In the present study, masonry creep was experimentally investigated. Creep tests were performed on masonry prisms, which were produced using standard fired clay brick and standard Type S mortar. A total of 11 sets of loaded and unloaded masonry specimens were tested under sustained load with three main parameters: stress level, masonry age at loading, and relative humidity. The unloaded prisms
... [Show full abstract] compensated for the effects of shrinkage. In this article, the ability of a number of rheological models reported in the literature are examined for their ability to predict masonry creep. Moreover, a new rheological model, one that considers the effect of stress level and masonry age at loading, is proposed. The system parameters of the proposed model were identified using the experimental data. The proposed model was then validated using masonry creep data that was reported by other researchers, but not used in model development. It is shown that the creep behaviour of masonry can be modelled with good accuracy using the proposed rheological model.