ArticlePDF Available

Effects of experimentally added salmon subsidies on resident fishes via direct and indirect pathways

Authors:

Abstract and Figures

Abstract Artificial additions of nutrients of differing forms such as salmon carcasses and analog pellets (i.e. pasteurized fishmeal) have been proposed as a means of stimulating aquatic productivity and enhancing populations of anadromous and resident fishes. Nutrient mitigation to enhance fish production in stream ecosystems assumes that the central pathway by which effects occur is bottom‐up, through aquatic primary and secondary production, with little consideration of reciprocal aquatic‐terrestrial pathways. The net outcome (i.e. bottom‐up vs. top‐down) of adding salmon‐derived materials to streams depend on whether or not these subsidies indirectly intensify predation on in situ prey via increases in a shared predator or alleviate such predation pressure. We conducted a 3‐year experiment across nine tributaries of the N. Fork Boise River, Idaho, USA, consisting of 500‐m stream reaches treated with salmon carcasses (n = 3), salmon carcass analog (n = 3), and untreated control reaches (n = 3). We observed 2–8 fold increases in streambed biofilms in the 2–6 weeks following additions of both salmon subsidy treatments in years 1 and 2 and a 1.5‐fold increase in standing crop biomass of aquatic invertebrates to carcass additions in the second year of our experiment. The consumption of benthic invertebrates by stream fishes increased 110–140% and 44–66% in carcass and analog streams in the same time frame, which may have masked invertebrate standing crop responses in years 3 and 4. Resident trout directly consumed 10.0–24.0 g·m−2·yr−1 of salmon carcass and
Content may be subject to copyright.
v v Article e012481v


13
1Stream Ecology Center, Department of Biological Sciences, Idaho State University, Pocatello, ID 83209 USA
2Department of Biological Sciences, Michigan Technological University, Houghton, MI 49931 USA
3U.S. Geological Survey, Alaska Cooperative Fish and Wildlife Research Unit, Institute of Arctic Biology,
University of Alaska Fairbanks, Fairbanks, AK 99775 USA
Citation:      

Abstract.    

   



in situ







               

     
    to trout
  


 


Key words:
Received
 E-mail:
Copyright:                   


4
v v Article e012482v www.esajournals.org
COLLINS ET AL.
IntroductIon
      
      
      
     
      


       
     
       
      



    

      
       
  

  




 
  

      

      


      


     
     
     
   
      

     
       
  


 
  
    
      
      

 
        
 

 

   

     



      
   
     
      

 

       
      
     
       
     
 

      
      

     
 

     


  
     
  
      



      
 

 
     
v v Article e012483v www.esajournals.org
COLLINS ET AL.


       

       
      
 



in situ   

 
      
       
      
      
      
       


      
     


       
     

       

 


   



  


     


 

   

  
      






  



     
 

    
    
      



 
     
      
 


Methods
Study area

       
       
    2    
     
      
        
     
      
      
     
 
     
    
      
 
     
        
     
        
       
  
   
     
v v Article e012484v www.esajournals.org
COLLINS ET AL.
     

 Stream

2)



Volume

(m3


3



  23 30    0
    0 0
 11     
  20     16
 6 10    7
 18 20    3
  23     7
 16 60    0
 28 30    21
    







v v Article e01248v www.esajournals.org
COLLINS ET AL.
    
(Oncorhynchus tshawytscha   
(O. mykiss     
      
 
       
     

      
       

    
 
  O. mykiss   
(Salvelinus fontinalis   
(Cous confusus S. conuentus
        
    
Experimental treatments and design
     
      
     O.
mykiss, O. tshawytscha   
     
     
  
     
       
      
       
     
      
  Myxobolus cerebralis   
 
      
    
      
       
      
      

      
  
       
 
     
      
     
     
         
      
      
     
  
       
     

    
   
     
       
       
     
     
       


       



      
    
    
P
        
m       
      
 
       
   
  
   

2      

      

       
  
       

Measurement of periphyton and benthic
invertebrate biomass
     
     

         
     
    
v v Article e012486v www.esajournals.org
COLLINS ET AL.
        
       
      
      
     a  
     
     
       

   

       



    
      

       
       
        
       
      
2
  
    
       


       
Resident fish gut contents, abundance, biomass,
and annual production
 
    
       

      
       
     
       
      
      
      
       

     
      
       
        

       
       
     
       

      
     
     
     
       
     
       
        
     
     
     
    
      
    

   
              

        

 Site
))
2008  2010 2008  2010
       
      
      
       
      
      
v v Article e012487v www.esajournals.org
COLLINS ET AL.

  
      



   



     




      



        
  


       
     Cous
confusus       
       


     
        

   

Trophic basis of trout production and annual
consumption of benthic invertebrates
  

      

      
        
     

       
  
    
       
      
       

       

item (Fi   
Gi   i  
i    
i

     
       
     

     




  


Pj
       
     
       
ij
i

Statistical analyses
     
     
    
      
     
      
    
    
       
 
      
     
      
Fi=(Gi×AEi×NPE)
PF
ij =
F
i
n
i=1
Fi
×P
j
v v Article e012488v www.esajournals.org
COLLINS ET AL.

    
    
      
      
       
       
      
       
      
     
       
      
 a priori   
       
      P
     
      
     
      
       
     
      
   
      
 
results
Periphyton and insect biomass
a
F   P    
F   P    
 
  a    
FP 
 F   P   
       
    
       
      
     
       
      
      
    
  
    
    F 
 P     
F
P FP 
     
      
    

    F   P


       
   
     
       


    
FP 
      
FP 
        
     

      
   
P > 
Biomass, density, growth rates, and annual
production of resident fishes
    
      
    F  
P     F  
P       
      
 P >      
  P > P > 
     P >  
      
        
     
      
F   P   
F   P    
F   P       
       
     
       
         
     
F   P      
F
P       
v v Article e01248v www.esajournals.org
COLLINS ET AL.
       
       
  F   P  
      
       
 F   P    

      
F   P     
 F   P    
   F   P  
      
      
       
   F  
P   
       
 

     
 F 
P 


       
        

FP 
     F  
P   

FP 
a
    




v v Article e0124810v www.esajournals.org
COLLINS ET AL.



      
    
      



 


Trophic basis of trout production and annual
consumption of benthic invertebrates
      

      

     
     
      
      
       
      
        
    
      
        
   


              
        

v v Article e0124811v www.esajournals.org
COLLINS ET AL.

       
     )
    

       

       
     
     
     
      
      
      
      
        

     
         
     
 
    




FP 
     
FP 
     F  
P 
      
FP   

     
      

    
      

  



        

       
   
      

     

v v Article e0124812v www.esajournals.org
COLLINS ET AL.
dIscussIon
      
 

    
  
  
     
      
     
     


       
     
     



      
     
      

     
      

v v Article e0124813v www.esajournals.org
COLLINS ET AL.

      
       
      
      
       

     
     
  
 


        
  




      
      



     

    
     
 


      
      
      
 
     



     

     
      
       
       
   
      
       

    

     
    
  

      
       




     
       
       
      

      
 
     
    


 
       
        

       
 

    



       

      

     
      




    
      
     
      
     
     
       
     
      
v v Article e0124814v www.esajournals.org
COLLINS ET AL.
      
      
       
      
     

 

  
   

     
      
      
   
     


      
      
    

      
  

  




        

 

 

     
     
      
  


  



     
      
     
  
      
    



     


 
  
         
      
     
     

    
       
    
    

   

        


     
     
       
    

       
          
     
       
        
      
     
      

 


     

     
   
      
    
  
     
    
      
v v Article e01248v www.esajournals.org
COLLINS ET AL.
      
      



personal observation
      
     
     
      


       


       
 



       
        
      

     

      

   



  

   


 
      
      
      

     

      
 



   

     
     
      





 
  
     

      




  
    
       
      

AcknowledgMents
     

       
        
       
      
        
       

       

      
       
     
       
        
      

references

  

     
      


v v Article e0124816v www.esajournals.org
COLLINS ET AL.

       
       


 
     

          
    
    

  


  


   On-
corhynchus kisutch   Oncorhynchus
mykiss
     
  

  
     

         





     



   
  
 



   
    

          


     

      

        

     



 
 



     
  

           



        
      

     


      
     
  


  



Sal-
mo trua L   




      
       
      

     

         
     
    Salmo salar 
     

 





Oncorhynchus spp
v v Article e0124817v www.esajournals.org
COLLINS ET AL.
  


      



Oncorhynchus nerka)


       
    


in


   
 


        


       
     

     


  
       



        
      
       
     


   Cous schit-
suumsh
      


  

        
  
      



       


       
     
   
 



           
      
     

    
      



     
 






      

     


  


       
       

  
      
       


 
   
    


         
  

      



in
v v Article e0124818v www.esajournals.org
COLLINS ET AL.
   
      

 
    
   
in 








       
  


 

       
        
    


      


        
      

           
      
     





       

 in
       
    


       

     





   
     
  
    

    




     
     



     
      
     
     




   

    

... In lotic ecosystems, fish carcass additions are commonly used to stimulate stream productivity in response to reduced runs of anadromous fish. This management strategy has been successful in increasing periphyton and benthic invertebrate biomass, consumption of invertebrates by fish, and fish production (Collins et al., 2016;Wipfli et al., 2004). Salmon carcasses provide direct and indirect food sources for benthic invertebrates, which can increase growth rates, biomass, and abundance of some taxa Wipfli et al., 1998). ...
... Factors such as algal blooms that influence oxygen concentrations are a global concern, and reductions in oxygen availability are increasing in economically important lake and marine shoreline environments (Jenny et al., 2016;Tellier et al., 2022); thus, understanding invertebrate responses to hypoxic environments has implications beyond Yellowstone Lake. Some invertebrate taxa, particularly those tolerant of low DO and likely to consume carcass material, may benefit from the addition of carcasses into the littoral zone Collins et al., 2016). In Yellowstone Lake, benthic invertebrates, and particularly amphipods, are an important food source for fish. ...
... Previous research in lotic systems has documented increases in benthic invertebrate density and biomass in response to carcass treatment (Collins et al., 2016;Janetski et al., 2009;Wipfli et al., 1998), particularly for taxa that are likely to colonize carcasses or consume carcass material directly, such as amphipods and Chironomidae Kline et al., 1997). However, we did not detect increases in total invertebrate density or biomass in response to carcass treatment. ...
Article
Full-text available
Invasive species can have negative effects on native biodiversity and ecosystem function, and suppression is often required to minimize the effects. However, management actions to suppress invasive species may cause negative, unintended effects on non‐target taxa. Across the United States, lake trout (Salvelinus namaycush) are invasive in many freshwater ecosystems, reducing native fish abundance and diversity through predation and competition. In an integrated pest management approach, lake trout embryos in Yellowstone Lake, Wyoming, are suppressed by depositing lake trout carcasses onto spawning sites; the carcasses reduce dissolved oxygen concentrations as they decay, causing embryo mortality. We conducted a field experiment during one ice‐free season at four sites in Yellowstone Lake to investigate the non‐target effects of carcass treatment on benthic invertebrates, which could have consequences for native fish diets. While overall invertebrate density and biomass did not respond to carcass treatment, Chironomidae midges and Sphaeriidae fingernail clams decreased in abundance. Carcass treatment altered invertebrate community structure based on density, but not biomass. Carcass treatment to suppress invasive fish embryos has spatially localized, non‐target effects on some benthic invertebrate taxa. Given the small spatial extent of carcass treatment within the lake, we conclude it is unlikely that carcass treatment will alter food availability for native fishes. In Yellowstone Lake, Wyoming, lake trout carcasses are used to suppress invasive lake trout embryos in an effort to conserve native Yellowstone cutthroat trout. Using a field experiment, we determined that carcass treatment had limited, non‐target effects on benthic invertebrates.
... Salmon carcasses were applied annually to the same 500-m reaches of their respective streams during the first week of August for 3 consecutive years (2008)(2009)(2010). Salmon carcass loading rates were based on a target of 0.5 salmon carcasses m 2 of wetted stream channel (see Collins, Baxter, Marcarelli, & Wipfli, 2016 for additional details). This multiyear manipulative experiment was conducted to address an array of questions and had multiple objectives also addressed elsewhere (e.g. ...
... This multiyear manipulative experiment was conducted to address an array of questions and had multiple objectives also addressed elsewhere (e.g. Collins & Baxter, 2014;Collins et al., 2020;Collins et al., 2016;Marcarelli, Baxter, & Wipfli, 2014). ...
... Multiple lines of evidence indicated that annual additions of salmon carcasses enhanced the annual production of rainbow trout. As trout immigrated to enhanced stream reaches, we observed that they ate 58-68% more and exhibited short-term increases (4-6×) in growth, results that other analyses (Collins et al., 2016 have revealed were due to direct foraging on carcass material, as well as increased consumption of aquatic invertebrates and terrestrial flies (the latter owing to colonisation of carcasses translocated to riparian zones). However, over the 4-year duration of the experiment we observed no interannual differences in the abundance of trout across age groups (Collins et al., 2016), probably due to fish moving to other locations. ...
Article
Full-text available
• Habitat enhancements seek to ameliorate the detrimental effects of environmental degradation and take many forms, but usually entail structural (e.g. logs, cribs, reefs) or biogenic (e.g. carrion additions, vegetation plantings, fish stocking) augmentations with the intent of increasing fish annual production (i.e. accrual of new fish biomass through time). Whether efforts increase fish production or simply attract fish has long been subject to debate. • Streams of the Pacific Northwest are commonly targeted for habitat enhancements to mitigate for the detrimental effects of dams and other forms of habitat degradation on Pacific salmon. Nutrient mitigation (i.e. the practice of artificially fertilising freshwaters) is a form of biogenic habitat enhancement that attempts to mimic the enrichment effects of a natural Pacific salmon spawning event. This approach assumes nutrient augmentations alleviate nutrient limitation of primary producers and/or food limitation of primary and secondary consumers, culminating in increased fish production. • We conducted a multi‐year manipulative experiment and tracked responses of interior rainbow trout (Oncorhynchus mykiss ) to annual additions of Pacific salmon carcasses as part of an effort to enhance the productivity of salmonid populations in streams where salmon runs have been lost. We employed an integrated approach to partition the mechanisms driving numerical responses of trout populations across timescales, to assess population turnover, and to track responses to habitat enhancements across individual to population level metrics. • Short‐term numerical increases by trout were shaped by immigration and subsequently via retention of individuals within treatment reaches. As trout moved into treated stream reaches, individuals foraged, grew, and subsequently moved to other locations such that short‐term increases in fish numbers did not persist from year to year. All told, additions of salmon carcasses alleviated apparent food limitation and thereby increased secondary production of rainbow trout. However, at an annual time scale, increased production manifested as larger individual fish, not more fish within treated reaches. Fish movements and high population turnover within treated stream reaches apparently led to the subsequent dispersal of increased fish production. • We found multiple lines of evidence that indicated that annual additions of salmon carcasses aggregated rainbow trout and enhanced their annual production. Through this replicated management experiment, we documented dynamic individual and population level responses to a form of stream habitat manipulation across weekly and annual timescales.
... In a large-scale, multiyear experiment, we documented complex direct and indirect effects of salmon subsidies within and among stream and riparian ecosystems. The addition and breakdown of carcasses directly stimulated stream biofilms, enhanced benthic insect standing-crop biomass, and increased the growth and production of fishes (Marcarelli et al. 2014;Collins et al. 2016). In riparian ecosystems, scavengers removed salmon carcasses from streams, and in turn, carcasses were rapidly colonized by flies and other arthropods (Collins and Baxter 2014). ...
... Because ecosystem boundaries are permeable, both salmon carcasses and their effects propagated across ecological boundaries and influenced consumers in adjacent habitats (Fig. 2a). For instance, our experiment demonstrated that subsidized terrestrial carrion flies (adults and larvae) fell into streams in large quantities where they were consumed by stream fishes, generating a subsidy-mediated reciprocal feedback from stream to riparian and back to stream ecosystems (e.g., Collins et al. 2016; Fig. 2a). Along another pathway, we observed that subsidized fishes mediated insect emergence from water to land. ...
Chapter
Pervasive environmental degradation has altered biodiversity at a global scale. At smaller scales, species extirpations, invasions, and replacements have greatly influenced how ecosystems function and interact by affecting the exchanges of energy, materials, and organisms. In this chapter, we examine how a variety of environmental stressors, and associated species losses and gains, change the exchange of resources (materials or organisms) within and among ecosystems. We specifically consider how changes that occur within an ecosystem may trigger effects that reverberate (e.g., directly, indirectly, and via feedbacks) back and forth across ecological boundaries and propagate to other ecosystems connected via exchanges of materials and organisms. Our synthesis provides cursory overviews of ecosystem “openness” as it has been addressed by community ecologists and the conceptual development of ecological frameworks used to examine resource exchanges between ecosystems. We then describe four case studies and examine how species losses and gains affect food web structure via resource exchanges between ecosystems, with particular emphasis on effects spanning land-water boundaries. Finally, we discuss the need for more complex conceptual treatment of the interconnectedness of food webs among ecosystems.
... Increased spawning salmon abundance can increase the growth (Rinella et al. 2012, Swain et al. 2014) and abundance (Nelson andReynolds 2014, Swain andReynolds 2015) of stream fishes, and alter their life histories (Bailey et al. 2018). The availability of this important food resource depends on stream fishes' ability to consume dislodged or unsuccessfully buried salmon eggs (Collins et al. 2016). Salmon eggs are energetically and nutritionally superior to benthic invertebrates (Cummins andWuycheck 1971, Schindler et al. 2003), they are highly visible, and eggs do not have an escape response to predators. ...
... Such resource pulses often take the form of subsidies, where prey resources cross ecosystem boundaries and thus can reach disproportionately high abundances. Past studies have experimentally manipulated resource subsidies to stream fishes to show that subsidies can drive a many-fold increase in the growth rate of consumers (Wipfli et al. 2003, Uno and Power 2015, Collins et al. 2016) and reduce hierarchical effects among two size classes within a consumer species Watanabe 2014, Naman et al. 2019). Subsidies can also temporarily alter trophic cascades Watanabe 2014, Collins et al. 2016), although this may depend on the timing of subsidies (Sato et al. 2016), and generate apparent competition over longer time scales (Marcarelli et al. 2020). ...
Article
Full-text available
Food resources are often patchily distributed through space and time and are classified as resource pulses when hyperabundant. Resource pulses can benefit growth, reproduction, and abundance of various consumers. Yet, it is relatively unknown how such resources are partitioned among competing consumers and how this is influenced by the magnitude of the pulse. Here, we examined how the magnitude of a pulsed resource influences resource partitioning among diverse sizes and species of consumers in a natural setting over small spatial and temporal scales. We focused on salmon egg subsidies to stream fish consumers. We experimentally added different quantities of pink salmon eggs to five meter long experimental stream sections. Egg additions spanned three orders of magnitude from 6 to 3575 eggs. Stream fish (egg consumers) were captured and gastric lavaged at each experimental section to determine how many eggs each individual fish consumed. We modeled taxon‐specific individual egg consumption as a function of egg availability, individual mass, community composition, number of competitors, and stream velocity using hurdle models in a Bayesian framework. We found that there were diminishing returns for increasing egg abundance increasing egg consumption (i.e., type II functional response) for individual size classes of fish, but that higher egg numbers were needed to benefit diverse consumers. Top models indicated that egg availability and individual fish characteristics (size and taxon) drove egg consumption, while community characteristics (species composition and number of competitors) were not supported. Our results suggest that resource pulses can provide rare opportunities for less dominant sizes and species of fish to consume abundant resources. The current paradigm in the stream fish literature suggests that stream fish communities are structured by dominance hierarchies; however, dominance hierarchies may be less influential where pulsed resources comprise a large portion of the resource base.
... Production-based approaches are needed to examine the degree to which Brown Trout exploit basal food resources, reduce native fish via competition, and directly consume prey (i.e., production vs. consumption; [51][52][53]). As Brown Trout can both compete with and eat their native competitors, the full extent of their impacts cannot be understood nor appreciated until production-based approaches are used to model these co-occurring processes. ...
Article
Full-text available
Invasive predators pose a critical threat to native taxa. Body size plays an important role in mediating the interactions of predator and prey. For piscivorous fishes, increased predator body size can be accompanied by the selection of increasingly larger prey or may reflect a mix of small and large prey. Knowledge of such interactions helps determine how predation affects population vital rates. Here, we assessed the predatory effects of invasive Brown Trout (Salmo trutta) on populations of native Rio Grande Sucker (Catostomus plebeius) and Rio Grande Chub (Gila pandora) in streams of the Jemez River watershed (New Mexico, USA). Trout diets were sampled every two weeks during the 2020 growing season. Predator and prey body lengths were measured to examine relationships to better understand patterns of piscivory and quantify the threat Brown Trout pose to populations of Rio Grande Chub and Rio Grande Sucker. Across all streams and sampling dates, 7% of Brown Trout diets contained fish. Predator–prey length relationships reflected a ‘wedge’ pattern, indicating that Brown Trout consumed an increasing range of prey body sizes as they grew larger. Rio Grande Sucker and Rio Grande Chub comprised 46% of consumed fishes. The findings demonstrated that Rio Grande Sucker and Rio Grande Chub experience constant predation over the growing season by Brown Trout. Moreover, our study provides evidence that these invasive predators pose a threat to the viability of Rio Grande Chub and Rio Grande Sucker populations. Conservation efforts to protect these chub and sucker populations must account for and directly address predation by invasive Brown Trout.
... It has been hypothesized that the reduction or collapse of fish stocks should occur in areas near large aggregations of recreational anglers where fishing effort is presumed to be greatest [6,20,28]. If the effect of the surrounding angling population is strong, patterns should emerge across the landscape, as top-down effects of predation often supersede bottom-up processes (i.e., asymmetrical; [29,30]) even in enriched environments [31]. Although examinations of angler-fish dynamics across a landscape of freshwater fisheries is limited [20,24,28], findings indicate that angling effort originating from large population centers can be substantial. ...
Article
Full-text available
The cumulative harvest pressure exerted by recreational anglers can be intense in some locations. Sustainable management and conservation of inland fisheries requires an understanding of the spatial ecology of fish-angler interactions (e.g., direct, indirect, and feedback). Advancement towards this goal requires study of the complex interdependencies of human and natural systems, which can be achieved, in part, by looking beyond the wetted confines of individual waterbodies towards the broader angling landscape. It has been hypothesized that fish stocks should experience strong reductions in areas near large aggregations of recreational anglers where fishing effort is presumed to be greatest. To test this hypothesis, we examined a complex of direct, indirect, and feedback effects among recreational anglers, bluegill sunfish Lepomis macrochirus, and largemouth bass Micropterous salmoides across inland recreational fisheries (n = 29 reservoirs) using path analysis and structural equation modeling. We found that recreational anglers imparted detectable effects on recreational bluegill (direct) and bass (indirect) fisheries across the landscape, which we attributed to (1) short travel distances of individuals at local scales (
... Similar results were obtained by Guyette, Loftin & Zydlewski (2013) in streams in Maine, USA. Increases in fish biomass in response to the addition of nutrient subsidies may thus be caused by faster growth rates of individual fish rather than changes in fish density(Collins et al., 2016;Auer et al., 2018;McLennan et al., 2019). Interestingly,Auer et al. (2018) showed higher Atlantic salmon genetic diversity in streams treated with carcass analogues, as a result of more salmon families having surviving representatives. ...
Article
Full-text available
1. Freshwater catchments can experience nutrient deficits that result in reduced primary and secondary productivity. The most commonly limiting nutrients are nitrogen and phosphorus, either separately or together. This review considers the impact of increasing nutrient limitation in temperate basin stream and river systems, focusing on upland areas that currently or previously supported wild Atlantic salmon (Salmo salar) populations. 2. Anthropogenic changes to land use and increases in river barriers have altered upland nutrient dynamics, with particular impacts on salmon and other migratory fish species which may be net importers of nutrients to upland streams. Declining salmon populations may further reduce nutrient sources, reducing ecosystem and fisheries productivity below desired levels. 3. Experimental manipulations of nutrient levels have examined the impacts of this cultural oligotrophication. There is evidence that growth and biomass of juvenile salmon can be increased via appropriate additions of nutrients, offering potential as a conservation tool. However, further research is required to understand the long-term effects of these additions on salmon populations and stream ecosystems, and to assess the vulnerability of downstream habitats to eutrophication as a result. 4. Although purposeful nutrient addition with the aim of enhancing and conserving salmonid populations may be justified in some cases, it should be undertaken in an adaptive management framework. In addition, nutrient addition should be linked to nutrient retention and processing, and integrated into large-scale habitat restoration and recovery efforts. 5. Both the scientific and the management community should recognize that the ecological costs and benefits associated with adding nutrients to salmon streams may change in a non-stationary world.
... Migratory organisms have been shown to transport nutrients and energy across ecotones and may represent a resource pool with specific phenology to which consumer populations may adapt (Lundberg and Moberg 2003). A well-known example of this type of resource is the post-spawn carcasses of Pacific salmon (Oncorhynchus spp.), which deliver high-density energy and nutrient resources from marine systems and alter nutrient dynamics and status of freshwater systems at multiple spatial and temporal scales (Janetski et al. 2009, Collins et al. 2016. ...
Article
Full-text available
Similar to many fish, juvenile Pacific salmon rearing in temperate streams face a growth and survival bottleneck early in their first summer due to limitations in space and food. Fish carcasses have been shown to affect juvenile salmon growth in many systems, but carcasses likely also alter behavioral and dispersal response of hatchery‐origin young‐of‐the‐year salmon. We tested the social and emigration response of subyearling chinook salmon to carcasses of Pacific lamprey or rainbow trout using semi‐open flow‐through mesocosm experiments. We expected the presence of carcasses to increase salmon growth and density while decreasing intraspecific aggression and downstream emigration compared to controls without carcasses. Consistent with expectations, salmon emigrated at lower rates when carcasses were present, resulting in significantly higher holding densities. Contrary to our expectations and results from previous studies, we did not detect differences in growth rate of juvenile salmon among treatments. Our findings suggest that indirect responses of consumers to concentrated resources may have measurable effects on density mediated by movement behaviors. Differences in lamprey and trout decomposition also suggest that carcass traits mediate the behavioral responses of consumers and incorporation of carcass subsidies into food webs.
... The hypothesis behind these efforts is that increasing salmon subsidies (e.g., though placing salmon carcasses from hatchery operations in streams) will enhance aquatic productivity and salmon population growth (Benjamin et al., 2020). In the ATP model, carcasses can increase aquatic productivity via numerous pathways: carcasses leach nutrients (nitrogen and phosphorus) that can stimulate periphyton production; carcasses contribute organic matter that is directly consumed by aquatic invertebrates and fish (Claeson et al., 2006); and carcasses stimulate an increase in terrestrial invertebrate inputs to the stream (Collins et al., 2016). We simulated the addition of salmon carcasses to the stream each autumn (September 21) at a level consistent with historical salmon spawning abundance (Mullen et al., 1992), which we estimate to be 20× current average spawner densities of 0.001 salmon/m 2 (Snow & Frady, 2013). ...
Article
Full-text available
Watershed assessments have become common for prioritizing restoration in river networks. These assessments primarily focus on geomorphic conditions of rivers but less frequently incorporate non-geomorphic abiotic factors such as water chemistry and temperature, and biotic factors such as the structure of food webs. Using a dynamic food web model that integrates physical and ecological environmental conditions of rivers, we simulated how juvenile salmon (Oncorhynchus spp.) biomass responded to restoration at twelve sites distributed across the Methow River (Washington, USA), ranging from headwater tributaries to mainstem reaches. We explored responses to three common river restoration strategies: (1) physical habitat modification, (2) nutrient supplementation, and (3) increased riparian vegetation cover. We also simulated how different food web configurations that exist in salmon-bearing streams, such as the presence of ‘non-target’ fishes and ‘armored’ predation resistant invertebrates, could mediate restoration outcomes. Some locations in the river network experienced relatively large increases in modeled fish biomass with restoration, whereas other locations were almost entirely unresponsive. Spatial variation in restoration outcomes was primarily controlled by non-geomorphic environmental conditions, such as nutrient availability, water temperature, and stream canopy cover. Restoration responses also varied significantly with different food web configurations, suggesting that as the structure of food webs varies across river networks, so too could the outcome of restoration. These findings illustrate that ecological responses to restoration may exhibit substantial spatial variation within river networks, resulting from heterogeneity in environmental conditions that are commonly overlooked—but which can and should be considered—in restoration planning and prioritization.
Article
Full-text available
Ecological effects of migratory animal populations on ecosystems can be significant, but these impacts may be modified by other environmental factors, especially when migratory populations are small. This study implements a before-after (BA) impact design and takes advantage of natural, reach-scale variation in channel gradient to explore how environmental context influences the response of stream and riparian ecosystems to a small, recolonizing population of anadromous Pacific salmon. After a 102-y absence, adult Pacific salmon began naturally recolonizing the Cedar River in northwest Washington, USA, following installation of a fish passage at the Landsburg Dam in 2003. For our BA analysis, we sampled water chemistry, stream biofilm, aquatic macroinvertebrates, and fish assemblages before (1999-2003) and after (2008, 2015) fish passage installation in 3 study reaches above the dam. We also conducted an above-dam reach-scale (n 5 7) comparison in 2015, for which we sampled the same metrics, as well as riparian spider and bird assemblages, across 500-m-long sections in each study reach, spanning a total of 18 km of river habitat that varied in both adult salmon inputs and channel gradient. The BA and reach-scale analyses both indicated that salmon biomass inputs were associated with increases in aquatic macroinvertebrate taxa richness and the densities of 2 primary consumers (Glossosoma spp. and Chironomidae larvae). Stable isotope analysis indicated that adult salmon subsidies were also associated with dietary changes in pelagic-foraging predators (the non-anadromous resident Rainbow Trout Oncorhynchus mykiss Walbaum, 1792) and benthic-foraging sculpin (Cottus spp.). The reach-scale analysis also showed that channel gradient best explained variation in several metrics, including a negative association with adult Chinook Salmon inputs (r 5 20.70, p 5 0.08) and bird diversity (r 5 20.91, p < 0.01). We found that channel gradient was a key driver of observed biotic variation through its effects on channel morphology and complexity, factors that influence biotic assemblages and ecosystem processes. Overall, this study provides a holistic assessment of the ecosystem impacts of a small recolonizing salmon population while accounting for spatial variation in stream geo-morphology. Understanding these dynamics is important for river conservation in the Pacific Northwest as migratory barriers are increasingly removed.
Article
Full-text available
We critically evaluate some of the key ecological assumptions underpinning the use of nutrient replacement as a means of recovering salmon populations and a range of other organisms thought to be linked to productive salmon runs. These assumptions include: (1) nutrient mitigation mimics the ecological roles of salmon, (2) mitigation is needed to replace salmon-derived nutrients and stimulate primary and invertebrate production in streams, and (3) food resources in rearing habitats limit populations of salmon and resident fishes. First, we call into question assumption one because an array of evidence points to the multi-faceted role played by spawning salmon, including disturbance via redd-building, nutrient recycling by live fish, and consumption by terrestrial consumers. Second, we show that assumption two may require qualification based upon a more complete understanding of nutrient cycling and productivity in streams. Third, we evaluate the empirical evidence supporting food limitation of fish populations and conclude it has been only weakly tested. On the basis of this assessment, we urge caution in the application of nutrient mitigation as a management tool. Although applications of nutrients and other materials intended to mitigate for lost or diminished runs of Pacific salmon may trigger ecological responses within treated ecosystems, contributions of these activities toward actual mitigation may be limited.
Article
Positive numerical responses in steelhead Oncorhynchus mykiss and coho salmon O. kisutch juvenile abundance and size, smolt yield, and smolts per spawner were obtained from watershed restoration in the Keogh River on northern Vancouver Island, British Columbia. Annual increases coincided with treatment and were compared with data from an untreated neighboring watershed (Waukwaas River). The steelhead population, now apparently capable of thriving, was below replacement recruitment prior to the addition of inorganic nutrients and instream habitat structures, the key components of several restoration activities. Annual increases in summer densities of steelhead juveniles were recorded as the rehabilitation treatments progressed from 1997 to 2000. Estimation of steelhead parr densities indicated a 3.8-fold increase over pretreatment or internal untreated values; increases in sites with both inorganic nutrient briquettes and habitat structure additions were 2.5-1.9 times higher than sites with nutrient additions or habitat structures alone. Average size-at-age of juvenile salmonids, by autumn, significantly increased through the years of rehabilitation treatment and compared with fish in the Waukwaas River. Steelhead smolt yield in 2000 increased to 2,338 fish, the highest yield since 1993, but lower than the historical average (>6,000) due to low escapement. Current yield was an improvement over the historic low (<1,000 steelhead smolts, 1998). Coho smolt yield increased to 74,500 or 20% above the historic average (62,000 smolts; 1975-1999), well above the record low counts of 1998 (22,000), but below the historic maximum yield (105,000; 1981). A significant increase in steelhead smolt recruitment at low escapement, from less than 2 to greater than 50 smolts per spawner, was observed over the last four brood years (1995-1998). The assessment now shifts to further benefits to smolt yield, which will require evaluation to 2004.
Article
Oligtrophic streams are ubiquitous throughout coastal British Columbia, and thereby, significant nutrient influx can be provided externally via salmon carcasses. At the Keogh River on northern Vancouver Island, experimental nutrient addition was conducted from 1983 to 1986 to examine if potential increases in trophic productivity may augment growth and production of salmonid smolts. Subsequently, an applied treatment was conducted over the past decade at the infertile Salmon River to offset intensive logging impacts and to accelerate colonization of steelhead trout Oncorhynchus mykiss of headwater reaches above a hydroelectric diversion. The two rivers were treated with agricultural (dry, later liquid) fertilizers, while upstream control reaches were untreated. At Keogh, inorganic P and N were introduced to produce target soluble phosphorus concentrations of 10-15 mg per L, and N loadings of 50-100 mg per L over the four years of nutrient addition. Average peak algal biomass as chlorophyll a increased 5-10-fold in response to nutrient addition. Geometric mean weights of steelhead trout and coho salmon O. kisutch fry within several treated reaches were 1.4-2.0-fold higher than the control, and mean weights of steelhead parr were 30-130% greater in the three treated reaches. Average steelhead smolt yield in three brood years increased 62% (peak, 2.5-fold in 1987) over prefertilization years; yet there was no increase in average smolt size because mean smolt age was reduced by about one year. There were corresponding increases in returning adults and reported catches by steelhead anglers at the Keogh River, compared with trends at an adjacent river fishery. The response of coho smolts to nutrient addition was less marked, or a suggested 21% increase in numbers (P < 0.1) with no change in size, although results were moderated by production of coho smolts from several untreated tributaries and small lakes. At the upper Salmon River, where nutrient targets were reduced to one-third that of the Keogh, nutrient addition was associated with 3-7-fold higher benthic insect density in treated reaches than controls, and 2-3-fold greater mean weights and biomass of steelhead and rainbow trout in treated index sites than upstream, unfertilized sites. Over the decade, estimated numbers of steelhead parr and smolt migrants at the Salmon River diversion increased from about 1,500 to 8,000. The results at the Salmon River confirmed those of the Keogh and indicated that lower-level nutrient addition can produce a similar positive trophic response.
Article
Variance estimators for fish production rates are explicitly derived for 2 production models: the instantaneous growth rate and increment summation methods. Statistics for standing stock, mean interval standing stock, instantaneous growth rate, and production: mean standing stock ratio are presented. The use of a jackknife estimator is proposed for estimating the variance of instantaneous growth rate. Comparison of the results from both production models provides a method of cross-validating results. The use of these statistics is illustrated. Brook trout Salvelinus fontinalis annual production in 1969 was significantly higher than combined annual production of brook trout, brown trout Salmo trutta and rainbow trout Salmo gairdneri in 1977.-from Authors
Article
Terrestrial salmon carcass decomposition and nutrient dynamics have been reported for coastal marine ecosystems of the Pacific Northwest but are lacking for semi-arid inland ecosystems of this region. Understanding these processes is a critical step in accurately understanding the biochemical responses to natural salmon deposition and appropriately mitigating for its loss. Additionally, the movement of carcasses for nutrient enhancement poses the risk of spreading pathogens and disease. Freezing and pasteurization of the carcasses reduces this risk. However, the effect of these treatments on decomposition processes is unknown. Decomposition rate and nutrient dynamics were investigated in semi-arid central Idaho by decomposing salmon carcasses in soil-filled microcosms. Rapid thermal accumulation in this semi-arid climate resulted in completion of soft tissue decomposition (skeletonization) in 16 days. Soil dissolved organic C (DOC) and dissolved total N (DTN) increased dramatically with respective increases from pretreatment concentrations of 7 and 48 fold by the time skeletonization occurred. Isotopic analysis of fluids beneath the carcasses revealed up to a 6‰ change in fluid δ13C and δ15N during decomposition as well as an overall 4‰ enrichment in mean fluid δ515N, relative to whole reference carcasses. Freezing and pasteurization of carcasses only yielded differences during the first few days of decomposition relative to the fresh carcasses. These results suggest that decomposition of carcasses in inland riparian forests proceeds very rapidly and that treated carcasses are suitable surrogates for fresh carcasses in semi-arid regions of central Idaho.
Article
Mitigation activities designed to supplement nutrient and organic matter inputs to streams experiencing decline or loss of Pacific salmon typically presuppose that an important pathway by which salmon nutrients are moved to fish (anadromous and/or resident) is via nutrient incorporation by biofilms and subsequent bottom-up stimulation of biofilm production, which is nutrient-limited in many ecosystems where salmon returns have declined. Our objective was to quantify the magnitude of nutrient incorporation and biofilm dynamics that underpin this indirect pathway in response to experimental additions of salmon carcasses and pelletized fish meal (a.k.a., salmon carcass analogs) to 500-m reaches of central Idaho streams over three years. Biofilm standing crops increased 2-8-fold and incorporated marine-derived nutrients (measured using N-15 and C-13) in the month following treatment, but these responses did not persist year-to-year. Biofilms were nitrogen (N) limited before treatments, and remained N limited in analog, but not carcass-treated reaches. Despite these biofilm responses, in the month following treatment total N load was equal to 33-47% of the N added to the treated reaches, and N spiraling measurements suggested that as much as 20%, but more likely 2-3% of added N was taken up by microbes. Design of biologically and cost-effective strategies for nutrient addition will require understanding the rates at which stream microbes take up nutrients and the downstream distance traveled by exported nutrients.
Article
Nearly all ecosystems have been altered by human activities, and most communities are now composed of interacting species that have not co-evolved. These changes may modify species interactions, energy and material flows, and food-web stability. Although structural changes to ecosystems have been widely reported, few studies have linked such changes to dynamic food-web attributes and patterns of energy flow. Moreover, there have been few tests of food-web stability theory in highly disturbed and intensely managed freshwater ecosystems. Such synthetic approaches are needed for predicting the future trajectory of ecosystems, including how they may respond to natural or anthropogenic perturbations. We constructed flow food webs at six locations along a 386-km segment of the Colorado River in Grand Canyon (Arizona, USA) for three years. We characterized food-web structure and production, trophic basis of production, energy efficiencies, and interaction-strength distributions across a spatial gradient of perturbation (i.e., distance from Glen Canyon Dam), as well as before and after an experimental flood. We found strong longitudinal patterns in food-web characteristics that strongly correlated with the spatial position of large tributaries. Above tributaries, food webs were dominated by nonnative New Zealand mudsnails (62% of production) and nonnative rainbow trout (100% of fish production). The simple structure of these food webs led to few dominant energy pathways (diatoms to few invertebrate taxa to rainbow trout), large energy inefficiencies (i.e., ,20% of invertebrate production consumed by fishes), and right-skewed interaction-strength distributions, consistent with theoretical instability. Below large tributaries, invertebrate production declined ;18-fold, while fish production remained similar to upstream sites and comprised predominately native taxa (80-100% of production). Sites below large tributaries had increasingly reticulate and detritus-based food webs with a higher prevalence of omnivory, as well as interaction strength distributions more typical of theoretically stable food webs (i.e., nearly twofold higher proportion of weak interactions). Consistent with theory, downstream food webs were less responsive to the experimental flood than sites closest to the dam. We show how human-induced shifts to foodweb structure can affect energy flow and interaction strengths, and we show that these changes have consequences for food-web function and response to perturbations.