Article

The effect of a low-frequency electromagnetic field on DNA molecules in aqueous solutions

Authors:
To read the full-text of this research, you can request a copy directly from the authors.

Abstract

A chemiluminescence study showed that hepatitis B virus (HBV) and hepatitis C virus (HCV) DNA amplicons are capable of induced radiation when exposed to electromagnetic fields (EMFs) that range from 7.5 to 30 Hz in frequency and from 24 to 40 A/m in field strength. An EMF with a frequency of 9 Hz was shown to exert the greatest effect on aqueous solutions of the hepatitis virus DNA amplicons. The hydration shell of the DNA amplicons was observed to change. The change in the DNA hydration shell on exposure to a low-frequency EMF was presumed to restore hydrogen bonds, to induce crosslinks, and to facilitate DNA repair.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

... Authors of one study [13] established that long-range charge transfer within DNA molecule and photon emission during molecular excitation of DNA are possible. A low-frequency EMF exposure is used to change the rate of some of important biochemical processes: repair of DNA elements with evident somatic mutations, generation of reactive oxygen species by neutrophils, change in cytokine levels etc. [3,[14][15]. A well-known manifestation of a cellular stress reaction is damage to biologically significant molecules, DNA first of all. ...
... A well-known manifestation of a cellular stress reaction is damage to biologically significant molecules, DNA first of all. In one article [14] an opinion is presented that changes in DNA hydration shell under the influence of specific low-frequency EMF exposure leads to the restoration of hydrogen bonds, bridging and DNA repair as a whole. ...
... It is reported that peaks in the 535, 635 and 1270 nm wavelengths confirm that there is singlet oxygen in the studied solution, which emits photons of light during the transition into a basic triplet state. This conforms with the opinion stated in some papers [14,15] in which it is said that one of the reasons for a changed chemiluminescence of DNA aqueous solutions under the lowfrequency EMF influence could be the production of reactive oxygen species in water. In one article [21] it is said about doubleand single-stranded breaks in DNA solutions which occur under the influence of peroxide radicals and low-frequency EMF exposure [22]. ...
... On the other hand, in recent decades, extremely low-frequency MFs have occupied a special place in medical research, especially in the field of cancer treatment and in combination with chemotherapeutic drugs and pain relief [29,30]. It is assumed that the rate of diffusion through biological membranes, the orientation and conformation of biological macromolecules, and the concentration of free radicals can all change under the action of MFs [22,31,32]. In neurophysiology, transcranial magnetic stimulation (TMS)-technology that stimulates the brain and cortical neurons using alternating magnetic fields-is increasingly being used [33]. ...
Article
Full-text available
Background The production of reactive oxygen species (ROS) in animals and cells often results from exposure to low-intensity factors, including magnetic fields. Much of the discussion about the initiation of oxidative stress and the role of ROS and radicals in the effects of magnetic fields has centered on radical-induced DNA damage. Methods The DNA concentration in the final solution was determined spectrophotometrically. Typing of the polymorphic variant rs1052133 of the 8-oxoguanin DNA glycosylase (hOGG1) gene was performed by polymerase chain reaction. An enzyme immunoassay was performed to determine the level of 8-oxyguanine in DNA. To process samples exposed to an alternating magnetic field, the authors developed a device for the automated study of biological fluids in an alternating magnetic field. The content of hydrogen peroxide in aqueous solutions of DNA was determined using the spectrophotometric method. Results It was experimentally determined that an increase in the concentration of hydrogen peroxide in an aqueous medium by 3–5 times under the action of a low-frequency magnetic field reduces the resistance of the genomic material to oxidative modification and the accumulation of 8-oxyguanine in DNA. A model is proposed for the mechanism of action of a low-frequency magnetic field on aqueous solutions of nucleic acids and proteins, which satisfies the model of a chemical oscillator for the transformations of reactive oxygen species in an aqueous medium. The model illustrates the oscillating nature of the processes occurring in an aqueous solution of DNA and makes it possible to predict changes in the concentration of hydrogen peroxide in an aqueous solution of biopolymers, depending on the frequency of the acting low-intensity magnetic field. Conclusions The key element in the mechanisms involved in the effects of low-intensity magnetic field on living systems is the occurrence of ROS generation in the aquatic environment of chemical oscillators, in which the competition of physical and chemical processes (electron transfers, reactions of decay and addition of radicals, spin magnetically induced conversion, synthesis, and decay of the longest-lived form—hydrogen peroxide) is controlled by a magnetic field.
... Lain halnya dengan medan listrik, medan magnet ELF sulit dilemahkan oleh bahan bangunan atau bahan lainnya. Medan magnet ELF dapat menembus dinding hampir tanpa gangguan (Jiao et al., 2019;Tekutskaya, Barishev, & Ilchenko, 2015). Hal ini menunjukkan bahwa sumber medan magnet ELF eksternal seperti saluran listrik dan sumber tegangan di sekitar manusia mungkin memiliki pengaruh yang signifikan terhadap sistem biologi. ...
Article
Full-text available
Kekhawatiran masyarakat mengenai dampak negatif yang ditimbulkan dari paparan radiasi elektromagnetik ini masih terus diteliti hingga saat ini. Oleh karena itu, sangat perlu dilakukan suatu studi penelitian untuk mengukur dan memetakan tingkat radiasi elektromagnetik dengan tujuan menganalisis potensi risiko yang terjadi. Paparan radiasi elektromagnetik diukur menggunakan electromagnetic field tester, kemudian hasilnya dibandingkan dengan pedoman keselamatan yang dikeluarkan oleh ICNIRP dan WHO. Hasil yang diperoleh bahwa tingkat paparan radiasi yang diukur dalam satuan mikrotesla di 29 titik lokasi di Universitas PGRI Yogyakarta jauh di bawah pedoman ICNIRP untuk lingkungan pendidikan dan kerja. Nilai medan magnet terukur tertinggi adalah 132,46 µT, sedangkan nilai medan magnet terukur terendah adalah 1,436 µT. Medan magnet diatas 0,3 hingga 0,4 µT dapat meningkatkan risiko leukimia dalam jangka panjang. Penelitian ini telah menghasilkan informasi yang bermanfaat sebagai dasar pengambilan kebijakan kesehatan di lingkungan kampus Universitas PGRI Yogyakarta
Article
The content of damaged 8-hydroxy-2-deoxyguanosine nitrogenous bases in the blood DNA of healthy donors and patients with epidermolysis bullosa after exposure to an alternating magnetic field of 550 ± 30 A/m in the frequency range from 3 to 60 Hz in vitro was determined using an enzyme immunoassay. The degree of oxidative DNA damage in epidermolysis bullosa was almost twice as high as in healthy donors. It was shown that there was a significant increase in the level of 8-oxoguanine in the DNA of both groups after the magnetic field treatment, which depended in a complex way on the frequency. The resulting effect is explained by the generation of reactive oxygen species under the influence of a magnetic field and the disruption of DNA repair processes.
Article
In this paper, we discuss experimental data obtained during study of the effect of a low-frequency alternating magnetic field on the conformational transitions of human serum albumin in the presence of silver nanoparticles using fluorescence spectroscopy at different pH values. A sharp increase in the albumin fluorescence intensity was detected in the presence of silver nanoparticles; this effect changed when exposed to a low-frequency alternating magnetic field. The resulting calculation formula for cross section of light scattering by a spherical nanoparticle of a certain radius allows calculation of the sizes of nano-microstructures based on nanoparticles and natural biopolymers of the “core–shell” type, whose physicochemical properties can be controlled by a magnetic field. The proposed model for the formation of protein–nanoparticle associates in the solution by the dipole–dipole mechanism is in good agreement with the experimental data.
Article
Increase of electromagnetic radiations level in the human environment is connected with the accelerated rates of information and communication development. At the same time, ability of peripheral blood lymphocytes of the irradiated persons to the adaptive response in long date after radiation allows to consider them as a biological marker of a functional status of these cells. The quantity of DNA single-strand breaks in peripheral blood lymphocytes affected by various physical factors: the microwave oven - gamma and laser radiation, and after lymphocytes incubating in the environment containing silver nanoparticles was defined by means of fluorescent spectroscopy. It is shown that with increase in microwave radiation frequency DNA quantity in lymphocytes increases in comparison with control samples: under the influence of radiation with a frequency of 3,5 GHz at 32,3 ± 0,9 %, with a frequency of 50 GHz at 40,1 ± 1,1 %, with a frequency of 70 GHz at 49,8 ± 0,7 %. Affection of 137Cs gamma rays preparation with 0,104 MBK activity induces dose-related increase of DNA single-strand breaks. Quantity increase of DNA single-strand breaks is observed after laser irradiation at the wavelength of 510,6 nm to 18,1 ± 0,7 % (irradiation time - 3 min) and to 6,1 ± 0,5 % (irradiation time -5 min), at the wavelength of 578,2 nm to 18,1 ± 0,7 % (irradiation time - 3 min) and to 22,3 ± 0,9 % (irradiation time - 5 min). DNA single-strand breaks quantity measurements after lymphocytes incubation in the normal saline containing silver nanoparticles showed that in the studied range of silver nanoparticles concentration with the diameter of 12 nm ± 10%(1,863 - 0,621 mkg/l) occur structural failure of DNA molecules. On the basis of the obtained data the conclusion has been made that DNA single-strand breaks count in the immune competent cells can become a tool for research of physical factors influence on a human body.
Article
Full-text available
The enhancement of lipid peroxidation in neutrophils (the content of malonic dialdehyde increased by 10.2%) has been shown after a 1-h exposure to a combined constant (42 μT) magnetic field and a weak low-frequency magnetic field (1.0, 4.4, and 16.5 Hz; 860 nT) collinear to it. No correlation was found between this effect and the process of functional pre-activation (priming) of neutrophils as a result of the combined action of magnetic fields detected by chemiluminescence enhancement in response to the introduction of the bacterial peptide N-formyl–Met–Leu–Phe in the presence of luminol, since ionol (10 μM), an inhibitor of lipid peroxidation, did not reduce the neutrophil priming index in this case. Preliminary addition of histidine (0.1 and 1.0 mM), a singlet oxygen scavenger, also did not decrease the priming index. A myeloperoxidase inhibitor, sodium azide (0.1 mM), exerted a significant inhibitory effect on the chemiluminescence intensity of the neutrophil suspension; priming did not develop in the presence of this inhibitor after the action of combined magnetic fields.
Article
Full-text available
In this paper, we analyzed spectra of liquid water and water solutions in a frequency domain, characteristic of the collective dynamics of water molecules (from 0 to 200 cm−1). Particular attention is paid to the relaxation processes, one of which is observed in the terahertz region of the spectrum (∼5–50 cm−1). The physical essence of this process at the molecular level is still unclear. Based on data obtained this process is strongly suggested to interpret as a monomolecular relaxation of unbound water molecules.
Article
Full-text available
Four-photon coherent scattering of laser radiation was used to study the influence of DNA on the content of quasi-free ortho and para isomers of water molecules in its aqueous solution. It was shown that the concentration of quasi-free molecules that form the rotational spectrum of spin isomers increases considerably in the hydration shell of the DNA molecule as compared with pure water. The increase in the concentration of spin isomers occurs disproportionally. In the presence of DNA, the intensity of the rotational spectrum of ortho isomers is on the average much greater than that of para isomers. It was also demonstrated that the character of hydration and the ortho/para ratio change noticeably upon DNA denaturation, which may be evidence of changes in preferable solvation of DNA during its denaturation. The data obtained allowed us to assume that the stability of different biologically important states of macromolecules can be changed by varying the relative concentration of water spin isomers in solution.
Article
Full-text available
A number of effects of weak combined (static and alternating) magnetic fields with an alternating component of tens and hundreds nT at a collinear static field of 42 μT, which is equivalent to the geomagnetic field, have been found: activation of fission and regeneration of planarians Dugesia tigrina, inhibition of the growth of the Ehrlich ascites carcinoma in mice, stimulation of the production of the tumor necrosis factor by macrophages, decrease in the protection of chromatin against the action of DNase 1, and enhancement of protein hydrolysis in systems in vivo and in vitro. The frequency and amplitude ranges for the alternating component of weak combined magnetic fields have been determined at which it affects various biological systems. Thus, the optimal amplitude at a frequency of 4.4 Hz is 100 nT (effective value); at a frequency of 16.5 Hz, the range of effective amplitudes is broader, 150–300 nT; and at a frequency of 1 (0.5) Hz, it is 300 nT. The sum of close frequencies (e.g., 16 and 17 Hz) produces a similar biological effect as the product of the modulating (0.5 Hz) and carrying frequencies (16.5 Hz), which is explained by the ratio A = A 0sinω1t + A 0sinω2t = 2A 0sin(ω1 + ω2)t/2cos(ω1–ω2)t/2. The efficiency of magnetic signals with pulsations (the sum of close frequencies) is more pronounced than that of sinusoidal frequencies. These data may indicate the presence of several receptors of weak magnetic fields in biological systems and, as a consequence, a higher efficiency of the effect at the simultaneous adjustment to these frequencies by the field. Even with consideration of these facts, the mechanism of the biological action of weak combined magnetic fields remains still poorly understood.
Article
Full-text available
A novel property of DNA is described: the capacity of some bacterial DNA sequences to induce electromagnetic waves at high aqueous dilutions. It appears to be a resonance phenomenon triggered by the ambient electromagnetic background of very low frequency waves. The genomic DNA of most pathogenic bacteria contains sequences which are able to generate such signals. This opens the way to the development of highly sensitive detection system for chronic bacterial infections in human and animal diseases.
Article
A major concern of the adverse effects of exposure to non-ionizing electromagnetic field (EMF) is cancer induction. Since the majority of cancers are initiated by damage to a cell's genome, studies have been carried out to investigate the effects of electromagnetic fields on DNA and chromosomal structure. Additionally, DNA damage can lead to changes in cellular functions and cell death. Single cell gel electrophoresis, also known as the 'comet assay', has been widely used in EMF research to determine DNA damage, reflected as single-strand breaks, double-strand breaks, and crosslinks. Studies have also been carried out to investigate chromosomal conformational changes and micronucleus formation in cells after exposure to EMF. This review describes the comet assay and its utility to qualitatively and quantitatively assess DNA damage, reviews studies that have investigated DNA strand breaks and other changes in DNA structure, and then discusses important lessons learned from our work in this area.