Article

Geochemische Untersuchungen und K-Ar Datierungen in der Zone Tepl-Taus

Authors:
To read the full-text of this research, you can request a copy directly from the authors.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

Article
The Variscan orogenic belt, of which the Bohemian Massif is a part, is typically recognized for its characteristic low pressure, high temperature metamorphism and a large volume of granites. However, there are also bodies of high pressure rocks (eclogites, garnet peridotites and high pressure granulites) which are small in size but widely distributed throughtout the Massif. Initially the high pressure rocks were considered to be relicts of a much older orogenic event, but the increasing data derived from isotopic and geochronological investigations show that many of these rocks have Palaeozoic protoliths. Metamorphic ages from the high pressure rocks define no single event. Instead, a number of discrete clusters of ages are found between about 430 Ma and the time of the dominant low pressure event at around 320–330 Ma. Most of the eclogite and granulite facies rocks are assigned to allochthonous nappes that arrived close to the end of the low pressure event, but before final granite intrusion. The nappes contain a mixture of different units and the relationship between rocks with high pressure relicts and host gneisses with no apparent signs of deep burial is still problematic. Some of the high pressure rocks retain evidence of multiple stages of partial re-equilibration during uplift. Moreover, it can be shown in certain instances that host gneisses also endured a multistage metamorphic development but with a peak event convergent with one of the breakdown stages in the enclosed rocks with high pressure relicts. It thus appears that the nappe units are composite bodies probably formed during episodic intracrustal thrusting. Fluids derived from prograde dehydration reactions in the newly under thrusting slab are taken to be the catalysts that drove the partial re-equilibrations. On the scale of the whole Massif it can be seen within the units with high pressure relicts that the temperature at the peak recorded pressure and that during the breakdown are variable in different locations. It is interpreted that regional metamorphic gradients are preserved for given stages in the history and thus the present day dismembered nappe relicts are not too far removed from their original spatial distribution in an original coherent unit. From the temperature information alone it is highly probable that the ‘refrigerating’ underthrusting slab was situated in the north-west. However, this north-west to south-east underthrusting probably represents the major 380–370 Ma event and is no guide to the final thrusting that emplaced the much thinned nappe pile with high pressure relicts. Granite genesis is attributed to the late stage stacking, during the final Himalayan-type collision stage, of thinned crust covered by young, water-rich, sediments — erosion products of the earlier orogenic stages. Regional metamorphism at shallow depths above the voluminous granites was followed by final nappe emplacement which rejuvenated the granite ascent in places.
ResearchGate has not been able to resolve any references for this publication.