Article

Opinion article by Habibzadeh and Yadollahie

Authors:
To read the full-text of this research, you can request a copy directly from the author.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the author.

ResearchGate has not been able to resolve any citations for this publication.
Article
Full-text available
Stochastic simulations of network models have become the standard approach to studying epidemics. We show that many of the predictions of these models can also be obtained from simple classical deterministic compartmental models. We suggest that simple models may be a better way to plan for a threatening pandemic with location and parameters as yet unknown, reserving more detailed network models for disease outbreaks already underway in localities where the social networks are well identified. We formulate compartmental models to describe outbreaks of influenza and attempt to manage a disease outbreak by vaccination or antiviral treatment. The models give an important prediction that may not have been noticed in other models, namely that the number of doses of antiviral treatment required is extremely sensitive to the number of initial infectives. This suggests that the actual number of doses needed cannot be estimated with any degree of reliability. The model is applicable to pre-epidemic vaccination, such as annual vaccination programs in anticipation of an ‘ordinary’ influenza outbreak with limited drift, and as a combination of treatment both before and during an epidemic.
Article
Full-text available
Planning public health responses against pandemic influenza relies on predictive models by which the impact of different intervention strategies can be evaluated. Research has to date rather focused on producing predictions for certain localities or under specific conditions, than on designing a publicly available planning tool which can be applied by public health administrations. Here, we provide such a tool which is reproducible by an explicitly formulated structure and designed to operate with an optimal combination of the competing requirements of precision, realism and generality. InfluSim is a deterministic compartment model based on a system of over 1,000 differential equations which extend the classic SEIR model by clinical and demographic parameters relevant for pandemic preparedness planning. It allows for producing time courses and cumulative numbers of influenza cases, outpatient visits, applied antiviral treatment doses, hospitalizations, deaths and work days lost due to sickness, all of which may be associated with economic aspects. The software is programmed in Java, operates platform independent and can be executed on regular desktop computers. InfluSim is an online available software http://www.influsim.info which efficiently assists public health planners in designing optimal interventions against pandemic influenza. It can reproduce the infection dynamics of pandemic influenza like complex computer simulations while offering at the same time reproducibility, higher computational performance and better operability.
Article
Full-text available
Influenza pandemic preparedness plans are currently developed and refined on national and international levels. Much attention has been given to the administration of antiviral drugs, but contact reduction can also be an effective part of mitigation strategies and has the advantage to be not limited per se. The effectiveness of these interventions depends on various factors which must be explored by sensitivity analyses, based on mathematical models. We use the freely available planning tool InfluSim to investigate how pharmaceutical and non-pharmaceutical interventions can mitigate an influenza pandemic. In particular, we examine how intervention schedules, restricted stockpiles and contact reduction (social distancing measures and isolation of cases) determine the course of a pandemic wave and the success of interventions. A timely application of antiviral drugs combined with a quick implementation of contact reduction measures is required to substantially protract the peak of the epidemic and reduce its height. Delays in the initiation of antiviral treatment (e.g. because of parsimonious use of a limited stockpile) result in much more pessimistic outcomes and can even lead to the paradoxical effect that the stockpile is depleted earlier compared to early distribution of antiviral drugs. Pharmaceutical and non-pharmaceutical measures should not be used exclusively. The protraction of the pandemic wave is essential to win time while waiting for vaccine development and production. However, it is the height of the peak of an epidemic which can easily overtax general practitioners, hospitals or even whole public health systems, causing bottlenecks in basic and emergency medical care.
Article
Full-text available
Guidelines for submitting commentsPolicy: Comments that contribute to the discussion of the article will be posted within approximately three business days. We do not accept anonymous comments. Please include your email address; the address will not be displayed in the posted comment. Cell Press Editors will screen the comments to ensure that they are relevant and appropriate but comments will not be edited. The ultimate decision on publication of an online comment is at the Editors' discretion. Formatting: Please include a title for the comment and your affiliation. Note that symbols (e.g. Greek letters) may not transmit properly in this form due to potential software compatibility issues. Please spell out the words in place of the symbols (e.g. replace “α” with “alpha”). Comments should be no more than 8,000 characters (including spaces ) in length. References may be included when necessary but should be kept to a minimum. Be careful if copying and pasting from a Word document. Smart quotes can cause problems in the form. If you experience difficulties, please convert to a plain text file and then copy and paste into the form.
Article
The impact factor of a journal reflects the frequency with which the journal's articles are cited. It is the best available measure of journal quality. For calculation of impact factor, we just count the number of citations, no matter how prestigious the citing journal is. We think that impact factor as a measure of journal quality, may be improved if in its calculation, we not only take into account the number of citations, but also incorporate a factor reflecting the prestige of the citing journals relative to the cited journal. In calculation of this proposed “weighted impact factor,” each citation has a coefficient (weight) the value of which is 1 if the citing journal is as prestigious as the cited journal; is >1 if the citing journal is more prestigious than the cited journal; and is
Article
Cutaneous leishmaniasis is endemic in Fars Province, southern Iran. However, mucosal leishmaniasis is extremely uncommon. Herein, we report a patient with isolated lingual leishmaniasis in an immunocompetent 40-year-old man. The lesion was totally excised. The patient was cured completely and is doing well after four years of follow-up, with no medical treatment.