ResearchPDF Available

Life Cycle Assessment in Conceptual Aircraft Design

Abstract

This excel sheet contains a methodology for life cycle assessment in conceptual aircraft design. Using this methodology, the environmental impact of the designed aircraft can be calculated. Additionally the driving in- and outputs, processes, life cycle phases, impact categories and design parameters for the environmental impact of aircraft can be identified.
LCA-AD

 
!"#$ #"%
&'$& ()*+,-./$ 0%(*/1/$ .
2'$ $)!+%!3 
 4
5 "&(6
LCA AD is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, License Version 3.
LCA AD is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
& 
Go to LCA calculation
See the GNU General Public License for more details.
7899  99
Life Cycle Assessment in Conceptual Aircraft Design
Quick start guide
The tool consists of four sections covering the four phases of a Life Cycle Assessment (LCA). The pluses and minuses on the left side can be used to navigate within the sections of the tool.
The entire required input data has to be entered in Section 2.1.1. Whenever a cell has a white background color, it is an input cell and the user can enter a value.
Cells with a grey background should normally not be changed. However, advanced users are invited to also play around with these cells.
To protect the user from unwanted modifications of the tool, the sheets and the workbook are protected (with the exception of the white input cells).
In case a user wants to make changes in protected areas, he simply has to unprotect the respective sheets or the workbook.
The final results of the LCA are presented in Section 3.3. The Single Score calculated in Seciton 3.3 represents the total Environmental Impact (EI) of an aircraft expressed in one score.
The sheet "LCA_Stat" provides statistics that have been used to determine several required parameters. Whenever such a statistical value is used, there is also a link to the respective statistic.
The sheet "LCA_Lit" provides the references used to determine several parameters. Whenever such a reference value is used, there is also a link to the respective reference.
The tool is based on several publications:
Equations from these publications are also displayed in the tool to make it more easily understandable for readers of the paper.
In order to properly run the tool, macros have to be activated. When the tool is opened, a pop-up will appear asking the user to enable macros.
1 Goal and Scope Definition
2 Life Cycle Inventory Analysis
3 Life Cycle Impact Assessment
4 Interpretation
"A First Step Towards The Integration Of Life Cycle Assessment Into Conceptual Aircraft Design" from DLRK 2013
"Adapting Life Cycle Impact Assessment Methods for Application in Aircraft Design" from DLRK 2014
"Comparison of the Potential Environmental Impact Improvements of Future Aircraft Concepts Using Life Cycle Assessment" from CEAS 2015
CO2 Emissions per process [g per pkm]



$3 ((
$3((
( (
Operation
End-of-life
Wind tunnel
testing
Flight test
campaign
Material
production
Computer use
during design
Use of production
facilities
Production
Design &
Development
LandfillReuse
Energy generation
and consumption
at airports
Operation of ground
handling vehicles
Kerosene
production
LTO-cycle
Cruise flight
Go to statisticGo to statisticGo to statistic
Go to statistic
)p(mm
i,wvi,mi,n
1
pk,j,endpoint,
j
jpk
CFMPEP
18
1
,
Go to statisticGo to statistic
Go to statisticGo to statisticGo to statistic
Go to statistic
Go to statistic
The entire required input data has to be entered in Section 2.1.1. Whenever a cell has a white background color, it is an input cell and the user can enter a value.
Cells with a grey background should normally not be changed. However, advanced users are invited to also play around with these cells.
To protect the user from unwanted modifications of the tool, the sheets and the workbook are protected (with the exception of the white input cells).
In case a user wants to make changes in protected areas, he simply has to unprotect the respective sheets or the workbook.
The sheet "LCA_Lit" provides the references used to determine several parameters. Whenever such a reference value is used, there is also a link to the respective reference.
Equations from these publications are also displayed in the tool to make it more easily understandable for readers of the paper.
In order to properly run the tool, macros have to be activated. When the tool is opened, a pop-up will appear asking the user to enable macros.
"A First Step Towards The Integration Of Life Cycle Assessment Into Conceptual Aircraft Design" from DLRK 2013
"Adapting Life Cycle Impact Assessment Methods for Application in Aircraft Design" from DLRK 2014
"Comparison of the Potential Environmental Impact Improvements of Future Aircraft Concepts Using Life Cycle Assessment" from CEAS 2015
CO2 Emissions per process [g per pkm]
Percentage of processes on CO2 emissions
Summarized results of the inventory analysis [g/pkm]




Go to statisticGo to statisticGo to statistic
Go to statistic
p
PKM
x
x
p
PKM
x
x
p
PKM
x
x
p
PKM
x
x
p,i,jmidpo
n
i
PKM,ipj
CFxM P
,int
1
,
3
1kb,p,k
k
wp,kb,p
NF
EP
WSS
pk,j,endpoint,
j
jpk
CFMPEP
18
1
,
p
PKM
x
x
PAXalo
fam
i
iPKM ,,
iFi
IOFmx
p
PKM
x
x
PAXalo
l
i
iPKM
p
PKM
x
x
,,
Go to statistic
Go to statistic
Go to statistic
Go to statistic
Go to statistic
Go to statistic
OEi,mi,m
mpm
FH,PAX,alo
fAP,PAX
angi
i,PKM
p
d,n
nIOF
x
50
2
Go to statistic
Percentage of processes on CO2 emissions
Summarized results of the inventory analysis [g/pkm]


OEi,mi,m
mpm


 !"#""$%&&'()!*+,
:; :< :
23 *(8$1$. = > ?
@3 *(8$1$. : ? ;
2-2 = ? <>
22( ;< : <
2@( >> :; :><

2 3= <<=? 1
+ 3= := 19
A$ ;:;=
2-= <;?
-= > 9
A$ ;:?<
B8
23= <:; C
13= :?> 9
A$ ;::=
- .*%./
$012
./3
04
A A
,
Go back to calculation
Go back to calculation
Go back to calculation
:  ?
:  ??
: .+5
: ; +6/&6
:; ;?: <=
78793:
 ( 
:: = = 
:?  = ?
:; ?
:: 1
 ( !,D
:=; := ::?;
;>E :E ;E
  
 ( !,D
 <<: 
?E ;<E E
A  
 ( !,D
??  ;
?E ;>E =E
! 
 ( !,D
::< ;< =
;?E E E
3($6
 ( !,D
> ?
:E E ??E
/6($6
 ( !,D
 =
?E E <E
+ 
 ( !,D
Go back to calculation
<< <>< ?
?E :;E E
; => ?
!-
&%
F=;= :> $0(&
#%#
:; ; $0(&
#2%$ #
+' ;? $0(&
#2%#
:?  $0(&
F=== ? $0(& #=0(&#
 :< $0(&

**&;%&&$
<  ( !,D
:=; := ::?;

 = =?
 ?
G : ? ?
2  ( !,D
 <<: 
 ; ; ;


G   
0  ( !,D
??  ;
 ; ; ;


G   
=  ( !,D
::< ;< =

 ;? ;?
 ?
G ? ? ?
#>  ( !,D
> ?

 >
 ?
G : ?
?>>  ( !,D
 =

 >
 ?
G : ?
"  ( !,D
; < >:
 =? =? =?


G ? ? ?
"  ( !,D
>:?; ::

 ;
 ?
G  ?
 ( !,D
2 ? <=: <=>:
, :: >= >=
E E ?E ?E
, >?=: >?=?
E =>E :E E
H >??
E E E >=E
G ><<= >< >=<
E >E E >;E
)
1 13 
:; 
F=;= ;
:? 
- +5'+
=1
!I 9I  J*& % .
!  ! 
:; <
> 
& (%) : >; 
+@(%)HH : < ;
=;0@4@
A$I  (
 ?
:? ?
F=;= = ! %A*.
:; ? $3
,5 >
- A
A$I  (
( ?
:? ?
F=;= ><
!1B8#! ,%
:;  $3
,5 ?=>
- *'&&
,
,
,
,
,
,
B
+- .+
+, =
  ;:
,  =
: ;
B(4C,
D    ?E
D
: > ?
<7-$
::>=? :?=;= :;?=
<:? ::>> :?=<?>
:>:=< >;> ?::<
>== >: ><?
><< >;>< ?>?;;
<=; =>> =;:=
:>: >=; >:=
B
<E <E ;E
D  
:E :E :E
B
;E ;E =E
,
,
DK8LDMN
DK8L2MN
! 8L2MN
L2MN
2L2MN
! DK8L2MN
2DKL2MN
: : : :: :::
:>9:
:>?
;?   > : <? ::
   :; >> >> :=?
? > 
<>:? ?< :: =; ?< ::
 ?< ?< >> ;; :=?
D3GJ 
Go back to calculation
Go back to calculation
Go back to calculation
Go back to calculationGo back to calculation
!$
(8$1$
(%%:
(8$1$
(::8<><O<?8P<= 3:*$)$B!:.*38$F .
5:8*$1$.O=% 3:*,8:.*38$% "$F Q% .
2  ( 
:  P!,DO)!,D
> = ?$B:?
$+%H%3F
(
2
:> >:=
?E
2
 <?
?E
2
?? 
?E
2 )!,D AB 
? ? =; =><?
?E E E :E
2 )!,D
><? <
E >E
2 )!,D
?> ;==
E :E
)!,D 2 AB 
Go back to calculation
Go back to calculationGo back to calculation
:;> :<> <>; :> ;>:
E E E =E
=; :;< <>; <
(
#%#
#2%$ #
#2%#
1B
1B
2
:>
?
?
2

;

2
??
;

2 )!,D AB 
? ? =;
,
,
,
,
Go back to calculation
Go back to calculationGo back to calculation
Go back to calculation
? ? ?
? ? ?
2 )!,D
><?
?
?
2 )!,D
?>
?
?
)!,D 2 AB 
;<>  <>; <
=? =? =? =?
? ? ? ?
)!,D 2 AB 
:;> ><
? ?
? ?
)!,D 2 AB  2
??? >?>: <>; <: 
<? <?  ;> ;<<
E >:E =?E >E ;E
= ?>;
E E E E >;E
;= < :< =:>
?E E E :E E
:> = =:= < <
>E :E ?E :=E =E
Go back to calculationGo back to calculation
(8 8
$3
$3
? 7899$ 9$ 9R9 9 99=;=9B::;
$3 )E$
S (8
?
%3
! 
?

O3

D*.
! %A*:. %8>=<>O>T
;>BQU% 9;>I 
,
,
,
+@I *I .#H",5I %"I   /E&&&"%$'&3#
Go back to calculation
Go back to calculation
Go back to calculation
Go back to calculationGo back to calculation
D
 = ; <  
><;; >>:>;;? >?:>;> >>=?;>; >;:;?; ?><<:
:;: >;? ><>? ><<; >>?; >=?<:
> =? ;?< ?: ;:<; ;>?:
>; >? >? >:= >?<? >=:=
?>=? ?;<; ?<< ?== ::=;: ?:
;:< ;=; ;?<= =;<;< <>;; <>:?
>:>: ><?; ? >;;;= ?:<>< ?=?<;
;E ;E =E E =E =E
:E :E <E ;E :E ;E
=E =E =E =E =E =E
Go back to calculation
Go back to calculation
:> :; )F)
:; ??
>=? ;?:
; /A*
:> ?? ''A'&
:; ;?: 6655.
(8$1$
(8$1$
(::8<><O<?8P<= 3:*$)$B!:.*38$F .
5:8*$1$.O=% 3:*,8:.*38$% "$F Q% .
? 7899$ 9$ 9R9 9 99=;=9B::; 
+@I *I .#H",5I %"I   /E&&&"%$'&3#
7
>:>>
:<
=
>:=>
??=>?
;:
>=>:>
+.3
:E
'&3
(::8<><O<?8P<= 3:*$)$B!:.*38$F .
5:8*$1$.O=% 3:*,8:.*38$% "$F Q% .
 #
References
H,F0("2D 3G3"0,87899$999$93G39*:<.
M '"@8$$ @%:""0M8! H3";0,87899I $9939$$ @%:<9*:<.
:
H,F0(((8A% 3 !V)$B!:F @"!"*&8W(3 WM W&,M:WDWW)3WH,F0(D3)$XBX!X.
>
H3%%3- 638,H-"&"0,878999$39&9X*:<.
?
F%$&%B"Y&D3"!B"F&" :0,87899$99GX$9$9>9$>>?=>;<??=>?>9:;X$XXX$ XXX;X:XG*:<.
/-H"F"(/HA"/"++"("/0,"2"Q3% 2H35"";
=
F+++,2(AF-MA&"11"+,/)+A"15"(A2+"(";"2/++!!+2(-!-HAA-2H-A-A2/+0+2H+0,+8Z0A2H22H+(20&S-AD,-&02++5FB ""H"?>
;
+0,--A2,-"?(H+0,--A2,-FGFY"F 8+0,--A2,-/["+3A=
<
+&:$"+"&)5,"H3+%($":0,87899'9$9%*:.
 !H)/2HA2+,A2H-A">:($:"#1I#
 !H)/2HA2+,A2H-A">:($:"#!3 $% #

!H)/2HA2+,A2H-A"<-$>A%$:"#!7(AI3G3#
: !H)/2HA2+,A2H-A"=-$:"#,5\%@\#
> FLIGHT GLOBAL, 31.01.2014, "Airlines begin push for discounted end-of-line 777s"
? FLIGHT INTERNATIONAL, 2013-06-11, "Maturity in the Making" (p. 48-50)
 FLIGHT GLOBAL, 14-02-18, "Pratt plans performance upgrade for A320neo engine"
=
;
<
 H,F0("#2++R($&%#
 ! /$ "0B] >

++%H 8++D9-,HAH,+H%)$B:"2A9:":0,8789999$39 $B:*:;:.
5-/AAHA)"(/-^"&":!(2H 3& H8 Publikaonen zum DLRK 2013 *&,B "(7 "($:.0,87899$%  98$888>=;:;:*8?>.
5-/AAHA)"(/-^"&">3 H3& H8 Publikaonen zum DLRK 2014*&,B " $ ";($>.0,87899$%  98$888?=>?*8?.
5-/AAHA)"(/-^"&"?D3+%HH%!0 H8 CEAS: 5th CEAS Air&Space Conference : Proceedings*+(?"&"=($?.&H&8;&87899:D(6
H,F0("2D3G3"0,87899$999$9 3G39*:<.
M '"@8$$ @%:""0M8! H3";0,87899I  $9939$$ @%:<9*:<.
H,F0(((8A% 3 !V)$B!:F @"!"*&8W(3 WM W&,M:WDWW)3WH,F0(D3)$XBX!X.
H3%%3- 638,H-"&"0,878999$39&9X*:<.
F%$&%B"Y&D3"!B"F&" :0,87899$99GX$9$9>9$>>?=>;<??=>?>9:;X$XXX$ XXX;X:XG*:<.
/-H"F"(/HA"/"++"("/0,"2"Q3% 2H35"";
F+++,2(AF-MA&"11"+,/)+A"15"(A2+"(";"2/++!!+2(-!-HAA-2H-A-A2/+0+2H+0,+8Z0A2H22H+(20&S-AD,-&02++5FB ""H"?>
+0,--A2,-"?(H+0,--A2,-FGFY"F 8+0,--A2,-/["+3A=
+&:$"+"&)5,"H3+%($":0,87899'9$9%*:.
!H)/2HA2+,A2H-A"<-$>A%$:"#!7(AI3G3#
++%H 8++D9-,HAH,+H%)$B:"2A9:":0,8789999$39 $B:*:;:.
5-/AAHA)"(/-^"&":!(2H 3& H8 Publikaonen zum DLRK 2013 *&,B "(7 "($:.0,87899$%  98$888>=;:;:*8?>.
5-/AAHA)"(/-^"&">3 H3& H8 Publikaonen zum DLRK 2014*&,B " $ ";($>.0,87899$%  98$888?=>?*8?.
5-/AAHA)"(/-^"&"?D3+%HH%!0 H8 CEAS: 5th CEAS Air&Space Conference : Proceedings*+(?"&"=($?.&H&8;&87899:D(6
M '"@8$$ @%:""0M8! H3";0,87899I $9939$$ @%:<9*:<.
H,F0(((8A% 3 !V)$B!:F @"!"*&8W(3 WM W&,M:WDWW)3WH,F0(D3)$XBX!X.
F%$&%B"Y&D3"!B"F&" :0,87899$99GX$9$9>9$>>?=>;<??=>?>9:;X$XXX$ XXX;X:XG*:<.
F+++,2(AF-MA&"11"+,/)+A"15"(A2+"(";"2/++!!+2(-!-HAA-2H-A-A2/+0+2H+0,+8Z0A2H22H+(20&S-AD,-&02++5FB ""H"?>
++%H 8++D9-,HAH,+H%)$B:"2A9:":0,8789999$39 $B:*:;:.
*&,B "(7 "($:.0,87899$%  98$888>=;:;:*8?>.
*&,B " $ ";($>.0,87899$%  98$888?=>?*8?.
CEAS: 5th CEAS Air&Space Conference : Proceedings*+(?"&"=($?.&H&8;&87899:D(6
F%$&%B"Y&D3"!B"F&" :0,87899$99GX$9$9>9$>>?=>;<??=>?>9:;X$XXX$ XXX;X:XG*:<.
*&,B "(7 "($:.0,87899$%  98$888>=;:;:*8?>.
*&,B " $ ";($>.0,87899$%  98$888?=>?*8?.
*+(?"&"=($?.&H&8;&87899:D(6
... Based on this eLCA framework, Johanning developed a methodology for determining the environmental impact of different future aircraft concepts during conceptual design [1]. The methodology is open source and based on the impact assessment method ReCiPe 2008 [9]. ...
... Since an updated version of ReCiPe (called ReCiPe 2016 in the following) has become available in the meantime [10], the objective of this work is to update the version of the published eLCA methodology from ReCiPe 2008 to ReCiPe 2016. The updated methodology is then applied to the future aircraft concepts by Johanning and the results are compared with his findings published in [1]. The goal of the study is then to determine by how much the future aircraft concepts and their environmental impact assessments deviate and whether the new results change the general statement about the environmental footprint of the designs. ...
... Johanning built a freely available eLCA methodology specifically for use during aircraft conceptual design, considering design & development, production, operation, and end-of-life of the aircraft [1] (see also Fig. 3). The methodology can be used on kerosene, biofuel, hydrogen, and all-electric aircraft and uses the ReCiPe 2008 LCIA method [1]. ...
Conference Paper
View Video Presentation: https://doi.org/10.2514/6.2022-3659.vid The environmental impact of aviation has gained increasing interest in the last two decades, resulting in investigations of novel aircraft concepts involving advanced propulsion technologies. For a holistic evaluation of the environmental footprint of these new aircraft concepts in comparison to state-of-the-art kerosene-burning aircraft, the framework of environmental life cycle assessment plays a central role. It allows compiling and analyzing the environmental impacts of a product system from "cradle-to-grave". In this work, the environmental life cycle assessment method for aircraft developed by [1] has been bug-fixed, enhanced with a new climate model, and updated from ReCiPe 2008 to ReCiPe 2016. For several future aircraft concepts, the results with the updated method were compared with the results presented by Johanning. The comparison shows that the updated ReCiPe method results in a highly increased absolute environmental impact (between +193% and +441%), while the relative impact of the future, alternative energy-powered aircraft concepts compared to the kerosene-powered aircraft has changed between -17.1% and +152% for all considered alternative energy aircraft concepts. These results demonstrate that to assess whether a future concept is more or less environmentally friendly than a reference concept, it is preferable to rely on relative results in an attempt to reduce the inherent model and parameter uncertainties.
... This is mainly due to the lack of public available data from aircraft manufacturers. In fact, only one peer-reviewed paper performing a complete LCA of an aircraft was found [44] and one from an aircraft's wing [50], while the remaining works originate from theses and reports [40,45,51,52]. There are also a few available publications focusing on the comparison between metallic alloys and lightweight materials from an environmental point of view [38,39,53]. ...
... The main impact occurred mainly due to use of CFRP (responsible for 45% of the total manufacturing impact). While evaluating an Airbus A320-200 with ReCiPe Endpoint method, Johanning et al. (2013) [51] concluded that material production and other manufacturing-related processes bore less than 1% of the total aggregated impact. Both authors assumed that the aircraft was solely composed by aluminum, steel, titanium composites, and miscellaneous (without specification of what "miscellaneous" could mean). ...
... The main impact occurred mainly due to use of CFRP (responsible for 45% of the total manufacturing impact). While evaluating an Airbus A320-200 with ReCiPe Endpoint method, Johanning et al. (2013) [51] concluded that material production and other manufacturing-related processes bore less than 1% of the total aggregated impact. Both authors assumed that the aircraft was solely composed by aluminum, steel, titanium composites, and miscellaneous (without specification of what "miscellaneous" could mean). ...
Article
Full-text available
The global aircraft fleet has been expanding worldwide, leading to a high demand for primary resources. Simultaneously, recycling initiatives for decommissioned aircraft are still incipient. Following circular economy principles, the aims of this paper are to identify potentially critical resources used and related environmental impacts, to derive recommendations regarding recycling, and to analyze the influence of increasing utilization of lightweight composite materials in aircraft manufacturing. It was identified that the engine is the structure containing resources with the highest scarcity, with tantalum dominating seven of the eleven analyzed impact categories. Aluminum, titanium, and nickel were shown to lead to the highest environmental impacts. Hotspots in the criticality and environmental assessment often occur due to alloying resources with a low mass share. It was shown that aluminum and steel alloy recycling should be prioritized. A higher lightweight composite material share in the aircraft increases impacts in the categories climate change and fossil resource depletion by 12% and 20%, respectively, whereas the impact of the category acidification, political stability, and demand growth decreases by 16%, 35%, and 60%, respectively.
... His conclusion is to reduce the aircraft's consumption and to increase the number of passengers per flight. In a more specialized way on the Airbus A320, Johanning has developed a simplified LCA methodology [12]. Lastly, some studies focus more specifically on pollutant emissions near airports [13]. ...
... Furthermore, the end-of-life treatment has not been taken into account in this study as it is still difficult to quantify. However, some other studies published in the literature included the end-of-life treatment in their LCA process, based on the PAMELA-life project and data [12]. Their results show that the contribution of this stage account for very little effect as compared to the rest of the life cycle. ...
... Percentages of the Airbus A320 Manufacturer Weight Empty ( = 37, 229 [17]) for the main components have been used in order to model their extraction and manufacturing on OpenLCA. These percentages have been obtained by crossing several references [11,12,18,19], and the configuration described in Table.2 has been adopted. ...
... Aviation industry increasingly becomes a driver of anthropogenic climate change due to the exponential growth of air travel [1]. Major environmental impacts of the aviation sector are caused by the production and combustion of fossil fuel during operation [2,3,4]. However, processes accompanying aircraft life cycle, such as Maintenance, Repair and Overhaul (MRO) are not respected in detail in environmental impact analyses. ...
... Latest research and development efforts within the aviation industry increasingly focus on developing more sustainable aircraft configurations [5]. This includes the electrification of aircraft and the usage of alternative energy carriers such as hydrogen, bio fuels or batteries [2]. For these future configurations the share of environmental impact related to raw material extraction and manufacturing stages will increase [5]. ...
... To compare aircraft life cycle scenarios, passengerkilometer (PKM) is the most common functional unit in literature [2]. To achieve an extensive statement on the environmental impact of an aircraft, the presented blockchainbased data management system allows various functionalities. ...
Article
Full-text available
A shift towards new powertrains and alternative energy sources will increase the complexity of future aircraft configurations and demands for comprehensive Life Cycle Assessment. Due to missing data management structures, gathering of reliable life cycle data is time- and cost-intensive and hampers close examination of heterogenic scenarios. Blockchain and its characteristics, i.e. the distributed architecture and immutability of records, are promising for linking multiple stakeholders and tracking data. Therefore, this paper introduces a blockchain-based data management concept for facilitating comprehensive and detailed Life Cycle Assessment and discusses the conceptual approach with a focus on aircraft maintenance, repair and overhaul (MRO).
... AEco uses concepts from streamlined LCA, where the scope is reduced and upstream or downstream life cycle stages are limited in order to accelerate the process of a traditional LCA study while maintaining result accuracy. It has found widespread adoption in eco-design tools for combining the power of LCA with easy implementation [3,8,20]. ...
... For both freighters the operation phase is, by far, the largest contributor to impacts in all categories. This is similar to results found by other authors when assessing aircraft environmental footprint [8,3,11,10]. Operation phase's contribution ranges from 99.70 % to 56.76 %, averaging a partial share of 87.89 %, all categories considered. ...
Article
Full-text available
Early product development phases are decisive to determine the environmental impacts of an aircraft during its life cycle. In order to reduce overall environmental impacts, the designers and engineers must be able to assess the consequences of their design choices. In this research, an aircraft eco-design tool was developed to support the decision-making process during the aircraft conceptual design phase. The tool uses a streamlined Life Cycle Assessment (LCA) approach to calculate cradle-to-grave environmental impacts of the aircraft’s life cycle using its design parameters and the ecoinvent database as inputs. The tool performs Uncertainty Analysis via Monte Carlo Simulation (MCS), giving the practitioner insight on the distribution and uncertainty of the results. Input parameters are fitted to Beta-PERT distributions and randomly sampled for each iteration of the MCS. The tool was used to analyze different concepts for a freighter aircraft and a "what-if" scenario, the manufacturing of a composite airframe. The results are coherent with other LCA studies, showing predominance of the operation life cycle stage in all midpoint and endpoint indicators. Furthermore, visualizing the results as distributions rather than single values is of key importance in the decision-making process. The tool is demonstrated to be a versatile eco-design asset for evaluation and comparison of aircraft environmental impacts during the conceptual design phase and may contribute to designing aircraft with minimal environmental impacts.
... Mitunter wird darauf hingewiesen, dass die Herstellung von CFK-Strukturen deutlich energieintensiver ist, als die von metallischen Leichtbauwerkstoffen [25]. Allerdings zeigen Lebenszyklus-Analysen (LCA), dass im Flugzeug zwischen 0,1 % (LR-Flugzeug) bis 0,2 % (SMR-Flugzeug) des gesamten CO 2 -Footprint auf die Produktion entfallen [53,111]. Damit ist im Flugzeugbau der Einsatz von CFK infolge der Energieeinsparungen über das Gesamtflugzeugleben auch aus ökologischen Gründen von Vorteil. ...
Chapter
Full-text available
Zusammenfassung Entlang der Prozesskette des Systemleichtbaus leisten neue Materialien, bessere Materialkennwerte, verbesserte und genauere Auslegungsmethoden, neue Bauweisen, neue Fügetechnologien, effizientere Produktionstechnologien und neue automatisierte Qualitätssicherungsverfahren vielfältige Beiträge zu einem optimierten und kostengünstigeren Leichtbau. Grundlage sind kohlenstofffaserverstärkte Kunststoffe (CFK), deren Leichtbaupotential sich mit den im Folgenden beispielhaft zitierten Forschungsergebnissen sehr viel umfangreicher nutzen lässt.
... Mitunter wird darauf hingewiesen, dass die Herstellung von CFK-Strukturen deutlich energieintensiver ist, als die von metallischen Leichtbauwerkstoffen [25]. Allerdings zeigen Lebenszyklus-Analysen (LCA), dass im Flugzeug zwischen 0,1 % (LR-Flugzeug) bis 0,2 % (SMR-Flugzeug) des gesamten CO 2 -Footprint auf die Produktion entfallen [53,111]. Damit ist im Flugzeugbau der Einsatz von CFK infolge der Energieeinsparungen über das Gesamtflugzeugleben auch aus ökologischen Gründen von Vorteil. ...
Chapter
Full-text available
Zusammenfassung FV-gerechte Bauweisen, strukturelle Klebung sowie die Nutzung von Funktionswerkstoffen der Adaptronik kennzeichnen die aktive Funktionsintegration. Im Zusammenspiel mit der Aerodynamik kann Systemleichtbau durch Ermöglichung der hybriden Laminarhaltung besondere Wirkung entfalten. Des Weiteren ist eine aktive Reduktion der Schallübertragung in die Kabine und eine integrierte Strukturüberwachung realisierbar.
... Mitunter wird darauf hingewiesen, dass die Herstellung von CFK-Strukturen deutlich energieintensiver ist, als die von metallischen Leichtbauwerkstoffen [25]. Allerdings zeigen Lebenszyklus-Analysen (LCA), dass im Flugzeug zwischen 0,1 % (LR-Flugzeug) bis 0,2 % (SMR-Flugzeug) des gesamten CO 2 -Footprint auf die Produktion entfallen [53,111]. Damit ist im Flugzeugbau der Einsatz von CFK infolge der Energieeinsparungen über das Gesamtflugzeugleben auch aus ökologischen Gründen von Vorteil. ...
Chapter
Full-text available
Zusammenfassung Passive Funktionen dienen nicht der Lastabtragung alleine, wie im klassischen Leichtbau, sondern erfüllen weitere Anforderungen an das Gesamtprodukt, wie z. B. eine Minimierung des aerodynamischen Strömungswiderstands, Bereitstellung elektrischer Leitfähigkeit und thermischer oder akustischer Dämmung.
... In order to better quantify the environmental impacts of aviation in the broadest sense, Life Cycle Assessment (LCA) type studies have been carried out. For example, a simplified LCA methodology for Airbus A320 aircraft has been developed (Johanning and Scholz, 2014). A study on other aircraft has been carried out and converges toward similar results (PinheiroMelo et al., 2020). ...
Article
In 2019, aviation was responsible for 2.6% of world CO2 emissions as well as additional climate impacts such as contrails. Like all industrial sectors, the aviation sector must implement measures to reduce its climate impact. This paper focuses on the simulation and evaluation of climate scenarios for air transport. For this purpose, a specific tool (CAST for “Climate and Aviation - Sustainable Trajectories”) has been developed at ISAE-SUPAERO. This tool follows a methodology for the assessment of climate impacts adapted to aviation. Firstly, models for the main levers of action, such as air traffic, aircraft energy consumption and energy decarbonization, are provided using trend projections from historical data or assumptions from the literature. Second, the evaluation of scenarios is based on aviation carbon budgets, which are also extended to non-CO2 effects using the concept of GWP*. Several scenario analyses are performed in this paper using CAST allowing different conclusions to be drawn. For instance, the modelling of the scenarios based on the more recent ATAG (Air Transport Action Group) commitments shows that aviation would consume 6.5% of the world carbon budget for +1.5 °C. Some illustrative scenarios are also proposed. By allocating 2.6% of the world carbon budget to aviation, it is shown that air transport is compatible with a +2 °C trajectory when the annual growth rate of air traffic varies between −1.8% and +2.9%, depending on the technological improvements considered. However, using the same methodology for a +1.5 °C trajectory shows that a drastic decrease in air traffic is necessary. Lastly, analyses including non-CO2 effects emphasize the importance of implementing specific strategies for mitigating contrails.
Article
Full-text available
With growing environmental awareness and the resulting pressure on aviation, ecological impact assessments are becoming increasingly important. Life cycle assessment has been widely used in the literature as a tool to assess the environmental impact of aircraft. However, due to the complexity of the method itself and the long lifespans of aircraft, most studies so far have made strong simplifications, especially concerning the operational phase. Using a combined discrete-event simulation framework, this paper aims to ecologically assess the individual life cycle phases of an aircraft. The method will be demonstrated in a case study of an A320 and subsequently compared with findings from the literature. Despite the significant environmental impact of flight operations, which covers almost 99.8% of the entire life cycle of the aircraft, a detailed consideration of all life cycle phases is essential to serve as a reference for the ecological assessment of novel aircraft concepts. The presented assessment method thus enables a holistic analysis at an early stage of the design process and supports the decision-making for new technologies and operational changes.
ResearchGate has not been able to resolve any references for this publication.