Article

Chemical Composition of the 1951-lavas of Oshima Volcano, Seven Izu Islands, Japan.

Authors:
To read the full-text of this research, you can request a copy directly from the authors.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

Article
Systematic analyses of the major-element chemistry of products of several eruptions during syn-and post-caldera stages of Izu-Oshima volcano were compiled. Comparisons of the products of large-scale eruptions in 1338?, 1421? and 1777–1778, of intermediate-scale eruptions in 1950–1951 and 1986, and of small-scale eruptions in 1954, 1964 and 1974 clearly show the existence of two types of magmas. One is plagioclase-controlled and the other is differentiated magma (multimineral-controlled); i.e. the bulk chemistry of the first magma type is controlled by plagioclase addition or removal, while that of the second type is controlled by fractionation of plagioclase, orthopyroxene, clinopyroxene, and titanomagnetite. Eruptions of Izu-Oshima volcano have occurred at the summit and along the flanks. Summit eruptions tap only plagioclase-controlled magmas, while flank eruptions supply both magma types. It is considered unlikely that both magma types would coexist in the same magma chamber based on the petrology. In the case of the 1986 eruption, the flank magma was isolated sometime in the past from the summit magma chamber or central conduit, and formed small magma pockets, where further differentiation occurred due to relatively rapid cooling. In a period of quiescence prior to the 1986 eruption, new magma was supplied to the summit magma chamber, and the summit eruption began. The dike intrusion or fracturing around the small magma pockets triggered the flank eruption of the differentiated magma. This model can be applied to the large-scale flank eruption in 1338(?) which erupted differentiated magmas. In 1421(?), the flank eruption tapped plagioclase-controlled magma. In this case, the isolated magmas from the summit magma chamber directly penetrated the flank without differentiation.
ResearchGate has not been able to resolve any references for this publication.