ArticlePDF Available

Erratum: Building Information Modeling (BIM) for existing buildings - Literature review and future needs (Automation in Construction (2014) 38 (109-127))

Authors:
Corrigendum
Corrigendum to <Building Information Modeling (BIM) for
existing buildings - literature review and future needs>
<[AUTCON 38C (2014) 109127]>
<Rebekka Volk*, Julian Stengel, Frank Schultmann>
<Institute for Industrial Production (IIP), Karlsruhe Institute of
Technology (KIT), Hertzstraße 16, 76131 Karlsruhe, Germany>
The authors regret that citation [241] was wrongly cited. Names and surnames were mistaken.
Instead of
K. Hannele, M. Reijo, M. Tarja, P. Sami, K. Jenni, R. Teija, Expanding uses of building
information modeling in life-cycle construction projects, Work J. Prev. Assess. Rehab. 41
(2012) 114119.
it should be:
Kerosuo, H. Miettinen, R. Mäki, T. Paavola, S. Korpela, J. & Rantala, T.
Expanding uses of building information modeling in life-cycle construction projects,
Work J. Prev. Assess.Rehab. 41 (2012) 114119.
Furthermore, we would like to indicate that due to a fast publication process, there are still
wrongly highlighted yellow lines in Table 4 on page 116 which we asked to delete
before publication.
We would really appreciate if these two adjustments could be carried out in the course
of this corrigendum. The authors would like to apologise for any inconvenience caused.
____________________________
DOI of original article: < 10.1016/j.autcon.2013.10.023>
<Rebekka VOLK>
<rebekka.volk@kit.edu>
... Екологічні аспекти BIM також знаходять відображення у багатьох дослідженнях. Використання технології дозволяє зменшити кількість відходів та оптимізувати використання ресурсів, що сприяє сталому розвитку [6]. ...
Article
Сучасна будівельна галузь перебуває в постійному пошуку інноваційних рішень, які дозволяють підвищити ефективність процесів, зменшити витрати та забезпечити високу якість кінцевого продукту. Однією з таких революційних технологій є BIM (Building Information Modeling) – методика створення й управління цифровими моделями будівель на всіх етапах їхнього життєвого циклу. BIM-технології пропонують новий підхід до проектування, будівництва та експлуатації об'єктів, замінюючи застарілі паперові документи інтерактивними цифровими моделями. Це дає змогу не лише скоротити часові та матеріальні витрати, але й мінімізувати помилки, покращити координацію між учасниками проекту та підвищити прозорість управління. Основна перевага BIM полягає у створенні єдиної інтегрованої моделі, що містить всю необхідну інформацію про об’єкт – від креслень і специфікацій до детальних графіків будівництва. Кожен учасник проєкту, від архітекторів до підрядників, має доступ до актуальних даних, що значно спрощує прийняття рішень і зменшує ризик виникнення помилок через неузгодженість інформації. Впровадження BIM також змінює підходи до експлуатації об’єктів. Інформація, накопичена в цифровій моделі, може бути використана для моніторингу стану будівлі, планування ремонтів та управління об’єктом протягом усього його життєвого циклу. Це забезпечує довгострокову економію коштів і дозволяє власникам об'єктів приймати більш обґрунтовані рішення. Таким чином, BIM-технології є потужним інструментом для оптимізації витрат і впровадження сталих інновацій у будівництві. Їхній потенціал дозволяє не лише підвищити конкурентоспроможність компаній, але й зробити значний внесок у розвиток екологічно свідомої та ефективної будівельної індустрії.
... BIM atau Building Information Modelling adalah suatu sistem atau teknologi yang mencakup beberapa Informasi penting dalam proses Design, Construction, Maintenance yang terintegrasi pada pemodelan 3D (Dinas PUPR, 2020). Dalam beberapa dekade terakhir, terdapat minat yang semakin besar pada sektor konstruksi untuk menggunakan BIM dalam desain gedungnya karena banyaknya manfaat seperti penghematan sumber daya selama proses desain, perencanaan, dan konstruksi bangunan baru (Volk et al., 2014) ...
Article
Pengaruh digitalisasi dalam industri memberikan kesempatan yang lebih besar dan luas dalam mencari desain konstruksi modern yang inovatif dan berkelanjutan. Building Information Modeling (BIM) merupakan perkembangan digital yang berdampak besar dalam sektor industri Architecture, Engineering, and Construction (AEC).Penelitian ini mengimplementasikann Building Information Modelling (BIM) di dalam pengerjaannya. Objek model berdasarkan data pada Proyek Pembangunan Jembatan Kali Pasir Ruas Jalan Desa Tanjung Tirto–Desa Kalipasir, Lampung Timur. Tujuan penelitian adalah untuk mengetahui selisih perhitungan volume quantity take off metode konvensional dengan volume quantity take off outputsoftware Autodesk Revit 2024 student version. Metode penelitian yang digunakan berupa pemodelan struktur 3D menggunakan software Autodesk Revit yang berfokus pada bagian rebar jembatan. Setelah bagian jembatan selesai dimodelkan, output quantity take off berdasarkan software akan dianalisis lebih lanjut melalui Microsoft Excel. Hasilnya, didapat persentase selisih perbandingan antara metode konvensional dan metode berbasis BIM sebesar 4,04 % untuk tulangan. Diperoleh total volume tulangan sebesar 20592,14 kg dari metode berbasis BIM, sebesar 19759,5 kg dengan metode konvensional yang menghasilkanselisih sebesar 832,64 kg.
Article
Full-text available
Documenting an architectural work provides information that serves as a basis for decisionmaking regarding the preservation of the work. The main issue is the presentation and storage of documents for understanding the existing conditions and the evolutionary process of its physical structure. Therefore, documentation, recording, and preservation of documents play an influential role in how the work is preserved. In traditional methods of surveying and producing documents, a lot of time was spent. Also, there was no proper archive for storing and identifying documents. The introduction of Building Information Modeling (BIM) technology in the construction industry created a revolution and made it possible to build an accurate virtual model of a building with the aim of storing construction information throughout its entire life cycle.The use of this technology in documenting historical buildings has been introduced with the acronym HBIM. Today, the question is to what extent can the information obtained from documenting historical buildings be modeled, stored, and updated using HBIM technology? Studies show that HBIM technology provides a new model for modeling architectural heritage, which utilizes terrestrial laser scanning and photogrammetry for surveying and data collection. This new method has been introduced with the aim of creating intelligent models and attaching documents with update capabilities. For this purpose, the modeling process from surveying to attaching information to the components of architectural heritage, which has been implemented on the Second Courtyard Mosque of Ribat-i Sharaf, has been described to demonstrate the efficiency of the method for preparing an accurate virtual 3D model of architectural heritage; also, by attaching study documents related to each component, it increases the richness of the documentation performed and provides an environment for feasibility studies and building virtual models before execution
Article
Full-text available
Building Information Modeling (BIM) has emerged as a transformative force in the construction industry, offering a multidimensional, collaborative platform that integrates planning, design, construction, and facility management. This paper explores the role of BIM in reducing life cycle costs (LCC) by optimizing time and cost throughout all phases of a building’s life. The study focuses on practical applications of BIM tools such as Autodesk Revit, Navisworks, and CostX to demonstrate how they contribute to improved cost estimation accuracy, clash detection, 4D scheduling, and 5D cost modeling. Using comparative analysis with traditional methods, and a case study based on a 2BHK residential unit, the research illustrates significant reductions in construction time, material waste, and financial overruns. The paper also examines the sustainability benefits of BIM, its integration with AI and digital twins, and policy recommendations to improve its adoption. Findings confirm that BIM is a crucial technology for achieving financial efficiency, sustainability, and productivity in construction, and that it should be considered an industry standard for future-ready infrastructure development.
Article
Full-text available
Building Information Modeling (BIM) has emerged as a transformative force in the construction industry, offering a multidimensional, collaborative platform that integrates planning, design, construction, and facility management. This paper explores the role of BIM in reducing life cycle costs (LCC) by optimizing time and cost throughout all phases of a building’s life. The study focuses on practical applications of BIM tools such as Autodesk Revit, Navisworks, and CostX to demonstrate how they contribute to improved cost estimation accuracy, clash detection, 4D scheduling, and 5D cost modeling. Using comparative analysis with traditional methods, and a case study based on a 2BHK residential unit, the research illustrates significant reductions in construction time, material waste, and financial overruns. The paper also examines the sustainability benefits of BIM, its integration with AI and digital twins, and policy recommendations to improve its adoption. Findings confirm that BIM is a crucial technology for achieving financial efficiency, sustainability, and productivity in construction, and that it should be considered an industry standard for future-ready infrastructure development.
Article
Full-text available
Building Condition Auditing (BCA) is essential for maintaining the integrity and performance of commercial properties, yet traditional auditing methods often suffer from ambiguity and lack of clarity in reporting. This project explores the integration of AI-driven analytics into BCA processes to enhance auditability and reduce ambiguity. By leveraging advanced technologies such as machine learning and data analytics, the study aims to create a framework that improves the accuracy and reliability of building assessments. The research begins with a comprehensive literature review of current BCA practices and the emerging role of AI in asset management. It identifies key limitations in traditional methods, highlighting the need for innovative solutions. A mixed-methods approach is employed, combining qualitative interviews with industry stakeholders and quantitative analysis of case studies where AI tools have been implemented. Through the development and application of an AI-driven analytics framework, the project evaluates its impact on audit results, focusing on improvements in data clarity and decision-making processes. Case studies demonstrate significant enhancements in auditability, with AI-driven tools providing more precise insights into building conditions and maintenance needs. The findings reveal that integrating AI into BCA not only increases operational efficiency but also fosters greater transparency in reporting, ultimately leading to better asset management
Article
Full-text available
The landscape of Building Condition Auditing (BCA) is rapidly evolving, driven by advancements in artificial intelligence (AI) and technology. This paper explores the future of BCA, emphasizing the transformative potential of AI-driven approaches to enhance auditability and improve decision-making in asset maintenance, particularly within the context of Australian commercial buildings. Traditional auditing methods often face challenges such as ambiguity in assessments, time-consuming processes, and a lack of standardization. By integrating AI technologies-such as predictive analytics, image recognition, and advanced data analysis-audits can achieve greater accuracy and reliability, thereby streamlining the auditing process and reducing ambiguities. This study examines how AI can provide proactive maintenance strategies through real-time monitoring and reporting capabilities, enabling facilities managers to forecast maintenance needs more effectively. Additionally, the paper discusses the potential challenges associated with AI integration, including data privacy concerns, cost implications, and the necessity for workforce training. Furthermore, it highlights emerging trends, such as the convergence of AI with the Internet of Things (IoT), which promises to further revolutionize BCA practices. Ultimately, this paper argues that embracing AI in BCA is essential for enhancing operational efficiency and ensuring optimal asset management in the commercial real estate sector.
Article
Full-text available
The integration of Artificial Intelligence (AI) into building condition assessments represents a transformative shift in the way organizations evaluate and manage their assets. Traditional assessment methods, often reliant on manual inspections and subjective evaluations, are time-consuming and prone to human error, leading to inconsistencies and inefficiencies. This paper explores the role of AI in automating building condition assessments, highlighting its potential to enhance both efficiency and accuracy in the evaluation process. AI technologies such as machine learning, computer vision, and natural language processing are revolutionizing the assessment landscape by enabling rapid data collection and analysis. Through automated image analysis, predictive analytics, and streamlined reporting systems, AI significantly reduces the time required for assessments and optimizes resource allocation, resulting in cost savings and improved operational efficiency. Moreover, AI enhances the accuracy of building condition assessments by standardizing data collection methods and minimizing human error. By leveraging predictive capabilities, organizations can detect issues early, facilitating proactive maintenance decisions and extending asset lifespans. This paper presents case studies demonstrating successful AI implementation in various industries, showcasing quantifiable improvements in both efficiency and accuracy. Additionally, it discusses future trends in AI technology and its integration with Internet of
Article
Full-text available
Effective asset maintenance reporting is crucial for the successful management of commercial buildings, yet ambiguity in reporting can lead to misinterpretations, inefficient decision-making, and increased operational costs. This study explores the strategies for reducing ambiguity in asset maintenance reporting, focusing on best practices and methodologies that enhance clarity and improve communication among stakeholders. By defining the sources of ambiguity-such as inconsistent terminology, lack of standardization, and incomplete data-the paper highlights the significant impact these issues can have on asset management outcomes. The research outlines several best practices, including the standardization of terminology through the development of a comprehensive glossary and the implementation of industry-wide standards. It emphasizes the importance of structured reporting formats, advocating for the use of templates and visual aids to present information clearly and consistently. Additionally, the study underscores the necessity of comprehensive data collection, ensuring that all relevant information is accurately captured and regularly updated. Methodologies for effective communication are also examined, with a focus on training and development programs that equip staff with the skills needed for clear reporting. Engaging stakeholders in the reporting process and utilizing technology, such as reporting software and
Article
Full-text available
The commercial real estate sector is undergoing a transformative shift with the integration of artificial intelligence (AI) technologies into auditing processes. This study explores the future of AI-driven auditing in commercial real estate management, highlighting how these advancements can enhance efficiency, accuracy, and proactive maintenance. Traditional auditing practices often face limitations, including time constraints, human error, and reactive approaches to compliance and maintenance. AI technologies, such as machine learning, natural language processing, and predictive analytics, offer innovative solutions to these challenges by automating data analysis, improving decision-making, and facilitating real-time monitoring. Through a comprehensive review of current practices and emerging technologies, this research identifies key applications of AI in auditing, including predictive maintenance, automated reporting, and enhanced data analytics. Case studies illustrate successful implementations that underscore the potential for significant cost savings and improved operational efficiency. However, the transition to AI-driven auditing is not without challenges, including concerns related to data quality, resistance to change within organizations, and ethical considerations surrounding data privacy. Looking ahead, the study outlines future trends in AI-driven auditing, including anticipated technological advancements and the integration of AI with other emerging technologies such as the Internet of Things (IoT) and blockchain. Recommendations for effective
ResearchGate has not been able to resolve any references for this publication.