Content uploaded by Harsha Sapdhare
Author content
All content in this area was uploaded by Harsha Sapdhare on Oct 22, 2020
Content may be subject to copyright.
Acta Hortic. 1108. ISHS 2016. DOI 10.17660/ActaHortic.2016.1108.8
XXIX IHC – Proc. Int. Conf. on Landscape and Urban Horticulture and International
Symposium on Sustainable Management in the Urban Forest
Eds.: G. Groening et al.
63
The Council verge as the next wetland: TREENET and
the cities of Mitcham and Salisbury investigate
T.Johnson1,D.Lawry2andH.Sapdhare3
1CityofMitcham,131BelairRoad,TorrensPark,5064,SouthAustralia,Australia;2TREENETInc.,WaiteCampus,
University of Adelaide, PMB 1 Glen Osmond, 5064, South Australia, Australia; 3University of South Australia,
MawsonLakesBoulevard,MawsonLakes,5095,SouthAustralia,Australia.
Abstract
Spatialpressuresinmanycontemporarycitiesrestricttheconstructionof
surfacewetlandsofthescalesnecessarytodeliverstormwatermanagementand
ecosystemservices.Alternativemeansareabletodeliversomeoftheseservicesby
harvestingstormwateratsourceandstoringitinsoilsbeneathroadvergeswhereit
canirrigateurbantreesandothervegetation.Byincorporatingvegetationintothis
stormwatermanagementinfrastructurebothwaterharvestingratesandstorage
capacitiescanbeincreased.Ifintegratedwithstreetinfrastructureonalargescale,
watersensitiveurbandesignfeaturesandassociatedvegetationhavethepotentialto
makemajorcontributionstoimprovedhumanhealth,environmentalqualityand
floodriskmitigation.Infrastructureestablishedtosupportpreliminaryinvestigations
inthecitiesofMitchamandSalisburyhasdemonstratedproblem-freefunctionof
stormwaterharvestingforstreettreeirrigationatthelocalleveloversevenyears.
Keywords:watersensitiveurban design,sustainableurban drainage system,storm water
management,permeablepavement,streettrees,hydraulicredistribution
INTRODUCTION
The global rate and scale of urbanisation is stressing ecologicalsystemsandthe
infrastructure on which cities depend (Andersson et al., 2014; Childers et al., 2014; Wu
2008),withmost ecosystemson Earthnowbeingaffectedbyurban demandsand outputs
(Elmqvistetal.,2013).Urbandevelopmentislargelyimpervious torainfallsoit canaffect
local hydrological cycles (Ferguson, 2010). Accompanying vegetation loss compounds the
hydrological consequences. These impacts together contribute towatershortagesand
flooding(Sheng and Wilson, 2009; Lee andHeaney,2003), urban heatislands (Australian
Government,2013;Ewenzetal.,2012)andgeneratesignificantnegativeimpactsonhuman
andenvironmentalhealth(Connell,2013;Weinstein,2013;Tarran,2006).
Greeninfrastructureandwatermanagement
LocalgovernmentsinAustraliaarelargelyresponsiblefortheprovision and
maintenanceofcivilinfrastructure.Theyarealsoincreasinglyresponsibleforhumanhealth
mattersthroughpreventivemeanssuchastheprovisionof‘green’urban environmentsfor
passiverecreation,includingsportingandactiverecreationfacilities and vegetated
streetscapes(HealthyEnvironsPtyLtd.,2014).
Green urban designs promise increased delivery of ecosystem services from within
cities as well as reduced impacts on surrounding environments. However, increasing
pressureonspace canresult inconflicts betweenacity’sbuilt andnaturalassets.Current
trendsingreenurbanism(Lehmann,2011)andgreeninfrastructure(ElyandPitman,2012;
Colding,2011)seeaunitingofthehorticulturalandcivilcomponentsofurbanpublicspace
todelivergreaterbenefitmorecosteffectivelyandtoprogresscitiestowardssustainability.
Waterisacriticalresourceofgreeninfrastructure.‘Intermsofsheermass,waterisby
far the largest component of urbanmetabolism’(Kennedyetal., 2007). Massive
infrastructureisneededtoprotectcommunitiesfromfloodingandtosupplywatertocities
(Brownetal.,2008).Predictionsofmoreextremeandfrequentdroughtsandfloods(IPCC,
2007)callintoquestionthepracticalityofcontinuingtosupplywaterandmitigateflooding
64
solelythroughatraditional,centralised,engineering-basedapproach.
Waterisfundamentaltosustainingvegetationinurbanareas.Thispointiskeytothe
sustainablemanagementofbothurbanstormwaterandvegetation.Wetlands,swalesand
rain gardens have demonstrated the benefits achievable through retaining and detaining
waterintheenvironmentatornearitssource,butthesesolutionsrequireadequatespace.
For functional, financial, human and environmental reasons water storage solutions are
needed which require little space. Technologies such as the TREENET Inlet, permeable
pavements,infiltrationtrenches and‘leakywells’can reduce pressureontraditionalstorm
waterinfrastructureandpotablewatersuppliesbymoreeffectivelyusingroadreserves.
Byintegratingwaterandvegetationmanagementintoroadandfootpathengineering,
thecities of Mitcham and Salisbury have demonstratedthat costsaving,lowmaintenance
solutionsareavailablewithinmanyexistingroadverges.Bysustainingurbanvegetation,an
integrated approach to water management supports other local government initiatives
including climate change adaptation,protectingthehealthandwell-being of citizens and
reducing environmental impacts. Increased evapotranspirational cooling, shading and
thermalmassattributedtoagreaterabundanceofwaterinthelocalenvironmentwill,asan
example,provideamoretemperature-stablecitywhichwillfurther reduce energy
consumption, greenhouse gas emissions and costs to the community (McPherson et al.,
2005). Similarly, benefits will accrue from ecosystem services provided by trees, such as
improvements in social and psychological health resulting in reduced anxiety and fatigue
levelsandlowercrimerates(Tarran,2006).
To investigate and demonstrate the integration of horticulture and storm water
engineering, purpose-built infrastructure has been established in Salisbury Council’s
suburbanstreetstothenorthofAdelaideinSouthAustraliaand inMitcham tothe south.
Designedtoallowobservationandassessmentofsynergiesbetweenurbanhorticultureand
civilengineering(Levettetal.,2014;Johnsonetal.,2011a),thisinfrastructureishelpingto
providedataandquantifysolutionsthatwillincreaselocalgovernment’scapacitytoaddress
compoundingdevelopment,ecologicalandfinancialpressures.Bydeliveringstormwaterto
soilnearstreettrees,theCouncilsaimtoretainandusethisresourceatitssourceand,by
minimisingconflictsbetweentheinfrastructureandtreeroots,toimprovepublicsafetyand
reducemaintenancecosts.
Water harvesting strategies used by the cities of Mitcham and Salisbury include
wetlands,swales,detentionbasinsandstreetscape-scaleinfiltrationdevices,thelatterbeing
the subject of this paper. At the streetscape scale, devices used include permeable
pavements,soakagetrenches,andTREENETinletscoupledtoleakywellsofvariousdesigns.
Allofthesesystemsharvest‘firstflush’stormwaterrunoffto mitigate pollution loads
(Beecham,2010;Denmanetal.,2006;Leeetal.,2004)anddelayandreducefloodpeaks.
Permeablepavements
Permeable pavements have been developed over several decades (Ferguson, 2010;
ScholzandGrabowiecki,2007)andarebeingincreasinglyutilizedinternationally,yettheir
application in Australia remains relatively limited in comparison to impermeable
pavements.Reasonsforlowrateofapplicationmayincludemarginallyhigherconstruction
costsandalackofdataregardingeffectsofwaterinfiltrationintoreactivesoilsadjacentto
roadsandotherinfrastructure.
Construction details and aspects of the two different permeablefootpathpavement
designsunder investigationare detailed in Johnsonet al. (2011a). Permeableinterlocking
concrete brick footpath surfaces are supported by a layer of crushed rock (20 mm
screenings)whichisfreefromfinerparticles.The40%air-filledporosityofthescreenings
providesstormwaterdetentionadequatetocontaina42-mmrainfalleventinonedesign
and68mminanother;thewaterthensoaksintounderlyingsoils. The smaller capacity
designhasalevelinterfacebetweenthescreeningsandunderlyingsoil(designated‘perm-
level’); the larger capacity design has the screenings formed into a swale (‘perm-swale’)
beneath the footpath to encourage deeper root growth beneath its center (Johnson et al.,
2011b).Soilmoistureandoxygenlevels,treegrowthandsoilreactivityhavebeenmonitored
65
sinceconstructionandplantinginSeptember2009.
TREENETinlets
Developed by not-for-profit tree research organisation TREENET Inc., the TREENET
inlet device harvests storm water from the road for watering tree root zones in adjacent
verges. Severalhundred TREENETinlets have been installedacrosseightlocalgovernment
authoritiesinthreestatesofAustralia.Thiscurrentresearch is providing data to better
inform the application of this technology in future by investigatinglifecyclecosts,
quantifyingtheeconomicbenefitsofrelatedgreeninfrastructureandmeasuringimpactson
soilmoistureandreactivity.
TREENETinletdevices(Figure1)arecastintoconcretekerbstodivertstorm water
fromtheroadtosoilintheverge.Waterexitsthekerbandgutterdrainagesystemthrougha
slottedfaceplatemountedinthekerbandthenflowsviaaPVCstormwaterpipeintoleaky
wells(Figure2)constructedinthevergeuntilthelimitofthe well and the infiltration
capacityofitssurroundingsoil arereached.Theshallowdepressionintheguttercreatesa
small pool which reduces flow velocity marginally, thereby establishinganeddywhich
depositssedimentshighinthegutterandawayfromtheentryslot,thusminimisingclogging
andallowingformaintenancethroughroutinestreetsweeping.Flowvolumeswhichexceed
thedesigncapacitysimplybypassthedeviceandcontinuedownstreamtothenextinletor
beyondviathestormwaternetwork.
Figure1.TREENETInletinstallation.
Leakywells
Several designs have been developed in the search for the optimalleakywellfor
Adelaide’sclimate.Primaryfactorsconsideredintheirdesignaretotalstoragecapacityand
adequacytoaccommodatethepollutantloadedfirstflushofstormwaterrunoff(Leeetal.,
2004).Otherconsiderationsincludehydraulicconductivityandreactivityofthesite’ssoils,
localrainfallpatterns, catchmentarea,vegetationproximityandtype,andaccessibilityfor
maintenancepurposes.
Roadsideleakywellsandinfiltrationtrencheswithcapacitiesranging from 10 L to
7 kL have been constructed. Those connected to TREENET Inlets range between 65 and
150L;thesmallerbeingusedinshallowsoils and the larger at sites wheredrainage isa
primaryconcern.Theleakywelldesignwhichformspartofthecurrentresearch(Figure2)
hasa capacityof 50 L. Optimising design capacity ona cost-benefit basis requiresfurther
research.
66
Figure2.Leakywelldesign.
TwentyeightTREENETinletshaverecentlybeeninstalledinthecityofMitchamusing
variousbackfillmaterialstoinvestigatepotentialpollutionmitigationbenefits.Stormwater
sampleswill be collected from thebasesoftheleakywellsduring late2014 and through
2015, to be analysed for pollutants including phosphates, nitrates,heavymetalsand
suspended solids. Soil samples collected from the sites during construction of the leaky
wells, and additional samples to be taken in 2016, will be analysed and compared to
determinethepollutionmitigationcapacityofthethreebackfillmaterials.
RESULTSANDDISCUSSION
Infiltrationtrenchesandleakywells
Streetscape-scalestormwaterharvestingsystemshavebeensuccessfullyfunctioning
inthecitiesofMitchamandSalisbury since 2007withnooperationalfailuresorproblems
observed.Atonesite,soakagetrenches600mmwide,1000mmdeepandtotaling80min
lengthcandetainupto20kLofstormwaterinthevoidsbetweenthecrushedrock
screenings which fill them; the water then percolating into surrounding soil. Percolation
rates after seven years of operation appear consistent with those immediately following
construction.DuringheavyraininJuly2014,flowobservedby-passingthesystemwas
minimal.Increasedsoilmoisturelevelshavenotresultedinanyobservabledeteriorationof
footpath,road,drainageorotherinfrastructure.
Similarly,ataseparatesiteadrainagepitdivertsstormwaterintoasoakagetrench
9minlengthwithadetentioncapacityof2.5kL.Thistrenchfillstocapacityapproximately
40timesperyear.Builtattheendofaseveredrought,waterrecharge wasanticipated to
causesubstantialsoilheave,potentiallydislodgingthe newkerbing.Noimpactshavebeen
observedatthissitesinceconstructionin2008.Inanenvironmentwithcopiousamountsof
leaflitter and fruit producedby a matureavenue ofWhite cedar (Meliaazedarach)street
treesandusingonlyascreenedagriculturaldrainagepipeinthestormwaterpittofilter
waterenteringthetrench,afterthreeyearsofoperationthesystem was measured to be
operatingwithaninflowrateof70Lmin-1.
67
Inbothofthesecasesitislikelythattheestablishedavenuesofriverredgum
(Eucalyptuscamaldulensis)andwhitecedar(Meliaazedarach)havedevelopedopportunistic
root systems which take advantage of the additional water, with hydraulic redistribution
(Prietoetal.,2012;NeumannandCardon,2012;Blebyetal.,2010)reducingwaterpotential
around the trenches and sustaining prolonged storm water harvesting. Several similar
systemshaveremainedfullyoperationaloversimilartimespanswithno maintenanceand
withnoobservedinfrastructureissues.
TREENETinletshavebeenprovidingdrainageandirrigationsolutionsatseveralother
locations for over two years. At one site a large river red gum(Eucalyptuscamaldulensis)
treehadlifted kerbingby approximately 100mm, creatingpoolingalongthestreetwhich
resultedindrivewayaccessdifficulties.Installationof5TREENETinletsatafractionofthe
costofkerbreplacementhasdrainedthesitethroughtwoyearswithnoilleffectsobserved
on surrounding infrastructure. As road-sweeper access is difficult at this site, sediments
regularly build up in the inlets’ pools. This has been observed to only marginally reduce
infiltration rates however. Adequate drainage is possibly sustained by the inlets in the
absence of maintenance due to high hydraulic conductivity of the built-up sediments. At
severalsiteswhereTREENETinletshavebeeninstallednearmaturetrees,rootgrowthhas
been observed to occupy screenings in the leaky wells within the first spring after
construction, suggesting that hydraulic redistribution of waterfromthewellsto
surroundingsoilscanbeexpectedtoestablishrapidly.ThecurrentresearchintoTREENET
inlets,theircostsandbenefits,isscheduledforcompletionin2016.
Permeablefootpathpavements
Datarelatingtopermeablepavementresearchiscurrentlybeinganalysed;anumber
of preliminary observations warrant reporting at this stage however. All of the average
annual rainfall of 546 mm incident upon the permeable research pavements has been
intercepted and managed in situ since September 2009, with no runoff and discharge to
receivingwatersresultingandnonegativeimpactsonthepavements themselves or
problemswithsurroundinginfrastructurebeingobserved.
Between2011and2014surfacelevelmovementduetomoistureinduced soil
reactivityappearedsimilar atpermeable andimpermeable controlpavements.Soil ‘heave’
recordedattheendofwinter2013(30August)rangedfrom+1to+30mmatcontrolsites,
+7 to +31 mm at ‘perm-level’ sites, and +10 to +30 mm at ‘perm-swale’sites(relativeto
February2011levels).LevelsrecordedonApril 8,2014of+18to-25mmatcontrolsites,
-4to-20mmat‘perm-level’sitesand+11to-22mmat’perm-swale’ sites (relative to
February2011levels)showedageneraltrendofshrinkageduetodryingcausingasurface
levelreductionofapproximately30mmacrossthedifferentpermeablepavementtypesand
controls.Theserelativelyminorsurface levelfluctuationsobservedonmoderatelyreactive
soilsalongthe320mlong researchsite,andtheabsence ofdiscontinuitiesinlevelsatthe
interchangesbetweenpermeableandimpermeablesurfaces,suggest that permeable
pavementsmaybeabletobesafelyusedinfootpathconstruction,particularlyinsemi-arid
climateswithmoderateorlowsoilreactivity.
ACKNOWLEDGEMENTS
The authors acknowledge the ongoing support of the project partners: city of
Mitcham,Adelaideand MountLoftyRanges Natural ResourcesManagement Board,city of
Salisbury,TREENETInc.,UniversityofMelbourne,UniversityofSouthAustralia.
Literaturecited
Andersson,E.,Barthel,S.,Borgström,S.,Colding,J.,Elmqvist,T.,Folke,C.,andGren,A.(2014).Reconnectingcities
to the biosphere: stewardship of green infrastructure and urbanecosystemservices.Ambio43(4), 445–453
http://dx.doi.org/10.1007/s13280-014-0506-y.PubMed
AustralianGovernment.(2013).StateofAustralianCities2013.DepartmentofInfrastructureandTransport.
Beecham,S.(2010).Treesasessentialinfrastructure:engineeringanddesignconsiderations.Paperpresentedat:
TREENET11thNationalStreetTreeSymposium(Adelaide,SouthAustralia).
68
Bleby, T.M., McElrone, A.J., and Jackson, R.B. (2010). Water uptake and hydraulic redistribution across large
woodyroot systems to 20m depth. PlantCell Environ.33(12),2132–2148 http://dx.doi.org/10.1111/j.1365-
3040.2010.02212.x.PubMed
Brown,R.,Keath,N.,andWong,T.(2008). Transitioningto watersensitivecities:historical,currentandfuture
transition states. Paper presented at: 11thInternationalConferenceonUrbanDrainage(Edinburgh,Scotland,
UK).
Childers,D.,Pickett, S., Grove,J.,Ogden, L., and Whitmer, A.(2014).Advancingurban sustainability theoryand
action: challenges and opportunities. Landsc. Urban Plan. 125, 320–328 http://dx.doi.org/10.1016/
j.landurbplan.2014.01.022.
Colding,J.(2011).The role of ecosystemservicesincontemporaryurban planning.InUrbanEcology:Patterns,
ProcessesandApplications,J.Niemelä,J.Breuste,T.Elmqvist,G.Guntenspergen,P.James,andN.McIntyre,eds.
(NewYork,USA:OxfordUniversityPress).
Connell,S.(2013). Urban forest–helpingtoamelioratethe effectsofpollutantsenteringcoastalhabitat.Paper
presentedat:TREENET14thNationalStreetTreeSymposium(Adelaide,SouthAustralia).
Denman,L.,May,P.,andBreen,P.(2006).Aninvestigationofthepotentialtousestreettreesandtheirrootzone
soilstoremovenitrogenfromurbanstormwater.Aust.JournalofWaterResources10(3),303–311.
Elmqvist, T., Fragkias, M., Goodness, J., Guneralp, B., Marcotullio, P., McDonald, R., Parnell, S., Schewenius, M.,
Sendstad, M., Seto, K., and Wilkinson, C., eds. (2013). Urbanisation, Biodiversity and Ecosystem Services:
ChallengesandOpportunities,AGlobalAssessment(Springer).
Ely,M.,andPitman,S.(2012). GreenInfrastructure,LifeSupportforHumanHabitats.TheCompellingEvidence
forIncorporatingNatureintoUrbanEnvironments(Australia:DepartmentofEnvironment,WaterandNatural
Resources,GovernmentofSouthAustralia).
Ewenz,C.,Bennett,J.,Kent,C.,Vinodkumar,H.,andClay,R.(2012).UrbanheatislandmappinginAdelaide.Paper
presentedat:TREENET13thNationalStreetTreeSymposium(Adelaide,SouthAustralia).
Ferguson, B.K. (2010). Porous pavements in North America: experience and importance. Paper presented at:
NovaTechConference(Lyon,France).
HealthyEnvironsPtyLtd.(2014).LivingWell.RegionalPlanforHealthandWellbeingfortheCitiesofUnleyand
Mitcham. https://s3-ap-southeast-2.amazonaws.com/ehq-production-australia/c7dd2efb6e51b8f795e7f5610
027290d99a8efd8/documents/attachments/000/014/103/original/Unley_Mitcham_Living_Well_Plan_Draft_Jun
e_2014.pdf?1402641830(AccessedJuly21,2014).
IPCC.(2007).ClimateChange2007:SynthesisReport.ContributionofWorkingGroupsI,IIandIIItotheFourth
AssessmentReportoftheIntergovernmentalPanelonClimateChange,CoreWritingTeam,R.K.Pachauri,andA.
Reisinger,eds.(Geneva,Switzerland:IPCC).
Johnson, T., Cameron, D., and Moore, G. (2011a). Trees, stormwater, soil and civil infrastructure: synergies
towards sustainable urban design for a changing climate. Paper presented at: International Conferenceof the
InternationalSocietyofArboriculture(Parramatta,Sydney,Australia).
Johnson,T.,Cameron,D.,and Moore, G. (2011b).Canpermeablepavementsreduce conflictsbetweenfootpaths
andtreeroots?Paperpresentedat:PublicWorks,CapitalSolutions: International Public Works Conference
(Canberra,Australia).
Kennedy,C., Cuddihy, J., and Engel-Yan,J.(2007).Thechangingmetabolismof cities. J. Ind. Ecol.11(2), 43–59
http://dx.doi.org/10.1162/jie.2007.1107.
Lee,J.G.,andHeaney,J.P.(2003).EstimationofUrbanimperviousnessanditsimpactsonstormwatersystems.J.
WaterResour.Plan.Manage.129(5),419–426http://dx.doi.org/10.1061/(ASCE)0733-9496(2003)129:5(419).
Lee, H., Lau, S.L., Kayhanian, M., and Stenstrom, M.K. (2004). Seasonal first flush phenomenon of urban
stormwater discharges. Water Res. 38(19), 4153–4163 http://dx.doi.org/10.1016/j.watres.2004.07.012.
PubMed
Lehmann, S. (2011). The Principles of Green Urbanism, Transforming the City for Sustainability (Taylor and
FrancisLtd.).
Levett,P.,Schweiger,E.,andLawry,D.(2014).Sustainablemanagementoftheinterfacebetweentreesandroad
pavements.Paperpresentedat:SustainabilityinPublicWorksConference(TweedHeads,Australia).
McPherson,G.,Simpson,J.,Peper,P.,Maco,S.,andXiao,Q.(2005). Municipalforestbenefits andcostsinfiveUS
cities.J.For.103(8),411–416.
Neumann,R.B.,andCardon,Z.G.(2012).Themagnitudeofhydraulicredistributionbyplantroots:areviewand
synthesisof empirical and modeling studies.New Phytol. 194(2), 337–352 http://dx.doi.org/10.1111/j.1469-
69
8137.2012.04088.x.PubMed
Prieto, I., Armas, C., and Pugnaire, F.I. (2012). Water releasethroughplantroots:newinsightsintoits
consequencesattheplantandecosystemlevel.NewPhytol.193(4),830–841http://dx.doi.org/10.1111/j.1469-
8137.2011.04039.x.PubMed
Scholz,M.,andGrabowiecki,P.(2007). Reviewofpermeable pavementsystems.Build.Environ.42(11), 3830–
3836http://dx.doi.org/10.1016/j.buildenv.2006.11.016.
Sheng,J., and Wilson, J. (2009).Watershedurbanisation and changingfloodbehaviouracrosstheLosAngeles
metropolitanregion.Nat.Hazards48(1),41–57http://dx.doi.org/10.1007/s11069-008-9241-7.
Tarran,J.(2006).Trees,UrbanEcologyandCommunityHealth.Paperpresentedat:TREENET7thNationalStreet
TreeSymposium(Adelaide,SouthAustralia).
Weinstein,P.(2013).Environmentalchange,diseaseandbiodiversity.Paperpresentedat:TREENET14thNational
StreetTreeSymposium(Adelaide,SouthAustralia).
Wu,J.(2008).Making the case for landscape ecology,an effectiveapproach tourbansustainability.Landscape
Journal27(1),41–50http://dx.doi.org/10.3368/lj.27.1.41.
70