Chapter

Analysis of the 2002 Equine West Nile Virus Outbreak in South Dakota Using GIS and Spatial Statistics

If you want to read the PDF, try requesting it from the authors.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

ResearchGate has not been able to resolve any citations for this publication.
Article
Full-text available
The prevalence of soybean fields with plants infected with Soybean mosaic virus (SMV) in Iowa is assumed to be random, because the primary source of the virus is SMV-infected seed. Data collected from 2,500 soybean fields sampled over a 3-year period as part of the Iowa Soybean Disease Survey (2005 to 2007) were used to evaluate this assumption. SMV was first detected in early June of each year but counties in which it was first detected varied among years. Prevalence at the county scale at end of season was 32.3, 27.3, and 89.9% in 2005, 2006, and 2007, respectively. End-of-season incidence of SMV within SMV-positive counties was 1.5 to 25.0, 1.7 to 24, and 1.8 to 58% in 2005, 2006, and 2007, respectively. The number of fields in which plants infected with SMV were detected increased at the linear rate of approximately one new field every 2 days in 2007, compared with one new field every 22 days (2005) and 21 days (2006), with coefficients of determination (R2) of 93.2 to 96.8% using the linear model. Weak spatial dependence for end-of-season SMV incidence was detected using Moran's Index, indicating that the risk for SMV incidence at the county scale within Iowa at the end of the growing season is not random.
Article
Full-text available
We analyse the effect of using prevalence rates based on populations with different sizes in the power of spatial independence tests. We compare the well known spatial correlation Moran's index to three indexes obtained after adjusting for population density, one proposed by Oden, another proposed by Waldhör, and a third proposed by us in this paper. We find an effect of spatially correlated populations in the type I error probability on the test based on Moran's and Waldhör's indexes. We conclude also that the test proposed by Oden is powerful to test risk heterogeneity, but it has disadvantages when the interest is solely on the spatial correlation of morbidity risks. In this latter case, we recommend using our proposed test which is more powerful than the usual Moran's index applied directly to the rates.
Article
Full-text available
Emerging infectious diseases (EIDs) of free-living wild animals can be classified into three major groups on the basis of key epizootiological criteria: (i) EIDs associated with “spill-over” from domestic animals to wildlife populations living in proximity; (ii) EIDs related directly to human intervention, via host or parasite translocations; and (iii) EIDs with no overt human or domestic animal involvement. These phenomena have two major biological implications: first, many wildlife species are reservoirs of pathogens that threaten domestic animal and human health; second, wildlife EIDs pose a substantial threat to the conservation of global biodiversity.
Article
Full-text available
Pathogens that can be transmitted between different host species are of fundamental interest and importance from public health, conservation and economic perspectives, yet systematic quantification of these pathogens is lacking. Here, pathogen characteristics, host range and risk factors determining disease emergence were analysed by constructing a database of disease-causing pathogens of humans and domestic mammals. The database consisted of 1415 pathogens causing disease in humans, 616 in livestock and 374 in domestic carnivores. Multihost pathogens were very prevalent among human pathogens (61.6%) and even more so among domestic mammal pathogens (livestock 77.3%, carnivores 90.0%). Pathogens able to infect human, domestic and wildlife hosts contained a similar proportion of disease-causing pathogens for all three host groups. One hundred and ninety-six pathogens were associated with emerging diseases, 175 in humans, 29 in livestock and 12 in domestic carnivores. Across all these groups, helminths and fungi were relatively unlikely to emerge whereas viruses, particularly RNA viruses, were highly likely to emerge. The ability of a pathogen to infect multiple hosts, particularly hosts in other taxonomic orders or wildlife, were also risk factors for emergence in human and livestock pathogens. There is clearly a need to understand the dynamics of infectious diseases in complex multihost communities in order to mitigate disease threats to public health, livestock economies and wildlife.
Article
Full-text available
The ability to detect disease outbreaks early is important in order to minimize morbidity and mortality through timely implementation of disease prevention and control measures. Many national, state, and local health departments are launching disease surveillance systems with daily analyses of hospital emergency department visits, ambulance dispatch calls, or pharmacy sales for which population-at-risk information is unavailable or irrelevant. We propose a prospective space-time permutation scan statistic for the early detection of disease outbreaks that uses only case numbers, with no need for population-at-risk data. It makes minimal assumptions about the time, geographical location, or size of the outbreak, and it adjusts for natural purely spatial and purely temporal variation. The new method was evaluated using daily analyses of hospital emergency department visits in New York City. Four of the five strongest signals were likely local precursors to citywide outbreaks due to rotavirus, norovirus, and influenza. The number of false signals was at most modest. If such results hold up over longer study times and in other locations, the space-time permutation scan statistic will be an important tool for local and national health departments that are setting up early disease detection surveillance systems.
Article
Full-text available
The highly pathogenic H5N1 influenza virus has become endemic in poultry in southeast Asia since 2003 and constitutes a major pandemic threat to humans. Here we describe cases of disease caused by H5N1 and transmission of the virus among migratory geese populations in western China. This outbreak may help to spread the virus over and beyond the Himalayas and has important implications for developing control strategies.
Article
Full-text available
From 1937 until 1999, West Nile virus (WNV) garnered scant medical attention as the cause of febrile illness and sporadic encephalitis in parts of Africa, Asia, and Europe. After the surprising detection of WNV in New York City in 1999, the virus has spread dramatically westward across the United States, southward into Central America and the Caribbean, and northward into Canada, resulting in the largest epidemics of neuroinvasive WNV disease ever reported. From 1999 to 2004, >7,000 neuroinvasive WNV disease cases were reported in the United States. In 2002, WNV transmission through blood transfusion and organ transplantation was described for the first time, intrauterine transmission was first documented, and possible transmission through breastfeeding was reported. This review highlights new information regarding the epidemiology and dynamics of WNV transmission, providing a new platform for further research into preventing and controlling WNV disease.
Article
Full-text available
While the use of spatially referenced data for the analysis of epidemiological data is growing, issues associated with selecting the appropriate geographic unit of analysis are also emerging. A particularly problematic unit is the ZIP code. Lacking standardization and highly dynamic in structure, the use of ZIP codes and ZIP code tabulation areas (ZCTA) for the spatial analysis of disease present a unique challenge to researchers. Problems associated with these units for detecting spatial patterns of disease are explored. A brief review of ZIP codes and their spatial representation is conducted. Though frequently represented as polygons to facilitate analysis, ZIP codes are actually defined at a narrower spatial resolution reflecting the street addresses they serve. This research shows that their generalization as continuous regions is an imposed structure that can have serious implications in the interpretation of research results. ZIP codes areas and Census defined ZCTAs, two commonly used polygonal representations of ZIP code address ranges, are examined in an effort to identify the spatial statistical sensitivities that emerge given differences in how these representations are defined. Here, comparative analysis focuses on the detection of patterns of prostate cancer in New York State. Of particular interest for studies utilizing local, spatial statistical tests, is that differences in the topological structures of ZIP code areas and ZCTAs give rise to different spatial patterns of disease. These differences are related to the different methodologies used in the generalization of ZIP code information. Given the difficulty associated with generating ZIP code boundaries, both ZIP code areas and ZCTAs contain numerous representational errors which can have a significant impact on spatial analysis. While the use of ZIP code polygons for spatial analysis is relatively straightforward, ZCTA representations contain additional topological features (e.g. lakes and rivers) and contain fragmented polygons that can hinder spatial analysis. Caution must be exercised when using spatially referenced data, particularly that which is attributed to ZIP codes and ZCTAs, for epidemiological analysis. Researchers should be cognizant of representational errors associated with both geographies and their resulting spatial mismatch, especially when comparing the results obtained using different topological representations. While ZCTAs can be problematic, topological corrections are easily implemented in a geographic information system to remedy erroneous aggregation effects.
Article
Full-text available
Highly pathogenic avian influenza and in particular the H5N1 strain has resulted in the culling of millions of birds and continues to pose a threat to poultry industries worldwide. The recent outbreak of H5N1 in the UK highlights the need for detailed assessment of the consequences of an incursion and of the efficacy of control strategies. Here, we present results from a model of H5N1 propagation within the British poultry industry. We find that although the majority of randomly seeded incursions do not spread beyond the initial infected premises, there is significant potential for widespread infection. The efficacy of the European Union strategy for disease control is evaluated and our simulations emphasize the pivotal role of duck farms in spreading H5N1.
Article
This article presents an overview of GeoDa™, a free software program intended to serve as a user-friendly and graphical introduction to spatial analysis for non-geographic information systems (GIS) specialists. It includes functionality ranging from simple mapping to exploratory data analysis, the visualization of global and local spatial autocorrelation, and spatial regression. A key feature of GeoDa is an interactive environment that combines maps with statistical graphics, using the technology of dynamically linked windows. A brief review of the software design is given, as well as some illustrative examples that highlight distinctive features of the program in applications dealing with public health, economic development, real estate analysis, and criminology.
Article
The capabilities for visualization, rapid data retrieval, and manipulation in geographic information systems (GIS) have created the need for new techniques of exploratory data analysis that focus on the “spatial” aspects of the data. The identification of local patterns of spatial association is an important concern in this respect. In this paper, I outline a new general class of local indicators of spatial association (LISA) and show how they allow for the decomposition of global indicators, such as Moran's I, into the contribution of each observation. The LISA statistics serve two purposes. On one hand, they may be interpreted as indicators of local pockets of nonstationarity, or hot spots, similar to the Gi and G*i statistics of Getis and Ord (1992). On the other hand, they may be used to assess the influence of individual locations on the magnitude of the global statistic and to identify “outliers,” as in Anselin's Moran scatterplot (1993a). An initial evaluation of the properties of a LISA statistic is carried out for the local Moran, which is applied in a study of the spatial pattern of conflict for African countries and in a number of Monte Carlo simulations.
Article
"Methods for estimating regional mortality and disease rates, with a view to mapping disease, are discussed. A new empirical Bayes estimator, with parameters simply estimated by moments, is proposed and compared with iterative alternatives suggested by Clayton and Kaldor." The author develops a local shrinkage estimator in which a crude disease rate is shrunk toward a local, neighborhood rate. The estimators are compared using simulations and an empirical example based on infant mortality data for Auckland, New Zealand.
Article
In the late 1990s, H5N1 and H9N2 avian influenza viruses caused respiratory infections in humans in Hong Kong. Exposure to domestic poultry in live-bird markets was significantly associated with human H5N1 disease. Seroepidemiologic studies conducted among contacts of H5N1-infected persons determined that human-to-human transmission of the avian H5N1 viruses occurred but was rare. The relatively high rates of H5 and H9 antibody seroprevalence among Hong Kong poultry workers in 1997 highlight the potential for avian viruses to transmit to humans, particularly those with occupational exposure. Such transmission increases the likelihood of reassortment between a currently circulating human virus and an avian virus and thus the creation of a strain with pandemic potential.
Article
To characterize an outbreak of West Nile virus (WNV) infection in horses in North Dakota in 2002, evaluate vaccine effectiveness, and determine horse characteristics and clinical signs associated with infection. Retrospective study. 569 horses. Data were obtained from veterinary laboratory records, and a questionnaire was mailed to veterinarians of affected horses. Affected horses were defined as horses with typical clinical signs and seroconversion or positive results of virus isolation; affected horses were detected in 52 of the 53 counties and concentrated in the eastern and northeastern regions of the state. Among affected horses, 27% (n = 152) were vaccinated against WNV, 54% (309) were not, and 19% (108) had unknown vaccination status; 61 % (345) recovered, 22% (126) died, and 17% (98) had unknown outcome. The odds of death among nonvaccinated horses were 3 and 16 times the odds among horses that received only 1 or 2 doses of vaccine and horses that were vaccinated according to manufacturer's recommendations, respectively. Horses with recumbency, caudal paresis, and age > 5 years had higher odds of death, whereas horses with incoordination had lower odds of death, compared with affected horses without these characteristics. Vaccination appears to have beneficial effects regarding infection and death caused by WNV.
Article
Emerging infectious diseases (EIDs) pose threats to conservation and public health. Here, we apply the definition of EIDs used in the medical and veterinary fields to botany and highlight a series of emerging plant diseases. We include EIDs of cultivated and wild plants, some of which are of significant conservation concern. The underlying cause of most plant EIDs is the anthropogenic introduction of parasites, although severe weather events are also important drivers of disease emergence. Much is known about crop plant EIDs, but there is little information about wild-plant EIDs, suggesting that their impact on conservation is underestimated. We conclude with recommendations for improving strategies for the surveillance and control of plant EIDs.
Article
Avian influenza (AI) is a listed disease of the World Organisation for Animal Health (OIE) that has become a disease of great importance both for animal and human health. Until recent times, AI was considered a disease of birds with zoonotic implications of limited significance. The emergence and spread of the Asian lineage highly pathogenic AI (HPAI) H5N1 virus has dramatically changed this perspective; not only has it been responsible of the death or culling of millions of birds, but this virus has also been able to infect a variety of non-avian hosts including human beings. The implications of such a panzootic reflect themselves in animal health issues, notably in the reduction of a protein source for developing countries and in the management of the pandemic potential. Retrospective studies have shown that avian progenitors play an important role in the generation of pandemic viruses for humans, and therefore these infections in the avian reservoir should be subjected to control measures aiming at eradication of the Asian H5N1 virus from all sectors rather than just eliminating or reducing the impact of the disease in poultry.
Article
This study estimated economic impacts associated with the West Nile virus (WNV) outbreak in horses for North Dakota in 2002. The 2002 epidemic in the United States was the largest meningoencephalitis epidemic reported in the Western Hemisphere. Over 15,257 horse cases were reported in 43 states with most cases occurring in central United States. North Dakota reported over 569 horse cases, with a mortality rate of 22%. The total costs incurred by the state were approximately US$1.9 million. The costs incurred by horse owners were about US$1.5 million. Of the US$1.5 million, about US$781,203 and US$802,790 were spent on medical costs and losses due to inability to use animals because of the disease, respectively. Medical costs included the cost of vaccinating 152 horses, and the treatment costs for 345 horses which were US$4,803 and US$524,400 respectively. Costs associated with mortality were US$252,000 for the 126 horses which died of WNV. The state government spent US*$400,000 on WNV monitoring, control, and surveillance under the WNV-control program in 2002. Despite these conservative estimates, the data suggest that economic costs attributable to WNV epidemic to horse owners in North Dakota were substantial.