocked, proteolysis in CRF muscles fell to the same level as that in control muscles. Increased proteolysis was also prevented by feeding CRF rats sodium bicarbonate, suggesting that activation depends on acidification. Evidence that the ATP-dependent ubiquitin-proteasome pathway is stimulated by the acidemia of CRF includes the following findings: (a) An inhibitor of the proteasome eliminated the increase in muscle proteolysis; and (b) there was an increase in mRNAs encoding ubiquitin (324%) and proteasome subunits C3 (137%) and C9 (251%) in muscle. This response involved gene activation since transcription of mRNAs for ubiquitin and the C3 subunit were selectively increased in muscle of CRF rats. We conclude that CRF stimulates muscle proteolysis by activating the ATP-ubiquitin-proteasome-dependent pathway. The mechanism depends on acidification and increased expression of genes encoding components of the system. These responses could contribute to the loss of muscle mass associated with CRF.
Article
Full-text available
Previously we demonstrated that low grade chronic metabolic acidosis exists normally in humans eating ordinary diets that yield normal net rates of endogenous acid production (EAP), and that the degree of acidosis increases with age. We hypothesize that such diet-dependent and age-amplifying low grade metabolic acidosis contributes to the decline in skeletal muscle mass that occurs normally with aging. This hypothesis is based on the reported finding that chronic metabolic acidosis induces muscle protein breakdown, and that correction of acidosis reverses the effect. Accordingly, in 14 healthy postmenopausal women residing in a General Clinical Research Center and eating a constant diet yielding a normal EAP rate, we tested whether correcting their "physiological" acidosis with orally administered potassium bicarbonate (KHCO3; 60-120 mmol/day for 18 days) reduces their urinary nitrogen loss. KHCO3 reduced EAP to nearly zero, significantly reduced the blood hydrogen ion concentration (P < 0.001), and increased the plasma bicarbonate concentration (P < 0.001), indicating that pre-KHCO3, diet-dependent EAP was significantly perturbing systemic acid-base equilibrium, causing a low grade metabolic acidosis. Urinary ammonia nitrogen, urea nitrogen, and total nitrogen levels significantly decreased. The cumulative reduction in nitrogen excretion was 14.1 +/- 12.3 g (P < 0.001). Renal creatinine clearance and urine volume remained unchanged. We conclude that in postmenopausal women, neutralization of diet-induced EAP with KHCO3 corrects their preexisting diet-dependent low grade metabolic acidosis and significantly reduces their urinary nitrogen wasting. The magnitude of the KHCO3-induced nitrogen-sparing effect is potentially sufficient to both prevent continuing age-related loss of muscle mass and restore previously accrued deficits.
Article
Full-text available
In 64 apparently healthy adult humans (ages 17-74 yr) ingesting controlled diets, we investigated the separate and combined effects of age, glomerular filtration rate (GFR, index of age-related renal functional decline), renal net acid excretion [NAE, index of endogenous acid production (EAP)], and blood PCO2 (PbCO2, index of respiratory set point) on steady-state blood hydrogen ion ([H+]b) and plasma bicarbonate concentration ([HCO3-]p). Independent predictors of [H+]b and [HCO3-]p were PbCO2, NAE, and either age or GFR, but not both, because the two were highly correlated (inversely). [H+]b increased with increasing PbCO2, NAE, and age and with decreasing GFR. [HCO3-]p decreased with increasing NAE and age but increased with increasing PbCO2 and GFR. Age (or GFR) at constant NAE had greater effect on both [H+]b and [HCO3-]p than did NAE at constant age (or GFR). Neither PbCO2 nor NAE correlated with age or GFR. Thus two metabolic factors, diet-dependent EAP and age (or GFR), operate independently to determine blood acid-base composition in adult humans. Otherwise healthy adults manifest a low-grade diet-dependent metabolic acidosis, the severity of which increases with age at constant EAP, apparently due in part to the normal age-related decline of renal function.
Article
Full-text available
Chronic acidosis is a stimulus for proteolysis in muscle in vivo, but the mechanism of this response is unknown. We tested the hypothesis that acidosis or TNF-alpha, a cytokine whose production increases in acidosis, regulates proteolysis by inhibiting insulin signaling through phosphoinositide 3-kinase (PI3K). In cultured L6 myotubes, acidified (pH 7.1) media did not accelerate the basal protein degradation rate, but it inhibited insulin's ability to suppress proteolysis. Insulin receptor substrate-1 (IRS-1)-associated PI3K activity was not altered in cells acidified for 10 min but was strongly inhibited in cells incubated at pH 7.1 for 24 h. Phosphorylation of Akt was also suppressed by acidification for 24 h. Acidification did not induce changes in IRS-1 abundance, insulin-stimulated IRS-1 tyrosine phosphorylation, or the amount of PI3K p85 regulatory subunit. In contrast to acidification, TNF-alpha suppressed proteolysis in the presence or absence of insulin but had no effect on IRS-1-associated PI3K activity. To establish that the PI3K pathway can regulate protein degradation in muscle, we measured proteolysis in cells after inhibition of PI3K activity with LY-294002 or infection with an adenovirus encoding a dominant negative PI3K p85alpha-subunit. Both approaches inhibited insulin-induced suppression of proteolysis to a degree similar to that seen with acidification. We conclude that acidosis accelerates protein degradation by impairing insulin signaling through PI3K in muscle cells.
Article
Background. Uraemia and dialysis are viewed as catabolic processes resulting in malnutrition in chronic renal failure (CRF) patients. To sort out the effects of uraemia, acidosis, and dialysis on protein metabolism, we measured leucine flux in CRF patients before and after initiation of maintenance dialysis. Subjects and methods. Whole-body leucine flux was measured by primed-constant infusion of L[1- 13 C] leucine in nine CRF patients longitudinally; twice before and once after initiation of maintenance dialysis (D). Before dialysis, one leucine flux was measured when the patients were acidotic (A), and the other, when acidosis was corrected with NaHCO, (NA). Five normal subjects underwent one single leucine flux measurement to serve as control (N). Both patients and normal subjects consumed a constant diet for 6 days and leucine flux was measured on the 7th day 12 h post-absorption. Diet for the CRF patients was identical during the three periods. Plasma L[1- 13 C] leucine and L[1- 13 C]KIC were measured by gas chromatography/mass spectrometry and expired 13 CO 2 by isotope ratio spectrometry. Leucine kinetics were calculated using standard equations. Results. Plasma CO 2 levels were 19, 26 and 31 mmol/l in A, NA and D periods respectively. All kinetic results (μmol/kg/h) are presented as means + SD in the order of A, NA, D, and N, and CRF values that are statistically different from N are identified ( * ). The amounts of leucine release from endogenous protein breakdown (Ra or Q) were 101+12 * 95+9 * 113±22 and 117+6. Leucine oxidation (C), quantities of leucine irreversibly oxidized to CO 2 , were 16.5±5.4, 9.7±3.7 * , 12.3±3.0 * , and 23.2+3.1. Leucine protein incorporation levels (S) were 85±10, 85±8, 101+19 and 94+6. The S of 101 in CRF patients at period D was statistically higher than those during A and NA periods. Conclusions. These data indicate that when acidosis was corrected, CRF patients adapted to lower protein intake by reducing amino-acid oxidation and protein degradation, and maintained protein synthesis at normal levels. Metabolic acidosis impaired the downregulation of amino-acid oxidation. Maintenance dialysis treatment longitudinally restored protein flux to normal and increased protein synthesis. The general notion that uraemia and dialysis are protein catabolic is not supported by this work.
Article
Background and objectives: Cross-sectional studies have found that low serum bicarbonate is associated with slower gait speed. Whether bicarbonate levels independently predict the development of functional limitation has not been previously studied. Whether bicarbonate was associated with incident persistent lower extremity functional limitation and whether the relationship differed in individuals with and without CKD were assessed in participants in the Health, Aging, and Body Composition study, a prospective study of well functioning older individuals Design, setting, participants, & measurements: Functional limitation was defined as difficulty in walking 0.25 miles or up 10 stairs on two consecutive reports 6 months apart in the same activity (stairs or walking). Kidney function was measured using eGFR by the Chronic Kidney Disease Epidemiology Collaboration creatinine equation, and CKD was defined as an eGFR<60 ml/min per 1.73 m(2). Serum bicarbonate was measured using arterialized venous blood gas. Cox proportional hazards analysis was used to assess the association of bicarbonate (<23, 23-25.9, and ≥26 mEq/L) with functional limitation. Mixed model linear regression was performed to assess the association of serum bicarbonate on change in gait speed over time. Results: Of 1544 participants, 412 participants developed incident persistent functional limitation events over a median 4.4 years (interquartile range, 3.1 to 4.5). Compared with ≥26 mEq/L, lower serum bicarbonate was associated with functional limitation. After adjustment for demographics, CKD, diabetes, body mass index, smoking, diuretic use, and gait speed, lower serum bicarbonate was significantly associated with functional limitation (hazard ratio, 1.35; 95% confidence interval, 1.08 to 1.68 and hazard ratio, 1.58; 95% confidence interval, 1.12 to 2.22 for bicarbonate levels from 23 to 25.9 and <23, respectively). There was not a significant interaction of bicarbonate with CKD. In addition, bicarbonate was not significantly associated with change in gait speed. Conclusions: Lower serum bicarbonate was associated with greater risk of incident, persistent functional limitation. This association was present in individuals with and without CKD.
Article
Greater dietary acid has been associated with lower serum bicarbonate levels in patients with CKD. Whether this association extends to the general population and if it is modified by age are unknown. This study examined the association of the dietary acid load, estimated by net endogenous acid production, with serum bicarbonate levels in adult participants in the National Health and Nutrition Examination Survey 1999-2004. The mean serum bicarbonate was 24.9 mEq/L (SEM=0.1), and the mean estimated net endogenous acid production was 57.4 mEq/d (SEM=0.4). Serum bicarbonate was linearly associated with age, such that the oldest participants had the highest serum bicarbonate levels. After multivariable adjustment, participants in the highest quartile of net endogenous acid production had 0.40 mEq/L (95% confidence interval, -0.55 to -0.26) lower serum bicarbonate and a 33% (95% confidence interval, 3 to 72) higher likelihood of acidosis compared with those participants in the lowest quartile. There was a significant interaction by age of the association of net endogenous acid production with serum bicarbonate (P=0.005). Among participants 20-39, 40-59, and ≥60 years old, those participants in the highest net endogenous acid production quartile had 0.26 (95% confidence interval, -0.49 to -0.03), 0.60 (95% confidence interval, -0.92 to -0.29), and 0.49 (95% confidence interval, -0.84 to -0.14) mEq/L lower serum bicarbonate, respectively, compared with participants in the lowest quartile. Greater dietary acid is associated with lower serum bicarbonate in the general US population, and the magnitude of this association is greater among middle-aged and elderly persons than younger adults.
Article
Background and objectives: Metabolic acidosis contributes to muscle breakdown in patients with CKD, but whether its treatment improves functional outcomes is unknown. The choice of dose and tolerability of high doses remain unclear. In CKD patients with mild acidosis, this study evaluated the dose-response relationship of alkali with serum bicarbonate, its side effect profile, and its effect on muscle strength. Design, setting, participants, & measurements: In this single-blinded pilot study from March of 2009 to August of 2010, 20 adults with estimated GFR 15-45 ml/min per 1.73 m(2) and serum bicarbonate 20-24 mEq/L were treated during successive 2-week periods with placebo followed by escalating oral NaHCO3 doses (0.3, 0.6, and 1.0 mEq/kg per day). At each visit, handgrip strength and time required to complete 5 and 10 repetitions of a sit-to-stand test were measured. Results: Each 0.1 mEq/kg per day increase in dose produced a 0.33 mEq/L (95% confidence interval=0.23-0.43 mEq/L) higher serum bicarbonate. Sit-to-stand time improved after 6 weeks of oral NaHCO3 (23.8±1.4 versus 22.2±1.6 seconds for 10 repetitions, P=0.002), and urinary nitrogen excretion decreased (-0.70 g/g creatinine [95% confidence interval=-1.11 to -0.30] per 0.1 mEq/kg per day higher dose). No statistically significant change was seen in handgrip strength (29.5±9.6 versus 28.4±9.4 kg, P=0.12). Higher NaHCO3 doses were not associated with increased BP or greater edema. Conclusions: NaHCO3 supplementation produces a dose-dependent increase in serum bicarbonate and improves lower extremity muscle strength after a short-term intervention in CKD patients with mild acidosis. Long-term studies are needed to determine if this finding translates into improved functional status.
Article
Metabolic acidosis is associated with skeletal muscle proteolysis, and alkali supplementation has shown improvements in lean body mass and urinary nitrogen wasting in several studies. However, the association of acidosis with functional outcomes has not been examined on a population-based level. Cross-sectional study. 2,675 nationally representative adults 50 years or older in the National Health and Nutrition Examination Survey 1999-2002. Serum bicarbonate level. Low gait speed and low peak torque were defined as being in the lowest sex-specific quartile of gait speed and peak torque, respectively. Serum bicarbonate was measured in all participants. Gait speed was determined from a 20-foot timed walk. Peak torque was calculated using peak isokinetic knee extensor force. Serum bicarbonate level <23 mEq/L was present in 22.7% of the cohort. Compared with participants with bicarbonate levels ≥23 mEq/L, those with bicarbonate levels <23 mEq/L had higher body mass index and serum albumin levels; were more likely to have low socioeconomic status, a diagnosis of diabetes mellitus, or glomerular filtration rate <60 mL/min/1.73 m(2); and were less likely to use diuretics. Serum bicarbonate level <23 mEq/L compared with ≥23 mEq/L was associated with low gait speed (OR, 1.43; 95% CI, 1.04-1.95) and low peak torque (OR, 1.36; 95% CI, 1.07-1.74) after multivariable adjustment. The association with low peak torque was modified by race/ethnicity in women, but not men (ORs, 1.52 [95% CI, 1.08-2.13] for men, 2.33 [95% CI, 1.23-4.44] for nonwhite women, and 0.93 [95% CI, 0.47-1.82] for white women). Cross-sectional study using a single bicarbonate measurement. Lower serum bicarbonate levels are associated with slower gait speed and decreased quadriceps strength in older adults. Further studies should examine the effect of alkali therapy on functional outcomes.
Article
Muscle wasting increases the morbidity and mortality associated with chronic kidney disease (CKD) and has been attributed to malnutrition. In most patients, this is an incorrect diagnosis because simply feeding more protein aggravates uremia. Instead, there are complex mechanisms that stimulate loss of skeletal muscle, involving activation of mediators that stimulate the ATP-dependent ubiquitin-proteasome system (UPS). Identified mediators of muscle protein breakdown include inflammation, metabolic acidosis, angiotensin II, and neural and hormonal factors that cause defects in insulin/insulin-like growth factor I (IFG-I) intracellular signaling processes. Abnormalities in insulin/IGF-I signaling activate muscle protein degradation in the UPS and caspase-3, a protease that disrupts the complex structure of muscle proteins to provide substrates for the UPS. During the cleavage of muscle proteins, caspase-3 leaves behind a characteristic 14-kD actin fragment in the insoluble fraction of muscle, and characterization of this fragment identifies the presence of muscle catabolism. Thus, it could become a marker of excessive muscle wasting, providing a method for early detection of muscle wasting. Another consequence of activation of caspase-3 in muscle is stimulation of the activity of the proteasome, which increases the degradation of muscle proteins. Treatment strategies for blocking muscle wasting include correction of metabolic acidosis, which can suppress muscle protein losses in patients with CKD who are or are not being treated by dialysis. Correcting acidosis also improves bone metabolism in CKD and hence should be a goal of therapy. Exercise training is a potentially beneficial approach, but more information is needed to optimize exercise regimens. Replacing testosterone deficits can improve muscle mass in men, but dosing and side effects in women have not been adequately tested. Although insulin resistance occurs early in the course of CKD, there are no effective means of correcting it. Consequently, new therapies that can safely suppress muscle wasting are needed.
Article
Bicarbonate supplementation preserves renal function in experimental chronic kidney disease (CKD), but whether the same benefit occurs in humans is unknown. Here, we randomly assigned 134 adult patients with CKD (creatinine clearance [CrCl] 15 to 30 ml/min per 1.73 m(2)) and serum bicarbonate 16 to 20 mmol/L to either supplementation with oral sodium bicarbonate or standard care for 2 yr. The primary end points were rate of CrCl decline, the proportion of patients with rapid decline of CrCl (>3 ml/min per 1.73 m(2)/yr), and ESRD (CrCl <10 ml/min). Secondary end points were dietary protein intake, normalized protein nitrogen appearance, serum albumin, and mid-arm muscle circumference. Compared with the control group, decline in CrCl was slower with bicarbonate supplementation (5.93 versus 1.88 ml/min 1.73 m(2); P < 0.0001). Patients supplemented with bicarbonate were significantly less likely to experience rapid progression (9 versus 45%; relative risk 0.15; 95% confidence interval 0.06 to 0.40; P < 0.0001). Similarly, fewer patients supplemented with bicarbonate developed ESRD (6.5 versus 33%; relative risk 0.13; 95% confidence interval 0.04 to 0.40; P < 0.001). Nutritional parameters improved significantly with bicarbonate supplementation, which was well tolerated. This study demonstrates that bicarbonate supplementation slows the rate of progression of renal failure to ESRD and improves nutritional status among patients with CKD.
Article
The effect of the correction of metabolic acidosis (MA) on serum albumin concentrations (sAlbs) in hemodialysis (HD) patients is controversial. This study evaluated the role of the correction of MA on sAlb concentrations, normalized protein catabolic rate (nPCR), and the effect of the concomitant inflammatory status, in a group of acidotic HD patients. The correction of MA by oral supplementation with sodium bicarbonate, and the evaluation of its effect on sAlb, nPCR, and high-sensitivity C-reactive protein (hsCRP), were performed in 29 patients on bicarbonate dialysis for a median of 30 months. Other variables included pre-HD arterial pH, serum bicarbonate, serum creatinine, serum Na, body weight, interdialytic weight gain, pre-HD systolic and diastolic blood pressure, and Kt/V. Serum bicarbonate and pH increased significantly (P < .0001), from 19.1 +/- 0.7 mmol/L to 24.6 +/- 1.1 mmol/L and from 7.33 +/- 0.03 to 7.39 +/- 0.02, respectively (all values with +/- are SD). The nPCR decreased from 1.13 +/- 0.14 g/kg/day to 1.05 +/- 0.14 g/kg/day (P < .0001). The other variables did not change significantly. In 17 patients with high-sensitivity C-reactive protein <10 mg/L, sAlb increased from 3.7 +/- 0.3 g/dL to 4.0 +/- 0.3 g/dL (P < .01), whereas in 12 with high-sensitivity C-reactive protein >or=10 mg/L, sAlb did not change (3.5 +/- 0.17 g/dL vs. 3.4 +/- 0.13 g/dL; P = NS). Oral sodium bicarbonate supplementation is effective in correcting MA in HD patients and does not affect interdialytic weight gain, plasma Na, and blood pressure. The correction of MA is effective in reducing protein catabolism (nPCR) in both inflamed and less inflamed HD patients, but increases sAlb only in patients without inflammation. In inflamed patients, the correction of MA is not sufficient per se to improve sAlb concentrations.
Article
This article will provide a comprehensive review and update on recent advances in the field of protein-energy wasting and protein kinetics in patients with end-stage renal disease. Hypercatabolism in dialysis patients is related to intradialytic loss of amino acids as well as cytokine activation. Interleukin-6 pays a central role in regulating whole-body, muscle and hepatic protein turnover during hemodialysis. Amino acids released from the muscle protein catabolism are taken up by the liver for de-novo protein synthesis during hemodialysis. Intradialytic nutrient supplementation increases protein synthesis, but does not attenuate muscle protein catabolism. Protein-energy wasting observed in end-stage renal disease is a maladaptive metabolic state, which often coexists with inflammation. Cytokine-adipokine signaling plays an important role in protein-energy wasting. Peripheral blood mononuclear cells and skeletal muscle are important sources of interleukin-6 during hemodialysis. In addition to contributing to intradialytic protein catabolism, interleukin-6 impairs effective utilization of amino acids for protein synthesis. Although muscle protein breakdown increases during hemodialysis, whole-body proteolysis is not increased. The dissociation between regional and whole-body protein kinetics in end-stage renal disease is due to somatic-hepatic recycling of amino acids. Net anabolism during hemodialysis may be achieved only by providing nutrients as well as inhibiting overt inflammatory signals.
Article
To evaluate whether renal net acid excretion capacity (NAEC) varies across different age groups and, specifically, whether it falls in elderly people. Cross-sectional observational study. Community-based. Young participants were from the DOrtmund Nutritional and Anthropometric Longitudinally Designed Study, Dortmund, Germany; elderly participants were from Gothenburg, Sweden. Twenty-four-hour urine pH, net acid excretion (NAE), urinary phosphorus, total nitrogen excretion, and anthropometric data were measured in healthy elderly people (aged 55-75; n=85), young adults (aged 18-22; n=117), adolescents (aged 13-14; n=112), and prepubescent children (aged 6-7; n=217). NAEC was determined as 24-hour NAE adjusted for urine pH using the residual method. In elderly participants 24-hour urinary pH (5.9+/-0.53) was lower (P<.05) and NAE (60+/-27 mEq/d) higher (P<.05) than in the three other groups. In a regression model adjusted for age, sex, and body surface area, NAEC showed a clear decrease with age, with highest values in prepubescents and lowest in elderly participants. However, NAEC remained significantly lower only in elderly participants (P<.001) after the inclusion of total nitrogen excretion, a protein intake index, which was included because protein intake is known to modulate renal function. NAEC was approximately 8 mEq/d lower in healthy elderly participants than in young adults. The capacity to excrete net endogenous acid does not vary markedly from childhood to young adulthood but falls significantly with age, implying that elderly people may require higher daily alkalizing mineral intake to compensate for renal function losses.
Article
The effect of chronic metabolic acidosis (0.1 g/(kg . day) X 3 days) on carbohydrate metabolism was examined with the glucose-clamp technique in 16 healthy volunteers. Hyperglycemic clamp. Plasma glucose concentration is acutely raised and maintained 125 mg/dl above the basal level. Because the glucose concentration is held constant, the glucose infusion rate is an index of glucose metabolism (M). Following NH4Cl, M decreased from 8.95 +/- 1.12 to 7.35 +/- 0.76 (P less than 0.05) despite an increased plasma insulin concentration (I) 23 +/- 9%, P less than 0.05). Consequently the M/I ratio, an index of tissue sensitivity to insulin, decreased by 32 +/- 5% (P less than 0.005). Euglycemic clamp. Plasma insulin concentration is acutely raised and maintained 101 +/- 3 microU/ml above basal and plasma glucose is held constant at the fasting level by a variable glucose infusion (M). Following NH4Cl both M and M/I decreased by 15 +/- 4% (P = 0.005) and 15 +/- 5% (P = 0.01), respectively. Metabolic acidosis had no effect on basal [3-3H]glucose production or the percent of decline (91 +/- 4%) following hyperinsulinemia. Both hyperglycemic and euglycemic clamp studies indicate that impaired glucose metabolism following metabolic acidosis results from impaired tissue sensitivity to insulin.
Article
The effect of acidosis on whole body protein turnover was determined from the kinetics of infused L-[1-13C]leucine. Seven healthy subjects were studied before (basal) and after (acid) the induction of acidosis with 5 days oral ammonium chloride (basal pH 7.42 +/- 0.01, acid pH 7.35 +/- 0.03). Bicarbonate recovery, measured from the kinetics of infused NaH13CO3, was increased in the acidotic state (basal 72.9 +/- 1.2 vs. acid 77.6 +/- 1.6%; P = 0.06). Leucine appearance from body protein (PD), leucine disappearance into body protein (PS), and leucine oxidation (O) increased significantly (PD: basal 120.5 +/- 5.6 vs. acid 153.9 +/- 6.2, P < 0.01; PS: basal 98.8 +/- 5.6 vs. acid 127.0 +/- 4.7, P < 0.01; O: basal 21.6 +/- 1.1 vs. acid 26.9 +/- 2.3 mumol.kg-1.h-1, P < 0.01). Plasma levels of the amino acids threonine, serine, asparagine, citrulline, valine, leucine, ornithine, lysine, histidine, arginine, and hydroxyproline increased significantly with the induction of acidosis. These results confirm that acidosis in humans is a catabolic factor stimulating protein degradation and amino acid oxidation.
Article
Metabolic acidosis impairs protein and amino acid metabolism in rat muscle. To examine how extracellular acidification affects cellular protein turnover, we studied the BC3H1 myocyte. At pH 7.1 vs. 7.4, intracellular pH was lower; the decrease was greater in cells incubated in N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid-tris(hydroxymethyl)aminomethane compared with bicarbonate buffer. We monitored degradation of proteins labeled with L-[14C]phenylalanine by measuring radioactivity released into media containing an excess of unlabeled phenylalanine. Extracellular acidification increased degradation compared with incubation at pH 7.4. Adding a physiological concentration of insulin (1 nM) decreased protein degradation at pH 7.1 and 7.4; a supraphysiological (71 nM) insulin concentration decreased degradation at pH 7.1 to the same rate as cells incubated at pH 7.4 without insulin. Compared with pH 7.4, protein synthesis decreased 29% at pH 7.2; at pH 7.6 it increased 129%. Insulin stimulated protein synthesis at all pHs, but at pH 7.4 the insulin-induced increase was less than the rate at pH 7.6 without insulin. Dexamethasone did not change protein breakdown regardless of the pH; it had variable effects on protein synthesis. Thus extracellular acidification causes marked changes in protein turnover in BC3H1 myocytes.
Article
To examine the role of lysosomes in the degradation of skeletal-muscle myofibrillar proteins, we measured the release of N tau-methylhistidine from perfused muscle of starved and fed rats in the presence or absence of agents that inhibit lysosomal proteinase activity. After 1 day of starvation, the release of N tau-methylhistidine by perfused muscle of 4-, 8- and 24-week-old rats increased by 322, 159 and 134% respectively. On the other hand, total protein breakdown, assessed by tyrosine release, increased by 62, 20 and 20% respectively. Inhibitors of lysosomal proteinases as well as high concentrations of insulin or amino acids failed to diminish the release of N tau-methylhistidine by perfused muscle of starved and fed rats, despite a 25-35% inhibition of total protein breakdown. The data strongly suggest that the complete breakdown of myofibrillar proteins occurs via a non-lysosomal pathway. They also suggest that total proteolysis, which primarily reflects non-myofibrillar protein breakdown, occurs at least in part within lysosomes.
Article
To test the hypothesis that acidosis contributes to the insulin resistance of chronic renal failure (CRF) and impairs the action of insulin to decrease protein degradation, eight CRF patients were studied using the combined L-[1-13C]leucine-euglycemic clamp technique before (acid) and after (NaHCO3) 4 wk treatment with NaHCO3 (pH: acid 7.29 +/- 0.01 vs. NaHCO3 7.36 +/- 0.01, P < 0.001). Protein degradation (PD) was estimated sequentially from the kinetics of a primed continuous infusion of L-[1-13C]leucine in the basal state and during a hyperinsulinemic euglycemic clamp. Insulin sensitivity was measured during the clamp. The correction of acidosis significantly increased the glucose infusion rate necessary to maintain euglycemia (acid 6.44 +/- 0.89 vs. bicarbonate 7.38 +/- 0.90 mg.kg-1.min-1, P < 0.01) and significantly decreased PD in the basal state (acid 126.4 +/- 8.1 vs. bicarbonate 100.1 +/- 6.9 mumol.kg-1.h-1, P < 0.001). Hyperinsulinemia decreased PD in both studies (acid basal 126.4 +/- 8.1 vs. clamp 96.5 +/- 7.7, P < 0.001; bicarbonate basal 100.1 +/- 6.9 vs. clamp 88.2 +/- 5.5 mumol.kg-1.h-1, P = 0.06), its effect being unaltered by acidosis, with a reduction of 24% before and 12% after the correction of acidosis. In conclusion, acidosis contributes to the insulin resistance of CRF but does not affect the action of insulin on PD.
Article
Ubiquitin modification of many protein targets within cells plays important roles in a variety of biological processes. Among these are regulation of gene expression, regulation of cell cycle and division, involvement in the cellular stress response, modification of cell surface receptors, DNA repair, import of proteins into mitochondria, uptake of precursors of neurotransmitters into synaptosomes, biogenesis of peroxisomes, assembly of ribosomes, and programmed cell death. The mechanisms that underlie these complex processes are poorly understood. The best studied modification occurs in the ubiquitin-mediated proteolytic pathway. Recent experimental evidence indicates that the ubiquitin system is involved in the degradation of mitotic cyclins, oncoproteins and tumor suppressors, in the removal of abnormal and otherwise damaged proteins, and in processing of antigens restricted to class I MHC molecules. Degradation of a protein via the ubiquitin system involves two discrete steps. Initially, multiple ubiquitin molecules are covalently linked in an ATP-dependent mode to the protein substrate. The targeted protein is then degraded by a specific, energy-dependent and high molecular mass protease complex into peptides and free amino acids, and free and reutilizable ubiquitin is released. In addition, stable mono-ubiquitin adducts are also found in the cell, for example, those involving nucleosomal histones. Despite the considerable progress that has been made in elucidating the mode of action and roles of the ubiquitin system, many problems remain unsolved. For example, little is known on the signals that target proteins for degradation. While a few proteins are targeted for degradation following recognition of their N-terminal amino acid residue, the vast majority of cellular proteins are targeted by other signals. The identity of the native cellular substrates of the system is another important, yet unresolved problem: only a few proteins have been recognized so far as substrates of the system in vivo. The scope of this review is to discuss the mechanisms involved in ubiquitin activation, selection of substrates for conjugation, and degradation of ubiquitin-conjugated proteins in the cell-free system. In addition, we shall summarize what is currently known of the physiological roles of ubiquitin-mediated proteolysis in vivo.
Article
The effect of correction of acidosis in chronic renal failure (CRF) was determined from the kinetics of infused L-[1-13C]leucine. Nine CRF patients were studied before (acid) and after two 4-wk treatment periods of sodium bicarbonate (NaHCO3) and sodium chloride (NaCl) (pH: acid 7.31 +/- 0.01, NaHCO3 7.38 +/- 0.01, NaCl 7.30 +/- 0.01). Leucine appearance from body protein (PD), leucine disappearance into body protein (PS) and leucine oxidation (O) decreased significantly with correction of acidosis (PD: acid 122.4 +/- 6.1, NaHCO3 88.3 +/- 6.9, NaCl 116.2 +/- 9.1 mumol.kg-1.h-1, acid vs. NaHCO3 P < 0.01, NaHCO3 vs. NaCl P < 0.01, acid vs. NaCl NS; PS: acid 109.4 +/- 5.6, NaHCO3 79.0 +/- 6.3, NaCl 101.3 +/- 7.7 mumol.kg-1.h-1, acid vs. NaHCO3 P < 0.01, NaHCO3 vs. NaCl P < 0.01, acid vs. NaCl NS; O: acid 13.0 +/- 1.2, NaHCO3 9.2 +/- 0.9, NaCl 15.0 +/- 1.9 mumol.kg-1.h-1, acid vs. NaHCO3 P < 0.05, NaHCO3 vs. NaCl P < 0.01, acid vs. NaCl NS). There were no significant changes in plasma amino acid concentrations. These results confirm that correction of acidosis in chronic renal failure removes a potential catabolic factor.
Article
Correction of acidosis in CAPD decreases protein degradation and synthesis but has no effect on leucine oxidation. The effect of the correction of metabolic acidosis in CRF patients treated with CAPD was determined from the kinetics of infused L-[1-13C]leucine. Seven CAPD patients were studied before (acid) and after correction of acidosis (bicarbonate) (pH:acid 7.39 +/- 0.01, bicarbonate 7.41 +/- 0.01, P = 0.005). Leucine appearance from body protein (PD) [corrected] and leucine disappearance into body protein (PS) [corrected] decreased significantly with correction of acidosis. (PS: acid 211.7 +/- 9.8, bicarbonate 142.3 +/- 4.2 micromol x kg-1 x hr-1, P < 0.001; PD: acid 200.6 +/- 8.5, bicarbonate 132.4 +/- 3.7 micromol x kg-1 x hr-1, P < 0.001). There was no significant change in leucine oxidation or plasma amino acid concentrations. These results demonstrate that optimal correction of acidosis in CAPD is beneficial in terms of protein turnover.
Article
The proteasome is an essential component of the ATP-dependent proteolytic pathway in eukaryotic cells and is responsible for the degradation of most cellular proteins. The 20S (700-kDa) proteasome contains multiple peptidase activities that function through a new type of proteolytic mechanism involving a threonine active site. The 26S (2000-kDa) complex, which degrades ubiquitinated proteins, contains in addition to the 20S proteasome a 19S regulatory complex composed of multiple ATPases and components necessary for binding protein substrates. The proteasome has been highly conserved during eukaryotic evolution, and simpler forms are even found in archaebacteria and eubacteria. Major advances have been achieved recently in our knowledge about the molecular organization of the 20S and 19S particles, their subunits, the proteasome's role in MHC-class 1 antigen presentation, and regulators of its activities. This article focuses on recent progress concerning the biochemical mechanisms and intracellular functions of the 20S and 26S proteasomes.
Article
Short-term correction of metabolic acidosis in normal and uremic subjects has been shown to decrease protein degradation, but the long-term effects of better correction of acidosis on nutrition in ESRF are unknown. The aim of this study was to assess the possible benefits, in the nutritional state and morbidity, of improved correction of acidosis in the first year of treatment with continuous ambulatory peritoneal dialysis (CAPD). Two hundred consecutive new CAPD patients were randomized, in a single-blind fashion, to receive a high (HA; lactate 40 mmol/liter) or low (LA; lactate 35 mmol/liter) alkali dialysate for one year. Calcium carbonate and sodium bicarbonate were also used to correct acidosis in the HA group. At one year, the venous serum bicarbonate and arterial pH were 7.44 +/- 0.004 and 27.2 +/- 0.3 mmol/liter in the HA group, and 23.0 +/- 0.3 mmol/liter and 7.4 +/- 0.004 in the LA group (P < 0.001). Dialysis dose, at one year or at the point of leaving the study (HA 8.0 +/- 0.1 liters/day vs. LA 8.5 +/- 0.3 liters/day) was not significantly different (P = 0.18). At one year, the increase in body weight in the HA group (6.1 +/- 0.66 kg) was higher than in the LA group (3.71 +/- 0.56 kg, P < 0.05). The increase in midarm circumference in the HA patients (1.26 +/- 0.16 cm) was significantly higher than the increase in the LA patients (0.61 +/- 0.16 cm, P < 0.05). The increase in triceps skinfold thickness were not significantly different (HA 2.5 +/- 0.41 mm vs. LA 1.24 +/- 0.38 mm, P = 0.1). Serum albumin was 37.8 +/- 0.4 g/dl at one year in the HA group, and 38.2 +/- 0.5 g/dl in the LA group (NS). Dietary protein intake at one year (HA 0.9 +/- 0.2 g/kg/day vs. LA 1.0 +/- 0.1 g/kg/day) was not significantly different. There were fewer hospital admissions in the HA group (1.13 +/- 0.16 per patient per year) compared to the LA group (1.71 +/- 0.22 per patient per year, P < 0.05). The HA patients spent less days in hospital per year than the LA patients (16.4 +/- 1.4 days/year vs. 21.2 +/- 1.9 days/year; P < 0.05). It is concluded that better correction of metabolic acidosis leads to greater increases in body weight and midarm circumference, but not triceps skinfold thickness, in the first year of CAPD. The improvement in morbidity, in terms of number of admissions and days in hospital per year, may be associated with the improvement in nutritional state.
Article
Metabolic acidosis adversely affects both protein and bone metabolism in patients with chronic renal failure, and could also affect morbidity and mortality. This trial aimed to investigate the effects of different dialysate bicarbonate concentrations on control of acid base balance, and nutritional status. Forty-six stable haemodialysis patients were dialysed using LowBic. (30 mmol/l) or HighBic. (40 mmol/l) bicarbonate dialysate in a single blind double crossover trial, of two consecutive six-month periods. Blood gas analysis, anthropometric indices and dialysis dose were measured, in addition to biochemical indices. Predialysis 'arterial' plasma pH values were significantly higher when using the HighBic. dialysate (LowBic. 7.38 +/- 0.05, HighBic. 7.43 +/- 0.04, P < 0.001), as was predialysis serum total CO2 at all times during the study (P < 0.01). Kt/V, (LowBic. 1.27 +/- 0.19, HighBic. 1.27 +/- 0.25), urea generation rates (UGR) (LowBic. 1.99 +/- 0.77, HighBic. 1.92 +/- 0.77 mmol/min), and normalized protein catabolic rate (NPCR) (LowBic. 1.04 +/- 0.26, HighBic. 0.99 +/- 0.28 g/kg/day) did not differ, and values of parathroid hormone (PTH) were comparable. Triceps skinfold thickness (TSF) showed a significant change (LowBic. 14.8 +/- 6.9-11.8 +/- 5.5, HighBic. 14.9 +/- 6.3-15.8 +/- 6.4 mm, P < 0.05) which was reversed following dialysate change (HighBic. 11.8 +/- 5.5-13.3 +/- 7.2, LowBic. 15.8 +/- 6.4-13.8 +/- 6.7 mm, P < 0.05). No differences in mid upper arm circumference were found. Bicarbonate dialysate concentrations of 40 mmol/l were safe, well tolerated, and produced better control of acidosis, with an increase in TSF, compared to a bicarbonate concentration of 30 mmol/l.
Article
Metabolic acidosis affects both vitamin D and insulin metabolism. Vitamin D is important in modulation of both insulin secretion and insulin sensitivity in uremia. The present study examines the effect of correction of metabolic acidosis on insulin action and secretion as well as 1,25 vitamin D3 concentrations in uremic patients. Eight patients (age 18 +/- 1 year) on maintenance hemodialysis with metabolic acidosis were studied before and after two weeks of oral sodium bicarbonate (NaHCO3) treatment to correct the acidosis. To control for the effect of additional sodium, they were also studied after two weeks of an equivalent amount of oral sodium chloride (NaCl). Controls consisted of 7 healthy controls (age 19 +/- 1 year). Insulin sensitivity was measured by the hyperinsulinemic euglycemic clamp technique. Insulin secretion was measured by the hyperglycemic clamp technique. Oral NaHCO3 treatment led to significant increases in venous pH and serum bicarbonate concentrations but no significant change in intact parathyroid hormone (PTH) concentrations. Circulating 1,25 dihydroxyvitamin [(OH)2] D3 were significantly lower than control values initially and increased significantly after treatment. Oral NaCl did not change any of the biochemical parameters. Before treatment of acidosis, uremic patients had lower insulin sensitivity (insulin resistance) during constant hyperinsulinemia and lower insulin secretion during constant hyperglycemia compared with controls. Following two weeks of NaHCO3 treatment there were significant increases in insulin sensitivity and insulin secretion, although the values did not normalize. There were no changes in insulin sensitivity or insulin secretion following two weeks of NaCl. Treatment of metabolic acidosis increased both insulin sensitivity and insulin secretion in patients with uremia. This was accompanied by an increase in the circulating levels of 1,25(OH)2D3 but no change in those of parathyroid hormone.
Article
We have evaluated whether sodium bicarbonate, taken chronically (0.5 g · kg−1 body mass) for a period of 5 days would improve the performance of eight subjects during 60 s of high-intensity exercise on an electrically braked cycle ergometer. The first test was performed prior to chronic supplementation (pre-ingestion) while the post-ingestion test took place 6 days later. A control test took place approximately 1 month after the cessation of all testing. Acid-base and metabolite data (n = 7) were measured from arterialised blood both pre- and post-exercise, as well as daily throughout the exercise period. The work completed by the subjects in the control and pre-ingestion test [21.1 (0.9) and 21.1 (0.9) MJ, respectively] was less than (P < 0.05) that completed in the post-ingestion test [24.1 (0.9) MJ; F (2,21) = 3.4, P < 0.05, power = 0.57]. Peak power was higher after the 5-day supplementation period (P < 0.05). Ingestion of the sodium bicarbonate for a period of 5 days resulted in an increase in pH (F (5,36) = 12.5, P < 0.0001, power = 1.0) over the 5-day period. The blood bicarbonate levels also rose during the trial (P < 0.05) from a resting level of 22.8 (0.4) to 28.4 (1.1) mmol · l−1 after 24 h of ingestion. In conclusion, the addition of sodium bicarbonate to a normal diet proved to be of ergogenic benefit in the performance of short-term, high-intensity work.
Article
Correction of acidosis in hemodialysis (HD) decreases protein degradation. The effect of the correction of chronic metabolic acidosis in chronic renal failure patients treated with HD was determined from the kinetics of infused L-[1-(13)C]leucine. Six HD patients were studied before (acid) and after (bicarbonate) correction of acidosis (pH: acid 7.36 +/- 0.01, bicarbonate 7.40 +/- 0.01, P < 0.005). Leucine appearance from body protein (PD) and leucine disappearance into body protein (PS) decreased significantly with correction of acidosis (PD: acid 180.6 +/- 7.3, bicarbonate 130.9 +/- 7.2 mumol.kg-1.h-1, P < 0.005; PS: acid 172.3 +/- 6.8, bicarbonate 122.0 +/- 6.8 mumol.kg-1.h-1, P < 0.005). There was no significant change in leucine oxidation or plasma amino acid concentrations. These results demonstrate that optimal correction of acidosis in HD is beneficial in terms of protein turnover and may improve long-term nutritional status in HD.
Article
Chronic metabolic acidosis induces negative nitrogen balance by either increased protein breakdown or decreased protein synthesis. Few data exist regarding effects of acute metabolic acidosis on protein synthesis. We investigated fractional synthesis rates (FSRs) of muscle protein and albumin, plasma concentrations of insulin-like growth factor-I (IGF-I), thyroid-stimulating hormone (TSH), and thyroid hormones (free thyroxin [fT(4)] and triiodothyronine [fT(3)]) in seven healthy human volunteers after a stable controlled metabolic period of 5 days and again 48 hours later after inducing metabolic acidosis by oral ammonium chloride intake (4.2 mmol/kg/d divided in six daily doses). Muscle and albumin FSRs were obtained by the [(2)H(5)ring]phenylalanine flooding technique. Ammonium chloride induced a significant decrease in pH (7.43 +/- 0.02 versus 7.32 +/- 0.04; P < 0.0001) and bicarbonate concentration (24.6 +/- 1.6 versus 16.0 +/- 2.7 mmol/L; P < 0.0001) within 48 hours. Nitrogen balance decreased significantly on the second day of acidosis. The FSR of muscle protein decreased (1.94 +/- 0.25 versus 1.30 +/- 0.39; P < 0.02), whereas the FSR of albumin remained constant. TSH levels increased significantly (1.1 +/- 0.5 versus 1.9 +/- 1.1 mU/L; P = 0.03), whereas IGF-I, fT(4), and fT(3) levels showed no significant change. We conclude that acute metabolic acidosis for 48 hours in humans induces a decrease in muscle protein synthesis, which contributes substantially to a negative nitrogen balance. In contrast to prolonged metabolic acidosis of 7 days, a short period of acidosis in the present study did not downregulate albumin synthesis.
Article
Metabolic acidosis in chronic renal failure (CRF) induces loss of lean body mass while elimination of acidosis during a one year trial improved anthropometric indices in continuous ambulatory peritoneal dialysis (CAPD) patients. In rats with CRF, the mechanisms causing loss of lean body mass have been linked to acidosis-induced destruction of the essential, branched-chain amino acids (BCAA) and activation of the ubiquitin-proteasome system that degrades muscle protein; the latter response includes increased transcription of the ubiquitin gene. Our aim was to determine if increasing the serum bicarbonate (HCO3) concentration of CAPD patients would improve their nutritional status, increase plasma BCAA levels, and reduce ubiquitin mRNA in their muscle as an index of suppressed activity of the ubiquitin-proteasome system. Eight, stable, long-term CAPD patients underwent vastus lateralis muscle biopsy before being randomized to continue 35 mmol/L lactate dialysate or convert to a 40 mmol/L lactate dialysate. After four weeks, measurements were repeated. Serum HCO3 increased in all patients and final values did not differ statistically between the two groups so results for all patients were combined. Weight and body mass index increased significantly as did plasma BCAA. Muscle levels of ubiquitin mRNA decreased significantly; serum tumor necrosis factor-alpha (TNF-alpha) also decreased. Our results indicate that even a small correction of serum HCO3 improves nutritional status, and provide evidence for down-regulation of BCAA degradation and muscle proteolysis via the ubiquitin-proteasome system. Whether acidosis and inflammatory cytokines (such as, TNF-alpha) interact to impair nutrition is unknown.
Article
In chronic renal failure, metabolic acidosis is associated with increased whole body protein degradation. In rats this effect of acidosis occurs in skeletal muscle and is associated with increased ubiquitin mRNA expression. This has not been demonstrated in humans. Six patients with chronic renal failure and acidosis underwent muscle biopsy before and after 1 month's treatment with sodium bicarbonate. RNA was extracted from the biopsy, and the expression of the genes for ubiquitin and the proteasome component, C2, were measured by Northern blotting. There was no significant difference in the expression of ubiquitin or C2 after bicarbonate treatment. This is contrast with results from animal models of acidosis and some other catabolic conditions in humans. This may reflect the complexity of the ubiquitin-dependent pathway, and it may be that changes in ubiquitin expression are only seen with more severe and/or acute changes in pH.
Article
Metabolic acidosis (MA) is a frequent complication in advanced chronic renal failure (CRF). Currently, there is good evidence that MA contributes to malnutrition in CRF patients. We evaluated the effect of correcting MA on nutritional status after 6 months of oral sodium bicarbonate supplementation in 18 patients aged 73 +/- 6 years with CRF to maintain serum bicarbonate levels at 24 +/- 2 mmol/L. The following parameters were measured: dietary record, energy intake, dietary protein intake (DPI), mini-nutritional assessment (MNA), serum albumin level, prealbumin level, prognosis inflammatory and nutritional index (PINI), and protein catabolic rate (nPCR). No significant changes in body weight or systolic and diastolic blood pressure were observed. Serum albumin and prealbumin levels showed a significant increase. nPCR decreased significantly. DPI, energy intake, PINI, and MNA score did not change significantly. No patient reported side effects or fluid retention during the study. Correction of MA improves serum albumin and prealbumin concentration, and it is not associated with any significant change in DPI, but induces a decrease in nPCR values. Whereas nPCR may provide an index of protein catabolism, it does not differentiate between dietary sources of protein or net catabolism of endogenous proteins. In the absence of dietary changes, the decrease in nPCR values may be attributed to a decrease in whole body protein degradation.
Article
Acidosis causes malnutrition in peritoneal dialysis (PD) patients. The effect of oral bicarbonate in PD patients with Kt/V <2.1 has not been studied. We randomly assigned 60 PD patients with acidosis and Kt/V <2.1 to oral sodium bicarbonate (0.9 g thrice daily) or placebo. Patients were followed for 12 mo. We compared their nutritional status, including subjective global assessment (SGA) score and normalized protein nitrogen appearance (NPNA), hospitalization and all-cause mortality. Treatment with oral bicarbonate resulted in a higher plasma bicarbonate level at 4 wk (27.8 +/- 2.6 versus 24.7 +/- 3.9 mmol/L, P = 0.002), and the difference persisted until 52 wk. Bicarbonate treatment had a significant effect on the change in overall SGA score (repeated measures ANOVA, P = 0.0003). The overall SGA score of the treatment group was higher than the placebo group at 24 wk (5.07 +/- 0.94 versus 4.40 +/- 1.00, P = 0.015), and the difference persisted thereafter. NPNA rose in the treatment group (1.17 +/- 0.32 to 1.28 +/- 0.26 g/kg per d, P = 0.034), but declined in placebo group (1.13 +/- 0.25 to 1.03 +/- 0.28 g/kg per d, P = 0.054). The treatment group had a shorter hospitalization than the placebo group (8.4 +/- 17.7 versus 16.8 +/- 21.7 d/yr; P = 0.02). Mortality was not significantly different. Although our trial has limited statistical power, we find that in PD patients with mild acidosis and Kt/V <2.1, oral sodium bicarbonate probably improve nutritional status and reduce the duration of hospitalization.
Article
Skeletal muscle atrophy is a debilitating response to fasting, disuse, cancer, and other systemic diseases. In atrophying muscles, the ubiquitin ligase, atrogin-1 (MAFbx), is dramatically induced, and this response is necessary for rapid atrophy. Here, we show that in cultured myotubes undergoing atrophy, the activity of the PI3K/AKT pathway decreases, leading to activation of Foxo transcription factors and atrogin-1 induction. IGF-1 treatment or AKT overexpression inhibits Foxo and atrogin-1 expression. Moreover, constitutively active Foxo3 acts on the atrogin-1 promoter to cause atrogin-1 transcription and dramatic atrophy of myotubes and muscle fibers. When Foxo activation is blocked by a dominant-negative construct in myotubes or by RNAi in mouse muscles in vivo, atrogin-1 induction during starvation and atrophy of myotubes induced by glucocorticoids are prevented. Thus, forkhead factor(s) play a critical role in the development of muscle atrophy, and inhibition of Foxo factors is an attractive approach to combat muscle wasting.
Article
Skeletal muscle size depends upon a dynamic balance between anabolic (or hypertrophic) and catabolic (or atrophic) processes. Previously, no link between the molecular mediators of atrophy and hypertrophy had been reported. We demonstrate a hierarchy between the signals which mediate hypertrophy and those which mediate atrophy: the IGF-1/PI3K/Akt pathway, which has been shown to induce hypertrophy, prevents induction of requisite atrophy mediators, namely the muscle-specific ubiquitin ligases MAFbx and MuRF1. Moreover, the mechanism for this inhibition involves Akt-mediated inhibition of the FoxO family of transcription factors; a mutant form of FOXO1, which prevents Akt phosphorylation, thereby prevents Akt-mediated inhibition of MuRF1 and MAFbx upregulation. Our study thus defines a previously uncharacterized function for Akt, which has important therapeutic relevance: Akt is not only capable of activating prosynthetic pathways, as previously demonstrated, but is simultaneously and dominantly able to suppress catabolic pathways, allowing it to prevent glucocorticoid and denervation-induced muscle atrophy.
Article
Muscle proteolysis from catabolic conditions, including chronic kidney disease, requires coordinated activation of both the apoptotic and ATP-ubiquitin-proteasome systems (Ub-P'some), including upregulation of components of the Ub-P'some system. Activation of the apoptotic system is required because caspase-3 initially cleaves myofibrils, yielding substrates for the Ub-P'some system plus a characteristic 14-kD actin fragment. The authors studied insulin deficiency, a model of accelerated muscle atrophy, to understand how regulation of the apoptotic and the Ub-P'some systems could be coordinated. As expected, phosphatidylinositol 3 kinase activity (PI3K) was suppressed in muscle; in addition to decreased insulin, the mechanism includes IRS-1 phosphorylation at serine-307. Caspase-3 activity was also increased, and the authors linked it to a low PI3K-induced activation of the apoptotic system that includes a conformational change in Bax and release of cytochrome C. Coordinated atrogin-1/MAFbx expression is required as a critical factor for Ub-P'some system-dependent muscle proteolysis in diabetes and other catabolic states. The mechanism that regulates atrogin-1/MAFbx expression is unknown. Atrogin-1/MAFbx expression increased when the authors suppressed PI3K activity in muscle cells. The forkhead transcriptional factor, a downstream substrate of PI3K, stimulated atrogin-1/MAFbx promoter transcriptional activity markedly. The authors found in diabetic muscle that mRNA of the forkhead transcriptional factor, its nuclear translocation, and binding to the atrogin-1/MAFbx promoter were increased. When PI3K activity is low, both apoptotic and Ub-P'some pathways are activated coordinately to cause muscle proteolysis. This mechanism could increase muscle atrophy in conditions with impaired insulin responsiveness.
Article
Skeletal muscle releases potassium during activity. Interstitial potassium accumulation is important for muscle function and the development of fatigue resulting from exercise. In the present study we used sodium citrate ingestion as a tool to investigate the relationship between interstitial H+ concentration and K+ accumulation during exercise. Seven healthy subjects performed one-legged knee-extensor exercise on two separate days with and without sodium citrate ingestion. Interstitial H+ and K+ concentrations were measured with the microdialysis technique. Citrate ingestion reduced the plasma H+ concentration and increased the plasma HCO3- concentration. Citrate had no effect on interstitial H+ at rest. The increase in interstitial H+ concentration during intense exercise was significantly lower (P < 0.05) with citrate ingestion compared to control (peak interstitial H+ concentration 79 versus 131 nM). After 3 min of exercise interstitial K+ concentration was reduced (P < 0.05) in the citrate (alkalosis) compared to the control experiment (8.0 +/- 0.9 versus 11.0 +/- 2 mM) and interstitial K+ concentration remained lower during the rest of the exercise period. The present study demonstrated a link between interstitial H+ and K+ accumulation, which may be through the ATP-sensitive K+ channels (KATP channels), which are sensitive to changes in H+.