ArticlePDF Available

Abstract and Figures

El uso que los adolescentes hacen de Internet viene suscitando una enorme preocupacion en diferentes sectores de la sociedad. Las consecuencias a nivel psicologico y conductual que el uso problematico de la Red provoca entre los mas jovenes demandan una respuesta tan rapida como eficaz. Uno de los grandes retos en este contexto es el desarrollo de herramientas validadas empiricamente, que permitan hacer un cribado o deteccion precoz de posibles casos de riesgo. Ese es precisamente el objetivo de este trabajo. A partir de una muestra de 1709 escolares de Ensenanza Secundaria Obligatoria de la comunidad gallega, de edades comprendidas entre los 11 y los 17 anos ( M = 13,74; DT = 1,43), los analisis realizados permiten presentar una herramienta breve y sencilla (compuesta por solo 11 items), que goza de un importante aval teorico, ya que para su elaboracion se tuvieron en cuenta tanto los antecedentes existentes en la literatura, como las opiniones de expertos del ambito academico y profesional. Dicha escala, ademas de estar adaptada al contexto cultural espanol y al lenguaje de los adolescentes, presenta unas propiedades psicometricas satisfactorias, tanto en terminos de fiabilidad de las puntuaciones ( α = ,82) y evidencias de su estructura interna (probada a traves de un Analisis Factorial Confimatorio), como de sensibilidad (81%) y especificidad (82,6%), permitiendo “escalar” a los adolescentes en un continuum de riesgo o uso problematico de Internet. Todo ello le confiere, a nuestro modo de ver, un notable potencial a nivel aplicado, tanto en el contexto educativo como clinico.
Content may be subject to copyright.
ADICCIONES, 2015 · VOL. 27 ISSUE 1 · PAGES 47-63
47
original adicciones vol. 27, issue 1 · 2015
Adolescents’ use of the Internet is becoming a matter of great concern
for different sectors of society. The psychological and behavioural
consequences of problematic Internet use in young people demands
quick and effective answers. One of the major challenges in this
context is the development of empirically validated tools, which would
facilitate early detection and screening for potential risk cases. This is
precisely the aim of this paper. Based on a sample of 1,709 secondary-
school students from Galicia (a region in northern Spain) aged 11
to 17 (M = 13.74, SD = 1.43), the analysis carried out permitted us to
present a brief and simple tool (with just 11 items). It has substantial
theoretical support, since both the existing background information
and the views of experts from the academic and professional spheres
were taken into account in the course of its development. The scale
is adapted to the Spanish cultural context and to the language of
young people. It has satisfactory psychometric properties in terms of
reliability of the scores (α = .82), evidence of its internal structure
(tested via a Conrmatory Factorial Analysis), sensitivity (81%),
and specicity (82.6%). Moreover, its use enables the gradation of
adolescents on a risk or problematic Internet use continuum. In
our view, all of this lends it enormous applied potential in both the
educational and clinical contexts.
Key words: addiction, adolescents, early detection, Internet,
problematic use, screening.
Abstract
Received: May 2014; Accepted: November 2014
Address for correspondence:
Antonio Rial Boubeta. Facultad de Psicología, C/ Xosé María Suárez Núñez, s/n. Campus Vida-Universidad de Santiago de Compostela.
15782- Santiago de Compostela (Spain). E-mail: antonio.rial.boubeta@usc.es
PIUS-a: Problematic Internet Use Scale in adolescents.
Development and psychometric validation
EUPI-a: Escala de Uso Problemático de Internet en
adolescentes. Desarrollo y validación psicométrica
A R B*; P G S*; M I F**;
M A G*; J V M*
*Universidad de Santiago de Compostela
**Universidad de Vigo
El uso que los adolescentes hacen de Internet viene suscitando una
enorme preocupación en diferentes sectores de la sociedad. Las
consecuencias a nivel psicológico y conductual que el uso problemático
de la Red provoca entre los más jóvenes demandan una respuesta tan
rápida como ecaz. Uno de los grandes retos en este contexto es el
desarrollo de herramientas validadas empíricamente, que permitan
hacer un cribado o detección precoz de posibles casos de riesgo. Ese
es precisamente el objetivo de este trabajo. A partir de una muestra de
1709 escolares de Enseñanza Secundaria Obligatoria de la comunidad
gallega, de edades comprendidas entre los 11 y los 17 años (M
= 13,74; DT = 1,43), los análisis realizados permiten presentar una
herramienta breve y sencilla (compuesta por solo 11 ítems), que goza
de un importante aval teórico, ya que para su elaboración se tuvieron
en cuenta tanto los antecedentes existentes en la literatura, como las
opiniones de expertos del ámbito académico y profesional. Dicha
escala, además de estar adaptada al contexto cultural español y al
lenguaje de los adolescentes, presenta unas propiedades psicométricas
satisfactorias, tanto en términos de abilidad de las puntuaciones
(α = ,82) y evidencias de su estructura interna (probada a través de
un Análisis Factorial Conmatorio), como de sensibilidad (81%) y
especicidad (82,6%), permitiendo “escalar” a los adolescentes en un
continuum de riesgo o uso problemático de Internet. Todo ello le
conere, a nuestro modo de ver, un notable potencial a nivel aplicado,
tanto en el contexto educativo como clínico.
Palabras clave: adicción, adolescentes, cribado, detección precoz,
Internet, uso problemático.
Resumen
adicciones vol. 27, issue 1 · 2015original
ADICCIONES, 2015 · VOL. 27 ISSUE 1
48
PIUS-a: Problematic Internet Use Scale in adolescents. Development and psychometric validation
One of the dening characteristics 21st-cen-
tury society is the generalized use of so-ca-
lled New Technologies (NT) or Information
and Communications Technology (ICT). Accor-
ding to Spain’s National Institute of Statistics (Instituto
Nacional de Estadística [INE], 2014), in Spain 92% of
minors aged 10 to 15 are Internet users. The Web provi-
des access to multiple sources of information, learning,
leisure and personal, academic and professional develo-
pment, as well as to innovative forms of communication,
relation and expression. Without questioning its benets,
we should not overlook the fact that its use also involves
certain associated risks and dangers (loss of privacy, con-
tact with strangers, isolation), in addition to disconcer-
ting practices such as cyberbullying, grooming or sexting,
which are affecting increasing numbers of adolescents,
considered one of the most vulnerable groups in this new
environment (Castellana, Sánchez-Carbonell, Graner, &
Beranuy, 2007; Echeburúa & Corral, 2010; Yang & Tung,
2007).
The use that teenagers make or are able to make of In-
ternet is a topic of concern in Spain and elsewhere (Oliva
et al., 2012; Puerta-Cortés & Carbonell, 2014; Ruiz-Oli-
vares, Lucena, Pino, & Herruzo, 2010; Smahel et al.,
2012; Tsitsika, Tzavela, Mavromati and EU consortium
NET ADB, 2012; Valedor do Pobo, 2011). This general
concern has been heightened in recent years by the so-
metimes sensationalist way in which the subject is treated
in the media. This has helped to create some degree of
social alarm and no little scepticism among researchers
and professionals, who do not consider it appropriate to
speak of Internet addiction per se (Estallo, 2001; Grohol,
1999; Matute, 2001). However, others have indeed taken
this step, attempting to scientic credibility to the use of
this term (Cao & Su, 2007; Young, 1998). Various studies
have tried to provide evidence that the behaviour of some
individuals in relation to the Web fulls the general crite-
ria of an addiction (Echeburúa, 1999; Grifths, 1998), or
even proposed diagnostic criteria (Ko, Yen, Chen, Chen,
& Yen, 2005; Tao et al., 2010; Young, 1996). And while it
is true that neither of the diagnostic manuals of reference
(CIE-10 and DSM-5) currently includes such a category,
it is interesting to mention two innovations that appear
in the DSM-5 (American Psychiatric Association [APA],
2013): on the one hand, Internet Gaming Disorder has been
included in Section III of the manual, reserved for po-
tential new diagnostic categories that require further re-
search and evidence from clinical contexts; on the other
hand, compulsive gambling has been classied as a behaviou-
ral addiction, which leads us to think, in line with other
authors (Cía, 2014; Petry & O’Brien, 2013), that other
behaviours capable of generating the psychopathology
characteristic of addiction could also be fully incorpora-
ted into coming editions of the manual.
Despite the enormous amount of scientic work that
this area has been generating for almost two decades now,
there is still a degree of controversy (García, Beltrán, &
Pérez, 2012; Douglas et al., 2008; Rial, Gómez, Braña, &
Varela, 2014; Sánchez-Carbonell, Beranuy, Castellana, Cha-
marro, & Oberst, 2008; Spada, 2014). An example of this
is the disparity in the prevalence gures estimated by diffe-
rent studies. In the Spanish context the data range from
0.76% of adolescents and young people with severe level of
Internet addiction to 21.88% with moderate addiction (Oliva
et al., 2012), or 3.3% of problematic users and 43.3% of risk
users in young people aged 14 to 18 (Estévez, Bayón, de
la Cruz, & Fernández-Líria, 2009), to 19.9% of problematic
users among secondary-school students (Gómez, Rial, Bra-
ña, Varela, & Barreiro, 2014).
In the case of Europe-wide studies, the data range
from 1% of pathological levels of Internet use found in chil-
dren aged 11 to 16 (Smahel et al., 2012), or the 1.2% of
adolescents aged 14 to 17 with Internet addiction behaviours
and 12.7% at risk (Tsitsika et al., 2012), to 4.4% of patholo-
gical Internet users and 13.5% of maladaptive users (Durkee
et al., 2012)
The gures in studies outside Europe also show dispa-
rities: Cao, Sun, Wan, Hao and Tao (2011) report 8.1%
of problematic users of Internet among Chinese adolescents,
whilst Lam, Peng, Mai and Jing (2009) speak, in relation
to Chinese secondary-school students, of 10.2% modera-
tely addicted and 0.6% severely addicted to the Web. At the
same time, the range of prevalence found in studies with
adolescents and university students in the USA is from
0% to 26.3% (Moreno, Jelenchick, Cox, Young, & Chris-
takis, 2011).
In sum, although more and more research is being
done on this issue, the data are confusing, and at times
even contradictory. The “risk” estimated in each case
tends to be an excessively diffuse term, given the under-
lying conceptual controversy that must be resolved rst:
what do we actually want to assess? It is necessary to cla-
rify what we are talking about: Internet addiction (Chou
& Hsiao, 2000; Young, 1996), compulsive use (Greeneld,
1999; Meerkerk, Van Den Eijnden, Vermulst, & Garret-
sen, 2009), pathological use (Davis, 2001; Morahan-Martin
& Schumacher, 2000), problematic use (Caplan, 2002; Sha-
pira et al., 2003), excessive use (Hansen, 2002), unregulated
use (LaRose, Lin, & Eastin, 2003) or Internet dependence
(Anderson, 2001; Scherer, 1997). Do these terms form
part of a single continuum of risk? And if so, what sequen-
ce do they follow? Which of them accounts for the hi-
ghest level of risk? Where should we set the boundaries
between one concept and another? The heterogeneity of
terms makes it seriously difcult to compare and integra-
te results, so that the rst task for research teams and the
scientic-professional community is to reach a consensus
on both the term to use and its dening criteria. Thus,
ADICCIONES, 2015 · VOL. 27 ISSUE 1
49
Antonio Rial Boubeta, Patricia Gómez Salgado, Manuel Isorna Folgar, Manuel Araujo Gallego, Jesús Varela Mallou
although it might be acceptable to speak of addiction to
Internet, in the name of rigour and orthodoxy (and pen-
ding the necessary consensus), a prudent solution would
be to employ the term problematic use. Authors such as
Ceyhan, Ceyhan and Gürcan (2007), Pulido-Rull, Esco-
to-de la Rosa and Gutiérrez-Valdovinos (2011) or That-
cher and Goolam (2005) advocate the use of this expres-
sion.
But beyond this controversy, what is certain is that sig-
ns are increasing of the existence of the problem, so that
it must be addressed as soon as possible. In this context,
one of the greatest challenges for research is the deve-
lopment of screening instruments, permitting early de-
tection or the identication of possible risk cases, which
would redound to the benet of prevention initiatives.
The Appendix to this article includes a list of the prin-
cipal instruments or tests developed to date. Its length
serves only to highlight the enormous degree of hetero-
geneity there is, from both the conceptual and methodo-
logical points of view. Despite the large number of scales
available, if our goal is to develop a tool with sound gua-
rantees that permits early detection of cases of proble-
matic Internet use among adolescents, the truth is that
many of them present some kind of limitation: (1) they
are not adapted to the adolescent population or the items
are unsuitable for the specic reality of this age group
(Armstrong, Phillips, & Saling, 2000; Nichols & Nicki,
2004); (2) they do not provide sufcient data on their
psychometric properties, or they are not as reliable as
they should be (Frangos, Frangos, & Sotiropoulos, 2012;
García et al., 2008; Orman, 1996); (3) the samples used
for their empirical validation are too small (Lam-Figue-
roa et al., 2011; Morahan-Martin & Schumacher, 2000);
(4) their factor structure is unclear (Chang & Law, 2008;
Widyanto & McMurran, 2004); (5) they are difcult to
use as screening tools, given their large numbers of items
(Davis, Flett, & Besser, 2002; Li & Yang, 2007) or because
they do not provide cut-off points (Beranuy, Chamarro,
Graner, & Carbonell, 2009; Meerkerk et al., 2009); (6)
there is no suitably adapted version in Spanish (Deme-
trovics, Szeredi, & Rózsa, 2008); or (7) they were develo-
ped in a culture very different from that of Spain (Chen,
Weng, Su, Wu, & Yang, 2003; Huang, Wang, Qian, Zhong,
& Tao, 2007).
The objective of the present work is precisely to de-
velop a screening scale for problematic Internet use in ado-
lescents, with sufcient theoretical and empirical gua-
rantees, and that is both brief and easy to use. Such a
scale must integrate the different antecedents from the
literature and present acceptable psychometric proper-
ties, with regard to score reliability, evidence of validity,
sensitivity and specicity. In addition to being brief and
simple, its items must be in accordance with the language
and cultural context of adolescents.
Method
Participants
To achieve our objective we used purposive sampling,
in an effort to access the largest and most heteroge-
neous sample possible. Through contact with 11 secon-
dary schools in 7 different municipalities (both urban
and rural) of the province of A Coruña (north-western
Spain), it was possible to assemble a sample of 1709 ado-
lescents (835 girls and 874 boys) aged 11-17 (M = 13.74;
SD = 1.43). Of these, 30.2% were in the rst grade (1º
de ESO), 25.2% in the second grade, 23.8% in the third
grade and 20.8% in the fourth grade. As regards parents’
educational level, 4% of fathers and 3.2% of mothers had
no formal education, whilst 36.9% of fathers and 34.5%
of mothers had primary education. Those with secon-
dary/high-school education accounted for 48.6% of the
fathers and 46.3% of the mothers, and 10.4% of fathers
and 15.9% of mothers had a university education.
Instruments
For the construction and development of the scale we
followed the phases set down in the American Educatio-
nal Research Association’s Standards (American Psycholo-
gical Association and National Council on Measurement
in Education, 1999). First of all, we dened the purpose
of the scale, which was to produce a screening instrument
for problematic Internet use in adolescents, as well as de-
ning the scope of the construct or domain to be measu-
red. We next specied certain aspects of the scale, such
as item format, response format and the procedure for
calculating the scores obtained by each participant. Spe-
cically, it was decided that the items would be statements
in the rst person, and that the response format would
be based on a Likert-type scale with 5 options, since this
maximizes score reliability and improves the chances of
obtaining good validity evidence. For calculating the sco-
res we established a range of 0 to 4 in the 5 categories of
the agreement scale, 0 signifying Totally disagree and 4 sig-
nifying Totally disagree. Next, we implemented the phase
of development, assessment and selection of the items,
and nally, we drew up the nal version of the scale and
carried out its empirical evaluation.
These four phases were developed through three com-
plementary strategies. The rst of these involved a review
of the extensive literature on the subject, summarized
in the Appendix, which lists the main scales previously
proposed and their dening characteristics. We also took
into account the DSM-5 diagnostic criteria for pathologi-
cal gambling and Internet Gaming Disorder.
The second strategy was the development of a quali-
tative study, which involved the creation of a multidisci-
plinary team of experts consisting of 12 professionals (3
clinical psychologists, 3 psychiatrists, 3 community edu-
ADICCIONES, 2015 · VOL. 27 ISSUE 1
50
PIUS-a: Problematic Internet Use Scale in adolescents. Development and psychometric validation
cation workers and 3 experts in drug-dependence pre-
vention), with three specic objectives: (1) To carry out a
critical review of the existing literature, highlighting the
current limitations in this area; (2) To provide evidence
of the content validity of the scale and the items making
it up; and (3) To establish criteria for analyzing its discri-
minative capacity, given the absence of consensus-based
diagnostic criteria.
For the work with the experts we used the Delphi tech-
nique, structured in three phases: the initial meeting was
for discussing the state of the issue and the possible crite-
ria indicating the problem; the experts then individually
presented their reections on the problem and their con-
sidered proposals for the items to be included in the scale
and the response format to be used; nally, they agreed
on the indicators or reference criteria for considering an
adolescent’s behaviour as “risk”, as well as other, more te-
chnical elements such as the order of presentation of the
items.
Furthermore, we took into account the results of the
preliminary study by Gómez et al. (2014), which presen-
ted an 8-item scale that can be considered the starting
point of the scale used in the present study. Nevertheless,
it should be noted that, given its additional contributions,
the present scale can be considered a priori a more com-
prehensive and rigorous instrument, with greater theo-
retical support (thanks to the extensive literature review
and the work carried out with the experts).
As a result of the four phases mentioned above and
the three complementary strategies used, we drew up an
initial version of the 14-item scale, as shown in Table1.
Table 1
Items of the scale and sources
ITEMS OF THE SCALE SOURCES
1. WhenI’m onlineI feel that time fliesandhours pass without me realizing it - Beranuy et al., 2009
- Huang et al., 2007
- Preliminary study
- Expert group
2. I’ve sometimes tried to control or reduce my Internet use, but I couldn’t - Echeburúa, 1999
- Young, 1996
- Internet Gaming Disorder
- Gambling Disorder
3. I sometimes prefer to be online than to be with people (family or friends) - Chen et al., 2003
- García et al., 2008
- Young, 1998
- Preliminary study
- Expert group
4. I’ve sometimes even managed to neglect certain tasks or perform below par (in exams, sport, etc.) - De García et al., 2008
because I put connecting to Internet first - Internet Gaming Disorder
- Preliminary study
5. I’m starting to like more and more spending hours connected to Internet - Chen et al., 2003
- Greenfield, 1999
- Internet Gaming Disorder
- Gambling Disorder
6. I sometimes get irritated or in a bad mood because I can’t connect to Internet - Demetrovics et al., 2008
or because I have to disconnect - Young, 1998
- Internet Gaming Disorder
- Gambling Disorder
- Preliminary study
7. I prefer that my parents don’t know how long I spend online because they would think it was too much - Huang et al., 2007
- Morahan-Martin & Schumacher, 2000
- Internet Gaming Disorder
- Gambling Disorder
- Expert group
8. I’ve stopped going to placesordoing things thatinterested mebeforeso as toconnect to the Internet - Armstrong et al., 2000
- Internet Gaming Disorder
- Preliminary study
- Expert group
9. Connectingto the Internethelps me to notthink about problemsand to relax - Beranuy et al., 2009
- Huang et al., 2007
- Internet Gaming Disorder
- Gambling Disorder
10. I’ve even putrelationships or important thingsat risk becauseof the Internet - Beranuy et al., 2009
- De Gracia et al., 2002
- Internet Gaming Disorder
- Gambling Disorder
- Preliminary study
11. I’ve sometimes got into trouble because of the Internet - Caplan, 2002
- Morahan-Martin& Schumacher, 2000
- Expert group
(continues)
ADICCIONES, 2015 · VOL. 27 ISSUE 1
51
Antonio Rial Boubeta, Patricia Gómez Salgado, Manuel Isorna Folgar, Manuel Araujo Gallego, Jesús Varela Mallou
Procedure
Data were collected in the classrooms of the schools
participating in the study, in small groups (20 or less),
after the corresponding instructions had been given. Co-
llection of the information was carried out by the experts
in drug-dependence prevention who developed the edu-
cation for health programmes at the different schools, as
an extra activity of the same programme, within the mo-
dule on responsible use of New Technologies. A training
session was held with technicians who assisted with data
collection in order to standardize the procedure as much
as possible and resolve any doubts at the technical level.
Special emphasis was placed on the condentiality of in-
formation and anonymity of responses was guaranteed,
since at no time were the adolescents asked about their
names or personal information. The cooperation and
consent of both the schools’ head teachers and parents’
associations were obtained. Participation in the study was
completely voluntary and unpaid. Rate of refusal to par-
ticipate in the study was 1.2%. Finally, it should also be
pointed out that the study was approved by the Bioethics
Committee of the University of Santiago de Compostela.
Data analysis
First of all we carried out a missing values analysis.
Once conrmed the low percentage of missing values for
each of the variables (ranging between 0% and 1.8%),
and the randomness of such values, we decided to remove
from the analysis those participants with missing values
in any of their answers. Thus, an initial sample of 1772
adolescents became a nal sample of 1709 adolescents for
the analysis. We then calculated the descriptives (M, SD,
skewness and kurtosis) for each scale item, as well their
corrected homogeneity indices (HIc). The multivariate
normal distribution was evaluated by means of the Mardia
coefcient and the internal consistency with Cronbach’s
alpha. To study the dimensionality or factor structure of
the scale we carried out rst of all an Exploratory Fac-
tor Analysis (EFA), followed by a rst-order Conrmatory
Factor Analysis (CFA). Given the absence of consensus-ba-
sed diagnostic criteria with which to dene problematic
Internet use among adolescents, in order to explore the
scale’s capacity for screening, we rst divided the total
sample into two groups: (a) a rst group whose use of
Internet could be considered moderate, and (b) a second
group whose use could be considered problematic (they
go online every day, usually for more than 5 hours a day,
and report frequent arguments with their parents for this
reason). Next, based on this categorization as moderate
or problematic users, we calculated the sensitivity and
specicity values for different cut-off points, and comple-
mentary to this, we carried out a ROC curve analysis. Fina-
lly, in addition to providing the descriptive statistics of the
nal scale for the total sample, we made comparisons of
means by the adolescents’ sex (through application of the
Student t test) and age (through a one-factor ANOVA and
a Tukey post-hoc comparison). All the analyses were carried
out using IBM SPSS Statistics 20.0 (IBM Corp. Released,
2011) and IBM SPSS AMOS 21.0 (Arbuckle, 2012).
A large part of the decisions made on a methodologi-
cal level took as a reference studies such as those of Cuen-
ca-Royo, Torrens, Sánchez-Niubó, Suelves and Domin-
go-Salvany (2013) or Muñiz and Fonseca-Pedrero (2008).
Results
Table2showsthedescriptivestatistics foreachoneof
the 14 items in the initial version. The highest avera-
gescorrespondto items 1 (When I’m onlineI feel that
time ies and hours pass without me realizing it) with
a mean of2.62, followed by item9 (Connecting to the
Internet helps me to not think about problems and to
relax),with an average of1.69.The lowestaverage corres-
ponds to item8 (I’ve stopped going to places ordoing
things thatinterested mebefore so as to connect to the
Internet), with a mean of 0.27, and item 10 (I’ve even
putrelationships or important things at risk because of
the Internet), with0.39.Asregards thevariability of res-
ponses, the item that presents the most heterogeneous
responses(with a standard deviation of1.45) is item9,
whileitem 8is the most homogeneous, with a standard
deviation of0.71. As regards the standardized skewness
values, we can observe a marked positive skewness in all
the items, except in the case of the rst one, which pre-
sents marked negative skewness. Regarding the kurtosis,
many of the items show a leptokurtic distribution (items
12. It annoys me to spend hours without connecting to Internet - Young, 1998
- Internet Gaming Disorder
- Gambling Disorder
- Preliminary study
- Expert group
13. When I can’t connect I can’t stop thinking that I might be missing something important - Caplan, 2002
- Labrador, Becoña& Villadangos, 2008
- Internet Gaming Disorder
- Gambling Disorder
14. I say or do things on Internet that I wouldn’t be capable of saying/doing in person - Caplan, 2002
- Carbonell et al., 2012
- Expert group
(Continued from previous page)
ADICCIONES, 2015 · VOL. 27 ISSUE 1
52
PIUS-a: Problematic Internet Use Scale in adolescents. Development and psychometric validation
2, 3, 6, 7, 8, 10, 11, 12 and 14), though some have a pla-
tykurtic distribution (items 1, 5, 9 and 13). However, only
four of the items have a value above 10, the rest falling
within reasonable limits (Kline, 2005). The Mardia multi-
variate normality coefcient is 77.97, which leads to rejec-
tion of the multivariate normality hypothesis. The correc-
ted homogeneity index (HIc) of the items ranges from
.37 to .59 and the internal consistency of the initial scale
is in general highly acceptable, with a Cronbach’s alpha
coefcient of .83. As Pardo and Ruíz (2001) state, “values
of over .80 are generally considered sound, and those of
over .90, excellent” (p. 598).
To study the factor structure of the scale we began by
dividing the aggregate sample into two random halves of
the same size. With the rst we carried out an Explora-
tory Factor Analysis (EFA), and with the second, a Conr-
matory Factor Analysis (CFA), in an effort to conrm or
validate the structure found. It was also found that there
were no signicant differences in the composition of the
two subsamples, or by sex (χ2 = 0.02; p = .88), or age (t =
1.27; p = .20).
For carrying out the EFA we used the Principal Compo-
nents Method. The KMO index value was .88, and that of
the Bartlett Sphericity Test, 2539.47 (p <.01). The analy-
sis provided three factors, which together accounted for
49.40% of the variance of the data, even though the rst
one explained 32.90%, the other two factors showing a
much more residual character, which ts at a theoretical
level with the unidimensional nature of the Gomez et al.
(2014) scale that was used as a basis. Following this rst
analysis we conducted a CFA, starting out from a theore-
tical model with a single dimension. Despite the absence
of normality, for parameter estimation we used the Maxi-
mum Likelihood (ML) method, since works such as those
of Curran, West and Finch (1996) or Thomas and Oliver
(1998) have indicated that this method is sufciently ro-
bust against non-fullment of this assumption when sam-
ples are large, as in this case (n = 1709). In any case, and
in accordance with Levy, Martin and Norman (2006), we
used complementarily other methods, such as Generalized
Least Squares (GLS), Unweighted Least Squares (ULS)
and Asymptotically Distribution Free (ADF), obtaining
very similar results. The estimated parameters were statis-
tically signicant (p <.01) and the factor loadings greater
than .40, except in the case of item 9 (see Figure 1).
Goodness of t of the model was assessed by means
of different indices, as recommended by Byrne (2009) or
Kline (2005): χ2, χ2/df, Goodness of Fit Index (GFI), Adjusted
Goodness of Fit Index (AGFI), Comparative Fit Index (CFI),
Normed Fit Index (NFI), Tucker Lewis Index (TLI) and Root
Mean Square Error of Approximation (RMSEA). Following
the recommendations of Steiger (1998), we also included
the 90% condence intervals in the case of RMSEA. The
different indices show that the scale ts only moderately
with the unidimensional theoretical model (see Table 3).
Although the GFI and AGFI values were over .90, those of
the NFI, TLI and CFI were around .85, and the RMSEA
value was .074. The low HIc values of some items (3, 9
and 10) and their low factor loadings (.46, .35, and .45,
respectively), together with the modication indices pro-
vided by the program, advised a respecication of the ini-
tial model, deleting the 3 items mentioned.
Table 2
Descriptive Statistics for the Elements of the Initial Scale
Ítem M SD Skewness Kurtosis HIc
1 2,62 1,27 -6,983 -5,694 0,39
2 0,81 1,13 18,378 5,584 0,43
3 0,53 0,94 26,332 21,018 0,42
4 1,00 1,21 14,567 ,138 0,49
5 1,22 1,24 10,801 -2,533 0,56
6 0,88 1,20 17,896 4,108 0,57
7 0,91 1,33 17,708 1,808 0,51
8 0,27 0,71 44,471 74,563 0,40
9 1,69 1,45 4,210 -8,748 0,37
10 0,39 0,91 35,935 41,721 0,42
11 0,48 1,01 31,099 28,493 0,38
12 0,96 1,20 15,854 1,807 0,57
13 1,11 1,35 13,674 -2,362 0,59
14 0,93 1,29 16,994 1,629 0,42
Figure 1. Estimated standardized parameters of the Initial CFA
Model
ADICCIONES, 2015 · VOL. 27 ISSUE 1
53
Antonio Rial Boubeta, Patricia Gómez Salgado, Manuel Isorna Folgar, Manuel Araujo Gallego, Jesús Varela Mallou
Next, on the re-specied model with only 11 elements,
a new CFA was conducted, giving a better overall t of
the scale, with a GFI value of .96, AGFI, NFI, TLI and CFI
values of between .92 and .95, and an RMSEA value of
under .06, as recommended by Hu and Bentler (1999). It
should be borne in mind that even differences below 0.1
in the GFI or AGFI can be considered as relevant (Levy,
Martin, & Norman, 2006). All estimated parameters were
statistically signicant (p <.01) (Figure 2). Finally, the in-
ternal consistency of the nal scale was analyzed, yielding
a Cronbach’s alpha of .82. Additionally, since the respon-
se format used was an ordered categorical scale, the ordi-
nal alpha index (Elosúa & Zumbo, 2008) was calculated,
yielding a slightly higher value (83).
As regards the total descriptive statistics for the nal
11-item scale, for a theoretical minimum score of 0 and a
maximum of 44, the average score attained for the whole
sample was 11.18, and the standard deviation was 7.70. As
shown in Table 4, no signicant differences were found
by sex, but there were differences according to age group
(F = 10.32; p <.001), with a higher average on the scale in
the older age groups.
To study the scale’s capacity for screening, in the ab-
sence of consensus-based diagnostic which could enable
us to have a clinical sample, the total sample was divided
into two groups: (a) a rst group whose Internet use could
be considered moderate, and (b) a second group whose
use could be considered problematic. This second group
would be made up those adolescents who: 1) connect the
Internet every day, 2) are usually online for more than
5 hours a day, and 3) report frequent arguments with
their parents for this reason. The sensitivity and speci-
city values obtained for different cut-off points are shown
in Figure 3. As it can be seen, values 15 and 16 permit
the attainment of a balance between these two indicators.
Specically, if we use as a cut-off point a score of 16, we
obtain a sensitivity of 81% and a specicity of 82.6%. In
other words, the screening instrument is capable of de-
tecting true positives in 81% of cases and of rejecting true
negatives in 82.6% of cases, both results being highly ac-
ceptable. By way of a complement, we carried out a ROC
curve (Receiver Operating Characteristic) analysis, obtai-
ning an area under the curve of 0.88.
Finally, participants’ response pattern was analyzed by
comparing the prole of adolescents who make modera-
te use of the Internet with those who use is problematic.
As can be seen in Table 5, at both the global score level
and that of each of the items individually, the two groups
showed statistically signicant differences (p <.01). This
conrms the capacity of each of the items for detecting
problematic Internet use and justies their presence in
the nal version of the scale.
Discussion
One the main concerns among professionals and re-
searchers in the eld of addictions today is adolescents’
problematic use of the Internet. In this context, various
authors have highlighted the need to reach a consensus,
from both the conceptually and methodological points of
view, on the denomination, denition and evaluation of
Table 3
Goodness of fit indicators of the CFA Model for the Screening Tool
χ2 df p χ2/df GFI AGFI NFI TLI CFI RMSEA [CI]*
Initial model 325.38 77 <.001 4.22 .93 .90 .84 .85 .87 .074 [.066-.083]
Respecified model 118.39 44 <.001 2.69 .96 .95 .92 .94 .95 .054 [.042-.065]
Note: * 90% Confidence Interval for the RMSEA statistic
Figure 2. Estimated standardized parameters of the Final CFA
Model
Table 4
Comparison of total scores on the scale by sex and age
M SD t p
Sex Men 10,76 7,24 -1,87 ,062
Women 11,60 8,13
M SD t p
Age group 11 – 13 years 10,18 7,43 10,321 < ,001
14 – 15 years 11,78 7,92
16 – 17 years 13,18 7,61
ADICCIONES, 2015 · VOL. 27 ISSUE 1
54
PIUS-a: Problematic Internet Use Scale in adolescents. Development and psychometric validation
the problem (Byun et al., 2009; Gómez et al., 2014; Ko-
ronczai et al., 2011). Although there is considerable con-
troversy insofar as it is not entirely clear whether we can
really speak of cyberdependence or Internet addiction,
the progressive emergence of cases of abuse or problema-
tic use at increasingly younger ages means that those wor-
king in the eld of prevention need scientically valida-
ted instruments for the early detection of possible cases of
risk. The aim of the present study was to make progress in
the search for practical solutions in this context, through
the development and validation of a new screening tool,
backed up by the knowledge accumulated over the past
two decades and with proven psychometric properties.
Despite the existence of numerous previous scales, a
large part of them have certain shortcomings or limita-
tions, especially if our aim is to have available a tool with
guarantees that would permit early detection of proble-
matic Internet use among Spanish adolescents. Many of
the scales developed previously have not been validated
in our country, are not adapted to the adolescent popu-
Figure 3. Sensitivity and Specificity values for the different cut-off points
Table 5
Comparison between adolescents with moderate use and problematic use
Item Moderate Problematic t p
use use
1 WhenI’m onlineI feel that time fliesandhours pass without me realizing it 2,50 3,25 -4,59 < ,001
2 I’ve sometimes tried to control or reduce my Internet use, but I couldn’t 0,72 1,43 -3,22 < ,01
3 I’ve sometimes even managed to neglect certain tasks or perform below par (in exams, sport, etc.) 0,86 2,09 -5,67 < ,001
because I put connecting to Internet first
4 I’m starting to like more and more spending hours connected to Internet 1,12 2,32 -4,99 < ,001
5 I sometimes get irritated or in a bad mood because I can’t connect to Internet or because I have to disconnect 0,69 2,16 -6,13 < ,001
6 I prefer that my parents don’t know how long I spend online because they would think it was too much 0,72 2,32 -6,37 < ,001
7 I’ve stopped going to placesordoing things thatinterested mebeforeso as toconnect to the Internet 0,19 0,67 -2,88 < ,01
8 I’ve sometimes got into trouble because of the Internet 0,36 1,28 -3,66 < ,001
9 It annoys me to spend hours without connecting to Internet 0,82 1,89 -4,56 < ,001
10 When I can’t connect I can’t stop thinking that I might be missing something important 0,97 2,41 -6,32 < ,001
11 I say or do things on Internet that I wouldn’t be capable of saying/doing in person 0,81 1,84 -4,09 < ,001
TOTAL 9,67 21,62 -9,70 < ,001
lation, or fail to provide data on their psychometric pro-
perties. Sometimes the samples used for their validation
are too small, their factor structure is unclear, they are too
long, or they or simply do not provide the cut-off points
needed for their used as screening instruments.
Analyses carried out with a sample of 1709 schoolchil-
dren in the Spanish region of Galicia made it possible to
present a new scale (PIUS-a) that may prove extremely
useful for practitioners and researchers in this eld.
This scale was developed on the basis of a thorough re-
view of the literature and enriched by the contributions
from a multidisciplinary team of experts; moreover, it
has highly acceptable psychometric properties, in terms
of both internal consistency (
α
= .81), and evidence of
internal structure and content, attaining an interesting
balance between levels of sensitivity (81%) and speci-
city (82.6%), as far as screening capacity is concerned.
In short, the work carried out has made available to re-
searchers, clinicians and community education workers
a brief and simple scale (with just 11 items), adapted to
the cultural context of our country and the language of
young people – qualities that lend it great potential for
everyday practice.
Although in this paper we have been prudent and cho-
sen to use the term problematic Internet use, it would
not be unreasonable, as various authors have proposed,
to employ terms such as pathological Internet use or In-
ternet addiction (Durkee et al., 2012; Tsitsika et al., 2012;
Young, 1996). The facts that the selection of scale items
was made on the basis of previous work along these lines,
that we took into account the judgements of experts in
the clinical and educational spheres, and that we used as
references the criteria for diagnostic categories of a simi-
lar nature, makes the use of these terms quite plausible.
Ofcial recognition of a pathology associated with the
use of Internet and the availability of clinical samples, as
is the case in the Asian context (Huang et al., 2007; Ko,
Yen, Yen et al., 2005), would help resolve these types of
controversy.
Moreover, despite the unidimensionality of the scale
developed, we cannot discard the possibility of a multi-
dimensional approach, given the complexity of the pro-
ADICCIONES, 2015 · VOL. 27 ISSUE 1
55
Antonio Rial Boubeta, Patricia Gómez Salgado, Manuel Isorna Folgar, Manuel Araujo Gallego, Jesús Varela Mallou
blem at hand. However, many of the works that adopt a
multidimensional approach (Günüç & Kayri, 2010; Wid-
yanto & McMurran, 2004) provide a global
α
, which im-
plicitly entails some unidimensionality. Furthermore, the
fact that the calculation of an overall score and the setting
of a cut-off point are necessary to enable screening for
possible cases of risk makes it preferable to opt initially
for the existence of a single factor.
However, this study does have some limitations. First,
all the variables are self-reported, so it is impossible to
know the extent to which the adolescents may have un-
derestimated or overestimated their Internet use. On the
other hand, self-report questionnaires on the use of alco-
hol and other drugs have shown themselves to be relia-
ble and even comparatively better than other detection
methods in the eld of substance use (Babor, Kranzler, &
Lauerman, 1989; Winters, Stincheld, Henly, & Schwartz,
1990), so that self-report measures may well be relevant
in this context also. It is also true that the use of a social
desirability scale or an instrument for the detection of
random response patterns could of great use. Moreover,
given the still-unresolved conceptual controversy and lack
of consensus on the dening criteria of the problem, the
sensitivity and specicity values were calculated based on
criteria established by the authors, even though it must
be said that they have been used in works and endorsed
by the group of experts. The availability in the future of
duly consensus-based criteria will be what nally permits
the validation of the instruments developed, which from a
purely psychometric perspective is not currently possible.
It is important to note, nally, that the scale presented
constitutes a tool for screening, and never for diagnosis,
as the latter must be based on the clinical act itself. Such
instruments would play a complementary role, facilita-
ting the early detection of adolescents whose use of the
Internet could constitute a problem, on interfering in a
crucial way in their everyday life. The scale is specically
designed for use by counsellors, community education
workers and drug-prevention experts in the school con-
text, in which it has been validated empirically. Future
research would need to test its behaviour in clinical set-
tings, linked in (as occurs in other countries) to primary
care services.
Acknowledgements
This study was supported by the Valedor do Pobo ins-
titution, a part of the Galician Regional Administration
(Xunta de Galicia).
Conflicts of interests
The authors declare that there are no conicts of in-
terests.
References
American Educational Research Association, American
Psychological Association & National Council on Mea-
surement in Education (1999). Standards for educational
and psychological testing. Washington, DC: American Ed-
ucational Research Association.
American Psychiatric Association [APA]. (2013). Diagnos-
tic and statistical manual of mental disorders. Fifth edition.
Washington, DC: American Psychiatric Publishing.
Anderson, K. J. (2001). Internet use among college stu-
dents: An exploratory study. Journal of American College
Health, 50, 21-26.
Arbuckle, J. L. (2012). AMOS 21.0. Crawfordville, FL:
Amos Development Corporation.
Armstrong, L., Phillips, J., & Saling, L. (2000). Potential
determinants of heavier Internet usage. International
Journal of Human-Computer Studies, 53, 537–550.
Babor, T. F., Kranzler, H. R., & Lauerman, R. J. (1989).
Early detection of harmful alcohol consumption: com-
parison of clinical, laboratory, and self-report screening
procedures. Addictive Behaviors, 14, 139-157.
Beard, K. W. (2005). Internet addiction: A review of
current assessment techniques and potential assess-
ment questions. CyberPsychology & Behavior, 8, 7-14.
doi:10.1089/cpb.2005.8.7
Beranuy, M., Chamarro, A., Graner, C., & Carbonell, X.
(2009).Validación de dos escalas breves para evaluar la
adicción a Internet y el abuso de móvil. Psicothema, 21,
480-485.
Brenner, V. (1997). Psychology of computer use: XLVII.
Parameters of Internet use, abuse and addiction: the
rst 90 days of the internet usage survey. Psychological
Reports, 80, 879-882. doi:10.2466/pr0.1997.80.3.879
Byrne, B.M. (2009). Structural equation modeling with AMOS:
Basic concepts, applications, and programming (2nd ed.).
London: Psychology Press.
Byun, S., Rufni, C., Mills, J. E., Douglas, A. C., Niang, M.,
Stepchenkova, S.,… Blanton, M. (2009). Internet addic-
tion: metasynthesis of 1996-2006 quantitative research.
CyberPsychology & Behavior, 12, 203–207. doi:10.1089/
cpb.2008.0102
Cao, F., & Su, L. (2007). Internet addiction among Chi-
nese adolescents: prevalence and psychological fea-
tures. Child: Care, Health and Development, 33, 275–281.
doi:10.1111/j.1365-2214.2006.00715.x
Cao, H., Sun, Y., Wan, Y., Hao, J., & Tao, F. (2011). Prob-
lematic Internet use in Chinese adolescents and its re-
lation to psychosomatic symptoms and life satisfaction.
BMC Public Health, 11, 802. doi:10.1186/1471-2458-11-
802
Caplan, S. E. (2002). Problematic Internet use and psy-
chosocial well-being: Development of a theory-based
cognitive-behavioral measurement instrument. Comput-
ers in Human Behavior, 18, 553–575.
ADICCIONES, 2015 · VOL. 27 ISSUE 1
56
PIUS-a: Problematic Internet Use Scale in adolescents. Development and psychometric validation
Caplan, S. E. (2010). Theory and measurement of general-
ized problematic Internet use: A two-step approach. Com-
puters in Human Behavior, 26, 1089-1097. doi:10.1016/
j.chb.2010.03.014
Castellana, M., Sánchez-Carbonell, X., Graner, C., & Bera-
nuy, M. (2007). El adolescente ante las tecnologías de la
información y la comunicación: Internet, móvil y video-
juegos. Papeles del Psicólogo, 28, 196-204.
Ceyhan, E., Ceyhan, A. A., & Gürcan, A. (2007). The va-
lidity and reliability of the Problematic Internet Usage
Scale. Educational Sciences: Theory & Practice, 7, 411–416.
Chang, M. K., & Law, S. P. M. (2008). Factor structure
for Young’s Internet Addiction Test: A conrmato-
ry study. Computers in Human Behavior, 24, 2597-2619.
doi:10.1016/ j.chb.2008.03.001
Chen, S. H., Weng, L. C., Su, Y. J., Wu, H. M., & Yang, P.
F. (2003). Development of Chinese Internet Addiction
Scale and its psychometric study. Chinese Journal of Psy-
chology, 45, 279–294.
Cho, H., Kwon, M., Choi, J. H., Lee, S. K., Choi, J.S., Choi,
S. W., & Kim, D. -J. (2014). Development of the Internet
Addiction Scale based on the Internet Gaming Disor-
der criteria suggested in DSM-5. Addictive Behaviors, 39,
1361-1366. doi:10.1016/ j.addbeh.2014.01.020
Chou, C., Chou, J., & Tyan, N. N. (1998, febrero). An Ex-
ploratory Study of Internet Addiction, Usage and Communica-
tion Pleasure. Trabajo presentado en el Annual meeting
of the Association for educational communications and
technology, St. Louis, MO.
Chou, C., & Hsiao, M. C. (2000). Internet addiction, usage,
gratication, and pleasure experience: The Taiwan col-
lege student’s case. Computers & Education, 35, 65–80.
Chow, S. L., Leung, G. M., Ng, C., & Yu, E. (2009). A
Screen for Identifying Maladaptive Internet Use. Inter-
national Journal of Mental Health & Addiction, 7, 324-332.
doi:10.1007/s11469-008-9170-4
Cía, A. H. (2014). Las adicciones no relacionadas a sustan-
cias (DSM-5, APA, 2013): un primer paso hacia la inclu-
sión de las Adicciones Conductuales en las clasicacio-
nes categoriales vigentes. Revista de Neuro-Psiquiatría, 76,
210 - 217.
Cuenca-Royo, A.M., Torrens, M., Sánchez-Niubó, A., Suel-
ves, J.M., & Domingo-Salvany, A. (2013). Comorbilidad
psiquiátrica en jóvenes-adultos consumidores de canna-
bis. Adicciones, 25, 45-54.
Curran, P. J., West, S. G., & Finch, J. F. (1996). The robust-
ness of test statistics to nonnormality and specication
error in conrmatory factor analysis. Psychological Meth-
ods, 1, 16-29.
Davis R. A. (2001). A cognitive–behavioral model of patho-
logical Internet use. Computers in Human Behavior, 17,
187–195.
Davis, R. A., Flett, G. L., & Besser, A. (2002). Validation of a
new scale for measuring problematic Internet use: impli-
cations for pre-employment screening. CyberPsychology &
Behavior, 5, 331–345. doi:10.1089/109493102760275581
De Gracia, M., Vigo, M., Fernández, J., & Marcó, M. (2002).
Problemas conductuales relacionados con el uso de In-
ternet: Un estudio exploratorio. Anales de Psicología, 18,
273-292.
Del Miglio, C., Gamba, A., & Cantelmi, T. (2001). Cos-
truzione e validazione preliminare di uno strumento
UADI per la rilevazione delle variabili psicologiche e
psicopatologiche correlate all’uso di Internet. Giornale
Italiano di psicopatologia, 7, 293-306.
Demetrovics, Z., Szeredi, B., & Rózsa, S. (2008). The
three-factor model of Internet addiction: The develop-
ment of the Problematic Internet Use Questionnaire.
Behavior Research Methods, 40, 563-574. doi:10.3758/
BRM.40.2.563
Douglas, A. C., Mills, J. E., Niang, M., Stepchenkova,
S., Byun, S., Rufni, C.,… Blanton, M. (2008). In-
ternet addiction: Meta-synthesis of qualitative re-
search for the decade 1996–2006. Computers in Hu-
man Behavior, 24, 3027–3044. doi:10.1016/j.chb.2008.
05.009
Durkee, T., Kaess, M., Carli, V., Parzer, P., Wasserman, C.
Floderus, B.,… Wasserman, D. (2012). Prevalence of
pathological internet use among adolescents in Europe:
demographic and social factor. Addiction, 107, 2210-
2222. doi:10.1111/j.1360-0443.2012.03946.x
Echeburúa, E. (1999). Las nuevas adicciones: juego, sexo,
comida, compras, trabajo, internet. Bilbao: Desclée de
Brouwer.
Echeburúa, E., & de Corral, P. (2010). Adicción a las nue-
vas tecnologías y a las redes sociales en jóvenes: un nue-
vo reto. Adicciones, 22, 91-96.
Elosúa, P., & Zumbo, B. D. (2008). Coecientes de abili-
dad para escalas de respuesta categórica ordenada. Psi-
cothema, 20, 896-901.
Estallo, J. A. (2001). Usos y abusos de internet. Anuario de
Psicología, 32, 95-108.
Estévez, L., Bayón, C., de la Cruz, J., & Fernández-Líria, A.
(2009). Uso y abuso de Internet en adolescentes. En E.
Echeburúa, F. J. Labrador y E. Becoña (Eds.), Adicción
a las nuevas tecnologías en adolescentes y jóvenes (pp. 101-
130). Madrid: Ediciones Pirámide.
Ferraro, G., Caci, B., D’amico, A., & Di Blasi, M. (2007). In-
ternet Addiction Disorder: An Italian study. CyberPsychol-
ogy & Behavior, 10, 170-175. doi:10.1089/cpb.2006.9972
Fortson, B. L., Scotti, J. R., Chen, Y., Malone, J., & Del
Ben, K. S. (2007). Internet use, abuse, and dependence
among students at a Southeastern Regional University.
Journal of American College Health, 56, 137-144.
Frangos, C. C., Frangos, C. C., & Sotiropoulos, I. (2011).
Problematic internet use among Greek university stu-
dents: an ordinal logistic regression with risk factors of
negative psychological beliefs, pornographic sites, and
ADICCIONES, 2015 · VOL. 27 ISSUE 1
57
Antonio Rial Boubeta, Patricia Gómez Salgado, Manuel Isorna Folgar, Manuel Araujo Gallego, Jesús Varela Mallou
online games. Cyberpsychology, Behavior, and Social Net-
working, 14, 51-58. doi:10.1089/cyber.2009.0306
Frangos, C. C., Frangos, C. C., & Sotiropoulos, I. (2012).
A meta-analysis of the reliabilty of Young‘s Internet Ad-
diction Test. En S. I. Ao, L. Gelman, D. W. L. Hukins,
A. Hunter y A. M. Korsunsky (Eds.), Proceedings of the
World Congress on Engineering: Vol. 1. The 2012 Interna-
tional Conference of Computational Statistics and Data
Engineering (pp. 368-371). Londres, Reino Unido:
Newswood Limited.
García, A., Beltrán, P., & Pérez, C. (2012). Uso y consumo
de redes sociales e Internet entre los adolescentes es-
pañoles. Características y prácticas de riesgo: Revisión
bibliográca. Documentación de las Ciencias de la Informa-
ción, 35, 253-273.
García, J. A., Terol, M. C., Nieto, M., Lledó, A., Sánchez,
S., Martín-Aragón, M., & Sitges, E. (2008). Uso y abuso
de Internet en jóvenes universitarios. Adicciones, 20, 131-
142.
Goldberg, I. (1995). Internet addictive disorder (IAD) diagnos-
tic criteria. Retrieved from www.psycom.net/iadcriteria.
html
Gómez, P., Rial, A., Braña, T., Varela, J., & Barreiro, C.
(2014). Evaluation and early detection of problemat-
ic Internet use in adolescents. Psicothema, 26, 21-26.
doi:10.7334/ psicothema2013.109
Greeneld, D. N. (1999). Psychological characteristics of
compulsive Internet use: a preliminary analysis. CyberPsy-
chology & Behavior, 2, 403-412.
Grifths, M. (1998). Internet addiction: does it really exist?
En J. Gackenbach (Ed.), Psychology and the Internet: intra-
personal, interpersonal, and transpersonal implications. New
York: Academic Press.
Grohol, J. M. (1999). Internet Addiction Guide. Retrieved
from http://psychcentral.com/ netaddiction/
Günüç, S., & Kayri, M. (2010). The prole of internet de-
pendency in Turkey and development of internet ad-
diction scales: study of validity and reliability. Hacettepe
Üniversitesi Egitim Fakültesi Dergisi, 39, 220–232.
Hansen, S. (2002). Excessive Internet usage or “Internet
addiction”? The implications of diagnostic categories for
student users. Journal of Computer Assisted Learning, 18,
232–236. doi:10.1046/j.1365-2729.2002.t01-2-00230.x
Hawi, N. S. (2013). Arabic validation of the Internet Addic-
tion Test. Cyberpsychology, Behavior, and Social Networking,
16, 200-204. doi:10.1089/cyber.2012.0426
Hu, L., & Bentler, P. M. (1999). Cutoff criteria for t in-
dexes in covariance structure analysis: convention-
al criteria versus new alternatives. Structural Equa-
tion Modeling: A Multidisciplinary Journal, 6, 1-55.
doi:10.1080/10705519909540118
Huang, Z., Wang, M., Quian, M., Zhong, J., & Tao, R.
(2007). Chinese Internet addiction inventory: Develop-
ing a measure of problematic Internet use for Chinese
college students. CyberPsychology & Behavior, 10, 805-812.
doi:10.1089/cpb.2007.9950
IBM Corp. Released (2011). IBM SPSS Statistics for Windows,
Version 20.0. Armonk, NY: IBM Corp.
Instituto Nacional de Estadística [INE]. (2014). Encuesta
sobre equipamiento y uso de tecnologías de información y comu-
nicación en los hogares (TIC- H). Madrid: Instituto Nacio-
nal de Estadística. Retrieved from http://www.ine.es/
prensa/np864.pdf
Jelenchick, L. A., Eickhoff, J., Christakis, D. A., Brown, R.
L., Zhang, C., Benson, M., & Moreno, M. A. (2014). The
Problematic and Risky Internet Use Screening Scale
(PRIUSS) for adolescents and young adults: Scale devel-
opment and renement. Computers in Human Behavior,
35, 171–178. doi:10.1016/j.chb.2014.01.035
Jenaro, C., Flores, N., Gómez-Vela, M., González-Gil,
F., & Caballo, C. (2007). Problematic Internet and
cell-phone use: Psychological, behavioral and health
correlates. Addiction Research & Theory, 15, 309-320.
doi:10.1080/16066350701350247
Kline, R. B. (2005). Principles and Practice of Structural Equa-
tion Modeling (2ª ed.). New York: The Guilford Press.
Ko, C. H., Yen, J. Y., Chen, C. C., Chen, S. H., & Yen,
C. F. (2005). Proposed diagnostic criteria of Inter-
net Addiction for adolescents. The Journal of Nervous
and Mental Disease, 193, 728–733. doi:10.1097/01.
nmd.0000185891.13719.54
Ko, C. H., Yen, J. Y., Yen, C. F., Chen, C. C., Yen, C. N., &
Chen, S. H. (2005). Screening for Internet addiction: an
empirical study on cut-off points for the Chen Internet
Addiction Scale. The Kaohsiung Journal of Medical Sciences,
21, 545-551. doi:10.1016/S1607-551X(09)70206-2
Koronczai, B., Urbán, R., Kökönyei, G., Paksi, B., Papp,
K., Kun, B.,… Demetrovics, Z. (2011). Conrmation of
the three-factor model of problematic internet use on
off-line adolescent and adult samples. Cyberpsychology, Be-
havior, and Social Networking, 14, 657–664. doi:10.1089/
cyber.2010.0345
Labrador, F.J., Villadangos, S., Crespo, M., & Beco-
ña, E. (2013). Desarrollo y validación del cuestio-
nario de uso problemático de nuevas tecnologías
(UPNT). Anales de Psicología, 29, 836-847. doi:10.6018/
analesps.29.3.159291
Lam, L. T., Peng, Z., Mai, J., & Jing, J. (2009). Factors as-
sociated with Internet addiction among adolescents.
CyberPsychology & Behavior, 12, 551–555. doi:10.1089/
cpb.2009.0036
Lam-Figueroa, N., Contreras-Pulache, H., Mori-Quispe, E.,
Nizama-Valladolid, M., Gutiérrez, C., Hinostroza-Cam-
posano, W.,... Hinostroza-Camposano, W.D. (2011).
Adicción a Internet: desarrollo y validación de un instru-
mento en escolares adolescentes de Lima, Perú. Revista
Peruana de Medicina Experimental y Salud Pública, 28, 462-
469. doi:10.1590/S1726-46342011000300009
ADICCIONES, 2015 · VOL. 27 ISSUE 1
58
PIUS-a: Problematic Internet Use Scale in adolescents. Development and psychometric validation
LaRose, R., Lin, C.A., & Eastin, M. S. (2003). Unregulated
Internet Usage: Addiction, Habit, or Decient Self-Reg-
ulation? Media Psychology, 5, 225-253. doi:10.1207/
S1532785XMEP0503_01
Lee, K., Lee, H. K., Gyeong, H., Yu, B., Song, Y. M., &
Kim, D. (2013). Reliability and validity of the Korean
version of the Internet Addiction Test among college
students. Journal of Korean Medical Sciences, 28, 763-768.
doi:10.3346/jkms.2013.28.5.763
Lévy, J.P., Martín, M.T., & Román, M.V. (2006). Optimiza-
ción según estructuras de covarianzas. En J.P. Lévy & J.
Varela (Eds.), Modelización con estructuras de covarianzas
en ciencias sociales (pp. 11-30). A Coruña: Netbiblo.
Li, L., & Yang, Y. (2007). The development and validation
of Adolescent Pathological Internet Use Scale. Acta Psy-
chologica Sinica, 39, 688- 696.
Lopez-Fernandez, O., Freixa-Blanxart, M., & Honrubia-Se-
rrano, M. L. (2013). Problematic Internet Entertain-
ment Use Scale for Adolescents: prevalence of problem
Internet use in Spanish high school students.Cyberpsy-
chology, Behavior, and Social Networking, 16, 108-118.
doi:10.1089/cyber.2012.0250
Matute, H. (2001). La adicción a Internet no existe. Retrieved
from http://eciencia.com/blog/ divulgacion/la adic-
cion a internet_no_existe_195/
Meerkerk, G. J., Van Den Eijnden, R. J. J. M., Vermulst,
A. A., & Garretsen, H. F. L. (2009). The Compulsive
Internet Use Scale (CIUS): Some psychometric prop-
erties. CyberPsychology & Behavior, 12, 1-6. doi:10.1089/
cpb.2008.0181
Mitchell, K. J., Sabina, C., Finkelhor, D., & Wells, M. (2009).
Index of problematic online experiences: Item charac-
teristics and correlation with negative symptomatology.
CyberPsychology & Behavior, 12, 707–711. doi:10.1089/
cpb.2008.0317
Morahan-Martin, J., & Schumacher, P. (2000). Incidence
and correlates of pathological Internet use among col-
lege students. Computers in Human Behavior, 16, 13–29.
Moreno, M. A., Jelenchick, L., Cox, E., Young, H., & Chris-
takis, D. A. (2011). Problematic Internet Use among US
youth: A systematic review. Archives of Pediatrics & Ado-
lescent Medicine, 165, 797-805. doi:10.1001/archpediat-
rics.2011.58
Muñiz, J., & Fonseca-Pedrero, E. (2008). Construcción de
instrumentos de medida para la evaluación universita-
ria. Revista de Investigación en Educación, 5, 13-25.
Nichols, L. A., & Nicki, R. (2004). Development of a psy-
chometrically sound Internet Addiction Scale: a prelim-
inary step. Psychology of Addictive Behaviors, 18, 381-384.
doi:10.1037/0893-164X.18.4.381
Oliva, A., Hidalgo, M. V., Moreno, C., Jiménez, L., Jimé-
nez, A., Antolín, L., & Ramos, P. (2012). Uso y riesgo de
adicciones a las nuevas tecnologías entre adolescentes y jóvenes
andaluces. Sevilla: Editorial Agua Clara.
Orman, M. (1996). Internet Stress Scale o test d’Orman. Re-
trieved from http://www.stresscure.com/hrn/addic-
tion.html
Pardo, A., & Ruíz, M. A. (2001). SPSS 11. Guía para el aná-
lisis de datos. Madrid: McGraw-Hill.
Petry, N. M., & O’Brien, C. P. (2013). Internet gaming
disorder and the DSM-5. Addiction, 108, 1186–1187.
doi:10.1111/add.12162
Pratarelli, M. E., Browne, B. L., & Johnson, K. (1999). The
bits and bytes of computer/Internet addiction: A fac-
tor analytic approach. Behavior Research Methods, Instru-
ments, & Computers, 31, 305-314.
Puerta-Cortés, D. X., & Carbonell, X. (2014). El modelo
de los cinco grandes factores de personalidad y el uso
problemático de Internet en jóvenes colombianos. Adic-
ciones, 26, 54-61.
Puerta-Cortés, D. X., Carbonell, X., & Chamarro, A.
(2013). Análisis de las propiedades psicométricas de la
versión en español del Internet Addiction Test. Trastor-
nos Adictivos, 14, 99-104.
Pulido-Rull, M. A., Escoto-de la Rosa, R., & Gutiérrez-Val-
dovinos, D. M. (2011). Validez y conabilidad del Cues-
tionario de Uso Problemático de Internet (CUPI).
Journal of Behavior, Health & Social Issues, 3, 25–34.
doi:10.5460/jbhsi.v3.1.27681
Rial, A., Gómez, P., Braña, T., & Varela, J. (2014). Actitu-
des, percepciones y uso de Internet y las redes sociales
entre los adolescentes de la comunidad gallega (Es-
paña). Anales de Psicología, 30, 642-655. doi: 10.6018/
analesps.30.2.159111
Rotunda, R. J., Kass, S. J., Sutton, M. A., & Leon, D. T.
(2003). Internet use and misuse. Preliminary ndings
from a new assessment instrument. Behavior Modica-
tion, 27, 484-504. doi:10.1177/0145445503255600
Ruiz-Olivares, R., Lucena, V., Pino, M. J., & Herruzo, J.
(2010). Análisis de comportamientos relacionados con
el uso/abuso de Internet, teléfono móvil, compras y
juego en estudiantes universitarios. Adicciones, 22, 301-
310.
Sánchez-Carbonell, X., Beranuy, M., Castellana, M., Cha-
marro, A., & Oberst, U. (2008). La adicción a Internet
y al móvil: ¿moda o trastorno? Adicciones, 20, 149-160.
Scherer, K. (1997). College life on-line: healthy and un-
healthy Internet use. Journal of College Student Develop-
ment, 38, 655-665.
Shapira, N. A., Lessig, M. C., Goldsmith, T. D., Szabo,
S. T., Lazoritz, M., Gold, M. S., & Stein, D. J. (2003).
Problematic internet use: Proposed classication and
diagnostic criteria. Depression and Anxiety, 17, 207–216.
doi:10.1002/da.10094
Smahel, D., Helsper, E., Green, L., Kalmus, V., Blinka, L.,
& Ólafsson, K. (2012). Excessive internet use among Euro-
pean children. London: EU Kids Online, London School
of Economics & Political Science.
ADICCIONES, 2015 · VOL. 27 ISSUE 1
59
Antonio Rial Boubeta, Patricia Gómez Salgado, Manuel Isorna Folgar, Manuel Araujo Gallego, Jesús Varela Mallou
Spada, M. M. (2014). An overview of problematic In-
ternet use. Addictive Behaviors, 39, 3-6. doi:10.1016/
j.addbeh.2013.09.007
Steiger, J. H. (1998). A note on multiple sample extensions
of the RMSEA t index. Structural Equation Modeling: A
Multidisciplinary Journal, 5, 411-419.
Tao, R., Huang, X., Wang, J., Zhang, H., Zhang, Y., &
Li, M. (2010). Proposed diagnostic criteria for inter-
net addiction. Addiction, 105, 556–564. doi:10.1111/
j.1360-0443.2009.02828.x
Thatcher, A., & Goolam, S. (2005). Development and psy-
chometric properties of the Problematic Internet Use
Questionnaire. South African Journal of Psychology, 35,
793-809.
Tomás, J. M., & Oliver, A. (1998). Efectos de formato de
respuesta y método de estimación en el análisis factorial
conrmatorio. Psicothema, 10, 197-208.
Tsai, C. C., & Lin, S. S. J. (2001). Analysis of attitudes to-
ward computer networks and Internet addiction of Tai-
wanese adolescents. CyberPsychology & Behavior, 4, 373-
376. doi:10.1089/109493101300210277
Tsitsika, A., Tzavela, E., Mavromati, F., & el consorcio EU
NET ADB. (Ed.). (2012). Research on Internet addictive
behaviours among European adolescents (Proyecto EU NET
ADB). Athens: National and Kapodestrian University of
Athens.
Valedor do Pobo. (2011). Informe extraordinario: Adolescentes
e Internet en Galicia. Santiago de Compostela: Valedor do
Pobo. Retrieved from http://www.valedordopobo.com/
index.php?s=115&i=104&l=es
Watters, C. A., Keefer, K. V., Kloosterman, P. H., Summer-
feldt, L. J., & Parker, J. D. A. (2013). Examining the
structure of the Internet Addiction Test in adolescents:
A bifactor approach. Computers in Human Behavior, 29,
2294-2302.
Widyanto, L., & McMurran, M. (2004). The psychometric
properties of the Internet Addiction Test. CyberPsychology
& Behavior, 7, 443-450. doi:10.1089/1094931041774578
Winters, K. C., Stincheld, R.D., Henly, G.A., & Schwartz,
R.H. (1990). Validity of adolescent self-report of alcohol
and other drug involvement. International Journal of the Ad-
dictions, 25, 1379-1395. doi:10.3109/10826089009068469
Yang, S. C., & Tung, C. -J. (2007). Comparison of Inter-
net addicts and non-addicts in Taiwanese high school.
Computers in Human Behavior, 23, 79–96. doi:10.1016/j.
chb.2004.03.037
Young, K. S. (1996, August). Internet addiction: The emergence
of a new clinical disorder. Work presented at the 104th An-
nual Convention of the American Psychological Associa-
tion, Toronto, Canadá.
Young, K. S. (1998). Caught in the Net: How to recognize the
signs of Internet addiction and a winning strategy for recovery.
New York, NY: John Wiley & Sons, Inc.
Yuen, C. N., & Lavin, M. J. (2004). Internet depen-
dence in the collegiate population: the role of
shyness. CyberPsychology & Behavior, 7, 379 – 383.
doi:10.1089/1094931041774587
Yuen, C. N. y Lavin, M. J. (2004). Internet dependence in the
collegiate population: the role of shyness. CyberPsychology
& Behavior, 7, 379 – 383. doi:10.1089/1094931041774587
ADICCIONES, 2015 · VOL. 27 ISSUE 1
60
PIUS-a: Problematic Internet Use Scale in adolescents. Development and psychometric validation
Appendix. Table A1
Compilation of the most relevant assessment tools or screening instruments published
YEAR AUTHORS INSTRUMENTS COUNTRY VALIDATION SAMPLE CONSTRUCT Nº ITEMS Nº FACTORS
1995 Goldberg Internet Addiction Disorder scale
– Qualitative scale
USA - Internet addiction 7 criteria -
1996 Orman Internet Stress Scale (ISS) USA - Internet addiction 9 YES/NO items -
1996 Young Young’s Diagnostic Questionnaire
(YDQ)
USA 496 participants online (Adult popula-
tion)
Internet addiction 8 YES/NO items 1
1997 Brenner Internet-Related Addicitive Be-
havior Inventory (IRABI)
USA 563 users (Mean age: 34 years) Internet addiction 32 TRUE/FALSE items 1
1997 Scherer Clinical symptoms of Internet
dependency (CSID)
USA 531 university students Internet dependence 10 clinical symptoms -
1998 Chou, Chou & Tyan Chinese Internet-Related Addic-
itive Behavior Inventory version I
(C- IRABI- I)
Taiwan 104 participants online (Mean age:
22,3 years; SD= 3.13)
Internet addiction 32 TRUE/FALSE items 1
1998 Griffiths Addiction Core components
criteria
UK 5 case studies (ages 15 to 35 years) Addiction 6 principal components
of addiction
-
1998 Young Internet Addiction Test (IAT) USA - Internet addiction 20 items (Likert 5-point scale) -
1999 Pratarelli, Browne
& Johnson
Computer Use Survey USA 341 university students (Mean age: 22.8
years; SD= 5.88)
Internet addiction 55 items 4
1999 Greenfield Virtual Addiction Survey (VAS) USA
& Canada
17251 participants online Compulsive
Internet use
36 YES/NO items -
1999 Echeburúa Test de Adicción a Internet Spain - Internet addiction 9 YES/NO items -
2000 Chou & Hsiao Chinese Internet-Related Addici-
tive Behavior Inventory version II
(C- IRABI- II)
Taiwan 910 university students (Mean age:
21.11 years; SD= 210)
Internet addiction 37 items (Likert 4-point agreement
scale)
6
2000 Morahan-Martin &
Schumacher
Pathological Internet Use Scale
(PIUs)
USA 277 university students (Mean age:
20.72 years; SD= 2.35)
Pathological
Internet use
13 TRUE/FALSE items -
2000 Armstrong et al. Internet Related Problem Scale
(IRPS)
Australia 50 participants (75% aged 25 to 30
years)
Internet addiction 20 questions (Likert 10-point
agreement scale)
-
2001 Tsai & Lin Internet Addiction Scale for Tai-
wan high school students (IAST)
Taiwan 753 secondary-school students (Age
range: 16-17 years)
Internet addiction 29 items (Likert 4-point scale) 4
2001 Anderson Sin nombre USA 1302 university students Internet dependence 7 YES/NO items -
2001 Del Miglio, Gamba &
Cantelmi
Use, Abuse and Dependence
on the Internet inventory (UADI
scale)
Italy 244 participants (Age range: 13-57
years; Mean age: 28.7 years)
Internet dependence 75 items (Likert 5-point scale) 5
2002 Caplan Generalized Problematic Internet
Use Scale (GPIUS)
USA 386 university students (Age range: 18-
57 years; Mean age: 20 years; SD= 2.22)
Generalized problema-
tic Internet use
29 items (Likert 5-point agreement
scale)
7
ADICCIONES, 2015 · VOL. 27 ISSUE 1
61
Antonio Rial Boubeta, Patricia Gómez Salgado, Manuel Isorna Folgar, Manuel Araujo Gallego, Jesús Varela Mallou
YEAR AUTHORS INSTRUMENTS COUNTRY VALIDATION SAMPLE CONSTRUCT Nº ITEMS Nº FACTORS
2002 Davis et al. Online Cognition Scale (OCS) Canadá 211 Psychology students (Mean age:
21.73 years; SD= 4.4)
Problematic
Internet use
36 items (Likert 7-point
agreement scale)
4
2002 De Gracia, Vigo, Fer-
nández & Marcó
Problemas Relacionados con
Internet (PRI)
Spain 1664 Self-selected internauts (Age
range: 15- 54 years)
Problematic
Internet use
19 items
(Likert frequency scale)
-
2003 LaRose et al. Deficient Internet self-regulation USA 465 university students Unregulated
Internet use
7 items (Likert 7-point scale) -
2003 Rotunda, Kass, Sut-
ton & Leon
Internet Use Survey (IUS) USA 393 university students (Age range: 18-
81 years; Mean age: 276 years)
Abuse of Internet Impairment index of the IUS:
32 items (Likert 5-point
frequency scale)
4
2003 Chen et al. Chinese Internet Addiction Scale
(CIAS)
Taiwan - Internet addiction 26 items (Likert 4-point scale) 5
2004 Yuen & Lavin No name USA 283 university students (adults Internet dependence 7 items adapted from the DSM- IV
criteria for substance dependence
(Likert 5-point agreement scale)
-
2004 Nichols & Nicki Internet Addiction Scale (IAS) Canada 233 university students Internet addiction 31 items (Likert 5-point frequency
scale)
1
2004 Widyanto
& McMurran
Internet Addiction Test (IAT) UK 86 participants online (Age range:
13-67 years; Mean age men:
25.45 years (SD = 8.91); Mean age
women: 31.44 years (SD = 10.34))
Internet addiction 20 items (Likert 5-point scale) 6
2005 Beard Screening Interview Assessing
Problematic Internet Use
USA - Problematic
Internet use
72 questions -
2005 Thatcher & Goolam Problematic Internet Use Ques-
tionnaire (T- PIUQ)
South Africa Pilot study: 279 participants; Validation:
1795 participants
Problematic
Internet use
20 items (Likert 5-point scale) 3
2007 Fortson, Scotti, Chen,
Malone & Del Ben
Reported Behaviors Related to
Internet Abuse and Dependence
USA 411 university students
(Age range: 18-56 years;
Mean age: 20.4 years; SD= 3.2)
Internet abuse and/or
dependence
9 items (Likert scale) -
2007 Li & Yang Adolescent Pathological Internet
Use Scale
China 1331 secondary-school students and 30
Adolescents diagnosed as pathological
users
Pathological Internet
use
38 items (Likert 5-point scale) 6
2007 Ceyhan et al. Problematic Internet Usage Scale
(PIUS)
Turkey 1658 university students Problematic
Internet use
33 items (Likert 5-point scale) 3
2007 Huang et al. Chinese Internet Addiction
Inventory (CIAI)
China Study 1: 516 university students
(Age range: 17-24 years; mean age:
20.5 years; SD= 1.47); Study 2:
513 university students (Age range: 17-
24 years; Mean age: 20.7
years; SD= 1.51); Study 3: 54 partici-
pants
(27 clinical sample)
Internet addiction 31 items (Likert 5-point frequency
scale)
3
ADICCIONES, 2015 · VOL. 27 ISSUE 1
62
PIUS-a: Problematic Internet Use Scale in adolescents. Development and psychometric validation
YEAR AUTHORS INSTRUMENTS COUNTRY VALIDATION SAMPLE CONSTRUCT Nº ITEMS Nº FACTORS
2007 Ferraro, Caci,
D’amico & Di Blasi
Internet Addiction Test (IAT) IItaly 236 participants online (Age range:
13-50 years; Mean age: 23.9 years;
SD = 6.5)
Internet addiction 20 items (Likert 5-point scale) 6
2007 Jenaro, Flores,
Gómez-Vela, Gonzá-
lez-Gil & Caballo
Internet Over-use scale (IOS) Spain 377 university students Pathological
Internet use
23 items (Likert 6-point scale) -
2008 Demetrovics et al. Problematic Internet Use
Questionnaire (D- PIUQ)
Hungary 1037 participants online (Mean age:
23.3 years; SD= 9.1)
Problematic
Internet use
18 items (Likert 5-point scale) 3
2008 Labrador, Becoña &
Villadangos
Cuestionario de Detección de
Nuevas Adicciones (DENA)
Spain Pilot study: 140 secondary-school
students; Study 2: 1710 minors (Age
range: 12-17 years)
Internet addiction 50 items. Block of 12 items
referring to Internet use
-
2008 García et al. Cuestionario de Uso
y Abuso de Internet
Spain 391 university students (Age range:
18-47 years; Mean age: 19.59 years;
SD= 2.83)
Internet abuse 47 items (Likert 5-point scale) -
2008 Chang & Law Internet Addiction Test (IAT) China 410 university students Internet addiction 20 items (Likert 5-point scale) 3
2009 Chow, Leung, Ng
& Yu
Internet-user Assessment
Screen
China Phase 1: 378 adolescents (Mean age:
12.84 years; SD= 1.53); Phase 2: 3523
adolescents (Mean age men: 12.33
years; SD= 1.66. Mean age women: 12.5
years; SD= 1.6)
Maladaptive Internet
use
26 items (20 items with Likert
5-point agreement scale)
9
2009 Meerkerk et al. The Compulsive Internet Use
Scale (CIUS)
Holland Study 1: 447 intensive Internet users
(Mean age: 38.5 years; SD=12.5); Study
2: 229 participants from the previous
study; Study 3: 16,925 participants
online (Age range: 11-80 years; Mean
age: 25.3; SD= 10.0)
Compulsive
Internet use
14 items (Likert 5-point
frequency scale)
1
2009 Beranuy et al. Cuestionario de Experiencias
Relacionadas con Internet (CERI)
Spain 1879 secondary-school and university
students (Mean age: 15.52; SD=2.434)
Internet addiction 10 items (Likert 4-point scale) 2
2009 Mitchell, Sabina,
Finkelhor & Wells
Index of Problematic Online
Experiences (I-POE)
USA 563 university students (Mean age:
19.86 years)
Problematic
Internet use
26 YES/NO items -
2010 Caplan Generalized Problematic Internet
Use Scale 2 (GPIUS2)
USA 785 participants (Age range: 18-70
years. Mean age: 33.14 years; SD=
15.25)
Generalized problema-
tic Internet use
15 items (Likert 8-point
agreement scale)
5 first-order fac-
tors (2 of them
form a 2nd-
order factor)
2010 Günüç & Kayri Tukish Internet Addiction Scale Turkey 754 secondary-school students Internet addiction 35 items (Likert 5-point scale) 4
2011 Frangos, Frangos &
Sotiropoulos
Problematic Internet Use Diag-
nostic Test (PIUDT)
Greece 2293 university students (adults) Problematic
Internet use
38 items 4
2011 Lam- Figueroa et. al. Escala de la Adicción a Internet
de Lima (EAIL)
Peru 248 secondary-school students Internet addiction 11 items (Likert 4-point
frequency scale)
2
ADICCIONES, 2015 · VOL. 27 ISSUE 1
63
Antonio Rial Boubeta, Patricia Gómez Salgado, Manuel Isorna Folgar, Manuel Araujo Gallego, Jesús Varela Mallou
YEAR AUTHORS INSTRUMENTS COUNTRY VALIDATION SAMPLE CONSTRUCT Nº ITEMS Nº FACTORS
2011 Pulido-Rull et al. Cuestionario de Uso Problemáti-
co de Internet (CUPI)
Mexico 697 university students (Mean age:
22.68 years; SD= 4)
Problematic
Internet use
18 items (Likert 5-point scale) 5
2013 Lopez-Fernandez,
Freixa-Blanxart &
Honrubia-Serrano
Problematic Internet Entertain-
ment Use Scale for Adolescents
(PIEUSA)
Spain 1131 adolescents (Age range: 12-18
years. Mean age: 14.55 years;
SD= 1.816)
Problematic
Internet use
30 items (Likert 7-point
agreement scale)
5
2013 Labrador, Villadan-
gos, Crespo & Becoña
Cuestionario de Uso Problemáti-
co de Nuevas Tecnologías (UPNT)
Spain 2747 students (from 5th-grade Primary
to 5th-year degree)
Problematic
Internet use
26 items (Internet subscale:
7 items)
7
2013 Watters, Keefer,
Kloosterman, Sum-
merfeldt & Parker
Internet Addiction Test (IAT) Canada 1948 secondary-school students (Age
range: 16-18 years; Mean age: 17.07
years; SD = 0.84)
Internet addiction 20 items (Likert 5-point scale) 2
2013 Puerta-Cortés, Car-
bonell & Chamarro
Internet Addiction Test (IAT) Colombia 1117 participants online (Age range:
14-67 years; Mean age = 20.93 years;
SD = 4.84)
Internet addiction 20 items (Likert 5-point scale) 3
2013 Hawi Internet Addiction Test (IAT) Republic of
Lebanon
817 middle and secondary school
students (Age range: 10-22 years; Mean
age: 15 years; SD = 2.12)
Internet addiction 20 items (Likert 5-point scale) 1
2013 Lee, Lee, Gyeong, Yu,
Song & Kim
Korean version of the Internet
Addiction Test (KIAT)
Republic of
Korea
279 university students (Mean age:
19.9 years; SD = 2.7)
Internet addiction 20 items (Likert 5-point scale) 4
2014 Gómez et al. Screening Scale of Problematic
Internet Use in adolescents
Spain 2339 secondary-school students (Age
range: 11-18 years. Mean age:
13.77; SD= 1.34)
Problematic
Internet use
8 items (Likert 5-point
agreement scale)
1
2014 Cho et al. Internet Addiction Scale (IAS)
based on the Internet Gaming
Disorder Criteria (DSM-5)
Republic of
Korea
1082 secondary-school students
(Age range: 13-14 years)
Internet addiction 26 items 7
2014 Jelenchick et al. Problematic and Risky Internet
Use Screening Scale (PRIUSS)
USA 714 university students (Age range: 18-
25 years; Mean age: 19.7 years;
SD = 1.4)
Problematic
Internet use
18 items (Likert 5-point
frequency scale)
3
... The instrument selected to evaluate PIU is the "Problematic Internet Use Scale" (PIUS-a) by Rial et al. (2015), as it has adequate psychometric properties and has been used in previous studies (Villanueva-Silvestre et al., 2022) with adult populations in the same age ranges considered in the present study. ...
... Information was collected on gender (male/female), age (18-30; 31-49; 50-64 years), and living situation (alone, with a partner, with family, with friends). b) "Problematic Internet Use Scale" (EUPI-a; Rial et al., 2015). To assess Problematic Internet Use (PIU). ...
... Regarding the first objective of the present study, to verify the reliability of the Problematic Internet Use Scale (EUPI-a) (Rial et al., 2015) with a sample from various Latin American countries, it is confirmed that the EUPI-a has good psychometric properties in the adult population of Latin America (internal consistency ɑ= 0.88). This suggests the advisability of conducting a cultural adaptation, if necessary, and validation studies with representative samples from each country. ...
Article
Full-text available
This study aimed to estimate the prevalence of problematic internet use (PIU) and risky online behaviors (sexting, sextortion, cybervictimization, and pornography consumption) based on gender, age, and living arrangements, as well as to analyze their relationship. A total of 4,975 participants (62.3% women), aged 18 to 64 years (M= 32.23, SD= 12.92), from the Dominican Republic (52.4%), Ecuador (21.9%), Mexico (14.1%), Peru (7%), Colombia (2.5%), and Argentina (2.1%) took part in the study. PIU was reported by 30.1% of participants, being more frequent among young people aged 18-30 and those living with family. Young people also engaged more in risky online behaviors, especially those living with friends. Among individuals over 30, both PIU and risky online behaviors were less prevalent. An association between PIU and risky online behaviors was confirmed, albeit with a small effect size. These findings highlight the presence of PIU and risky online behaviors among adults in Latin America, suggesting that prevention policies should address both issues comprehensively. KEY WORDS: problematic internet use, online risk practices, adults.
... Los resultados encontrados se obtienen a partir de la técnica de encuesta de un compendio de varios instrumentos validados, todos ellos adaptados a población española. La Escala de Uso Problemático de Internet EUPI-a (Rial et al., 2015), la escala de evaluación del FOMO (Gil et al., 2015) y la Escala de Satisfacción con la Vida (Atienza et al., 2000). ...
... Escala de Uso Problemático de Internet (EUPI-a; Rial et al., 2015). Este instrumento de autoevaluación unidimensional se compone de 11 ítems y presenta un formato de respuesta tipo Likert, con valores que van desde 0 (Nada de acuerdo) hasta 4 (Totalmente de acuerdo). ...
... Este instrumento de autoevaluación unidimensional se compone de 11 ítems y presenta un formato de respuesta tipo Likert, con valores que van desde 0 (Nada de acuerdo) hasta 4 (Totalmente de acuerdo). En el presente estudio se obtuvo una fiabilidad factorial elevada (.83), superior a la obtenida en el cuestionario de Rial et al. (2015) (.81). ...
Article
Full-text available
El análisis actual sobre los usos delos dispositivos digitales advierte de problemáticas emergentes entre los jóvenes. Esta investigación analiza el consumo delas tecnologías en alumnado universitario y el efecto predictor del Fear of Missing Out (FOMO) y la satisfacción vital sobre el uso problemático de Internet. Participaron 814 estudiantes universitarios españoles (71.4% área de salud; 28.6% ciencias sociales), de ambos géneros (61.2% mujeres), entre los 17 y 54 años (M = 22.81, DE = 7.038). Se utilizaron dos escalas para evaluar los usos problemáticos (EUPI-A, FOMOs) y el SWLS para la satisfacción vital. Los resultados mostraron un alto consumo diario (M = 9.039, DT = 4.307) de redes sociales y herramientas de mensajería, de manera significativamente superior en mujeres, además de correlacionar inversa y significativamente con la edad. El modelo con mayor poder explicativo (R2corregido = .35, p < .001) incluyó el FOMO y la satisfacción vital como variables explicativas del uso problemático de Internet. La exposición dela población joven a multitud de riesgos en Internet a través delos dispositivos pone en evidencia la urgente educación mediática para identificar estos comportamientos disfuncionales que impactan en la salud mental y habilidades de interrelación.
... El presente estudio, de carácter exploratorio y transversal, con una muestra de conveniencia de varios países de América Latina, concretamente República Dominicana, Ecuador, México, Perú, Colombia y Argentina, plantea analizar la prevalencia de UPI y prácticas de riesgo online, así como la posible relación entre estas variables. Para ello, el instrumento seleccionado para evaluar UPI es la "Escala de uso problemático de internet" (EUPI-a) Rial et al., (2015), dado que posee adecuadas propiedades psicométricas y ha sido utilizado en estudios previos (Villanueva-Silvestre et al., 2022) con población adulta de los mismos rangos de edad que se consideran en el presente estudio. ...
... Se recogió información sobre sexo (hombre/mujer), edad (18-30; 31-49; 50-64 años) y situación de convivencia (solo, en pareja, con familiares, con amistades). b) "Escala de uso problemático de Internet" (EUPI-a; Rial et al., 2015). Para evaluar el uso problemático de internet (UPI). ...
Article
Full-text available
Este estudio tuvo como objetivos estimar la prevalencia del uso problemático de internet (UPI) y de prácticas de riesgo online (sexteo, sextorsión, cibervictimización y consumo de pornografía) según sexo, edad y convivencia, y analizar su relación. Participaron 4975 personas (62,3% mujeres) de 18 a 64 años (M= 32,23; DT= 12,92) provenientes de República Dominicana (52,4%), Ecuador (21,9%), México (14,1%), Perú (7%), Colombia (2,5%) y Argentina (2,1%). El 30,1% presentó UPI, siendo más frecuente en jóvenes de 18-30 años y quienes conviven con su familia. Los jóvenes también realizaron más prácticas de riesgo online, especialmente quienes conviven con amistades. En mayores de 30 años, ambas conductas fueron menos prevalentes. Se confirmó una asociación entre UPI y prácticas de riesgo online, aunque con un efecto pequeño. Estos resultados destacan la presencia de UPI y conductas de riesgo online en adultos en América Latina, sugiriendo que las políticas de prevención deben abordar ambas problemáticas de manera integrada.
... As a preliminary step, the distribution of the sample by sex and age was analyzed, and no statistically significant differences were found. This aligns with findings reported by other researchers [62][63][64]. ...
Article
Full-text available
Introduction/objectives: Brain development changes during adolescence are directly linked to various cognitive and behavioral challenges characteristic of this stage. The main objective of this study is to investigate the risks associated with Internet use and its relationship with Executive Functions (EFs) and anxiety in a representative sample of Spanish secondary school students. Methods: The sample consisted of 1164 participants (48% males) aged 12 to 17 years (M age = 14.86; SD = 1.41) from five selected academic centers. Executive Functions were assessed using the Adolescent and Adult Executive Functioning Questionnaire (ADEXI), anxiety was measured with the Depression, Anxiety and Stress Scale (DASS-21), and Problematic Internet Use (PIU) was evaluated with the Internet Addiction Test (IAT). Results: Significant positive correlations were found between the PIU, EF, anxiety, and cyberbullying variables. Predictive models were developed to explain the different variables. Conclusions: The results emphasize the need to increase awareness of these issues and to develop effective intervention strategies. Programs that promote responsible Internet use, along with classroom activities addressing anxiety and Executive Functions, could provide clear benefits.
... The VisIA Project's clinical trial follows a non-interventional, analytical, observational, and prospective design, aimed at gathering data from adolescents and young adults with varying levels of suicide risk. The study includes three distinct groups: • Group 1 (Clinical Population): Adolescents aged [11][12][13][14][15][16] with current suicidal ideation, receiving psychiatric or psychological care. Pharmacological treatments, if applicable, will be recorded. ...
... Ikerketa honetan hiru tresna ezberdin erabili ziren. Aurrenerabeek Internet modu problematikoan erabiltzen duten aztertzeko Nerabeen Interneten Erabilera Problematikoa Eskala (Escala de Uso Problemático de Internet en Adolescentes, EUPI, Rial et al., 2015) ...
Conference Paper
Full-text available
Son numerosos los nexos de unión entre el pensamiento algebraico y geométrico en las matemáticas curriculares de EE.MM. En este trabajo hacemos una aproximación al estudio de las relaciones entre ambos tipos de pensamiento. Para tal fin, se ha realizado un estudio con 45 estudiantes de Bachillerato y se han usado dos cuestionarios que miden el nivel de perfeccionamiento del razonamiento geométrico y algebraico. Los resultados muestran que la mayoría del alumnado se encuentra entre los niveles 2 y 3 de razonamiento geométrico, mientras que para el caso del razonamiento algebraico este porcentaje desciende para el nivel 3. La variable del tipo de Bachillerato parece resultar determinante sobre el nivel de razonamiento algebraico y geométrico. Teniendo en cuenta los resultados, habría que repensar, más allá del test de Godino, qué tipo de instrumento sería más adecuado para analizar los niveles de algebrización en el contexto de nuestra investigación.
... • Por edad. La gran mayoría de los estudios se concentra en la adolescencia (12 a 17 años), pese a que hay menciones que la edad de inicio en las adicciones cada vez es más temprana, solo cuatro de las investigaciones incluyen en su rango de edades a personas menores de 12 años de edad (Martínez-Ferrer & Moreno, 2017;Amaro, Fernández, González, Padro, Zunino, Pascale, García & Pérez, 2016;Golpe, Isorna, Gómez & Rial, 2017;Rial, Gómez, Isorna, Araujo & Varela, 2015). De acuerdo con la revisión bibliográfica realizada hasta el momento, no se encontraron estudios exclusivos para menores de 12 años de edad. ...
Chapter
Full-text available
El adicto es un producto social que la propia sociedad silencia, estigmatiza, oculta e invisibiliza. Reflexionar sobre las adicciones implica asumir que estas no son un tema de personas aisladas, sino que se trata de una problemática de salud, de políticas públicas y de seguridad que implican las dimensiones comunitaria y familiar. El presente volumen, segundo de la investigación “El desarrollo de la capacidad de agencia y la reconfiguración emocional en adictos en proceso de ‘rehabilitación’. Hacia una propuesta de prevención”, se propone armar un mapa de los actores y actorías, así como de los protagonistas que juegan y se entremezclan en el territorio que habita la persona adicta, es decir, de la escena adictiva. Por ende, en su examen se incluye a las infancias y a los adolescentes adictos, a las mujeres adictas, y a la familia del adicto. En sus consideraciones se sostiene que, si bien la familia puede verse como un intermediario entre el individuo y la sociedad, la adicción y la rehabilitación demandan acciones conjuntas que involucren en el proceso a otras instancias, tanto civiles como económicas y políticas. Estas páginas están dirigidas a un público más amplio que el académico, ya que buscan aportar información útil y accesible para todos aquellos que investigan y atienden a los adictos y a los sujetos relacionados con ellos.
... Problematic Internet use (PIU) was evaluated with the EUPI-a [28]. The scores are added up, and a total score between 0 and 44 is obtained. ...
Article
Full-text available
(1) Problematic Internet use (PIU) in young people is a topic of great interest both in the field of addictions and mental health, but scientific evidence is limited in Latin America. The aim was to analyze the relationship between PIU and depression in Latin American college students. (2) Methods: The sample consisted of 1828 college students (63.7% women), aged between 18–30 years (M = 21.64 years). (3) Results: PIU was detected in 40.2% of cases, and severe or moderately severe depression in 31.7%. Rates of severe depression in students with PIU were 3.02 times higher than in those without PIU (χ2(3) = 168.443; p < 0.000). The presence of PIU was also statistically significantly higher among youth with depressive symptoms. Linear and logistic regression models for predicting PIU, show how the depression level constitutes a risk factor for PIU: seven times higher for severe depression; more than five times higher for moderate depression; and more than two times for mild depression. (4) Conclusions: There is a clear association between depression and PIU, suggesting that a higher level of depression would act as a predictor of PIU. However, this finding is exploratory. Future studies should clarify the directionality of the relationship between both variables.
... The unidimensional scale comprises 11 items, with 5 categories from 0 (Totally disagree) to 4 (Totally agree). Likewise, it presents an adequate (α = 0.82) [20]. In the present study, a 5-item model was carried out considering the Fig. 1 Theoretical model permanence of items 3, 5, 7, 9, and 10. ...
Article
Full-text available
Background The pervasiveness of the Internet in everyday life, especially among young people, has raised concerns about its effects on mental health, education, and, recently, oral health. Previous research has suggested a complex relationship between Problematic Internet Use (PIU), lifestyles, and oral health-related quality of life, highlighting the need to examine these interactions further. This study seeks to explore the PIU as a predictor of oral health-related quality of life and examine the mediating role of lifestyles between both in a sample of Peruvian schoolchildren. Methods A cross-sectional study was carried out with 293 Peruvian students aged 12 to 17 years (M = 14.42, SD = 1.5), using structural equations to analyze the relationship between PIU, lifestyles, and quality of life related to oral health. The data collection procedure was through a face-to-face survey. Validated instruments measured PIU, lifestyles, and oral health-related quality of life. The study’s theoretical model was analyzed through structural equation modeling with the MLR estimator. The fit assessment was performed using the comparative fit index (CFI), root mean square error of approximation (RMSEA), and standardized root mean square residual (SRMR). Results They indicated significant correlations between PIU, lifestyles, and oral health-related quality of life. A negative influence of PIU on lifestyles (β = -0.30, p < .001) and on oral health-related quality of life (β = -0.35, p < .001) was observed, as well as a positive relationship between PIU and oral health-related quality of life (β = 0.29, p < .001). The mediation of lifestyles was statistically significant, suggesting that they mediate the relationship between PIU and oral health-related quality of life. Conclusions The study confirms that PIU can negatively affect adolescents’ oral health-related quality of life, mediated by unhealthy lifestyles. It underlines the importance of promoting balanced Internet use and healthy lifestyles among young people to improve their oral well-being.
Article
Full-text available
The lack of adequate educommunicative training often results in the problematic use of ICT by adolescents, leading to various issues such as anxiety, depression, isolation, and the deterioration of intra- and interpersonal relationships, language impoverishment, and even aggression. In relation to the latter, the significant increase in child-to-parent violence in recent years is noteworthy, emerging as a concerning problem in multiple countries. Therefore, this study conducts a systematic review based on the PRISMA method to identify the most suitable instruments for assessing potential inappropriate use of ICT in adolescents and the child-to-parent violence stemming from it. The databases employed include Web of Science, Scopus, ProQuest, Worldcat, PubMed, PubPsych, and Dialnet, yielding a total of 224 instruments. Of these, fifteen scales were analyzed based on their characteristics and psychometric properties. After applying exclusion criteria, the ERA-RSI scale, the UPNT Questionnaire, and the CPV-Q-P were chosen. The complementarity of these three instruments allows for an exploration of the issue's current state and provides a holistic perspective that facilitates the design of appropriate educommunicative training benefiting all stakeholders and establishes measures to prevent both the inappropriate use of ICT and manifestations of child-to-parent violence arising from it. La ausencia de una formación educomunicativa adecuada deriva a menudo en un uso problemático de las TIC por parte de los adolescentes, ocasionando diversos problemas como la ansiedad, la depresión, el aislamiento, el empobrecimiento de las relaciones intra e interpersonales, el empobrecimiento del lenguaje, e incluso la agresividad. Con relación a esta última, cabe destacar el notable incremento que ha sufrido la violencia filio-parental en los últimos años, convirtiéndose en un problema preocupante en múltiples países. Por ello, este trabajo realiza una revisión sistemática basada en el método PRISMA para identificar los instrumentos más apropiados para valorar un posible uso inadecuado de las TIC en adolescentes y la violencia filio-parental derivada de este. Las bases de datos empleadas fueron Web of Science, Scopus, ProQuest, Worldcat, PubMed, PubPsych y Dialnet, obteniéndose un total de 224 instrumentos. De ellos, se analizaron 15 escalas en función de sus características y propiedades psicométricas. Una vez aplicados los criterios de exclusión, se seleccionaron la escala ERA-RSI, el Cuestionario UPNT y el CPV-Q-P. La complementariedad de estos tres instrumentos permite explorar el estado de la problemática y obtener una perspectiva holística que facilite el diseño de una formación educomunicativa apropiada que beneficie a todos los agentes involucrados y establezca las medidas oportunas para prevenir tanto el uso inadecuado de las TIC como las manifestaciones de violencia filio-parental derivadas de este.
Article
Full-text available
Esta revisión bibliográfica es uno de los resultados del Proyecto de Investigación 'Análisis de uso y consumo de medios y redes sociales en Internet entre los adolescentes españoles. Características y prácticas de riesgo'. En el rastreo de fuentes de información del tema abordado se ha centrado en las consultas a bases de datos de publicaciones científicas en una escala nacional. Así pues, en la recopilación podemos encontrar artículos y capítulos de monografías. Si bien no es una de las finalidades de este proyecto la revisión exhaustiva de las fuentes bibliográficas, se ha considerado como elemento fundamental a la hora de analizar e interpretar los resultados con una perspectiva más completa, además de ser una línea o contribución a otras investigaciones futuras tanto de nuestro equipo como de otros relacionados con este tema. Por último, conviene señalar que la recopilación de documentos que se presenta a continuación incluye los datos referenciales y el resumen, así como la localización en línea para aquellos documentos que se pueden consultar 'online'.
Article
Full-text available
This cross-sectional study aims to determine lifetime prevalence of psychiatric disorders (including substance use disorders, -SUD and other non substance use disorders, –Non-SUD) among 289 young (1830 years) regular cannabis users, during the last year, in non-clinical settings in Barcelona. The Spanish version of the Psychiatric Interview for Substance and Mental Disorders (PRISM) was administered. Only 28% of the participants did not present any psychiatric disorder; while 65% had some SUD, the most common related to cannabis use (62%). Nearly 27% presented a non-SUD disorder. A younger age of initiation on alcohol use was associated with the presence of some SUD. Having consumed a greater number of “joints” in the last month was associated with the presence of both psychiatric disorders (SUD and non-SUD). While three quarters of subjects with non-SUD disorders had received some kind of treatment, only 28% of those with any SUD had received treatment. Given the low perception for need of treatment, there is a need for prevention strategies and to be able to offer therapies specifically tailored targeting young cannabis users.
Article
Full-text available
Se evalúan los cambios en la nomenclatura de las Adicciones en el DSM-5 y la inclusión de una nueva categoría dentro de las mismas, a la que denomina “Trastornos no relacionados a sustancias” y con la cual se designa a las llamadas adicciones conductuales. Dentro ella se incluye incluye como única patología aprobada al juego patológico o ludopatía con un nuevo rótulo: “Trastorno por juego de apuestas”. El inconveniente de tal etiqueta diagnóstica para su aceptación y uso por el público en general es que puede dar lugar al supuesto erróneo de que la práctica del juego genera siempre enfermedad. Por otro lado, sin embargo, el considerar al juego patológico una adicción y no un trastorno del control de impulsos ha sido un gran avance. Lamentablemente no fue incluida la “Adicción a Internet” en el nuevo rubro, pese a su enorme y creciente importancia mundial. Se describen además las características clínicas de esta última enfermedad.
Article
Full-text available
Se construyeron dos cuestionarios para evaluar el uso adictivo de Internet y del móvil que se aplicaron a una muestra de 1.879 estudiantes. Los resultados apoyan un modelo de dos factores, con una aceptable consistencia interna e indicios de validez convergente y discriminante. El Cuestionario de Experiencias Relacionadas con Internet evaluó conflictos intra e interpersonales relacionados con el uso de Internet. El Cuestionario de Experiencias Relacionadas con Móvil evaluó dos factores: primero, conflictos relacionados con el abuso del móvil, y segundo, problemas debido al uso emocional y comunicacional. Nuestros resultados indican que el móvil no produce el mismo grado de adicción; más bien se puede hablar de uso problemático. Los hombres presentaron un uso más adictivo de Internet, mientras las mujeres se caracterizaron por usar el móvil como medio para expresar y comunicar las emociones. Parece que el uso de ambas tecnologías es más problemático en la adolescencia y se normaliza con la edad, hacia un uso más profesional, menos lúdico y con menos consecuencias negativas.
Article
El presente estudio tuvo por objetivo, determinar la validez empírica, estructura factorial y consistencia interna del CUPI. Se aplicó el cuestionario a una muestra aleatoria de 697 estudiantes de universidades privadas mexicanas; se aplicó igualmente el inventario de depresión de Beck y una escala de habilidades sociales. Los resultados del análisis factorial mostraron que los reactivos se agrupan de manera similar a la documentada para otras escalas similares desarrolladas en EU; complementariamente se encontró un alfa de Cronbach de .942. Se encontró una correlación directa entre el CUPI y el inventario de depresión de Beck; complementariamente, se encontraron correlaciones inversas entre habilidades sociales y CUPI y entre edad y CUPI. Estas correlaciones han sido documentadas ampliamente en la literatura del área, y sugieren que el CUPI posee validez empírica.
Article
El objetivo del estudio fue relacionar las dimensiones basicas de personalidad formuladas por el modelo de los cinco grandes factores con el uso problematico de Internet, en una muestra de 411 jovenes colombianos de 18 a 28 anos de tres universidades privadas. Se les administraron online: el cuestionario de datos socio-demograficos y habitos de uso de Internet, el Big Five Inventory (John, Donahue y Kentle, 1991), para evaluar la personalidad y el Internet Addiction Test (Young, 1998), para determinar el grado de uso de Internet (controlado, problematico o adictivo). Los resultados revelaron que el 9.7% de la muestra presenta un uso problematico de Internet. Este porcentaje era en su mayoria masculino ( χ 2 = 12.93; p = 0.01) y realizaba actividades de comunicacion y ocio. El uso problematico correlaciona positivamente con neuroticismo y negativamente con afabilidad y responsabilidad. Por otra parte, no tiene relacion con extraversion y apertura a la experiencia. Ser mujer y la dimension de responsabilidad son factores protectores del uso problematico, mientras que el neuroticismo lo predice. En conclusion, los datos aportan evidencia empirica en el estudio de la relacion entre la personalidad y el uso problematico de Internet.