Metapyroxenite in der KTB-Vorbohrung

To read the full-text of this research, you can request a copy directly from the authors.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

The metagabbro-amphibolite sequences in the KTB pilot hole contain intercalations of talc-chlorite-amphibole felses (or ''hosbachites''), which show transitional contacts to the adjacent metagabbros. The hosbachites are characterized by relics of a primary igneous texture and still contain igneous minerals like clinopyroxene, biotite and pseudomorphs after olivine, while brown Ca-amphibole was presumably formed in a late-magmatic stage. The geological, textural, mineralogical and geochemical evidence indicates that the hosbachites were derived from ultramafic cumulates, differentiated from a basaltic magma, either in the inner parts of dolerite sills or in small gabbro intrusions. A pervasive metamorphic overprint under medium-pressure, amphibolite-facies conditions which was accompanied by penetrative deformation led to assemblages with green Ca-amphibole +/- anthophyllite +/- cummingtonite +/- tremolite/actinolite + clinochlore + talc + olivine + ilmenite +/- Cr-bearing spinel + sulfides. Phase relationships are consistent with a prograde P-T path leading to the formation of anthophyllite from olivine + talc at peak metamorphic temperatures of 640-700-degrees-C, at assumed pressures of 8-10 kbar, similar to those derived from mineral assemblages in the adjacent metabasites and metasediments. High-pressure relics locally present in coronitic metagabbros and retrograded eclogites of the KTB pilot hole were not recognized in the hosbachites. A retrograde overprint under greenschist-facies conditions led to the total replacement of igneous or metamorphic olivine by aggregates of antigorite + magnetite, chloritization of biotite and the formation of late tremolite/actinolite.
ResearchGate has not been able to resolve any references for this publication.