Conference PaperPDF Available

Text Mining in the Hospitality Sector to Extend the Motivation Theory

Authors:

Abstract and Figures

In order to provide customer revisit intention or positive word of mouth, hospitality managers should focus on satisfying customers by listening to them. In today's information age, customers can be heard via their comments on travel websites that provide " big data. " The main purpose of this paper is to present a text-mining procedure to be used in marketing strategies to discover critical elements in the hospitality sector from customers' online reviews by extending Herzberg's Two-Factor Theory of Motivation. The result of the text-mining procedure provides a list of words including how many times they occurred in satisfaction and dissatisfaction reviews. Critical ones are selected, and after conducting a correlation analysis, they are grouped into three categories: (1) motivators: words correlated with total review scores only in the positive reviews; (2) hygiene factors: words negatively correlated with total review scores only in the negative reviews; and (3) effective motivators: words correlated with total review scores in both positive and negative reviews.
Content may be subject to copyright.
1
TEXT MINING IN THE HOSPITALITY SECTOR TO EXTEND THE MOTIVATION
THEORY
Taşkın DİRSEHAN, PhD
Marmara University,
Department of Business Administration (Lectured in English),
Bahçelievler/Istanbul, Turkey, 34180
taskin.dirsehan@marmara.edu.tr
Abstract
In order to provide customer revisit intention or positive word of mouth, hospitality
managers should focus on satisfying customers by listening to them. In todays information
age, customers can be heard via their comments on travel websites that provide big data.
The main purpose of this paper is to present a text-mining procedure to be used in marketing
strategies to discover critical elements in the hospitality sector from customers online
reviews by extending Herzbergs Two-Factor Theory of Motivation. The result of the text-
mining procedure provides a list of words including how many times they occurred in
satisfaction and dissatisfaction reviews. Critical ones are selected, and after conducting a
correlation analysis, they are grouped into three categories: (1) motivators: words correlated
with total review scores only in the positive reviews; (2) hygiene factors: words negatively
correlated with total review scores only in the negative reviews; and (3) effective motivators:
words correlated with total review scores in both positive and negative reviews.
Keywords: Hospitality Management, Motivation Theory, Text Mining, Tourism
Marketing, Big Data
2
1. Introduction
As companies upstream activities such as sourcing, production and logistics become
commoditized, companies should shift their strategy downstreami.e., from products to
customersto gain competitive advantages. For this purpose, they should accumulate
customer data (Dawar, 2013). The accumulation of data from various sources results in so-
called Big Data, which creates a new challenge that does not build on traditional marketing
skills. The question is whether marketers will be capable of managing big data or whether the
customer experience will be shaped by software engineers (MSI, 2015). Nowadays, marketers
need to use more technology than ever before such as CRM systems and big data analytics. In
the past, IT function undertook the management of this technology, but that is changing
rapidly (Joshi & Giménez, 2014). Businesses retain data-mining experts, data scientists, data-
visualization experts, data analysts, etc. in their marketing departments to produce and use
information that will gain competitive advantages in todays information era (Köktürk &
Dirsehan, 2012).
Developing Marketing Analytics for a Data-Rich Environment is considered a tier 1
research priority by Marketing Science Institute (MSI) for 2014-2016. It reveals a better
understanding of customers and improved marketing decision-making. In order to understand
consumer behavior, marketing managers should know about their motivations, since they lead
people to behave as they do (Solomon, 2009). Thus, this study tries to find out travelers
motivations about visiting hotels via text mining.
The role of marketing intelligence in marketing strategy is firstly discussed in this study,
and then text mining approach is mentioned to create such a strategy. The last part of the
literature survey evokes Herzbergs motivation theory to understand travelers motivation to
visit hotels. An application of text mining follows the literature review. Then, the results are
discussed to provide insights regarding marketing academics and practitioners.
2. Theoretical Background
2.1. Text Mining Approach to Determine Customer Preferences
In todays dynamic environment, companies are faced with huge amounts of data
coming from various sources such as Web traffic, e-mail messages, and social media content,
as well as machine-generated data from sensors. In addition, these data may be unstructured
or semi-structured, so they are not suitable for relational databases organizing data in the form
of columns and rows. This kind of huge volume of datasets is called big data,” which are
beyond the ability of typical database management systems to capture, store, and analyze
(Laudon & Laudon, 2014). Data-mining tools are used to collect, organize, analyze, and
visualizethe data, and they can be considered as a new research paradigm to make inferences
about reality using huge volumes of data. Data-mining techniques are needed to reveal hidden
information from such large datasets, to discover and understand patterns in customer
behavior (Lee & Siau, 2001; Hoontrakul & Sahadev, 2008). While traditional methods rely on
a set of predefined hypotheses, big data analytics aim to explore new patterns or predict future
trends from big data for knowledge discovery (Xiang et al., 2015; Wang & Wang, 2008).
Brachman et al. (1993) call this process data archaeology, in which the analyst can discover
interesting knowledge through an iterative, exploratory process. In the case of social media
and consumer-generated content as sources of data including large datasets and unstructured
data, text analytics play an important role in big data analytics (Xiang et al., 2015).
Text mining can be defined as discovering unknown facts and hidden patterns existing
in the lexical, semantic or even statistical relations of text collections (Stavrianou et al., 2007).
3
In the literature, it is apparent that text-mining applications in marketing have increased
in the recent decade. They include:
- The use of text mining to analyze competitors online promotional text messages
(Leong et al., 2004);
- Content analysis of travel related websites (Choi et al., 2007);
- Application of text mining to forecast fashion trends (Rickman & Cosenza, 2007);
- Identifying evaluation criteria of customers intention to revisit restaurants (Yan et al.,
2013);
- Evaluating consumers sentiments toward well-known brands from tweets (Mostafa,
2013);
- Impact of text product reviews on sales (Moon et al., 2014);
- Segmenting customers opinions toward the low-cost airlines or low-cost carriers
(Liau & Tan, 2014); and
- Identifying and analyzing brand associations in an online community (Camiciottoli et
al., 2014).
Although there are an increasing number of studies on application of text mining in
marketing, there is still a research gap regarding the assessment of consumers preferences
through text-mining procedures.
In order to gain a competitive advantage, hotel managers should focus on their customer
relations to create loyal customers. This involves customer lifetime value (CLV) analysis.
When a CLV analysis is conducted for a company, its obvious that acquiring new customers
is much more costly than retaining profitable ones, since acquiring new customers involves
advertising, promotion, and start-up operating expenses (Reichheld, 1996).So, the competitive
advantage is provided by customer loyalty, and to develop it for a hotel, firms must learn their
customers wishes and needs (Tepeci, 1999). Data-mining techniques can be proposed to
hotel managers to bolster their customer retention strategy to understand their customers
preferences and ways to interact with them (Min et al., 2002). In order to fill the gap to reveal
consumers preferences through text-mining procedures, Xiang et al. (2015) applies a text-
mining approach to consumer reviews extracted from Expedia.com. However, they are
limited to U.S. hotels, and they do not separate the words in the satisfaction and
dissatisfaction reviews. So, it was not possible to find out the dual effect of the words. This
study, on the contrary, investigates whether some words may become hygiene factors and
motivators at the same time.
2.2. Online Booking Websites
In the United States and Europe, it is estimated that more than 50% of the travel
reservations are made online, and online booking websites have gained importance
(Hoontrakul & Sahadev, 2008). Moreover, online reviews are sources of information for
consumers in making purchase decisions. Thus, marketing managers should understand the
influential and predictive effects of online reviews (Tsang & Prendergast, 2009).Hotel
industry provides a warehouse of customer comments, and precious knowledge can be
extracted as a result of mining them (Dirsehan, 2015). This is an opportunity for hotel
managers to understand their customers if they are able to conduct text mining. In this study,
Booking.com is used for its rich information as shown in Figure 1.
4
Figure 1.Screenshot of customer reviews on Booking.com
2.3. Understanding Consumer Motivation: Herzbergs Two-Factor Theory
Herzbergs two-factor theory identifies two categories of motivational forces (Herzberg
et al., 1962; Herzberg, 1975):
(1) Motivator/Satisfiers (when motivators are present, employees feel satisfied); and
(2) Hygiene/Dissatisfiers (when hygiene factors are lacking, employees experience
dissatisfaction, but their existence does not necessarily experience satisfaction).
Tuten and August (1998) extend the model to consumer services and state that service
hygiene factors are the core service experienceincluding price, policies surrounding
purchases and rebates on the service, availability of service representatives to answer
questions, tangible environmental conditions (cleanliness, etc.), and opportunities for social
interaction. On the other hand, service motivator factors include opportunities to feel
appreciated for purchasing or using the service (Tuten & August, 1998).
Chan and Baum (2007) apply the theory in the tourism and hospitality sector. They
conduct an interview with 29 guests in Malaysia, and they group the findings according to
Herzbergs two factors. Satisfiers are considered as related to personal experiences from the
natural environment and attractions, physical sites and leisure activities. On the other hand,
5
dissatisfiers are considered to be constructs related to the performance and availability of
facilities, amenities, and maintenance (Chan & Baum, 2007). Similarly, in the quantitative
research of Gu and Ryan (2008), Chinese guests expect a hotel to be comfortable and clean,
but they do not generate high levels of satisfaction because they are considered as a core hotel
service and can be interpreted as hygiene factors.
3. Methodology
The text-mining approach is applied to reveal key information from travelers
comments. Then, the revealed characteristics are analyzed in terms of their relationships with
travelers review scores. In this process, the following data-mining steps are performed:
3.1. Collecting Raw Data from Data Source
Booking.com is used as a data source. It is a website including millions of hotels all
around the world, and it allows online booking. On the other hand, its most precious content is
the travelers reviews that are made after individuals leave the hotel. These reviews represent
unstructured data, and they provide a mine for hotel marketing managers. If they are able to
mine the information, hotel market managers obtain valuable knowledge in the competitive
environment.
Data that can be extracted from booking.com include:
(1) Travelers name (if provided)
(2) Travelers nationality
(3) Travel type
(4) Travelers gender (if provided)
(5) Travelers age (if provided)
(6) Comment dates
(7) Travelers review scores
(8) Travelers positive comments
(9) Travelers negative comments
(10) Names of the hotels to be reviewed
(11) Hotel stars
(12) Hotels total review scores
3.2. Data Cleaning
After collecting the mentioned data, they are cleaned based on several criteria. For
instance, the comments written in another language are translated into English by using
Portals translator services. Here, the main purpose is to reveal the words, rather than
grammatically correct sentences.
3.3. Building Data Warehouse and Data Mart
For this study, a data warehouse is built after organizing the mentioned data from
booking.com. Destinations are selected according to Global Destination Cities Index. So,
the numbers of reviews from the destinations of the hotels are as follows:
- 399 reviews from Amsterdam
- 296 reviews from Bangkok
6
- 100 reviews from Barcelona
- 153 reviews from Berlin
- 301 reviews from Dubai
- 200 reviews from Kuala Lumpur
- 397 reviews from London
- 196 reviews from Los Angeles
- 199 reviews from Madrid
- 100 reviews from Miami
- 399 reviews from Munich
- 401 reviews from New York
- 385 reviews from Paris
- 100 reviews from Seoul
- 399 reviews from Singapore
So, a total of 4025 positive and 4025 negative comments from 15 destinations are
included in the data warehouse. Three points are considered while choosing the reviews:
(1)Travelers who wrote both positive and negative comments are included in order to
reveal critical words that occurred in both types of comments;
(2)A maximum of 30 comments for the same hotel is considered in the dataset in order
not to be directed;
(3)Comments from the most- and least-reviewed hotels are included in order to increase
the variance (the range of hotels total review scores is between 4.30 and 9.7; the median is
8.1). Then, a data mart is prepared including traveler ID, destination, travelers review score,
positive comments and negative comments.
3.4. Using Text Mining as Analytical Tool
A text-mining tool is used to apply text mining to the prepared data mart. The issues or
decisions that should be considered during the text-mining process can be summarized thusly
(Stavrianou et al., 2007):
- Stop list (decision to take into account stop words);
- Stemming (decision to reduce the words to their stems);
- Noisy data (clarity of text from noisy data);
- Word sense disambiguation (decision to clarify the meaning of words in text);
- Tagging (considering data annotation and/or part of speech characteristics);
- Collocations (considering compound or technical terms);
- Grammar/Syntax (Decision to make a syntactic or grammatical analysis);
- Tokenization (Considering tokenization of words or phrases);
- Text representation (Determining important terms, words or phrases, nouns or
adjectives, word order, context, and background knowledge); and
- Automated learning (Decision to use categorization, application of similarity
measures).
In this study, satisfaction stories and dissatisfaction stories are analyzed separately using
text-mining software. The first step is to list all of the words that occurred in satisfaction and
dissatisfaction stories. Stop wordswhich are high frequency words such as a,”“the or
of”—are not excluded from the analysis. They will be ignored at the end of the process.
Noisy data are eliminated in the data-cleaning step as explained before (by translating them).
7
However, miswritten words are not excluded from the texts. Their occurrences are detected
and added at the end of the process.
In the second step, an operator is placed to list combined words (such as internet
connection in addition to internet and connection separately). The reason is that the
meaning of the whole is greater than the sum of its parts (Stavrianou et al., 2007). Grammar
correction is not needed in this study since the words, rather than phrases, are analyzed.
Thirdly, a tokenization operator is placed to split the texts into units, which are words in
this case. Then, an operator is used to count the word stems (such as clean-). This way, all
the affixed words are counted at a time (such as cleaned, cleaning, cleaner, cleanliness, etc.)At
the end of this procedure, thousands of words are listed with their occurrences in the
satisfaction and dissatisfaction reviews. So, it was decided to continue with the45 words that
occurred most often, as listed in the Appendix 1.
3.5. Data Improvement for Further Investigation
After exploring the critical words, the following question arises: What is the
relationship between the existence of these words and travelers review scores? To answer
this question, new columns are added to the data list (as word occurrences). So, each column
is coded with binary variables 0 or 1 (0 representing non-existence of the word and 1
representing the existence of the word in the review). The same procedure is repeated for the
negative comments too. Then, a correlation analysis is conducted between travelers review
score, word occurrences in the positive reviews and word occurrences in the negative reviews.
The research finding is summarized in Appendix 2 and Appendix 3.
4. Conclusion
4.1. Text Representation to Extend Herzbergs Two-Factor Motivation Theory
According to the results, the words can be divided into three classes:
(1) Words that occurred only in the positive reviews;
(2) Words that occurred only in the negative reviews; and
(3) Words that occurred in both positive and negative comments.
Classes (1) and (2) can be applicable to Herzbergs Theory of Needs. The first class
includes the words that are important to create traveler satisfaction such as view, décor,
breakfast, etc. It corresponds to the motivators in Herzbergs theory. In the second category,
there are words indicating travelers disappointment. This class represents the hygiene factor
of the theory. So, some critical features such as smell, reception, and toilet are subject to
customer dissatisfaction. However, there are some critical characteristics that show both
classes. So, there are words that occur in both satisfaction and dissatisfaction reviews such as
staff, help-, comfort-, friendl-, etc. So, this class may be called effective motivators
since they can eliminate the dissatisfaction of the customer and create satisfaction at the same
time. So, the opposite situation may be called neutral effect (neither satisfaction nor
dissatisfaction). This explanation is summarized in Table 1. The corresponding words in this
study are shown in the Table 2.
8
Table 1. Proposed Extension of Theory of Motivation
Critical Words
Possible Outcomes
If They Occurred
If They Did Not
Occur
Hygiene
Factors
0
(not necessarily
satisfaction)
-
(creating
dissatisfaction)
Eliminating
dissatisfaction
Motivators
+
(creating
satisfaction)
0
(not necessarily
dissatisfaction)
Creating satisfaction
Effective
Motivators
+
(creating
satisfaction)
-
(creating
dissatisfaction)
Eliminating
dissatisfaction and
creating satisfaction at
the same time
Neutral
Effects
0
(neither satisfaction
nor dissatisfaction)
0
(neither satisfaction
nor dissatisfaction)
No outcome
Table 2. Summary of the Critical Words according to the Proposed Theory of Needs
Critical Words
Average Correlation
Coefficient with Travelers
Review Score
Hygiene Factors
smell, book-, nois-, reception,
toilet, shower, TV, polite, luggage,
sleep, pay-, wifi
-0.0993
Motivators
view, décor, breakfast, pool, food,
design, bus, tea
0.0537
Effective Motivators
staff, help, comfort-, friendl-,
clean-, service-, facilit-, bar, bed,
bathroom, money, towel, window
0.1283
4.2. Academic and Practical Implications
The average correlation coefficient with travelers review score is also indicated in the
last table. Accordingly, hygiene factors have an average correlation of -0.0993, meaning that
if dissatisfaction factors are not eliminated, this may be accompanied with a decrease in the
review score. On the other hand, if motivators are placed, customers comments may be
accompanied by an increase of 0.0537. In terms of effective motivators, their existence
accompanies an increase of 0.1283 in the customer reviews.
9
Moreover, these words can be grouped according to their functions. For instance,
toilet, shower, bathroom, and towel can be grouped as bath components. As these
characteristics are considered to be standard requirements by travelers, the problems
associated with them may cause dissatisfaction, but their existence is not a motivator. Another
class may be staff characteristics, including polite, help, and friendly.
In summary, the four categories presented in this research may be applied by
academicians for other sectors by using text-mining procedures explained in this study. The
features in the categories can reduce travelers dissatisfaction and improve their satisfaction.
This framework should be considered by hospitality marketing managers to enhance quality.
4.3. Limitations and Further Research
Even though this study provides some insights for extending Herzbergs motivation
theory into the hospitality sector, it has some limitations. As tourism destinations may affect
tourists visiting intention, the revealed words may differ according to different locations. In
addition, further studies may consider gender, travel types, and age to reveal the differences in
terms of traveler motivation.
References
Brachmann, R., Selfridge, P., Terveen, L., Altman, B., Borgida, A., Halper, F., et al. (1993).
Integrated Support for Data Archaeology. International Journal of Cooperative
Information Systems , 2 (2), 159-185.
Camiciottoli, B., Ranfagni, S., & Guercini, S. (2014). Exploring brand associations: an
innovative methodological approach. European Journal of Marketing , 48 (5/6), 1092-
1112.
Chan, J., & Baum, T. (2007). Researching Consumer Satisfaction: An Extension of
Herzberg’s Motivator and Hygiene Factor Theory. Journal of Travel & Tourism
Marketing , 23 (1), 71-83.
Choi, S., Lehto, X., & Morrison, A. (2007). Destination image representation on the web:
Content analysis of Macau travel related websites. Tourism Management , 28, 118-129.
Dawar, N. (2013). When marketing is strategy. Harvard Business Review , 91 (12), 101-108.
Dirsehan, T. (2015). An Application of Text Mining to Capture and Analyze eWOM: A Pilot
Study on Tourism Sector In: S. Rathore, & A. Panwar (2015), Capturing, Analyzing,
and Managing Word-of-Mouth in the Digital Marketplace (pp. 168-186). USA: IGI
Global.
Gu, H., & Ryan, C. (2008). Chinese clientele at Chinese hotelsPreferences and satisfaction.
International Journal of Hospitality Management , 27, 337-345.
Herzberg, F. (1975). Work and the nature of man. New York: T.Y. Crowell.
Herzberg, F., Mausner, B., & Snyderman, B. (1962). The motivation to work. New York: John
Wiley and Sons, Inc.
Hoontrakul, P., & Sahadev, S. (2008). Application of data mining techniques in the on-line travel
industry: A case study from Thailand. Marketing Intelligence & Planning, 26 (1), 60-76.
Joshi, A., & Giménez, E. (2014). Decision-driven marketing. Harvard Business Review , July-
August, 65-71.
Köktürk, M., & Dirsehan, T. (2012). Veri Madenciliği ile Pazarlama Etkileşimi (Interaction
between Data Mining and Marketing). Ankara: Nobel.
10
Laudon, K., & Laudon, J. (2014). Management Information Systems: Managing the Digital
Form (13th Global Edition b.). USA: Pearson Education Limited.
Lee, S., & Siau, K. (2001). A review of data mining techniques. Industrial Management &
Data Systems , 101 (1), 41-46.
Leong, E., Ewing, M., & Pitt, L. (2004). Analysing competitors’ online persuasive themes
with text mining. Marketing Intelligence & Planning , 187-200.
Liau, B., & Tan, P. (2014). Gaining customer knowledge in low cost airlines through text
mining. Industrial Management & Data Systems , 114 (9), 1344-1359.
Min, H., Min, H., & Emam, A. (2002). A data mining approach to developing the profiles of
hotel customers. International Journal of Contemporary Hospitality Management , 14
(6), 274-285.
Moon, S., Park, Y., & Kim, Y. (2014). The impact of text product reviews on sales. European
Journal of Marketing , 48 (11/12), 2176-2197.
Mostafa, M. (2013). More than words: Social networks’ text mining for consumer brand
sentiments. Expert Systems with Applications , 40, 4241-4251.
MSI (Marketing Science Institute). Big Data. http://www.msi.org/topics/big-data/ , date of
access: 29th August 2015.
MSI (no date). 2014-2016 Research Priorities. http://www.msi.org/uploads/files/MSI_RP14-
16.pdf , 1-16, date of access: 29th August 2015.
Reichheld, F. (1996). The Loyalty Effect. Boston, MA: Harvard Business School Press.
Rickman, T., & Cosenza, R. (2007). The changing digital dynamics of multichannel
marketing. Journal of Fashion Marketing and Management: An International Journal ,
11 (4), 604-621.
Solomon, M. (2009). Consumer Behavior: Buying, Having, and Being (8th International
Edition b.). New Jersey: Pearson Education Inc.
Stavrianou, A., Andritsos, P., & Nicoloyannis, N. (2007). Overview and Semantic Issues of
Text Mining. SIGMOD Record , 36 (3), 23-34.
Tepeci, M. (1999). Increasing brand loyalty in the hospitality industry. International Journal
of Contemporary Hospitality Management , 11 (5), 223-229.
Tsang, A., & Prendergast, G. (2009). Is a “star” worth a thousand words? European Journal
of Marketing , 43 (11/12), 1269-1280.
Tuten, T., & August, R. (1998). Understanding consumer satisfaction in services settings: a
bidimensional model of service strategies. Journal of Social Behavior and Psychology ,
13 (3), 553-564.
Wang, H., & Wang, S. (2008). A knowledge management approach to data mining process
for business intelligence. Industrial Management & Data Systems , 108 (5), 622-634.
Xiang, Z., Schwartz, Z., Gerdes, J., & Uysal, M. (2015). What can big data and text analytics
tell us about hotel guest experience and satisfaction? International Journal of
Hospitality Management , 44, 120-130.
Yan, X., Wang, J., & Chau, M. (2015). Customer revisit intention to restaurants: Evidence
from online reviews. Information Systems Frontiers , 17, 645-657.
11
Appendixes
Appendix 1. Critical Words Revealed by Text Mining from Travelers Reviews
Critical Words
Times They
Occurred in Positive
Comments
Times They
Occurred in Negative
Comments
Locat-
1963
135
Staff
1071
302
Help-
602
103
Friendl-
586
41
Clean-
533
217
Breakfast
480
547
Comfort-
448
70
Servic-
274
261
Bed
196
224
Pool
160
128
Restaurant
86
62
Food
93
89
Facilities
113
78
Price
108
130
Wifi
168
432
City
103
38
Shop
147
23
Metro
92
13
Bar
88
81
Money
86
71
Bathroom
81
214
Central
49
1
Reception
77
129
Bus
45
14
Parking
43
86
Polite
43
2
Design
41
18
Lobby
41
64
Décor
37
21
Park
36
7
Shower
58
161
Book-
36
161
Taxi
14
60
Pay
8
104
Nois-
17
125
Toilet
16
75
Sleep
16
58
Tea
23
57
TV
11
52
Luggage
17
48
View
210
64
Expens-
17
164
12
Appendix 1 (continued).
Critical Words
Times Occurred in
the Positive
Comments
Times Occurred in
the Negative
Comments
Window
34
114
Smell
11
100
Towel
18
97
Appendix 2. Significant Correlation Scores between Word Occurrences in the Positive
Reviews and Travelers Review Score
Word Occurrences in the
Positive Reviews
Pearson Correlation Coefficient
(with Travelers Review Score)
Sig.
staff
.239**
.000
help-
.139**
.000
comfort
.125**
.000
friendl-
.118**
.000
clean-
.104**
.000
service-
.100**
.000
view
.079**
.000
facilit-
.068**
.000
bar
.068**
.000
decor
.060**
.000
bed
.052**
.001
breakfast
.050**
.001
pool
.050**
.003
bathroom
.049**
.002
food
.047**
.003
design
.047**
.003
bus
.043**
.006
money
.039*
.014
towel
.038*
.017
window
.037*
.018
tea
.033*
.036
*significant at the p<.05
**significant at the p<.01
13
Appendix 3. Significant Correlation Scores between Word Occurrences in the Negative
Reviews and Travelers Review Score
Word Occurrences in the
Negative Reviews
Pearson Correlation Coefficient
(with Travelers Review Score)
Sig.
clean-
-.187**
.000
staff
-.184**
.000
smell
-.124**
.000
bed
-.122**
.000
service-
-.108**
.000
book-
-.108**
.000
friendl-
-.102**
.000
nois-
-.100**
.000
reception
-.097**
.000
toilet
-.092**
.000
bathroom
-.089**
.000
money
-.085**
.000
towel
-.084**
.000
shower
-.075**
.000
TV
-.073**
.000
polite
-.062**
.000
comfort-
-.058**
.000
help-
-.053**
.001
luggage
-.053**
.001
window
-.053**
.001
sleep
-.049**
.002
bar
-.044**
.005
facilit-
-.042**
.008
pay-
-.039*
.012
wifi
-.031*
.048
*significant at the p<,05
**significant at the p<,01
... In today's information age, customers can be heard via their comments on travel websites that provide big data (Dirsehan, 2016). IBM's 2012 Big Data @ Work Survey of 1144 professionals found that 63 percent of respondents reported that the use of information including big data and analytics is creating a competitive advantage for their organizations (Kaplan, 2013). ...
... Data that can be extracted from Booking.com include: traveler's name (if provided), traveler's nationality, travel type, traveler's gender (if provided), traveler's age (if provided), comment dates, traveler's review scores, travelers' positive comments, traveler's negative comments, names of the hotels to be reviewed, hotel stars, and hotel's total review scores (Dirsehan, 2016). ...
Article
Full-text available
Emotional intelligence is regarded to be one of the most significant competencies for achieving the desired success in hotel enterprises where interaction between people is intense. Besides, it is thought that emotional intelligence competencies can contribute to increase employees’ job performance. For this purpose, this study is mainly focused on researching the relationship between employees’ emotional intelligence levels and their job performance. In the study, quantitative research methods are used and 415 employees of 29 five star hotels in the Alanya region are involved. The study results suggest that there is statistically significant relationship between employees’ emotional intelligence levels and their job performance, and employees have high levels of emotional intelligence and job performance. Additionally, it is seen that employees’ emotional intelligence and job performance levels differ significantly based on various demographic characteristics.
... Beberapa tahun terakhir, telah banyak dilakukan penelitian terkait dengan analisis review, diantaranya: Meskipun jumlah penelitian tentang aplikasi text mining mengalami peningkatan, dalam pemasaran, namun masih ada kesenjangan penelitian mengenai preferensi penilaian pelanggan melalui prosedur text mining (Dirsehan, 2016). Sampai saat ini telah banyak metode yang digunakan untuk mendapatkan akurasi tertinggi dalam penelitian bidang text mining. ...
Article
At this time the freedom to express opinions in oral and written forms about everything is very easy. This activity can be used to make decisions by some business people. Especially by service providers, such as hotels. This will be very useful in the development of the hotel business itself. But the review data must be processed using the right algorithm. So this study was conducted to find out which algorithms are more feasible to use to get the highest accuracy. The methods used are Naïve Bayes (NB), Support Vector Machine (SVM), and k-Nearest Neighbor (k-NN). From the process that has been done, the results of Naïve Bayes accuracy are 71.50% with the AUC value is 0.500, Support Vector Machine is 72.50% with the AUC value is 0.936 and the accuracy results if using the k-Nearest Neighbor algorithm is 75.00% with the AUC value is 0.500. The use of the k-Nearest Neighbor algorithm can help in making more appropriate decisions for hotel reviews at this time.
Chapter
Full-text available
Marketing concept has progressed through different phases of evolution in the past. At the moment, customer relationship management is considered as the last era of marketing development. The main purpose of this approach is to build long-term oriented profitable relationships with customers. So, companies should know better their customers. This knowledge can be created through a deeper analysis of companies' data with data mining tools. Companies which are able to use data mining tools will gain strong competitive advantages for their strategic decisions. Hotel industry is selected in this study, since it provides a warehouse of customer comments from which precious knowledge can be obtained if text mining as a data mining tool is used appropriately. Thus, this study attempts to explain the stages of text mining with the use of Rapidminer. As a result, different approaches according to the customer satisfaction/dissatisfaction are discussed to build competitive advantages.
Article
Full-text available
Purpose – This research theorizes and demonstrates that analyzing consumers’ text product reviews using text mining can enhance the explanatory power of a product sales model, particularly for hedonic products, which tend to generate emotional and subjective product evaluations. Previous research in this area has been more focused on utilitarian products. Design/methodology/approach – Our text clustering-based procedure segments text reviews into multiple clusters in association with consumers’ numeric ratings to address consumer heterogeneity in taste preferences and quality valuations and the J-distribution of numeric product ratings. This approach is novel in terms of combining text clustering with numeric product ratings to address consumers’ subjective product evaluations. Findings – Using the movie industry as our empirical application, we find that our approach of making use of product text reviews can improve the explanatory power and predictive validity of the box-office sales model. Research limitation/implications – Marketing scholars have actively investigated the impact of consumers’ online product reviews on product sales, primarily focusing on consumers’ numeric product ratings. Recently, studies have also examined user-generated content. Similarly, this study looks into users’ textual product reviews to explain product sales. It remains to be seen how generalizable our empirical results are beyond our movie application. Practical implications – Whereas numeric ratings can indicate how much viewers liked products, consumers’ reviews can convey why viewers liked or disliked them. Therefore, our review analysis can help marketers understand what factors make new products succeed or fail. Originality/value – Primarily our approach is suitable to products subjectively evaluated, mostly, hedonic products. In doing so, we consider consumer heterogeneity contained in reviews through our review clusters based on their divergent impacts on sales.
Article
Full-text available
One of the generally recognized marketing principles is that retaining customers is more profitable than winning prospective customers. Therefore, how to retain existing customers and improve their repeat purchases is an important consideration for practitioners to gain profit. The purpose of this study is to investigate factors influencing customer revisit intention to restaurants by analyzing online reviews. We used regression analysis to analyze quantitative scores of 10,136 restaurant reviews collected from an online life community in China, and found that food quality, price and value, service quality, and atmosphere are the antecedents of restaurant customers’ revisit intention, and that restaurant type moderates the effect of customer satisfaction with service quality, atmosphere, and price and value on revisit intention. We also used text mining technology to identify detailed evaluation indicators in each dimension and explore customers’ evaluation behavior characteristics. We found that food quality and, price and value have four indicators while service quality and atmosphere have two indicators. The results are useful for restaurant operators to take effective actions to attract more customers to revisit.
Article
Using Herzberg's Two Factor Theory, a framework is presented to explain consumer reactions of dissatisfaction and satisfaction to service strategies. Hygiene factors describe characteristics in an individual's environment such as working conditions and company policies. Motivation factors relate directly to an activity, and include opportunities for self-expression and meaningful experiences. The Bidimensional Model of Service Strategies applies Herzberg's model to services and proposes that services can be characterized by four combinations of hygiene and motivation factors. Organizations offering both hygiene factors and motivation factors will be most successful in maximizing customer satisfaction while also minimizing customer dissatisfaction.
Article
Industrial Management & Data Systems Vol. 114 No. 9, 2014 pp. 1344-1359 r Emerald Group Publishing Limited 0263-5577 DOI 10.1108/IMDS-07-2014-0225 Purpose – The purpose of this paper is to study the consumer opinion towards the low-cost airlines or low-cost carriers (LCCs) (these two terms are used interchangeably) industry in Malaysia to better understand consumers’ needs and to provide better services. Sentiment analysis is undertaken in revealing current customers’ satisfaction level towards low-cost airlines. Design/methodology/approach – About 10,895 tweets (data collected for two and a half months) are analysed. Text mining techniques are used during data pre-processing and a mixture of statistical techniques are used to segment the customers’ opinion. Findings – The results with two different sentiment algorithms show that there is more positive than negative polarity across the different algorithms. Clustering results show that both K-Means and spherical K-Means algorithms delivered similar results and the four main topics that are discussed by the consumers on Twitter are customer service, LCCs tickets promotions, flight cancellations and delays and post-booking management. Practical implications – Gaining knowledge of customer sentiments as well as improvements on the four main topics discussed in this study, i.e. customer service, LCCs tickets promotions, flight cancellations or delays and post-booking management will help LCCs to attract more customers and generate more profits. Originality/value – This paper provides useful insights on customers’ sentiments and opinions towards LCCs by utilizing social media information. Keywords Customer relationship management, Malaysia, Clustering, Airlines, Sentiment analysis, Text mining