Content uploaded by Karin Decker
Author content
All content in this area was uploaded by Karin Decker on Feb 03, 2016
Content may be subject to copyright.
December2015
ClimateChangeVulnerability
AssessmentforColorado
BureauofLandManagement
CNHP’smissionistopreservethenaturaldiversityoflifebycontributingtheessentialscientific
foundationthatleadstolastingconservationofColorado'sbiologicalwealth.
ColoradoNaturalHeritageProgram
WarnerCollegeofNaturalResources
ColoradoStateUniversity
1475CampusDelivery
FortCollins,CO80523
(970)491‐7331
ReportPreparedfor:
BureauofLandManagement
ColoradoStateOffice
2850YoungfieldStreet
Lakewood,Colorado80215
RecommendedCitation:
ColoradoNaturalHeritageProgram[CNHP].2015.ClimateChangeVulnerabilityAssessmentfor
ColoradoBureauofLandManagement.K.Decker,L.Grunau,J.Handwerk,andJ.Siemers,editors.
ColoradoNaturalHeritageProgram,ColoradoStateUniversity,FortCollins,Colorado.
Individualchaptersmaybecitedassuggestedbelow.
Frontcover:KnowlesCanyon,photo©PeggyLyon.
Climate Change Vulnerability
Assessment for Colorado Bureau
of Land Management
ColoradoNaturalHeritageProgram
WarnerCollegeofNaturalResources
ColoradoStateUniversity
FortCollins,Colorado80523
December2015
iiColoradoNaturalHeritageProgram©2015
EXECUTIVE SUMMARY
TheColoradoofficeoftheBureauofLandManagement(BLM),whichadministers8.4millionacres
ofColorado’ssurfaceacres,andmorethan29millionacresofsub‐surfacemineralestate,hasbeen
chargedwithdevelopingaclimateadaptationstrategyforBLMlandswithinthestate.The
assessmentspresentedhereinpresentastatewideperspectiveonthepotentialfutureinfluencesof
achangingclimateonspeciesandecosystemsofparticularimportancetotheBLM,withthegoalof
facilitatingdevelopmentofthebestpossibleclimateadaptationstrategiestomeetfuture
conditions.
TheColoradoNaturalHeritageProgramconductedclimatechangevulnerabilityassessmentsof
plantandanimalspecies,andterrestrialandfreshwaterecosystems(“targets”)withinatimeframe
ofmid‐21stcentury.Ourassessments1)evaluatethepotentialimpactoffutureclimateconditions
onbothspeciesandecosystemsbyidentifyingthedegreeofchangeexpectedbetweencurrentand
futureclimateconditionswithintheColoradorangeofthetarget,and2)addressthepotential
impactofnon‐climatefactorsthatcanaffecttheresilienceofthetargettoclimatechange,orwhich
arelikelytohaveagreaterimpactduetoclimatechange.Climatechangevulnerabilityassessments
arenotanenduntothemselves,butareintendedtohelpBLMmanagersidentifyareaswhereaction
maymitigatetheeffectsofclimatechange,recognizepotentialnovelconditionsthatmayrequire
additionalanalysis,andcharacterizeuncertaintiesinherentintheprocess.
Ecosystems
Sixteenterrestrialecosystemtypesandsixfreshwaterecosystemgroupswereassessedundera
highradiativeforcingscenario(RCP8.5)fortheirrelativevulnerabilitybymid‐century.Terrestrial
typesincludedsixforestorwoodlandtypes,fourshrublandtypes,fourherbaceousorgrassland
types,andriparianandwetlandareas.Fourterrestrialtypes(pinyon‐juniperwoodland,shortgrass
prairie,andriparianandwetlandareasoftheeasternplains)wererankedwithhighvulnerability,
andasingletype(riparianwoodlandandshrublandoflowerelevationwestslopeareas)was
rankedwithveryhighvulnerability.Mostterrestrialecosystemswererankedwithlowormoderate
vulnerabilitytotheeffectsofclimatechangebymid‐century.
Themajorityofterrestrialecosystemswereevaluatedascurrentlyhavinglowtomoderate
resiliencetoclimateimpacts.Actionsthatincreaseecosystemresilienceandenhancetheadaptive
capacityofthesetargetswillcushiontheirvulnerabilitytochangingclimateconditions,andshould
beaprimaryfocusofmanagementefforts.Forforestandwoodlandecosystems,adaptationactions
arelikelytofocusondisturbancefactorssuchasfireandinsectoutbreak,whileforshrublandand
herbaceousecosystems,reducingtheimpactsofanthropogenicfragmentationanddisturbanceis
centraltoadaptationmanagement.
Freshwaterecosystems(streams,rivers,lakes,andreservoirs)wereevaluatedinrelationtoa
modeledtransitionzonebetweenwarmandcool‐tocold‐waterhabitatsthatcomparedcurrent
ClimateChangeVulnerabilityAssessmentforColoradoBLMiii
reachextentineachzonetowhatcouldbeexpectedunderwarmerfutureconditions.Resultswere
summarizedbythreeregions(easternplains,mountain,andwesternvalleys).Overallvulnerability
offreshwaterecosystemswasnoticeablyhigherthanforterrestrialtypes.Fouroftheevaluated
freshwaterecosystems,primarilythoseoflowerelevations,hadvulnerabilityranksofhighorvery
high.Onlystreamsofhigherelevationswereconsideredtohavelowvulnerability.
Nearlyallfreshwaterecosystemshavemoderatetohighexposuretopotentialimpactsfromclimate
change,andgenerallymoderatelevelsofresilienceoradaptivecapacity.Asaresult,mostofthese
typeswillremainmoderatelyvulnerableatbest,evenunderconditionsofimprovedresilience.
Actionsthatmaintainorincreasehydrologicconnectivityandreducenon‐climateimpactsarethe
primarymeansbywhichadaptivecapacityinfreshwaterecosystemscanbemaintainedor
increased.
Species
Ninety‐eightspecies(36animalsand62plants)wereevaluatedforvulnerabilitybymid‐century
usingtheNatureServeClimateChangeVulnerabilityIndex,underahighcumulativecarbon
emissionscenario(SRESA2).
Animalspeciesincludedfouramphibians,thirteenbirds,ninefish,oneinsect,sixmammals,and
threereptiles.Fivespecieswererankedasextremelyvulnerabletoclimatechange.Overall,42%of
theevaluatedanimalspecieswererankedwithhightoextremevulnerabilitytoclimatechangeby
mid‐century.Fish,inparticular,wererankedonthehightoextremelyvulnerableendoftherange;
othertaxonomicgroupsweregenerallymoreevenlydistributedbetweenpresumedstabletohighly
vulnerable.
Nearlyallofthevascularplantspecies(59of62)evaluatedwererankedwithextremelyhigh
vulnerabilitytoclimatechangebymid‐century,generallyduetotheirhighlyrestricted
distributions,naturalbarrierstomovementandrelativelylimiteddispersalabilityand/or
pollinatorspecificity.Restrictiontoaparticularphysiologicalhydrologicalniche,ortouncommon
geologicfeaturesandsubstratesalsotendtoincreasethevulnerabilityofmostofColorado’srare
plants.
Conclusions
Theclimatechangevulnerabilityassessmentspresentedhereinprovideabasicfoundationforthe
developmentofadaptationstrategiesgoingforward.Togetherwithclearlyarticulatedgoalsand
objectivesfortheconservationofimportantBLM‐managedresources,theinformationincludedin
theseassessmentshighlightingthepotentialimpactsofclimatechangeandspecies‐orecosystem‐
specifickeyvulnerabilitiescanbelinkedtospecificmanagementactionsthatareintendedto
addresschangingclimateconditions.
Itisimportanttorecognizethatspeciesassemblagesareverylikelytochangefromwhathasbeen
seeninthehistoricpast,sothattheinvestigationofshiftingdistributions,alteredecological
ivColoradoNaturalHeritageProgram©2015
functions,andcriticalthresholdsthataretiedtoawarmingclimatewillprovideessentialtoolsfor
adaptationstrategies.
Becauseearlieractionallowsforgreaterimpactandinfluenceonmanagementchallengesbothnow
andinthefuture,wesuggest:
UseofstructureddecisionmakingtechniquestofocusandclarifyBLMgoalsandobjectives
forclimatechangeadaptationtargets
Movingaheadwiththedevelopmentofadaptationstrategiesforkeyspeciesand
ecosystems
Prioritizingadaptationeffortsforspeciesandecosystems,takingintoconsiderationboth
thevulnerabilitylevelofthetarget,practicalcriteriaoftimeandresourceavailability,and
trade‐offsorconstraintsthatmaybepresent
Developingandimplementingmethodsformonitoringormeasuringtheresultsof
adaptationactions
Potentiallyrevisitingclimatechangevulnerabilityrankingsasnewinformationbecomes
availableoradditionalconcernsbecomeapparent.
ClimateChangeVulnerabilityAssessmentforColoradoBLMv
ACKNOWLEDGEMENTS
TheauthorswouldliketoacknowledgethegeneroussupportoftheBureauofLandManagement
ColoradoOffice,whoprovidedfundingforthiseffort.WethanktheBLMstaffwhosharedtheir
extensiveprofessionalexperienceandknowledgethroughouttheprocess.BruceRittenhouse
(BranchChief,NaturalResources),JayThompson(FisheryBiologist),andCarolDawson(Botanist)
actedascoordinatingliaisonsfortheproject.AdditionalBLMpersonnelwhoparticipatedinthe
reviewprocessincludeRobinSell(WildlifeBiologist),andBLMinternsPhilKreningandColleen
Sullivan.
MeganFriggens(ResearchEcologist)withtheUSDAForestServiceGrassland,Shrublandand
DesertEcosystemsProgramoftheRockyMountainResearchStationprovidedvaluablereviewand
inputregardingtheresiliencerankingsofforestandwoodlandecosystems,aswellasreviewofthe
documentasawhole.
WecontinuetoappreciatethehelpofJeffMorisetteandtheNorthCentralClimateScienceCenter
staff,especiallyColinandMarianTalbert,whoprovideduswithessentialtechnicaltoolsfor
accessingandusingclimateprojections.ShannonMcNeelyoftheNCCSCalsoprovidedfeedbackon
thepreliminaryresultsoftheassessment.
Finally,atCNHP,JoannaLemlyprovidedcriticalreviewandinformationaboutwetlandand
riparianhabitats,andRenéeRondeauprovidedadviceandreviewthroughouttheproject.Thank
youall.
viColoradoNaturalHeritageProgram©2015
TableofContents
ExecutiveSummary.......................................................................................................................................ii
Ecosystems................................................................................................................................................ii
Species.....................................................................................................................................................iii
Conclusions..............................................................................................................................................iii
Acknowledgements.......................................................................................................................................v
1INTRODUCTION............................................................................................................................... ...........1
2ECOSYSTEMS............................................................................................................................................19
3ANIMALS................................................................................................................................................173
4PLANTS...................................................................................................................................................325
AppendixA:CCVIScoringCategoryDefinitions........................................................................................542
AppendixB:FullCCVIScoringResults.......................................................................................................559
ClimateChangeVulnerabilityAssessmentforColoradoBLM1
1 INTRODUCTION
Author
KarinDecker
Recommendedchaptercitation:
Decker,K.2015.Introduction.Chapter1InColoradoNaturalHeritageProgram2015.ClimateChangeVulnerabilityAssessment
forColoradoBureauofLandManagement.K.Decker,L.Grunau,J.Handwerk,andJ.Siemers,editors.ColoradoNatural
HeritageProgram,ColoradoStateUniversity,FortCollins,Colorado.
2ColoradoNaturalHeritageProgram©2015
TableofContents–1Introduction
Background...................................................................................................................................................3
Studyarea.................................................................................................................................................4
Overview...............................................................................................................................................4
Generalclimate.....................................................................................................................................5
Geologyandsoils..................................................................................................................................5
Landownership.....................................................................................................................................5
Humaninfluenceonthelandscape......................................................................................................6
ClimateChangeVulnerabilityAssessment....................................................................................................8
Uncertaintyinclimatechangevulnerabilityassessment.........................................................................8
Comparingthevulnerabilityofecosystemsandspecies..........................................................................8
PreviousvulnerabilityassessmentsintheColoradoregion.....................................................................9
ClimatechangeinColorado....................................................................................................................15
LiteratureCited.......................................................................................................................................17
ListofFiguresandTables
Figure 1.1.Componentsofvulnerability(Glicketal.2011).........................................................................4
Figure 1.2.Historical(1990‐2014)Coloradostatewidetrendsfor(a)annualmeantemperature,(b)
annualprecipitation,and(c)PalmerDroughtSeverityIndex.Temperatureandprecipitationareshown
asdeparturefromthemeanofbaseperiod(1901‐2000).DataisfromNOAANationalCentersfor
EnvironmentalInformation:http://www.ncdc.noaa.gov/cag/data‐info...................................................16
Figure 1.3.Seasonalprojectedtemperature(a)andprecipitation(b)changesbymid‐21stcentury(2050;
centeredaround2035‐2064period)forColorado.....................................................................................17
Table 1.1.SummaryofclimatechangevulnerabilityassessmentsintheColoradoregionthathave
addressedhabitatsorspecies.
....................................................................................................................10
ClimateChangeVulnerabilityAssessmentforColoradoBLM3
BACKGROUND
TheColoradoofficeoftheBureauofLandManagement(BLM)hasbeenchargedwithdevelopinga
climateadaptationstrategyforBLMlandswithinthestate.Inordertoensurethebestpossible
adaptationstrategies,astatewideperspectiveonthepotentialfutureinfluencesofachanging
climateonspeciesandhabitatsisneeded.ToassisttheBLMinthiseffort,theColoradoNatural
HeritageProgram(CNHP)conductedaclimatechangevulnerabilityassessmentforpriorityspecies
andecosystemswithinatimeframeofmid‐21stcentury.
Thevulnerabilityassessmentisintendedtobepartofadynamic,iterative,multi‐scaleprocessthat
willfocusmanagementactionsonstrategiesthatareeffectiveunderbothcurrentandfuture
climates.ThecomponentsofvulnerabilityweredescribedbyGlicketal.(2011)andconsistof
projectedexposuretoclimatechange,sensitivityofthespeciesorecosystemtoexpectedchanges,
andtheadaptivecapacityofthespeciesorecosystemtorespondtochanges(Figure1.1).Although
thisdiagramisstraightforwardandconceptuallysimple,theindividualcomponentsofexposure,
sensitivity,andadaptivecapacitycanbedifficulttocalculatewithanyprecision.Uncertaintycomes
fromboththedegreeofvariationinthemanyclimateprojectionmodels,andfromthegapsinour
knowledgeofthetargetspeciesorhabitat.Inaddressingthesecomponents,wehopetoidentify
whichecosystemsaremostorleastvulnerabletoclimatechangeaswellasthetypeandspatial
patternofthemostsignificantimpacts.Thisinformationisexpectedtohelplandmanagersidentify
areaswhereactionmaymitigatetheeffectsofclimatechange,recognizepotentialnovelconditions
thatmayrequireadditionalanalysis,andcharacterizeuncertaintiesinherentintheprocess.
OurassessmentisalignedwithexistingandongoingvulnerabilityassessmentsforColoradospecies
andhabitatstomaximizetheefficiencyandeffectivenessofourwork,leveragedatadevelopment,
sharelessonslearned,andcoordinateexpertinputandinterpretation.TheseincludetheGunnison
BasinClimateWorkingGroup,SanJuanClimateInitiative,theStateWildlifeActionPlanrevision
andclimatechangevulnerabilityassessment,andtheColoradoRarePlantConservationInitiative.
Thisanalysisisbasedonarelativelyshorttemporalscale(i.e.,suitedtoagencyplanninghorizons
andattentivetouncertaintylevelsinprojectedclimatemodels)andtheuseofalimitedbut
representativesetofpotentialchangescenarios.
Ourobjectiveswereto:
1. Identifyplantandanimalspecies,andterrestrialandfreshwaterecosystemsofimportance
toBLMmanagementastargetsofouranalysis.
2. Evaluatethepotentialimpactoffutureclimateconditionsonbothspeciesandecosystems
byidentifyingthedegreeofclimatechangeexpectedbetweencurrentandfutureconditions
withintheColoradorangeofthetarget,andincorporatingscientificallydocumented
informationonspeciesorecosystemsresponsetoclimaticfactors.
3. Evaluatethepotentialimpactofnon‐climatefactorsparticulartoeachtargetthatcanaffect
theresilienceofthetargettoclimatechange,orwhicharelikelytohaveagreaterimpact
duetoclimatechange.
4. Producesummaryvulnerabilityrankingsforpriorityspeciesandecosystems.
4ColoradoNaturalHeritageProgram©2015
Figure 1.1.Componentsofvulnerability(Glicketal.2011).
Study area
Overview
Colorado’sboundariesencompasssome66.6millionacres,orover104,000squaremiles.Within
thisarea,thetypeandextentofnaturalvegetationisdeterminedbymanyfactors,including
elevation,climate,soils,disturbancepatterns,andtheecologicalhistoryofthelandscape.Colorado
spansthecontinentaldivideamidthehighestpeaksoftheSouthernRockyMountains.Asaresult,
thestate’stopologyiscomplex.Totheeastofthecontinentaldivide,theeasternplainsrisegently
attherateofabout10feetpermilefromelevationsof3,350‐3,650feetatthestate’seasternedge.
Althoughtheyappearcomparativelyflat,Colorado’seasternplainsboastlittle‐knowndramatic
rivercanyons,shaleoutcropsformingbuttesandscarps,sandystabilizeddunefields,andbasalt‐
cappedmesasthatarelocallandmarksintheeasterncounties.Atelevationsof5,500to6,000feet
nearthemountainfront,theplainstransitionfairlyabruptlytofoothillsandmesasthat,inturn,
quicklyrisetomontaneelevations.Thecentralportionofthestateisdominatedbythepeaksand
rangesoftheSouthernRockyMountains.Here,aseriesofmountainrangestrendinggenerally
north‐southboundastringofhighmountainvalleysorparks,andincludemorethanfiftypeaks
reachingelevationsof14,000feetormore.Tothewest,moremountainsandextensiveplateaus,
heavilydissectedbyravinesandcanyons,formthecharacteristicvalleyandplateauwesternslope
landscape.Nearthewesternborderofthestateelevationsdecreaseagain,reachingalowofabout
4,325feetwheretheColoradoRivercrossestheborderwithUtah.
ClimateChangeVulnerabilityAssessmentforColoradoBLM5
General climate
Colorado’spositionatthehighpointofthecontinentmeansthatseveraldifferentweatherpatterns
influencetheclimateofthestate,andhenceitsvegetation.Ingeneral,higherelevationshavecooler
temperaturesandreceivemoreprecipitation,althoughlocaltopographyhasasignificanteffecton
airmovementscontrollingthesefactors.MoisturemayreachthestatefromeitherthePacificOcean
ortheGulfofMexico,dependingoncurrentaircirculation.Stormsoriginatingtothewestofthe
statedropmuchoftheirmoistureasrainorsnowonthemountainsandwestern‐facingslopes;a
rain‐shadoweffectpreventsmostofthisprecipitationfromreachingtheeasternplains.The
westernpartofColoradoreceivesmostofitsyearlyprecipitationduringwintermonths.Moisture
fromtheGulfofMexicocanproduceheavyprecipitationontheeasternslopeofthedivide,
especiallyinspringandsummer,andtheplainsreceivethemajorityoftheirannualprecipitation
duringthegrowingseason.Southernportionsofthestategenerallyreceivemid‐tolate‐summer
precipitationasthemarginoftheNorthAmericanMonsoonmovesnorth.
Geology and soils
Thelandscapeweseetodayistheproductofbothpastandongoinggeologicprocesses.Theeffects
ofcontinentaldrift,geologicuplifts,volcaniceruption,anderosionhaveresultedinahighly
complexarrangementofrockandsoiltypesthatprovideasubstrateforColorado’snative
vegetation.Colorado’seasternplainsaredominatedbysoilsderivedfromTertiary(2‐65mya)and
Cretaceous(65‐140mya)sedimentaryformations,shapedbytheactionofflowingwaterandwind.
Inthecentralportionofthestate,theColoradoRockyMountainsareformedofigneousand
metamorphicrockthatisthrustupthroughthesedimentarylayerstotheeastandwest.Heresoils
aregenerallylesswelldeveloped,exceptinlow‐lyingareas,whereerosionhasdeposited
substantialsoilmaterial.ThewesternplateausandvalleysarealsoprimarilyformedinTertiary
andCretaceoussubstrates,andmanysoilshavehighconcentrationsofsaltsandmineralsthat
inhibitplantgrowth.Incombinationwithclimatefactors,soilsareagoodindicatorofwhichtypeof
vegetationwilldominatethelandscapeinaparticulararea.
Land ownership
Ownershippatternsreflectthelandusehistoryofthestate,and,togetherwithmanagement
practicesareanimportantfactorindeterminingtheconservationstatusofColorado’slandscape.
Arablelands,especiallyontheeasternplainsandalongriverdrainages,areprimarilyinprivate
ownership.Colorado’smininghistoryhasleftalegacyofprivateinholdingswithinextensivetracts
ofpublicland.Lowerelevationlandsonthewestslopeusedprimarilyforgrazing,mining,oiland
gasextraction,andrecreationaregenerallyadministeredbytheBureauofLandManagement.
Higherelevation(mostlyforested)partsofthestatearelargelyundertheadministrationoftheU.S.
ForestService,whileNationalGrasslandsadministeredbytheU.S.ForestServiceineastern
ColoradowereformedfromfarmlandreclaimedfromtheravagesoftheDustBowldays.The
distributionofstate‐ownedlandstillreflectstheschoollandgrantincludedinthe1875Enabling
ActfortheTerritoryofColorado,whichprovidedthattwosectionsofeverytownship(usually
sections16and36)begrantedforthesupportofpublicschools.
6ColoradoNaturalHeritageProgram©2015
About57%ofthestate’ssurfaceacresareprivatelyowned,withtheremainderinfederal,state,
localgovernment,ortribalownership.Federalpubliclandsaccountforalittleover36%of
Coloradoacreage.TheBLMadministers8.4millionacres(13%)ofColorado’ssurfaceacres,aswell
asover29millionacresofsub‐surfacemineralestate.OtherfederallandsinColoradoare
administeredU.S.ForestService(22%ofstateacreage),NationalParkService(1%),andother
federalagenciesincludingtheU.S.FishandWildlifeService,BureauofReclamation,and
DepartmentofDefense(<1%).TheStateofColoradoownsnearly5%oftheacreage,andalsoholds
aboutamillionacresofsub‐surfacemineralestateonlandsinotherownership.Triballands
accountforabout1%ofColorado’sacreage,andtheremainderisownedbygovernmentsatthe
countyandcitylevel.
Human influence on the landscape
Inadditiontonaturaldisturbanceprocessessuchasfire,wind,andflooding,theeffectsofhuman
activitieshavealsochangedpatternsofdisturbanceinColorado.ThesettlementhistoryofColorado
hasresultedinapatternoflandownershipwherepubliclandsareasignificantpartofthe
landscape.
Development
Althoughindustrial,urban,suburban,andexurbandevelopmentinColoradoaregenerallynot
occurringonpubliclands,theseactivitiesareasourceofpotentialdisturbancetoadjacentareas.
Colorado’stotalpopulationofover5millionislargelyconcentratedintheFrontRangecorridor
fromPueblonorthtoFortCollinswhere11countiesaccountfor83%ofthestate’spopulation.
LargercitiesoutsidethisareaincludeGrandJunction,Montrose,andDurango.Anetworkof
highways,roads,andothertransportationcorridors,togetherwithutilityright‐of‐waysofvarious
typesconnectspopulatedplaceslargeandsmallthroughoutthestate.Inspiteofthestate’s
increasingpopulation,andpatchworkofprivateandpubliclands,morethan75%ofColorado’s
landscaperemainscoveredbynaturalvegetation,especiallyinhigherelevationareas.
ResourceExtractionandEnergyDevelopment
Miningforcoal,gold,gypsum,limestone,silver,molybdenum,sodaash,sodiumbicarbonate,sand,
gravel,andcrushedstone,aswellastheextractionofpetroleumandnaturalgas,havehada
significantroleinshapingColorado’slandscape.Energydevelopmentisasignificantandexpanding
activityinColorado,especiallyinthenaturalgasandoil‐richareasofthenorthernFrontRangeand
westernslope.Beginninginthe1860s,coalandpetroleumwerethefirstenergyresourcestobe
developedinColorado.Togetherwithnaturalgasandoilshale,thesefossilfuelshavehistorically
constitutedthemajorityofenergydevelopmentinthestate.TheBLMadministersmineralleasing
forallfederallandsinColoradowheresuchrightshavenotbeenwithdrawn,aswellasforsplit‐
estatefederalmineralrightsundernon‐Federallands.Aspartofitstrustresponsibility,theBLM
alsooverseesmineraloperationsontriballands.
RenewableenergyfacilitieshavenotbeendevelopedonBLMlands.Coloradocurrentlyhasover
1,500windturbinesinoperation,primarilyontheeasternplains.Concentratedsolarenergy
facilitiesarealsobeingdevelopedinseveralareasofthestate.However,withtheprojectedfuture
ClimateChangeVulnerabilityAssessmentforColoradoBLM7
growthoftheseindustries,Coloradocanexpecttoseeanincreaseintransmissionlineconstruction
thatmayinvolveBLMadministeredlands.
Agriculture
TheoriginalgrasslandsofColorado’seasternplainswerehometolargenumbersofgrazinganimals
includingdeer,pronghorn,elkandbison.WithEuropeansettlement,thesenativegrazerswere
largelyreplacedbydomesticlivestock.Large‐scalegrazingbeganinthe1860s,andquickly
expandedasrailroadsprovidedaccesstoeasternmarkets.BoththeBureauofLandManagement
andtheU.S.ForestServiceissuegrazingpermitsforpubliclandsinColorado,andstate‐owned
landsmayalsobeleasedforgrazing.Cattleandassociatedproductsformthelargestportionof
Colorado’sagriculturalcashreceipts,followedbyfieldcrops(USDANASS2015).Around1900,crop
farmingbegantoexpandinthestate,withwheatandcornastheprimaryproducts.Although
periodicdroughtshaverepeatedlydealthardblowstofarmingandranchinginColorado,theseland
usesstillmakeanimportantcontributiontothestate’seconomy,andhavehadanundeniableeffect
onthearrangementandconditionofColorado’snaturalvegetation.
BLM‐administeredColoradorangelandissubjecttograzingusebypermittedlivestockoperators.
About2,500grazingallotmentsaremanagedbypermitsorleasesthatspecifythekindandnumber
oflivestock,seasonofuse,andamountofusepermittedeachgrazingyear.Permitsorleasesare
subjecttocompliancereviewandpublicscopingpriortorenewal.
RecreationandConservation
Inrecentdecades,recreationhasbecomeanincreasinglyimportantpartoflanduseinColorado.
FromNationalParkstolocalopenspacelands,increasingnumbersofresidentsandvisitorsare
drawntoavarietyofoutdooractivitiessuchashiking,camping,wintersports,hunting,fishing,and
off‐roadvehicleuse.Paradoxically,recreationonColorado’spubliclandscancontributetobothits
conservationanditsdegradation.
AlthoughtheBLMmanagespubliclandsforrecreation,theagencyisalsoresponsiblefor
preservationoftheenvironment,wildlifeandarchaeologicalandpaleontologicalresources;
sustainablenaturalresourceextraction;thevisualappealofpubliclands;andconsidering
socioeconomicimpactsofmanagementdecisions.TheBLM’sapproximatelyonemillionacresof
NationalConservationLandsinColoradoincludetwonationalmonuments,threenational
conservationareas,fivewildernessareas,53wildernessstudyareas,aswellasNationalHistoric
andScenicTrails.TheBLMalsoamanagesanumberofAreasofCriticalEnvironmentalConcernfor
scientific,scenic,ecological,biological,geological,historicalandprehistoricvaluesforpublic
benefit.
8ColoradoNaturalHeritageProgram©2015
CLIMATE CHANGE VULNERABILITY ASSESSMENT
Uncertainty in climate change vulnerability assessment
Theincreasingnumberofclimatechangevulnerabilityassessmentstendstoindicatethatmany
entitiesregardtherealityofclimatechangewithahighlevelofcertainty.However,therearea
numberofsourcesthatintroduceuncertaintyofvaryingdegreeintotheseassessments.Frequently
acknowledgedsourcesofuncertaintyorvariationinprojectedoutcomesarethemodeled
componentsofclimatechangeanalysis:theglobalcirculationmodels,hydrologicmodels,species
responsemodels,andsoon.Withallprojectionsoffutureclimateconditionswecannotknowwith
absolutecertaintywhich,ifany,willturnouttobetrue.Downscalingthesemodelsdoesnotremove
inherentuncertainty.
Uncertaintyinthecontextofclimatechangeisnotequivalenttocompletelackofknowledge.
Currentclimatemodelsrepresentthebestavailablescience,yetdonotallagree.Ingeneral,climate
modelsareunderstoodtohavehigherlevelsofcertaintyaboutglobaltemperatureresponsesto
forcingfactorsthantheydoforprecipitationresponse.Boththedirectionofresponse(increaseor
decrease)andthemagnitude(degrees,inches,etc.)ofresponseofclimatefactorsarevariable
amongclimatemodels.Currently,consensusaboutthedirectionoftemperaturechange
(increasing)isgreaterthanforprecipitation.Themagnitudeofexpectedchangeforbothfactorsis
uncertain.
Comparing the vulnerability of ecosystems and species
Althoughwehaveestimatedthevulnerabilitytoclimatechangeofbothecosystemsandthespecies
thatinhabittheminthefollowingchapters,therearedifferencesofbothmethodandscalebetween
theseassessments.
Forecosystems,exposureandsensitivitywerecombinedintoasinglemetricthatwaspairedwitha
resilience‐adaptivecapacitymetricinascoringmatrixtoproduceanoverallvulnerabilityrank.
SpecieswereassessedusingtheNatureServeClimateChangeVulnerabilityIndexmethod(Younget
al.2015),whichtreatsexposureasamodifierofsensitivityandadaptivecapacity(i.e.,low
exposurediscountssensitivity/adaptivecapacityfactors,andhighexposureamplifiesthose
factors).
Ecosystemswereassessedusingtherepresentativeconcentrationpathway(RCP8.5)emissions
scenariomethodoftheIPCCFifthAssessmentReport,whilebothanimalandplantspecieswere
assessedunderA2scenariooftheSpecialReportonEmissionsScenarios(SRES)standards
employedintwopreviousIPCCreports.ThisdifferenceisduetotheuseoftheNatureServeCCVI,
whichisbasedontheearliermethodology,forspeciesonly.Forthemid‐centurytime‐frameofour
assessment,theSRESA2scenarioprojectsCO2concentrationlevelsandtemperatureincreasesthat
areslightlyloweronaveragethanthoseprojectedbytheRCP8.5scenario.However,thetwo
scenariosareapproximatelyequivalentinthattheyarebasedonsimilarunderlyingassumptions
ClimateChangeVulnerabilityAssessmentforColoradoBLM9
aboutfuturedemographicandeconomictrends,andaregenerallyregardedas“worst‐case”
scenarios.Neitherscenarioisconsidered‘better’thantheotherbytheclimatesciencecommunity.
Inaddition,thecorrelationofplantandanimalspecieswithasingleecosystemisrare,especially
formobileanimalspecies.Becauseofthisvariability,andalsobecauseofdifferencesinscale
betweenindividualorganismlife‐cyclefactorsandlandscapelevelprocesses,itispossibleforthe
vulnerabilityofaparticularspeciestobedifferentfromthatofitsprimaryecosystem.
Previous vulnerability assessments in the Colorado region
Priortotheeffortreportedherein,anumberofstudieshaveevaluatedvulnerabilitytochanging
climaticconditionsinandaroundColorado(Table1.1).AdditionalreportsnotincludedinTable1.1
havealsoaddressedthevulnerabilitytoclimatechangeofavarietyofsocio‐economicelements.
Thelistedstudiesemployedanassortmentofqualitativeandquantitativeapproaches;anumberdo
notexplicitlyaddressindividualhabitatsorspecies.Furthermore,spatialscalesoflisted
assessmentsdifferbyonetothreeordersofmagnitude.Anelementthatisconsideredhighly
vulnerabletoextinctioninasmallareamayhavesignificantlyreducedvulnerabilityinother
portionsofitsrange.Consequently,acomparisonofvulnerabilityrankingresultsacrossthese
effortsisproblematic.Nevertheless,afewgeneraltrendsareevidentacrossvulnerability
assessments.Speciesandhabitatsofhigherelevationsareusuallyconsideredmorevulnerablethan
thoseofmid‐elevationareas.Speciesandhabitatsthatareextremelycloselyassociatedwithwater
resourcesaregenerallyexpectedtohavehighervulnerabilitythanthoseinmorexericconditions.
Agreementaboutvulnerabilityforsomedrymid‐to‐lowerelevationhabitatsispoor.Forinstance,
pinyon‐juniperwoodlandsandsagebrushshrublandshavereceivedrankingsrangingfromHighly
VulnerabletoLikelytoIncrease,dependingonthescale,location,andmethodofassessment.This
disagreementillustratestheimportanceofattentiontoscaleandtime‐frameinthedevelopmentof
managementgoalsandobjectivesforclimateadaptationplanning,andhighlightsareaswhere
additionalresearchtoaddresswell‐formulatedquestionsmaybeneeded.
10ColoradoNaturalHeritageProgram©2015
Table 1.1.SummaryofclimatechangevulnerabilityassessmentsintheColoradoregionthathaveaddressedhabitatsorspecies.
Full Citation Area Habitats Species Target Time
Frame &
Emissions
Scenario
Methodology Vulnerability
Ranking (see
codekey
below)
Brownetal.2008.ClimateChangeinRockyMountain
NationalPark.
http://www.nps.gov/romo/parkmgmt/upload/climate_cha
nge_rocky_mountain2.pdf
RockyMtn.
NationalPark
Wetlands,lakes
&streams,
montane,
subalpine,
alpine
‐‐‐‐ NonegivenQualitative
(workshop
narrative
synthesis)
Norankings
Ray,A.J.,J.J.Barsugli,andK.B.Averyt.2008.Climatechange
inColorado:Asynthesistosupportwaterresources
managementandadaptation.ReportforColoradoWater
ConservationBoard.WesternWaterAssessment
http://wwa.colorado.edu/publications/reports/WWA_Clim
ateChangeColoradoReport_2008.pdf
StatewideWater
resources,no
individual
habitats
explicitly
addressed
‐‐‐‐ Mid‐century.
CMIP3B1,
A1B,A2
ensembles
Qualitative
(narrative
synthesis)
Norankings
Reiman,B.E.andD.J.Isaak.2010.Climatechange,aquatic
ecosystems,andfishesintheRockyMountainWest:
Implicationsandalternativesformanagement.General
TechnicalReportRMRS‐GTR‐250.USDAForestService,
RockyMountainResearchStation.FortCollins,CO.
http://www.fs.fed.us/rm/pubs/rmrs_gtr250.pdf
Western
Colorado,as
partofRocky
Mtn.west
Stream
environments,
including
riparian
NativefishesNonegivenQualitative
(narrative
synthesis)
Norankings‐
habitatlossor
gain.
ColoradoNaturalHeritageProgramforRarePlant
ConservationInitiative.2011.ColoradoWildlifeActionPlan:
proposedrareplantaddendum.LeeGrunau,JillHandwerk,
andSusanSpackman‐Panjabi,eds.ColoradoNatural
HeritageProgram,ColoradoStateUniversity,FortCollins,
CO.
http://www.cnhp.colostate.edu/download/documents/201
1/rareplant_SWAP_final_june_30_2011_formattedv2.pdf
Statewide ‐‐‐‐ 121G1and
G2plants
Mid‐century.
A2
Quantitative
(NatureServe
CCVI)
EV/HV/MV/PS/IL
/IE
ClimateChangeVulnerabilityAssessmentforColoradoBLM 11
Full Citation Area Habitats Species Target Time
Frame &
Emissions
Scenario
Methodology Vulnerability
Ranking (see
codekey
below)
Neely,B.,R.Rondeau,J.Sanderson,C.Pague,B.Kuhn,J.
Siemers,L.Grunau,J.Robertson,P.McCarthy,J.Barsugli,T.
Schulz,andC.Knapp,Eds.2011.GunnisonBasin:
VulnerabilityAssessmentfortheGunnisonClimateWorking
GroupbyTheNatureConservancy,ColoradoNatural
HeritageProgram,WesternWaterAssessment,University
ofColorado,Boulder,andUniversityofAlaska,Fairbanks.
ProjectoftheSouthwestClimateChangeInitiative.
http://wwa.colorado.edu/publications/reports/TNC‐CNHP‐
WWA‐
UAF_GunnisonClimChangeVulnAssess_Report_2012.pdf
GunnisonBasin17terrestrial
ecosystemsand
7freshwater
73speciesof
conservation
concern
Mid‐century.
CMIP3A2‐
Barsugliand
Mearns2010
projected
climate
scenarios.
Qualitative
(Manomet‐
MADFW,expert
opinion),
quantitative
(NatureServe
CCVI)
Uplands:
EV/HV/MV/PS/SI.
MI/GI/U
Riparian:H/M/L
Species:
EV/HV/MV/PS/IL
/IE
Nydick,K.,Crawford,J.,Bidwell,M.,Livensperger,C.,
Rangwala,I.,andCozetto,K.2012.ClimateChange
AssessmentfortheSanJuanMountainRegions,
SouthwesternColorado,USA:AReviewofScientific
Research.PreparedbyMountainStudiesInstitutein
cooperationwithUSDASanJuanNationalForestService
andUSDOIBureauofLandManagementTresRiosField
Office.Durango,CO.
http://www.mountainstudies.org/s/ClimateResearchRevie
w_SJMs_FINAL.pdf
Southwest
Colorado
Sagebrush,oak,
PJ,Ponderosa,
Mixedconifer,
aspen,
subalpine,
alpine,riparian,
fens&wet
meadows
7taxonomic
groups
Mid‐century.
NARCCAP
(CMIP3A2)
Qualitative
(narrative
relatesto
regionalclimate
models,and
synthesizes
workbyothers)
Decrease–noor
littlechange‐
increase
Woodbury,M.,M.Baldo,D.Yates,andL.Kaatz.2012Joint
FrontRangeClimateChangeVulnerabilityStudy.Water
ResearchFoundationandTailoredCollaborationpartners.
Denver,CO.http://cwcb.state.co.us/environment/climate‐
change/Pages/JointFrontRangeClimateChangeVulnerability
Study.aspx
NorthCentral
Colorado
(Headwatersof
SouthPlatte,
Arkansas,
Coloradorivers)
Streams ‐‐‐‐ 2040and
2070.Selected
CMIP3A2
ensembles
Quantitative
(models)
Norankings
USDAForestService,Region2.UNPUBLISHED.CCVAsfor
selectedhabitats.
Decker,K.andR.Rondeau.2014.SanJuan/TresRios
ClimateChangeEcosystemVulnerabilityAssessment.
ColoradoNaturalHeritageProgram,ColoradoState
University,FortCollins,Colorado.
http://www.cnhp.colostate.edu/download/documents/201
4/SJRA_ecological_systems_vulnerability_analysis_FINAL.p
df
Southwest
Colorado(San
Juan/TresRios
management
area)
14uplandand3
wetland/
riparian
ecosystems
‐‐‐‐ Mid‐century.
SuiteofCMIP5
RCP4.5&8.5
models‐3
scenarios–
Rangwala
2012
Qualitative
(modified
Manomet‐
MADFW,expert
opinionand
narrative
synthesis)
EV/HV/MV/PS/SI
/MI/GI/U
12ColoradoNaturalHeritageProgram©2015
Full Citation Area Habitats Species Target Time
Frame &
Emissions
Scenario
Methodology Vulnerability
Ranking (see
codekey
below)
Handwerk,J.,B.Kuhn,R.Rondeau,andL.Grunau.2014.
ClimateChangeVulnerabilityAssessmentforRarePlantsof
theSanJuanRegionofColorado.ColoradoNaturalHeritage
Program,ColoradoStateUniversity,FortCollins,Colorado.
http://www.cnhp.colostate.edu/download/documents/201
4/SanJuan_CCVI_Final_Report.pdf
Southwest
Colorado(San
Juan/TresRios
management
area)
‐‐‐‐ 60rareplant
spp.
Mid‐century.
CMIP3A2
Quantitative
(NatureServe
CCVI)
EV/HV/MV/PS/IL
/IE
Lukas,J.,J.Barsugli,N.Doesken,I.Rangwala,K.Wolter.
2014.ClimatechangeinColorado:Asynthesistosupport
waterresourcesmanagementandadaptation,2ndedition.
AreportfortheColoradoWaterConservationBoard.
WesternWaterAssessment,CooperativeInstitutefor
ResearchinEnvironmentalSciences(CIRES),Universityof
Colorado,Boulder.
http://cwcbweblink.state.co.us/WebLink/0/doc/191995/Ele
ctronic.aspx?searchid=e3c463e8‐569c‐4359‐8ddd‐
ed50e755d3b7
Statewide,and
specific
subregions
Water
resources,no
individual
habitats
explicitly
addressed
‐‐‐‐ Mid‐century.
CMIP3and
CMIP5,pooled
RCPs(4.5&
8.5discussed)
Qualitative
(narrative
synthesis)
Norankings
Decker,K.andM.Fink.2014.ColoradoWildlifeActionPlan
Enhancement:ClimatechangeVulnerabilityAssessment.
ColoradoNaturalHeritageProgram,ColoradoState
University,FortCollins,Colorado.
http://www.cnhp.colostate.edu/download/documents/201
4/CO_SWAP_Enhancement_CCVA.pdf
Statewide13terrestrial
habitats
‐‐‐‐ Mid‐century.
BCCACMIP5‐
RCP6.0
Quantitative
(models–
projectedrange
shift)
VH/H/M/L
Pocewicz,A.,H.E.Copeland,M.B.Grenier,D.A.Keinath,and
L.M.Washkoviak.2014.Assessingthefuturevulnerabilityof
Wyoming’sterrestrialwildlifespeciesandhabitats.Report
preparedbyTheNatureConservancy,WyomingGameand
FishDepartmentandWyomingNaturalDiversityDatabase.
http://www.nature.org/media/wyoming/wyoming‐wildlife‐
vulnerability‐assessment‐June‐2014.pdf
Adjacentto
Colorado
11habitat
types,largely
analogousto
Coloradotypes
131Species
ofgreatest
conservation
need
Mid‐century.
A2
Quantitative
(models–
annualmean
temperature&
moisturedeficit,
NatureServe
CCVI)
VH/H/M/L
Gordon,E.andD.Ojima,eds.2015.ColoradoClimate
ChangeVulnerabilityStudy.AreportbytheUniversityof
ColoradoBoulderandColoradoStateUniversitytothe
ColoradoEnergyOffice.
http://wwa.colorado.edu/climate/co2015vulnerability/co_v
ulnerability_report_2015_final.pdf
StatewideBroad
categories:
Alpine,Forests,
andGrasslands
‐‐‐‐ Mid‐century?Qualitative
(narrative
synthesis)
Norankings‐key
vulnerabilitiesfor
broadcategories
ClimateChangeVulnerabilityAssessmentforColoradoBLM 13
Full Citation Area Habitats Species Target Time
Frame &
Emissions
Scenario
Methodology Vulnerability
Ranking (see
codekey
below)
Handwerk,J.,L.Grunau,andSSpackman‐Panjabi,eds.
ColoradoWildlifeActionPlan:2015RarePlantAddendum.
ColoradoNaturalHeritageProgram,ColoradoState
University,FortCollins,Colorado.
http://www.cnhp.colostate.edu/download/reports.aspx
Statewide ‐‐‐‐ 117G1orG2
plants
Mid‐century.
CMIP3A2
Quantitative
(NatureServe
CCVI)
EV/HV/MV/PS/IL
/IE
THISDOCUMENT(CNHP2015)
Statewide16terrestrial
habitatsand6
freshwater
groups
97speciesof
conservation
concern
Mid‐century.
NEX‐DCP30–
CMIP5RCP8.5
&CMIP3A2
Quantitative
(models–outof
range
conditions,
NatureServe
CCVI)
Ecosystems:
VH/H/M/L
Species:
EV/HV/MV/PS/IL
/IE
Rank Definition
NatureServeCCVIhttp://www.natureserve.org/conservation‐tools/climate‐change‐vulnerability‐index(inCNHPRPCI2011,Neelyetal.2011,Handwerketal.2014&2015,
CNHP2015)
EV‐ExtremelyVulnerableAbundanceand/orrangeextentwithingeographicalareaassessedextremelylikelytosubstantiallydecreaseordisappearby
2050.
HV‐HighlyVulnerableAbundanceand/orrangeextentwithingeographicalareaassessedlikelytodecreasesignificantlyby2050.
MV‐ModeratelyVulnerableAbundanceand/orrangeextentwithingeographicalareaassessedlikelytodecreaseby2050.
PS‐PresumedStableAvailableevidencedoesnotsuggestthatabundanceand/orrangeextentwithinthegeographicalareaassessedwillchange
(increase/decrease)substantiallyby2050.Actualrangeboundariesmaychange.
IL‐NotVulnerable/IncreaseLikelyAvailableevidencesuggeststhatabundanceand/orrangeextentwithingeographicalareaassessedislikelytoincreaseby
2050.
IE‐InsufficientEvidenceAvailableinformationaboutaspecies'vulnerabilityisinadequatetocalculateanIndexscore.
Neelyetal.(2001),Decker&Rondeau(2014)
EV‐ExtremelyVulnerableEcosystematriskofbeingeliminatedfromtheareaasaresultofclimatechange.
HV‐HighlyVulnerableMajorityofecosystematriskofbeingeliminated(i.e.,>50%loss)asaresultofclimatechange,butunlikelytobeeradicated
entirely.Forriparian,overalllossofsystemisexpectedtobe>50%orecologicalprocessisexpectedtobeseverelyimpacted,
e.g.,floodfrequencyoccurs50%lessthancurrentfloodingregime.
MV‐ModeratelyVulnerableExtentofecosystematriskofbeingmoderatelyreduced(<50%loss)asaresultofclimatechange.Forriparian,overalllossof
systemisexpectedtobe>50%orecologicalprocessisexpectedtobeseverelyimpacted,e.g.,floodfrequencyoccurs50%
lessthancurrentfloodingregime.
LV‐LowVulnerabilityForriparianonly,0to10%lossofareaandconditionofsystemremainsstable.
PS‐PresumedStableExtentofecosystemapproximatelythesame,buttherearesignificantpatternorconditionchangeswithinthearea.
SI‐SlightIncreaseEcosystemmaybecomeestablishedwithinthebasinfromareasoutside.
MI‐ModerateIncreaseExtentofecosystemmayexpandmoderately(<50%gain)asaresultofclimatechange.
14ColoradoNaturalHeritageProgram©2015
Rank Definition
GI‐GreatlyIncreaseEcosystemmayexpandgreatly(>50%gain)asaresultofclimatechange.
U‐UnknownVulnerabilityofecosystemunderclimatechangeisuncertain
Decker&Fink(2014),CNHP(2015)
VH‐VeryHighVulnerabilityHabitats/ecosystemshavehighvulnerabilitytoclimatechangewhenexposureandsensitivityarehigh,andadaptivecapacity
andresiliencearelow.Transformationofthehabitat/ecosystemismostlikelytooccurinupcomingdecades.
HV‐HighlyVulnerableHigh vulnerabilitytoclimatechangeresultsfromcombiningeitherhighormoderateexposure‐sensitivitywithlowormedium
adaptivecapacity‐resilience.Undereithercombination,climatechangeislikelytohavenoticeableimpact.
MV‐ModeratelyVulnerableModeratevulnerabilitytoclimatechangeresultsfromavarietyofcombinationsforexposure‐sensitivityandadaptive
capacity‐resilience.Thenumberofpossiblecombinationsindicatesadegreeofuncertaintyinthevulnerabilityranking.Under
circumstanceswherethetwofactorsareessentiallybalanced,vulnerabilityisthoughttobereduced,butstillofconcern.
LV‐LowVulnerabilityLowvulnerabilitytoclimatechangeoccurswhenahabitatcombineslowexposureandsensitivitywithhighormoderate
adaptivecapacityandresilience.Forthesehabitats/ecosystemsclimatechangestressanditseffectsareexpectedtobeleast
severeorabsent.
ClimateChangeVulnerabilityAssessmentforColoradoBLM15
Climate change in Colorado
AnnualaveragetemperaturesacrossColoradohaveincreasedby2.0°Foverthepast30years
(Figure1.2a).Warmertemperaturesareevidentforallseasons,anddailyhighandlow
temperatureshavealsoincreased(Lucasetal.2014).Incontrast,overtheperiodofrecord,there
arenocomparabletrendsinaverageannualprecipitationinColorado(Figure1.2b),although
snowpacklevelshavebeengenerallybelowaveragesince2000.Thedecreaseinsnowpack,along
withwarmingspringtemperaturesandtheeffectsofincreaseddust‐on‐snowhavecombinedto
shiftthetimingofsnowmeltandpeakrunofffrom1‐4weeksearlier(Lucasetal.2014).Flowering
datesforsomeplantspeciesareoveramonthearlierthantheywereacenturyago(Munsonand
Sher2015).DroughtconditionsasmeasuredbythePalmerDroughtSeverityIndexalsoreflect
warmingtemperaturesandtherecentperiodofbelowaverageprecipitiation(Figure1.2c).
ReconstructionsofdroughtsinwesternNorthAmericashowanumberofdroughtspriortothe
instrumentalrecordthatweremoresevereandlongerlastingthantheworstdroughtsofthepast
century(Woodhouse2004,Stahleetal.2007,Routsonetal.2011),whichillustratestherelatively
narrowviewofvariabilityprovidedbythehistoricalrecord.Bothhistoricandpre‐instrumental‐
recorddroughtshavehadnotableeffectsonvegetationpatterns,andhaveseverelyimpacted
patternsofhumanhabitationandsocialinteraction(Woodhouse2004,Bensonetal.2007).The
possibilityoffuturedroughtsthatgreatlyexceedthemostseveredroughtsofthepastmilleniacan
notbeexcluded(Cooketal.2015).
Projectionsbasedon17models(NASAEarthExchangeDownscaled30Arc‐SecondCMIP5Climate
ProjectionsdatasetfortheconterminousU.S.,Thrasheretal.2013),rununderRCP8.5andRCP4.5
forthe30‐yearperiodcenteredon2050indicatethatallareasofColoradowillexperiencesome
degreeofwarming,andpotentiallychangesinprecipitationaswell.Temperaturechange
projectionsareregardedasmorecertain(Barsuglipers.comm.),andthereisgeneralagreement
thatconditionshavealreadywarmedtosomedegree(Lucasetal.2014);uncertaintyfor
temperaturechangeisgreaterregardingthemagnitudeoftheprojectedchange.Incombination
withexpectedchangesintemperature,however,evenawetterfuturemaynotbesufficientto
maintainrunoffandsoilmoistureconditionssimilartothoseoftherecentpast.Climateprojections
presentedherearesummariesoflong‐termtrendsanddonottrackinter‐annualvariation,which
willremainasourceofvariability,asithasbeeninthepast.Ourecosystemanalysisfocusedona
singlerepresentativeconcentrationpathway(RCP8.5)andalimitedsubsetofavailableglobal
circulationmodels;atthispointintimewehavenowayofknowingifthisisthescenariothatwill
befoundvalidbymid‐century.However,inallscenarios,changesthatinthepastoccurredover
periodsofseveralthousandyearsarenowprojectedtotakeplaceinonlyahundredyears.
ProjectedchangessummarizedinFigure1.3aindicateaverageseasonaltemperatureincreasesof
anywherefromabout3.5‐5.8F,withmeanincreasesofabout4.1‐5.4F.Furthermore,minimum
andmaximumtemperatureincreasesarealsoprojectedforallseasons.Somewhatgreater
increasesareprojectedunderRCP8.5incomparisonwithRCP4.5atmid‐century.Winterminimum
temperaturesareprojectedtohavegreaterincreasesthanwintermaximumtemperatures,butin
allotherseasonsthegreatestincreasesareprojectedinmaximumtemperatures,andtheleastin
16ColoradoNaturalHeritageProgram©2015
(a)
(b)
(c)
Figure 1.2.Historical(1990‐2014)Coloradostatewidetrendsfor(a)annualmeantemperature,(b)annual
precipitation,and(c)PalmerDroughtSeverityIndex.Temperatureandprecipitationareshownasdeparturefrom
themeanofbaseperiod(1901‐2000).DataarefromNOAANationalCentersforEnvironmentalInformation:
http://www.ncdc.noaa.gov/cag/data‐info.
ClimateChangeVulnerabilityAssessmentforColoradoBLM17
minimumtemperatures(Figure1.3a).Rangesofprojectedincreaseforallseasonsarebroadly
overlapping.
Meanprojectedprecipitationchangesaregenerallylesscertainthanthosefortemperature,and
maynotbeoutsidetherangeofhistoricvariability,atleastbymid‐century.Seasonalprojected
percentincreasesinprecipitationareonaveragegreatestforwinterandspring(Figure1.3b),while
summerandfallareprojectedtohavedecreasedoressentiallyunchangedprecipitation.However,
rangesforgrowingseasonsincludebothincreasedanddecreasedprecipitation.
(a)(b)
Figure 1.3.Seasonalprojectedtemperature(a)andprecipitation(b)changesbymid‐21stcentury(2050;centered
around2035‐2064period)forColorado.
Fortemperature(a),thebottomofeachbarrepresentsthe10
th
percentile,andthetopofthebaristhe90
th
.Meanprojected
changeisrepresentedbyopendiamonds.RCP8.5statewideprojectedchangeinaverageseasonaltemperaturesarethetop
(red)bars,andRCP4.5arebottom(purple)bars.Forprecipitation(b),thebottomofeachbarrepresentsthe10
th
percentile,the
middlelineisthe50
th
,andthetopofthebaristhe90
th
.RCP8.5statewideprojectedpercentchangeinseasonalaverage
precipitationaretheleft‐handbars,andRCP4.5aretheright‐handbars.Seasonsare:winter=DJF,spring=MAM,summer=JJA,
andfall=SON.Atemperatureintervalof1°Fisequaltoanintervalof5⁄9degreesCelsius.Climatescenariosusedwerefromthe
NEX‐DCP30dataset,preparedbytheClimateAnalyticsGroupandNASAAmesResearchCenterusingtheNASAEarthExchange,
anddistributedbytheNASACenterforClimateSimulation(NCCS).
Literature Cited
Benson,L.,K.Petersen,andJ.Stein.2007.Anasazi(Pre‐ColumbianNative‐American)migrationsduringthemiddle‐12
th
andlate‐13
th
centuries–weretheydroughtinduced?ClimaticChange83:187‐213.
Cook,B.I.,T.R.Ault,andJ.E.Smerdon.2015.Unprecedented21
st
centurydroughtriskintheAmericanSouthwestand
CentralPlains.ScienceAdvances12Feb2015;1:e1400082.
Lukas,J.,J.Barsugli,N.Doesken,I.Rangwala,K.Wolter.2014.ClimatechangeinColorado:Asynthesistosupportwater
resourcesmanagementandadaptation,2ndedition.AreportfortheColoradoWaterConservationBoard.WesternWater
Assessment,CooperativeInstituteforResearchinEnvironmentalSciences(CIRES),UniversityofColorado,Boulder.
18ColoradoNaturalHeritageProgram©2015
Munson,S.M.andA.A.Sher.2015.Long‐termshiftsinthephenologyofrareandendemicRockyMountainplants.
AmericanJournalofBotany102:1‐9.
Routson,C.C.,C.A.Woodhouse,andJ.T.Overpeck.2011.SecondcenturymegadroughtintheRioGrandeheadwaters,
Colorado:Howunusualwasmedievaldrought?GeophysicalResearchLetters38,L22703,doi:10.1029/2011GL050015.
Stahle,D.W.,F.K.Fye,E.R.Cook,R.D.andGriffin.2007.Tree‐ringreconstructedmegadroughtsoverNorthAmericasince
A.D.1300.ClimaticChange83:133‐149.
Thrasher,B.,J.Xiong,W.Wang,F.Melton,A.MichaelisandR.Nemani.2013.DownscaledClimateProjectionsSuitablefor
ResourceManagement.Eos,TransactionsAmericanGeophysicalUnion94:321‐323.
U.S.DepartmentofAgriculture,NationalAgriculturalStatisticsService[USDANASS].2015.2014StateAgricultural
OverviewforColorado.http://www.nass.usda.gov/Quick_Stats/Ag_Overview/stateOverview.php?state=COLORADO
Woodhouse,C.A.2004.ApaleoperspectiveonhydroclimaticvariabilityinthewesternUnitedStates.AquaticSciences
66:346‐356.
Young,B.E.,E.Byers,G.Hammerson,A.Frances,L.Oliver,andA.Treher.2015.GuidelinesforusingtheNatureServe
ClimateChangeVulnerabilityIndex.Release3.0.NatureServe,Arlington,VA.http://www.natureserve.org/biodiversity‐
science/publications/guidelines‐using‐natureserve‐climate‐change‐vulnerability‐index‐0
ClimateChangeVulnerabilityAssessmentforColoradoBLM19
2 ECOSYSTEMS
Authors:
KarinDecker
MichelleFink
Recommendedchaptercitation:
Decker,K.andM.Fink.2015.Ecosystems.Chapter2InColoradoNaturalHeritageProgram2015.ClimateChangeVulnerability
AssessmentforColoradoBureauofLandManagement.K.Decker,L.Grunau,J.Handwerk,andJ.Siemers,editors.Colorado
NaturalHeritageProgram,ColoradoStateUniversity,FortCollins,Colorado.
20ColoradoNaturalHeritageProgram©2015
TableofContents–2Ecosystems
TerrestrialEcosystems–Methods..............................................................................................................23
TerrestrialEcosystems‐Results.................................................................................................................29
LiteratureCited...........................................................................................................................................40
ForestandWoodland.................................................................................................................................42
Aspen....................................................................................................................................................43
Lodgepole.............................................................................................................................................50
Mixedconifer.......................................................................................................................................56
Pinyon‐Juniper......................................................................................................................................62
Ponderosa.............................................................................................................................................70
Spruce‐fir..............................................................................................................................................76
Shrubland....................................................................................................................................................84
Desertshrubland
..................................................................................................................................85
Oak&Mixedmountainshrub..............................................................................................................91
Sagebrush.............................................................................................................................................97
Sandsage.............................................................................................................................................103
GrasslandorHerbaceous..........................................................................................................................108
Alpine..................................................................................................................................................109
Montanegrasslands...........................................................................................................................116
Semi‐desertgrassland........................................................................................................................123
Shortgrassprairie...............................................................................................................................128
RiparianandWetland...............................................................................................................................136
Riparianwoodlandsandshrublands..................................................................................................137
Wetlands............................................................................................................................................144
FreshwaterEcosystems–Methods..........................................................................................................150
FreshwaterEcosystems‐Results..............................................................................................................158
Streams,Rivers,Lakes,andReservoirs..............................................................................................159
ClimateChangeVulnerabilityAssessmentforColoradoBLM21
ListofFigures
Figure 2.1.Statewideenvelopeofprojectedchangeinannualmeantemperatureandprecipitation
undertwoemissionsscenarios(boxes),incomparisonwithlevelsofprecipitationincreaserequiredto
maintainthestatusquo.............................................................................................................................. 25
Figure 2.2.Vulnerabilityrankingmatrix.....................................................................................................28
Figure 2.3.ProjectedannualchangeinColoradofor(a)uplandecosystems,and(b)wetlandandriparian
ecosystems.Ecosystemmeansarecoloredtoindicatethedegreetowhichtheecosystemisprojectedto
experienceconditionsthatareoutofrangeofthoseinitscurrentstatewidedistribution......................29
Figure 2.4.Comparisonofscoresbyecosystemfor(a‐e)individualresiliencefactors,and(f)overall
resilience–adaptivecapacityscore.Backgroundcolorsreflectthelow(red),moderate(orange),and
high(green)resiliencecategories...............................................................................................................30
Figure 2.5.AreaofecosystemsmappedatvariouselevationsinColorado...............................................31
Figure 2.6.Bioclimaticenvelopeasrepresentedbyannualprecipitationandmeantemperaturefor
ecosystemsinColorado.Errorbarsrepresentthe10‐90%rangearoundthemean.................................32
Figure 2.7.MinimumwinterandmaximumsummertemperaturerangesforecosystemsinColorado.
Boxesrepresentthemiddlequartiles,whilewhiskersshowthe10‐90%range........................................33
Figure 2.8.Projectedseasonalaverageprecipitationandmeantemperaturetrajectoriesforcurrent
uplandecosystemrangesinColoradobymid‐centuryunderahighradiativeforcingscenario(RCP8.5).
Circlesrepresentcurrentconditions..........................................................................................................38
Figure 2.9.Projectedseasonalaverageprecipitationandmeantemperaturetrajectoriesforcurrent
wetlandandriparianecosystemrangesinColoradobymid‐centuryunderahighradiativeforcing
scenario(RCP8.5).Circlesrepresentcurrentconditions............................................................................39
Figure 2.10.STORETstationswithJulywatertemperaturereadings......................................................151
Figure 2.11.PredictionStandardError..................................................................................................... 151
Figure 2.12.Interpolatedwatertemperature67‐69°Ffilledcontour,splitintoNorth‐West,North‐
Central,South‐West,andSouth‐Centralsections.ColorsrepresentthemeanJulyairtemperature
coincidingwitheachcontoursection.......................................................................................................152
Figure 2.13.Modeledtransitionline........................................................................................................154
Figure 2.14.Decision‐treeforexposurecriteriaappliedtoriversandstreams.......................................155
Figure 2.15.Categorytransitionsbetweencurrentandprojected(RCP8.5)conditionsforstreamsand
rivers.........................................................................................................................................................165
Figure 2.16.Comparisonofcurrent(top)andprojected(bottom)streamtemperatureclassification..167
22ColoradoNaturalHeritageProgram©2015
ListofTables
Table 2.1.Ecosystemsassessedforvulnerabilitytoclimatechange.........................................................23
Table 2.2.Criteriaforscoringexposureofterrestrialecosystems.............................................................25
Table 2.3.Descriptionoffactorsusedtoassessresilience‐adaptivecapacityinterrestrialecosystems..26
Table 2.4.Vulnerabilityranksummaryforallassessedterrestrialecosystems.........................................36
Table 2.5.Keyvulnerabilities,forestandwoodlandecosystems...............................................................42
Table 2.6.Keyvulnerabilities,shrublandecosystems................................................................................84
Table 2.7.Keyvulnerabilities,grasslandorotherherbaceousecosystems.............................................108
Table 2.8.Keyvulnerabilities,riparianandwetlandecosystems.............................................................136
Table 2.9.Freshwaterecosystemtargets.................................................................................................150
Table 2.10.Meanandstandarddeviation(STD)currentJulyairtemperature(°F)valuesforeachcontour
segmentwithinasection.Valuesinparenthesesare°C..........................................................................153
Table 2.11.Criteriaforscoringexposureoflakesandreservoirsfreshwaterecosystems......................155
Table 2.12.Descriptionoffactorsusedtoassessresilience‐adaptivecapacityinfreshwaterecosystems.
..................................................................................................................................................................156
Table 2.13.FactorsincludedinTNCfreshwatermeasuresofconditiondatabase..................................157
Table 2.14.Keyvulnerabilities,freshwaterecosystems...........................................................................158
Table 2.15.Vulnerabilityranksummaryforallassessedfreshwaterecosystems...................................160
Table 2.16.Representativefishspeciesforfreshwaterecosystems........................................................163
Table 2.17.Reachlengthstatistics(km)forwatertemperaturecategoriesbothstatewideandbyregion.
..................................................................................................................................................................166
ClimateChangeVulnerabilityAssessmentforColoradoBLM23
TERRESTRIAL ECOSYSTEMS ‐ METHODS
Target selection
InconsultationwithBLM,CNHPidentified16terrestrialecosystemtypesorgroupsofinterestfor
BLMmanagementtobeassessed(Table2.1).Terrestrialecosystemdistributionwasmappedusing
SWReGAP(USGS2004)foruplandecosystems,andNationalWetlandInventorymappingfor
riparianandwetlandecosystems(USFWS1975‐2013).Thevulnerabilityofecosystemswas
assessedundertwoprimaryheadings:exposure‐sensitivity,andresilience‐adaptivecapacity.
Scoresforthesetwofactorswerecombinedtoobtainanoverallvulnerabilityrank.
Table 2.1.Ecosystemsassessedforvulnerabilitytoclimatechange.
Terrestrial
Forest and Woodland Grassland or herbaceous
AspenforestAlpine
Lodgepolepineforest Montanegrassland
MixedconiferforestSemi‐desertgrassland
Pinyon‐JuniperwoodlandShortgrassprairie
Ponderosapineforest
Spruce‐FirforestRiparian & Wetland
Riparianwoodland&shrubland‐Eastern
ShrublandRiparianwoodland&shrubland‐Mountain
Desertshrubland Riparianwoodland&shrubland‐Western
Oak&mixedmountainshrublandWetlands‐Eastern
Sagebrushshrubland Wetlands‐Mountain
SandsageshrublandWetlands‐Western
Terrestrial ecosystem responses to climate change
Thepredictionofpotentialplantdistributionunderfutureclimateconditionsisbasedonthe
ecologicalprinciplethatthepresenceofaspeciesonthelandscapeiscontrolledbyavarietyof
bioticandabioticfactors,inthecontextofbiogeographicandevolutionaryhistory.Biotic
interactions(e.g.,competition,predation,parasitism,etc.)togetherwithclimateandotherabiotic
componentsacttoinfluencethespatialarrangementofspeciesatlocal,regional,andcontinental
scales.Abioticfactorsthatinfluenceecosystemprocessesandspeciesdistributionsinclude
temperature,water,carbondioxide,nutrients,anddisturbanceregimes(Prenticeetal.1992,
Holling1992).Waterbalance,orthedifferencebetweenprecipitationinputsandwaterlossinthe
formofevapotranspiration,runoff,anddeepdrainage,isaprimarydeterminantofterrestrial
vegetationdistributionintheU.S.(Stephenson1990,Nielsonetal.1992,Nielson1995).
24ColoradoNaturalHeritageProgram©2015
Becausecompleteandaccurateknowledgeofdrivingfactorsandhistoryisrarely,ifever,available,
werelyoncorrelativemodelsthatrelateobservedspeciesdistributionwithpastandrecentlevels
ofclimaticvariables.Thepredictiveprocessisfurtherconstrainedbyourinabilitytomeasuresuch
variablesaccuratelyonacontinuousspatialortemporalscale.Asaresult,modelingvariablesare
usuallyanapproximationoftheenvironmentalfactorsthatcontrolspeciesdistribution,using
availabledatathatarelikelyonlysurrogatesfortheactualcontrollingfactors.Furthermore,
becausetherateofvegetationresponsetoenvironmentalshiftsislikelytobelowerthantherateof
climatechangeitself,andbecauserelictreesmayremainfordecades,predictivemodelsaremore
usefulinidentifyingthefuturelocationofsuitablehabitatforaspeciesthaninpredictingtheactual
groundcoverataspecifictimeinaparticularlocation.Finally,althoughwecanestimatethe
climaticrequirementsofagivenspecies,andextrapolatefromthatestimatetheeventual
distributionofanecosystem,itismoredifficulttopredictvegetationdynamicsthataretheresultof
disturbanceeventsorecologicalprocesses(e.g.,drought,fire,snowmelt,herbivory,insect
outbreaks,etc.).Thesefactorsareaddressednarratively,andevaluatedthroughexpertelicitation.
Becauseoftheselimitations,welookedatdegreeofchangeofclimaticvariablesoveran
ecosystem’scurrentrangeasameasureofexposuretoclimatechange,ratherthanattemptto
predictoverallchangesindistribution.
Exposure and sensitivity assessment – terrestrial ecosystems
Weusedspatialanalysismethodstoevaluatetheexposureandsensitivitytoclimatechangefor
eachecosystem.Weusedensembleaveragesof800mNASAEarthExchange(NEX)Downscaled
ClimateProjections(NEX‐DCP30)fortheContinentalUS.Theseaveragesarebasedon34models
developedfortheWorldClimateResearchProgramme's(WCRP)CoupledModelIntercomparison
ProjectPhase5(CMIP5).IndividualmodelsarelistedinAppendixA.
ThereisgeneralagreementthattemperaturesthroughoutColoradoareprojectedtoincrease.
Precipitationmodelsaremuchmorevariable,and,onaveragetendtoshowincreasing
precipitationformostofColorado.However,hydrologicmodelingfortheColoradoRiverandother
basins(e.g.,NashandGleick1991,1993)hasindicatedthat,asageneralizedrule‐of‐thumb,for
each1.8°F(1°C)ofwarming,anapproximate5%increaseinprecipitationwouldberequiredfor
runofflevelstoremainunchanged(SolidlineinFigure2.1).Withprojectedmid‐century
temperaturesincreasing4°Formore,noareasinColoradoareprojectedtoreceivesufficient
compensatoryprecipitation.Inordertoaccountforthepotentialeffectsofwarmertemperatures
onsoilmoistureavailability,anddeterminetheextenttowhicheachecosystemmaybeexposedto
effectivelydrierconditions,wemadeaconservativeapplicationoftheaboverule,toevaluatehow
muchofanecosystemmightreceiveatleastapartial(50%)levelofcompensatoryprecipitation
(dashedlineinFigure2.1).
ClimateChangeVulnerabilityAssessmentforColoradoBLM25
Figure 2.1.Statewideenvelopeofprojectedchangeinannualmeantemperatureandprecipitationundertwo
emissionsscenarios(boxes),incomparisonwithlevelsofprecipitationincreaserequiredtomaintainthestatus
quo.
Foreachecosystem,wecalculatedtheproportionofacreagewhereprojectedannualmean
temperatureformid‐centuryunderRCP8.5wasgreaterthananyannualmeantemperatures
currentlyexperiencedbythatecosystemwithinColorado,ANDprojectedfutureprecipitation
changeswerelessthan5%increaseovercurrentlevels.Ecosystemswerescoredaccordingtothe
scaleshownbelow(Table2.2).Inaddition,anyecosystemwhoseproportionofacreagewith
temperatureswithinthenormalrange,butwithmorethan50%ofthatacreagehavingprojected
futureprecipitationchangeswithlessthan5%increaseovercurrentlevels,wasbumpedtothe
nexthigherexposurecategory.
Itisimportanttonotethattheresultingscoresareintendedtogivearelative,notanabsolute
indicationofthepotentialimpactoffutureclimateconditionsonanecosystem.Thatis,a“Low”
scoredoesnotmeanthatanecosystemisnotvulnerabletoclimatechange,butthattheanalysis
indicatesthatitmaybelessvulnerablethanthoseecosystemswithscoresofModerate,High,or
VeryHigh.Furthermore,underthescoringsystemweused,“Moderate”isabroadcategory,andall
ecosystemswithaModeratevulnerabilityrankarenotnecessarilyequallyvulnerable.
Table 2.2.Criteriaforscoringexposureofterrestrialecosystems.
PercentColoradoacreswithprojected
temp>max&pptdelta<5%36–100%16–35%0–15%
InitialExposure‐SensitivityScoreHighModerateLow
PercentColoradoacreswithtemp<=
max&pptdelta<5%morethan50%?YesNoYesNoYesNo
FinalExposure‐SensitivityScoreVeryHighHighHighMod.ModLow
26ColoradoNaturalHeritageProgram©2015
Resilience‐adaptive capacity assessment – terrestrial ecosystems
Thisscoresummarizesindirecteffectsandnon‐climatestressorsthatmayinteractwithclimate
changetoinfluencetheadaptivecapacityandresilienceofanecosystem.Factorsevaluatedare
adaptedfromthemethodologyusedbyManometCenterforConservationScienceand
MassachusettsDivisionofFishandWildlife(MCCSandMAFW2010),combinedunderfiveheadings
(Table2.3).Factorswerescoredonascaleof0(lowresilience)to1(highresilience).
Table 2.3.Descriptionoffactorsusedtoassessresilience‐adaptivecapacityinterrestrialecosystems.
Assessment factor Description
Bioclimaticenvelopeandrange
Thisfactorsummarizestheexpectedeffectsoflimitedelevationalor
bioclimaticrangesforanecosystem.Suitableconditionsforecosystemsat
upperelevationsmaybeeliminated.Ecosystemswithnarrowbioclimatic
envelopesmaybemorevulnerabletoclimatechange.Finally,ecosystems
thatareatthesouthernedgeoftheirdistributioninColoradomaybe
eliminatedfromthestateunderwarmingconditions.
Growthformandintrinsic
dispersalrate
Thisfactorsummarizestheoverallabilityoftheecosystem’scomponent
speciestoshifttheirrangesinresponsetoclimatechangerelativelyquickly.
Characteristicsofgrowthform,seed‐dispersalcapability,vegetativegrowth
rates,andstress‐toleranceareconsidered.
Vulnerabilitytoincreased
impactbybiologicalstressors
Thisfactorsummarizeswhetherexpectedfuturebiologicalstressors
(invasivespecies,grazersandbrowsers,pestsandpathogens)havehad,or
arelikelytohave,anincreasedeffectduetointeractionswithchanging
climate.Climatechangemayresultinmorefrequentormoresevere
outbreaksofthesestressors.Ecosystemsthatarecurrentlyvulnerableto
thesestressorsmaybecomemoresounderclimatechange.
Vulnerabilitytoincreased
frequencyorintensityof
extremeevents
Thisfactorevaluatescharacteristicsofanecosystemthatmakeitrelatively
morevulnerabletoextremeevents(fire,drought,floods,windstorms,dust
onsnow,etc.)thatareprojectedtobecomemorefrequentand/orintense
underclimatechange.
Otherindirecteffectsofnon‐
climatestressors–landscape
condition
Thisfactorsummarizestheoverallconditionoftheecosystematthe
landscapelevelacrossColorado,andisderivedfromalandscapeintegrity
scoreindexingthedegreeofanthropogenicdisturbance(Rondeauetal.
2011,Lemlyetal.2011).
Bioclimatic envelope and range
Eachecosystemwasscoredforelevationalrange,southernedgeofrange,annualprecipitation
range,andgrowingdegreedaysrange.Ecosystemsrestrictedtohighelevationsreceivedascoreof
0,otherecosystemsscored1.Likewise,ecosystemsatthesouthernedgeoftheircontinentalrange
inColoradowereassignedascoreof0,andotherecosystemsscored1.Annualprecipitationand
growingdegreedaysrangewerecalculatedastheproportionoftotalvariablerangeinColoradoin
whichtheecosystemhadsignificantpresencemapped.Thesefourscoreswereaveragedtoproduce
asinglescoreforthisfactor.
ClimateChangeVulnerabilityAssessmentforColoradoBLM27
Growth form and intrinsic dispersal rate
Scoresof0(lowresilience),0.5(uncertainormoderateresilience),and1(highresilience)were
assignedtoeachecosystembasedongrowthformofthedominantspecies(i.e.,treesscored0,
shrubsandherbaceousscored1),andotherinformationderivedfromtheliteratureregardingthe
dispersalabilitiesofthosespecies.
Vulnerability to increased attack by biological stressors
Beginningwithadefaultscoreofone,wesubtracted0.2forvulnerabilitytopotentialincreased
effectsofgrazersorbrowsers,and0.3forvulnerabilitytoinvasivespecies.Inaddition,foresttypes
withlevelsofinsectmortalitysufficienttocausedramaticstructuralchangesoveralargearea(>1
millionacresinColorado)receivedascoreof0,andforesttypeswithlowerlevelsofinsect
mortalityreceivedastartingscoreof0.7.Forestscoringwasbasedoncumulativedamagetotals
fromUSFSAerialSurveys(USDAForestService2014).
Vulnerability to increased frequency or intensity of extreme events
Ecosystemsnotespeciallyvulnerabletoincreasedfrequencyorintensityofabioticstressors
receivedadefaultscoreofone.Foresttypesnotadaptedtodryconditionswerescored0.5,to
accountforincreasedsusceptibilitytothecombinedeffectsofdroughtandpotentiallyincreased
wildfire,whilemoredroughttolerantforesttypesscored0.7.Non‐forestecosystemsvulnerableto
droughtwerescored0.5,andecosystemsvulnerableonlytootherabioticstressorsscored0.9.
Landscape condition
Theaveragevalueacrossthestatewidelandscapeintegritymodels(Rondeauetal.2011,Lemlyet
al.2011)foreachecosystemwascalculatedasavaluebetween0and1.
Resilience‐adaptive capacity ranking
Scoresforthefivefactorsarebasedonbothspatialanalysisandliteraturereview.Rankingsforthis
sub‐scoreareoppositetothedirectionoftheexposure‐sensitivityrankingscheme(i.e.,ahigher
valueindicates“better”andalowervalueindicates“worse.”)Theroundedaverageofthefivesub‐
scoresdeterminesthefinalResilience‐AdaptiveCapacityscore.
AverageofResilience‐AdaptiveCapacityScores0–0.500.51–0.700.71–1.0
OverallResilience‐AdaptiveCapacityScoreLowModerateHigh
Vulnerability assessment ranking
Overall vulnerability ranking
TheExposure‐SensitivityscoreandtheResilience‐AdaptiveCapacityscorearecombined(Figure
2.2)accordingtotheschemepresentedbelow(Comeretal.2012)toproduceanoverall
vulnerabilityrankforeachecosystem.
28ColoradoNaturalHeritageProgram©2015
Exposure‐Sensitivityscore/Resilience
‐AdaptiveCapacityscore
Vulnerability
H/HM/HL/H
VeryHigh
High
Moderate
Low
H/MM/ML/M
H/LM/LL/L
Figure 2.2.Vulnerabilityrankingmatrix.
VeryHigh:Ecosystemshavehighvulnerabilitytoclimatechangewhenexposureand
sensitivityarehigh,andadaptivecapacityandresiliencearelow.Underthesecircumstances,
transformationoftheecosystemismostlikelytooccurinupcomingdecades.
High:Highvulnerabilitytoclimatechangeresultsfromcombiningeitherhighormoderate
exposure‐sensitivitywithlowormediumadaptivecapacity‐resilience.Undereither
combination,climatechangeislikelytohavenoticeableimpact.
Moderate:Moderatevulnerabilitytoclimatechangeresultsfromavarietyofcombinationsfor
exposure‐sensitivityandadaptivecapacity‐resilience.Thescoringmatrixisslightlyweighted
towardincreasedvulnerabilityinthenumberofpossiblecombinationswhichproducea
moderatevulnerabilityranking.Undercircumstanceswherethetwofactorsareessentially
balanced,vulnerabilityisthoughttobereduced,butstillofconcern.
Low:Lowvulnerabilitytoclimatechangeoccurswhenanecosystemisexpectedtoexperience
lowexposureandsensitivityincombinationwithhighormoderateadaptivecapacityand
resilience.Fortheseecosystemsclimatechangestressanditseffectsareexpectedtobeleast
severeorabsent.
ClimateChangeVulnerabilityAssessmentforColoradoBLM29
TERRESTRIAL ECOSYSTEMS ‐ RESULTS
Overview of terrestrial ecosystems
Change in temperature and precipitation by mid‐century
Underthemostseverescenarioecosystemsevaluatedhereinareprojectedtoexperienceannual
meantemperaturesthatare5‐6°Fwarmerthanintherecentpast;atthesametimefuture
precipitationlevelsarenotprojectedtoincreasesufficientlytocompensateevenpartiallyfor
increasedmoisturelossduetowarmertemperatures(dashedlineinFigure2.3).
Figure 2.3.ProjectedannualchangeinColoradofor(a)uplandecosystems,and(b)wetlandandriparian
ecosystems.Ecosystemmeansarecoloredtoindicatethedegreetowhichtheecosystemisprojectedto
experienceconditionsthatareoutofrangeofthoseinitscurrentstatewidedistribution.
Resilience factors
ResultsforindividualresiliencefactorsareshowninFigure2.4anddiscussedindetailbelow.
30ColoradoNaturalHeritageProgram©2015
(a)Range&environmentalenvelope
rank
(b)Dispersal&growthformrank(c)Biologicalstressorsrank
(d)Abioticstressors&Extremeevents
rank
(e)Landscapeconditionrank(f)OverallResilience‐Adaptive
capacityrank
Figure 2.4.Comparisonofscoresbyecosystemfor(a‐e)individualresiliencefactors,and(f)overallresilience–
adaptivecapacityscore.Backgroundcolorsreflectthelow(red),moderate(orange),andhigh(green)resilience
categories.
Elevation range and relative abundance
Togetherwithrangeextentandbioclimateenvelope(below),weconsideredelevationasafactor
thatmightdetractfromtheresilienceofanecosystem.EcosystemelevationsinColoradorange
fromabout3,500fttonearly14,000ft(Figure2.5).Theextremehighestelevationsarenon‐
vegetated.Lowelevationsareoccupiedbygrassland,shrubland,andwoodlandecosystems
dominatedbyspeciesadaptedtolowerprecipitationandwarmconditions.Anumberofmontane
tosub‐alpineecosystemsareclusteredtogetheratmiddleelevationsfromabout7,000‐10,000ft.At
higherelevations,subalpineforestandalpinevegetationoccupyfairlydistinctelevationalzones.
ClimateChangeVulnerabilityAssessmentforColoradoBLM31
Figure 2.5.AreaofecosystemsmappedatvariouselevationsinColorado.
Bioclimatic envelope
Temperatureandprecipitationvariableswereusedtocharacterizethecurrentbioclimatic
envelopeforeachterrestrialecosystem.Acombinedprecipitationandtemperaturespaceisshown
foreachofthe14uplandecosystemsinFigure2.6.Becauseprecipitationandtemperatureare
highlycorrelatedwithelevation,patternsaresimilartothoseshownunderelevationrangeabove.
Desertshrublandoccupiesthedriestbioclimaticenvelope,whilesandsageandshortgrassprairie
arethewarmest.Statewide,ponderosa,oak‐shrubandsagebrushshrublandarecloselyrelatedin
bioclimaticspace,andshowsubstantialoverlapwiththewarmeranddrierpinyon‐juniperand
semi‐desertgrassland.Abovethesewarmeranddrierecosystems,mixedconifer,aspen,and
lodgepoleforestshareamid‐elevationenvelopewithmontanegrasslands.Thecoldest,wettest
environmentsareoccupiedbyalpinetypes,withspruce‐firforestintermediatebetweenthemiddle
groupandthesehabitats.
Historictemperaturerangesforwinterminimumsandsummermaximumsforeachupland
ecosystemareshowninFigure2.7,andillustratethesamerelationshiptoelevationasdotheother
climatevariables.ThegeographicareacurrentlyoccupiedbyeachecosysteminColoradoislikelyto
experienceashifttowardwarmertemperatures,withtheresultthatbioclimaticenvelopeswillshift
towardhigherelevations.Theacreagethatfallswithinaparticulartemperaturerangewillbe
reducedforcoolertemperaturesandincreasedforwarmertemperatures.
32ColoradoNaturalHeritageProgram©2015
Theoverallelevation,range,andbioclimateenveloperesultsareshowninFigure2.4a.
Figure 2.6.Bioclimaticenvelopeasrepresentedbyannualprecipitationandmeantemperatureforecosystemsin
Colorado.Errorbarsrepresentthe10‐90%rangearoundthemean.
ClimateChangeVulnerabilityAssessmentforColoradoBLM33
Figure 2.7.MinimumwinterandmaximumsummertemperaturerangesforecosystemsinColorado.Boxes
representthemiddlequartiles,whilewhiskersshowthe10‐90%range.
Intrinsic dispersal rate
Mostcharacteristicspeciesofforestorwoodlandecosystemsdonotproducelargenumbersof
seedlingsorspreadquicklyviavegetativegrowth.WiththeexceptionofaspenandGambeloak,
forestandwoodlandtreespeciesaretypicallyslowgrowing,withlimiteddispersalability.Past
migrationratesforNorthAmericantreespeciesinthecurrentinterglacialhavebeenestimatedat
tenstoseveralhundredsofmetersperyear.Althoughthecurrentlyobserveddistributionofa
speciesislikelytolagbehindcurrentclimateconditions,futureconditionsarepredictedtorequire
migrationratesonetofivekilometersperyearinorderforspeciestokeepupwithsuitablehabitat
conditions(Roberts2013).Shrubandgrass‐dominatedecosystemsaresomewhatbetteradaptedto
spreadintoavailablehabitatthroughrelativelyrapidvegetativegrowth.Barrierstoecosystem
movementinColoradoareprimarilythoseduetoelevationalgradientsorhabitatfragmentation,
althoughsoiltypeislikelytoinfluencedispersalandestablishmentpatternsthroughvariable
water‐holdingcapacity.EcosystemranksforthisfactorareshowninFigure2.4b.
34ColoradoNaturalHeritageProgram©2015
Biological stressors
BiologicalstressorsforecosystemsinColoradoincludeforestpestsandpathogens,invasive
species,incompatibledomesticlivestockgrazing,andchangesinpatternsofnativeungulate
herbivory.EcosystemranksforthisfactorareshowninFigure2.4c.
Nativeinsectsthatcausetreedamageandmortalityincludebarkbeetles(Dendroctonusspp.,Ips
spp.),westernsprucebudworm(Choristoneuraoccidentalis),andtentcaterpillars(Malacosoma
spp.).Armillariarootdiseaseisasignificantcauseofmortalityinconiferspecies.Pinyonare
susceptibletothefungalpathogenLeptographiumwagenerivar.wageneri,whichcausesblackstain
rootdisease.Five‐needlepines,includinglimberandbristlecone,arethreatenedbywhitepine
blisterrust(WPBR)infectioncausedbytheintroducedfungusCronartiumribicola.
Exoticinvasiveplantspecieswiththepotentialtoalterecosystemfunctioningthatareregionally
widespreadinColoradoincludecheatgrass(Bromustectorum),knapweed(Acroptilonand
Centaureaspp.)Russianolive(Elaeagnusangustifolia)leafyspurge(Euphorbiaesula),andtamarisk
(Tamarixramosissima).Canadathistle(Cirsiumarvense)andmuskthistle(Carduusnatans)arealso
widespread,andother,lessprevalentproblemspeciesincludeoxeyedaisy(Leucanthemum
vulgare)andyellowtoadflax(Linariavulgaris).Mountaingrasslands,lowelevationshrubland,and
riparian/wetlandecosystemsaremostaffected.
Togetherwithlivestockgrazing,overabundanceofnativeungulates(e.g.,deerandelk)andferal
burrosorhorsescanaltervegetation,soils,hydrology,andwildlifespeciescompositionand
abundancesinwaysthatintensifytheeffectsofclimatechangeontheseresources(Beschtaetal.
2013).Forterrestrialecosystems,theprojectedcombinationofincreasingdrought,higher
temperatures,earliersnowmelt,andprecipitationvariabilityinteractingwiththeeffectsof
ungulateusecanresultindecreasedbiodiversity,reducedsoilmoisture,acceleratedsoiland
nutrientloss,andincreasedsedimentation(Beschtaetal.2013).
Extreme events
Extremeeventsthatmayincreaseinfrequencyand/orseverityunderchangingclimaticconditions
includedrought,wildfire,flooding/erosion,andwindstorms.Ecosystemranksforthisfactorare
showninFigure2.4d.
ProlongeddroughthasbeenaperiodicinfluenceinthewesternUnitedStates,includingColorado
(Woodhouse2004).Ecosystemsoflowerelevationsaregenerallydroughttolerant,although
speciescompositionwithinanecosystemislikelytoshiftwithchangingclimatepatterns.Although
wescoredvulnerabilitytoabioticeventsasdistinctfrombiologicalstressors,theinteractionof
wildfireanddroughtwiththeeffectsofthesefactors,especiallyforestmortalityagentslikebark
beetles,blursthedistinctionsomewhat.ThespeciesthatcharacterizeColorado’secosystemshave
varyingtolerancetodrought,however,itislikelythatallspeciesarelessresistanttotheeffectsof
herbivory,pests,andpathogenswhenunderdroughtstress.Widespreadprevalenceofdrought‐
stressedtreesmayprovideenhancedconditionsforstand‐replacingeventssuchasfireorinsect
outbreak(DeRoseandLong2012).Ecosystemsofhigher,wetterelevationshavegenerallybeen
“climate‐limited,”withhighfuelloads,butrarelyhavingdryclimateconditionssuitableforfire
ClimateChangeVulnerabilityAssessmentforColoradoBLM35
spread.Lower,moremesicecosystemshavebeencharacterizedas“fuel‐limited,”withconditions
frequentlysuitableforfire,butlowfuelloadsunlessprioryearshavebeenwet(Whitlocketal.
2010).Withwarmertemperaturesandmorefrequentdrought,higherelevationforestswith
abundantfuelsmayhaveincreasedfirefrequency,whilelowerelevationgrasslandandshrubland
ecosystemsbecomemorefuel‐limitedwithreducedbiomassproduction(Arnoldetal.2014).
Althoughtherearenooverallprecipitationincreasetrendsassociatedwithrecentwarming,there
isevidencethatextremeprecipitationeventshaveincreasedinfrequencyoverthepastseveral
decades(Walshetal.2014).Warmerairandoceantemperaturesallowtheatmospheretohold
moremoisture,whichcanresultinheavyprecipitation,causingmoreextremefloodinganderosion
events,evenifannualprecipitationtotalsdecline.Althoughfuturetrendsinstormoccurrenceare
uncertain,anincreaseinfrequencyofseverestormscouldincreasethefrequencyofwindthrow
eventsinforestedareas.
Non‐climate abiotic stressors
Thecombinedeffectsofhumanactionsthatfragmentlandscapes,alternaturalprocesses,reduce
biodiversity,anddegradeenvironmentalqualityarelikelytoreducetheresilienceofcomplex
adaptiveecosystemstoregimeshiftsunderchangingclimateconditions(Folkeetal.2004).The
cumulativeeffectsofanthropogenicdisturbanceinColoradoareduetohabitatfragmentationand
conversionduetoagriculturaluseaswellasindustrial,residential,resource,andrecreational
developmentactivities.Ourscoringassumesthatecosystemswithhigherlevelsofanthropogenic
disturbancearelikelytobelessresilienttodisturbanceofanykindunderfutureclimateconditions.
Ecosystemsofthehighestelevations,whicharegenerallyinpublicownership,hadthehighest
resilienceratingforthisfactor,whileecosystemsofvalleybottoms,orthoseotherwisefragmented
bylandusehadpoorresilienceratings(Figure2.4e).
Ecosystem vulnerability ranks
Fourofthe20ecosystemsorregionalecosystemsubgroupsassessedhaveanoverallvulnerability
rankofHigh,andoneisrankedVeryHigh(Table2.4).Ingeneral,ecosystemsoftheeasternplains
havethegreatestexposuretochange,andthoseofhigherelevationshavelowerexposure.Undera
longertime‐frame,highelevationareaswouldbesubjecttoincreasedexposure.Mostecosystems
wereassessedashavingmoderateresilience.Asummaryofclimatechangevulnerabilityanalysis
(CCVA)detailsforeachecosystemisprovidedbelow,beginningonpage42.
36ColoradoNaturalHeritageProgram©2015
Table 2.4.Vulnerabilityranksummaryforallassessedterrestrialecosystems.
Ecosystem Target
Exposure ‐
Sensitivity final
ranking
Resilience ‐
Adaptive Capacity
final ranking
Combined
ranks
Overall
vulnerability
rank
Forest and Woodland
AspenforestLowHighL/HLow
LodgepolepineforestLowLowL/LModerate
MixedconiferforestModerateModerateM/MModerate
Pinyon‐JuniperwoodlandModerateLowM/LHigh
PonderosapineforestModerateModerateM/MModerate
Spruce‐FirforestLowLowL/LModerate
Shrubland
DesertshrublandModerateModerateM/MModerate
Oak&mixedmountainshrub LowHighL/HLow
SagebrushshrublandLowModerateL/MLow
SandsageshrublandHighHighH/HModerate
Grassland or Herbaceous
AlpineLowModerateL/MLow
MontanegrasslandModerateHighM/HModerate
Semi‐desertgrasslandLowHighL/HLow
ShortgrassprairieHighModerateH/MHigh
Riparian & Wetland
Riparianwoodland&shrubland‐eastHighModerateH/MHigh
Riparianwoodland&shrubland‐mountainLowModerateL/MLow
Riparianwoodland&shrubland‐westHighLowH/LVery High
Wetlands‐eastHighModerateH/MHigh
Wetlands‐mountainModerateModerateM/MModerate
Wetlands‐westModerateModerateM/MModerate
Conclusions
Allecosystemsarelikelytobeaffectedtosomeextentbyclimatechange.Ecosystemswithlow
exposureandhighresiliencecouldbethebeneficiariesoffutureconditions,whilethosewithhigh
exposureandlowresiliencearelikelytoexperiencerangecontractionsand/orsignificantchanges
inspeciescompositionandoverallcondition.Themajorityofhabitattypeswererankedwithlowor
moderatevulnerabilityinouranalysis,however,thegradationsofmoderatelyvulnerable,andthe
transitiontohighlyvulnerablearelessclearthantheseparationbetweenlowandmoderate
vulnerability.Themethodsusedtocombineestimatedexposureandresiliencescoresleavealarge
ClimateChangeVulnerabilityAssessmentforColoradoBLM37
middlegroundwhichcanbeaffectedbyuncertaintyinclimateprojections,currentknowledge,and
ongoingmanagementactions.
Bymid‐century,underbothmoderateandhighradiativeforcingscenarios(RCP4.5andRCP8.5),we
canexpecttoseewarmertemperaturesstatewide,especiallyontheeasternplains.Warmer
temperaturesarelikelytoincludemoreheatwaves,fewercoldsnaps,andgenerallyextendedfrost‐
freeperiods.Althoughtheseconditionscouldbenefitmanyspeciesifprecipitationremains
adequate,thewarmingtrendislikelytobeaccompaniedbyeffectivelydrierconditionsinmany
areas.Evenifprecipitationlevelsathigherelevationsareessentiallyunchanged,warmer
conditionswillleadtomoreprecipitationfallingasraininsteadofsnow,adecreasedsnowpack,
earlierrunoff,andearlierdryconditionsinlatesummer(Lucasetal.2014).Allofthesefactorsmay
interactwithstressorssuchasfire,forestpestsanddiseases,drought,andanthropogenic
disturbancetoalterthefuturetrajectoryofaparticularecosystem.
Comparisonoftherecenthistoricalvaluesofclimatevariableswithprojectedvalueswithinthe
currentColoradodistributionoftheterrestrialecosystems(Figures2.8and2.9)indicatesseasonal
differencesindegreeanddirectionofprojectedchangesintemperatureandprecipitation.For
instance,ecosystemsofhigherelevationsareprojectedtoexperienceagreaterincreaseinwinter
precipitationthanthoseoflowerelevations,althoughtheamountofwarmingissimilarforall
elevations.Projectedchangesinsummerprecipitationaregenerallylessthanforwinter,withsome
ecosystemsseeingaslightincreaseandothersaslightdecrease.
Theinteractionofclimaticconditionswithotherenvironmentalfactorsandbiogeographichistory
shapesthedistributionofecosystemsthatwecurrentlyobserve.Furthermore,thetimelag
betweenwhenclimateconditionsbecomesuitableorunsuitableforaspeciesandtheeventual
colonizationoreliminationofthatspeciesinanareaaddsanotherlevelofuncertaintyto
projectionsoffuturedistribution.Climatechangesoverthepastfewdecadesareprobablyalready
facilitatingagradualshiftofecosystemsthatwillbecomemoreapparentbymid‐century.
Ouranalysisoftherangeoffutureuncertaintyfocusedon“worstcase”(RCP8.5)outcomesinorder
toprovideavulnerabilityprioritizationofkeyecosystemsthatwillfacilitateapragmatic“no‐
regrets”planningstrategyforBLMstaffdealingwiththeongoingeffectsofclimatechangein
Colorado.
38ColoradoNaturalHeritageProgram©2015
Figure 2.8.Projectedseasonalaverageprecipitationandmeantemperaturetrajectoriesforcurrentupland
ecosystemrangesinColoradobymid‐centuryunderahighradiativeforcingscenario(RCP8.5).Circlesrepresent
currentconditions.
ClimateChangeVulnerabilityAssessmentforColoradoBLM39
Figure 2.9.Projectedseasonalaverageprecipitationandmeantemperaturetrajectoriesforcurrentwetlandand
riparianecosystemrangesinColoradobymid‐centuryunderahighradiativeforcingscenario(RCP8.5).Circles
representcurrentconditions.
40ColoradoNaturalHeritageProgram©2015
LITERATURE CITED
Arnold,J.D.,S.C.Brewer,andP.E.Dennison.2014.Modelingclimate‐fireconnectionswithintheGreatBasinandUpper
ColoradoRiverBasin,westernUnitedStates.FireEcology10:64‐75.
Beschta,R.L.,D.L.Donahue,D.A.DellaSala,J.J.Rhodes,J.R.Karr,M.H.O’Brien,T.L.Fleischner,C.D.Williams.2013.Adapting
toclimatechangeonwesternpubliclands:addressingtheecologicaleffectsofdomestic,wild,andferalungulates.
EnvironmentalManagement51:474‐491.
Comer,P.J.,B.Young,K.Schulz,G.Kittel,B.Unnasch,D.Braun,G.Hammerson,L.Smart,H.Hamilton,S.Auer,R.Smyth,
andJ.Hak.2012.ClimateChangeVulnerabilityandAdaptationStrategiesforNaturalCommunities:Pilotingmethodsin
theMojaveandSonorandeserts.ReporttotheU.S.FishandWildlifeService.NatureServe,Arlington,VA.
DeRose,R.J.andJ.N.Long.2012.Drought‐drivendisturbancehistorycharacterizesasouthernRockyMountainsubalpine
forest.CanadianJournalofForestResearch42:1649‐1660.
Folke,C.,S.Carpenter,B.Walker,M.Scheffer,T.Elmqvist,L.Gunderson,andC.S.Holling.2004.Regimeshifts,resilience,
andbiodiversityinecosystemmanagement.AnnualReviewofEcology,Evolution,andSystematics335:557‐581.
Holling,D.S.1992.Cross‐scalemorphology,geometry,anddynamicsofecosystems.EcologicalMonographs62:447‐502.
Lemly,J.,L.Gilligan,andM.Fink.2011.StatewideStrategiestoImproveEffectivenessinProtectingandRestoring
Colorado’sWetlandResourceIncludingtheRioGrandeHeadwatersPilotWetlandConditionAssessment.Report
preparedforColoradoParksandWildlifeandU.S.EnvironmentalProtectionAgency.ColoradoNaturalHeritageProgram,
ColoradoStateUniversity,FortCollins,CO.
Lucas,J.,J.Barsugli,N.Doesken,I.Rangwala,andK.Wolter.2014.ClimateChangeinColorado:asynthesistosupport
waterresourcesmanagementandadaptation.Secondedition.ReportfortheColoradoWaterConservationBoard.
WesternWaterAssessment,CooperativeInstituteforResearchinEnvironmentalSciences(CIRES),UniversityofColorado
Boulder.
ManometCenterforConservationScienceandMassachusettsDivisionofFisheriesandWildlife.2010.ClimateChangeand
MassachusettsFishandWildlife:Volumes1‐3.http://www.manomet.org/science‐applications/climate‐change‐energy
http://www.mass.gov/dfwele/dfw/habitat/cwcs/pdf/climate_change_habitat_vulnerability.pdf
Nash,L.L.andP.H.Gleick.1991.SensitivityofstreamflowintheColoradoBasintoClimaticChanges.JournalofHydrology
125:221‐241.
Nash,L.L.andP.H.Gleick.1993.TheColoradoRiverBasinandClimaticChange:Thesensitivityofstreamflowandwater
supplytovariationsintemperatureandprecipitation.EPA230‐R‐93‐009.PreparedfortheU.S.EnvironmentalProtection
Agency,OfficeofPolicy,Planning,andEvaluation,ClimateChangeDivisionbyPacificInstituteforStudiesinDevelopment,
Environment,andSecurity.Oakland,CA.
Prentice,I.C.,W.Cramer,S.P.Harrison,R.Leemans,R.A.Monserud,andA.M.Solomon.1992.Aglobalbiomemodelbased
onplantphysiologyanddominance,soilpropertiesandclimate.J.ofBiogeography19:117‐134.
Roberts,D.R.2013.BiogeographichistoriesandgeneticdiversityofwesternNorthAmericantreespecies:implicationsfor
climatechange.PhDthesis.DepartmentofRenewableResources,UniversityofAlberta,Edmonton.
Rondeau,R.,K.Decker,J.Handwerk,J.Siemers,L.Grunau,andC.Pague.2011.ThestateofColorado’sbiodiversity2011.
PreparedforTheNatureConservancy.ColoradoNaturalHeritageProgram,ColoradoStateUniversity,FortCollins,
Colorado.
Stephenson,N.L.1990.Climaticcontrolofvegetationdistribution:theroleofthewaterbalance.AmericanNaturalist135:
649‐670.
ClimateChangeVulnerabilityAssessmentforColoradoBLM41
TheNatureConservancy[TNC].2012.FreshwatermeasuresofconditionforColorado.Geodatabase.
USDAForestService.2014.Vectordigitaldata:2014USDAForestService,RockyMountainRegionAerialDetection
SurveyData.USDAForestService,RockyMountainRegion,ForestHealthManagement,Golden,Colorado.
U.S.FishandWildlifeService.1975‐2013.ColoradoNWImapping,vectordigitaldata.NationalWetlandsInventory
website.U.S.DepartmentoftheInterior,FishandWildlifeService,Washington,D.C.http://www.fws.gov/wetlands/
USGSNationalGapAnalysisProgram.2004.ProvisionalDigitalLandCoverMapfortheSouthwesternUnitedStates.
Version1.0.RS/GISLaboratory,CollegeofNaturalResources,UtahStateUniversity.
Walsh,J.,D.Wuebbles,K.Hayhoe,J.Kossin,K.Kunkel,G.Stephens,P.Thorne,R.Vose,M.Wehner,J.Willis,D.Anderson,S.
Doney,R.Feely,P.Hennon,V.Kharin,T.Knutson,F.Landerer,T.Lenton,J.Kennedy,andR.Somerville,2014:Ch.2:Our
ChangingClimate.ClimateChangeImpactsintheUnitedStates:TheThirdNationalClimateAssessment,J.M.Melillo,T.C.
Richmond,andG.W.Yohe,Eds.,U.S.GlobalChangeResearchProgram,19‐67.doi:10.7930/J0KW5CXT.
Whitlock,C.,P.E.Higuera,D.B.McWethy,andC.E.Briles.2010.Paleoecologicalperspectivesonfireecology:revisitingthe
fire‐regimeconcept.TheOpenEcologyJournal3:6‐23.
Woodhouse,C.A.2004.ApaleoperspectiveonhydroclimaticvariabilityinthewesternUnitedStates.AquaticSciences
66:349‐356.
42ColoradoNaturalHeritageProgram©2015
TERRESTRIAL ECOSYSTEM CCVA SUMMARIES
Forest and Woodland
Table 2.5.Keyvulnerabilities,forestandwoodlandecosystems.
Habitat Climate factor(s) Consequences Other considerations
AspenWarmeranddryconditionsAspendecline,especiallyat
lowerelevations
Maybenefitfromfire
increase,smallpatchesin
coniferforestmayexpand
afterconifermortality
LodgepoleDrought,warmer
temperatures
Fireandinsectoutbreak;
rangecontraction
MixedConiferWarmeranddryconditionsChangeinrelativespecies
abundanceorconversionto
othertype
Diversespeciescomposition
makesitlikelythatsome
specieswillthrive
Pinyon‐juniperWarmeranddryconditionsChangeinrelativespecies
abundancefavoringjuniper;
fireandinsectoutbreak;
reducedpinyonpinecone
production
Soiltypesaffectdistribution
PonderosaDroughtFireandinsectoutbreakWildland‐UrbanInterface
complicatedmanagement
Spruce‐firDroughtFireandinsectoutbreakSlowdispersal,short
growingseasonincreases
vulnerabilityovertime
ClimateChangeVulnerabilityAssessmentforColoradoBLM43
ASPEN
Forestsandwoodlandsdominatedbyquakingaspen
R.Rondeau
extentexaggeratedfordisplay
Climate Vulnerability Rank: Low
Vulnerability summary
Key Vulnerabilities:Hotanddryconditionsarelikelytoleadtoaspendeclineandmortalityatthe
lowestelevations.However,smallaspenpatchesinconiferforestmaybenefitfromfireincreaseand
expandfollowingconifermortality.
Overallexposuretowarmerandeffectivelydrierconditionsis
lowforthisecosysteminColorado;standsatlowerelevationsare
mostatrisk.Theseforestsaremoderatelyresilient,andin
generallygoodcondition.Aspendynamicsarevariableacrossthe
west,dependingonbothspatialandtemporalscales
(Kulakowski,Kaye,andKashian2013);asaresultthereismuch
uncertaintyaboutthefuturedistributionofthisspecies.Low
elevationstandsimpactedbydroughtarelikelytoexperience
dieback,butinotherareastheinteractionofchangingclimate
anddisturbanceregimesmayfavoraspen(Kulakowski,
Matthews,Jarvis,andVeblen2013).
Distribution
Quakingaspen(Populustremuloides)hasthelargestdistributionofanytreenativetoNorth
America(Little1971).Therangeofthisspecieshasexpandeddramaticallysincetheendofthelast
glacialmaximum,duringwhichthegreaterpartofitsrangewascoveredbytheCordilleranand
Laurentideicesheets.ThiswidespreadecosystemoccursthroughoutmuchofthewesternU.S.and
44ColoradoNaturalHeritageProgram©2015
northintoCanada,althoughitismorecommoninthemontaneandsubalpinezonesofthesouthern
andcentralRockyMountains.Theseareuplandforestsandwoodlandsdominatedbyquaking
aspen,orforestsofmixedaspenandconifer,occurringasamosaicofvaryingplantassociations
andadjacenttoadiversearrayofotherecosystems,includingmontanegrasslandsandshrublands,
wetlands,andconiferousforests.InColoradothissystemrangesinelevationfromabout7,500to
10,500feet,andisquitecommononthewestslope,withsmallerstandsrepresentedontheeast
slope.
Characteristic species
Theseforestshaveasomewhatclosedcanopyoftreesof15‐65ft(5‐20m)tall,dominatedby
quakingaspen.Afewconifersmaybepresentincludingwhitefir(Abiesconcolor),subalpinefir
(Abieslasiocarpa),Engelmannspruce(Piceaengelmannii),bluespruce(Piceapungens),ponderosa
pine(Pinusponderosa,)andDouglas‐fir(Pseudotsugamenziesii).Ifconifersmakeupmorethan
15%ofthetreecanopytheoccurrenceisgenerallyconsidereamixedconiferstand.
Theaspencanopytypicallyallowssufficientlightpenetrationforthedevelopmentofalush
understory.Understoriesarehighlyvariableandmaybedominatedbyshrubs,graminoids,or
forbs.CommonshrubsincludeRockyMountainmaple(Acerglabrum),Saskatoonserviceberry
(Amelanchieralnifolia),mountainbigsagebrush(Artemisiatridentatassp.vaseyana),common
juniper(Juniperuscommunis),chokecherry(Prunusvirginiana),Wood’srose(Rosawoodsii),russet
buffaloberry(Shepherdiacanadensis),mountainsnowberry(Symphoricarposoreophilus),andthe
dwarf‐shrubscreepingbarberry(Mahoniarepens)andwhortleberry(Vacciniumspp.).Common
graminoidsincludepinegrass(Calamagrostisrubescens),dryspikesedge(Carexsiccata),Geyer's
sedge(Carexgeyeri),Ross'sedge(Carexrossii),bluewildrye(Elymusglaucus),slenderwheatgrass
(Elymustrachycaulus),Thurberfescue(Festucathurberi),andneedle‐and‐thread(Hesperostipa
comata).ExoticgrassessuchastheperennialsKentuckybluegrass(Poapratensis)andsmooth
brome(Bromusinermis)andtheannualcheatgrass(Bromustectorum)areoftencommonin
occurrencesdisturbedbygrazing.Associatedforbsmayincludecommonyarrow(Achillea
millefolium),Engelmann'saster(Eucephalusengelmannii),larkspur(Delphiniumspp.),Richardson's
geranium(Geraniumrichardsonii),commoncowparsnip(Heracleummaximum),Porter'slicorice‐
root(Ligusticumporteri),silverylupine(Lupinusargenteus),sweetcicely(Osmorhizaberteroi),
westernbrackenfern(Pteridiumaquilinum),Fendler'smeadow‐rue(Thalictrumfendleri),western
valerian(Valerianaoccidentalis),Americanvetch(Viciaamericana),mule‐ears(Wyethia
amplexicaulis),andmanyothers.
Environment
Rangewideelevationsgenerallyrangefrom5,000‐10,000feet(1,525to3,050m),butcanbelower
insomeregions.Topographyisvariable,sitesrangefromleveltosteepslopes.Occurrencesathigh
elevationsarerestrictedbycoldtemperaturesandarefoundonwarmersouthernaspects.Atlower
elevationsoccurrencesarerestrictedbylackofmoistureandarefoundoncoolernorthaspectsand
mesicmicrosites.Thesoilsaretypicallydeepandwelldevelopedwithrockoftenabsent,and
texturerangesfromsandyloamtoclayloams.Parentmaterialsarevariableandmayinclude
sedimentary,metamorphicorigneousrocks,butthistypeappearstogrowbestonlimestone,
basalt,andcalcareousorneutralshales(Mueggler1988).
ClimateChangeVulnerabilityAssessmentforColoradoBLM45
Distributionofaspenforestisprimarilylimitedbyadequatesoilmoisturerequiredtomeetitshigh
evapotranspirationdemand,andsecondarilyislimitedbythelengthofthegrowingseasonorlow
temperatures.Climateistemperatewitharelativelylonggrowingseason,typicallycoldwinters
anddeepsnow.Meanannualprecipitationisgreaterthan15in(38cm)andtypicallygreaterthan
20in(50cm),exceptinsemi‐aridenvironmentswhereoccurrencesarerestrictedtomesic
micrositessuchasseepsorareasthataccumulatelargesnowdrifts.
Dynamics
Aspenisextremelyshadeintolerant,andabletoestablishquicklyoveradisturbedopenareadueto
itsabilitytoreproducebyvegetativesprouting(Howard1996).Thetuftedseedcapsulesproduced
bymatureaspentreesareamenabletowinddispersaloveraconsiderabledistance.Although
quakingaspenestablishmentfromseediscommoninAlaska,northernCanadaandeasternNorth
America,thisislesstrueinthewesternUS,probablybecausegerminatedseedlingsdonotreceive
sufficientmoistureforsurvival(Kay1993).Thereisconflictingevidenceforthefrequencyof
seedlingestablishmentinthewesternUS,however,andquakingaspenmayestablishfromseed
morefrequentlythanpreviouslythought(Howard1996,Rommeetal.1997).
Thereissomeevidenceforsynchronousaspenstandestablishmenteventsoveralargeareaofthe
intermountainwest.Kaye(2011)identifiedtwopeakperiodsofestablishmentviasexual
reproduction,thefirstintheperiod1870‐1890,andtheotherin1970‐1980.Shespeculatesthatthe
earlierestablishmenteventmaybethelegacyofthelastlargefireeventsbeforewidespreadfire
suppressionintheintermountainwest.Thesecondestablishmentpeakcorrespondswithimproved
moistureconditionsduetoashiftinthePacificDecadalOscillationandtheAtlanticMultidecadal
Oscillation.ElliotandBaker(2004)foundthataspenstandsintheSanJuanMountainsare
regeneratingandincreasingindensity.Furthermore,theybelievethataspenincreaseattreelineis
occurringasaresultofestablishmentfromseed.Althoughquakingaspenproducesabundantseeds,
seedlingsurvivalisrarebecausethelongmoistconditionsrequiredtoestablishthemarerarein
thesehabitats.Superficialsoildryingwillkillseedlings(Knight1994).
Aspenforestsandwoodlandsoftenoriginatefrom,andarelikelymaintainedby,stand‐replacing
disturbancessuchascrownfire,diseaseandwindthrow,orclearcuttingbymanorbeaver.The
stemsofthesethin‐barked,clonaltreesareeasilykilledbygroundfires,buttheycanquicklyand
vigorouslyresproutindensitiesofupto30,000stemsperhectare(Knight1994).Thestemsare
relativelyshort‐lived(100‐150years),andtheoccurrencewillsucceedtolonger‐livedconifer
forestifundisturbed.Occurrencesarefavoredbyfireintheconiferzone(Mueggler1988).With
adequatedisturbanceaclonemaylivemanycenturies.
Althoughaspenisnotfiretolerant,itishighlycompetitiveinburnedareasifotherconditionsare
suitable.Aspenclonessurviveintheunderstoryofcool,moistmixedconiferandlowelevation
spruce‐fir,andcanrespondquicklytodisturbances.Instandsaffectedbymultipledisturbance
types(e.g.fire,blowdown,beetle‐kill),aspenregenerationmaybefavoredoverthatofconifers
(Kulakowski,Matthews,Jarvis,andVeblen2013).
46ColoradoNaturalHeritageProgram©2015
CCVA Scoring
Exposure‐Sensitivity (Potential Impact) Rank
PercentColoradoacreswithprojectedtemp>max&pptdelta<5%0.2%
InitialExposure‐SensitivityRankLow
PercentColoradoacreswithtemp<=max&pptdelta<5%morethan50%?No(36.0%)
FinalExposure‐SensitivityRankLow
Exposuretotemperaturechange
Underprojectedmid‐centurytemperatures,lessthan1%ofthecurrentrangeofaspenforestin
Coloradowouldexperienceannualmeantemperaturesabovethecurrentstatewidemaximum.
Exposuretoprecipitationchange
About36%ofaspenforestecosysteminColoradowillbeexposedtoeffectivelydrierconditions
evenunderunchangedorslightlyincreasedprecipitationprojectedformid‐century.
Sensitivityofecosystemtotemperatureandprecipitation
Quakingaspenisabletogrowonawidevarietyofsites,bothdryandmesic(Mueggler1988).
Climaticconditions,inparticularminimumwintertemperaturesandannualprecipitationamounts
arevariableovertherangeofthespecies(Howard1996).Ingeneral,quakingaspenisfoundwhere
annualprecipitationexceedsevapotranspiration,andthelowerlimitofitsrangecoincideswitha
meanannualtemperatureof45°F(Perala1990).InthecentralRockyMountains,quakingaspen
distributionishighlycorrelatedwithelevation,duetoitsinfluenceontemperatureand
precipitationpatterns.IntheRockyMountainsstandsgenerallyoccurwhereannualprecipitationis
greaterthan14.9in(38cm)peryear(MorelliandCarr2011)andsummertemperaturesare
moderate.
Resilience and Adaptive Capacity Rank
OverallScore: 0.71Rank: High
Bioclimaticenvelopeandrange
Averagedcategoryscore:0.76
Aspenforestsarenotfoundatalpineelevations,butstandsarecommonthroughoutcentraland
westernColoradoatmontanetosubalpineelevations.Aspenforestshavesignificantpresencein
63%ofColorado’soverallprecipitationrange,andin40%ofthestate’sgrowingdegreedaysrange.
QuakingaspenisverywidelydistributedinNorthAmerica,andthesouthernlimitofitsrangeis
currentlywelltothesouthofColorado.
Growthformandintrinsicdispersalrate
Score:0.50
ClimateChangeVulnerabilityAssessmentforColoradoBLM47
Quakingaspenisarelativelyfastgrowingspecies,andabletoquicklycolonizedisturbedareasby
vegetativereproduction.However,duetoitstreegrowthform,anduncertaintyaboutseed
dispersalrates,thisecosystemwasscoredashavingintermediateresilienceinthiscategory.
Vulnerabilitytoincreasedattackbybiologicalstressors
Score:0.8
Vulnerabilityofaspentopathogensandherbivores,andsubsequentaspenmortalitymaybe
increasedbyclimatechangeifdroughtandwarmerconditionsincreaseenvironmentalstress
(MorelliandCarr2011).Heavygrazingbyelkincombinationwithdroughtappearstobeleadingto
declineinsomeareas(MorelliandCarr2011).Stressfromgrazingcouldbemitigatedby
managementactions.Cankerinfections,gypsymoth,andforesttentcaterpillaroutbreaksare
tightlyassociatedwithdrierandwarmerconditions(CryerandMurray1992,Johnston2001,Logan
2008,Hoggetal.2001).
Vulnerabilitytoincreasedfrequencyorintensityofextremeevents
Score:0.7
Aspenshaveincreasedsusceptibilitytoepisodicdeclineatlowerelevations,underwarmanddry
conditions(Worralletal.2008).Thisaspendieback(sometimescalledSuddenAspenDecline)
appearstoberelatedtodroughtstress,andistypicallygreatestonthehotteranddrierslopes,
whichareusuallyatthelowestelevationsofastand(Rehfeldtetal.2009).Standsmayundergo
thinning,butthenrecover.Increasingdroughtwithclimatechangeisbelievedtobetheprimary
vulnerabilityofthisecosystem(Worralletal.2013),andsubstantiallossofthistypecanbe
expected.Theeffectsofdroughtarelikelytointeractwithotherstressorssuchasoutbreaksof
pestsanddisease,snowmelttiming,andungulateherbivory.
Theinteractionofclimatechangewithnaturaldisturbancemayalsoaffectthefuturedistributionof
aspen.Althoughaspenisnotfiretolerant,itislikelytoestablishinadjacentforeststhathave
burned,ifotherconditionsaresuitable.
Otherindirecteffectsofnon‐climatestressors–landscapecondition
Score:0.77
AspenforestsinColoradoareingoodconditionandnothighlythreatened.MuchofColorado’s
aspenforestisonfederallandsmanagedbytheU.S.ForestService.Primaryhumanactivitiesinthis
ecosystemincludecattleandsheepgrazing,recreation,andhunting.Someaspenstandsarecutfor
timberproducts.Threatstotheaspenforestsandwoodlandsarecomparativelylow.
Literature Cited
Cryer,D.H.andJ.E.Murray.1992.Aspenregenerationandsoils.Rangelands14(4):223‐226.
Elliot,G.P.andW.L.Baker.2004.Quakingaspen(PopulustremuloidesMichx.)attreeline:acenturyofchangeintheSan
JuanMountains,Colorado,USA.JournalofBiogeography31:733‐745.
48ColoradoNaturalHeritageProgram©2015
Hogg,E.H.2001.ModelingaspenresponsestoclimaticwarmingandinsectdefoliationinwesternCanada.In:Shepperd,
W.D.;Binkley,D.;Bartos,D.L.;Stohlgren,T.J.;Eskew,L.G.,comps.Sustainingaspeninwesternlandscapes:symposium
proceedings.Gen.Tech.Rep.RMRS‐P‐18.FortCollins,CO:U.S.DepartmentofAgriculture,USFS,RockyMountainResearch
Station.460p.
Howard,J.L.1996.Populustremuloides.In:FireEffectsInformationSystem,[Online].U.S.DepartmentofAgriculture,
ForestService,RockyMountainResearchStation,FireSciencesLaboratory(Producer).Available:
http://www.fs.fed.us/database/feis
Johnston,B.C.2001.MultipleFactorsAffectAspenRegenerationontheUncompahgrePlateau,West‐CentralColorado.
Pages395‐414.In:Shepperd,W.D.,D.Binkley,D.L.Bartos,T.J.Stohlgren,andL.G.Eskew,compilers.Sustainingaspenin
westernlandscapes:symposiumproceedings.USDAForestServiceProceedingsRMRS‐P‐18.GrandJunction,CO.460p.
Kay,C.E.1993.AspenseedlingsinrecentlyburnedareasofGrandTetonandYellowstoneNationalParks.Northwest
Science.67(2):94‐104.
Kaye,M.W.2011.MesoscalesynchronyinquakingaspenestablishmentacrosstheinteriorwesternUS.ForestEcology
andManagement262:389‐397.
Knight,D.H.1994.Mountainsandplains:EcologyofWyominglandscapes.YaleUniversityPress,NewHaven,MA.338pp.
Kulakowski,D.,M.W.Kaye,andD.M.Kashian.2013.Long‐termaspencoverchangeinthewesternUS.ForestEcologyand
Management299:52‐59.
Kulakowski,D.,C.Matthews,D.Jarvis,andT.T.Veblen.2013.Compoundeddisturbancesinsub‐alpineforestsinwestern
Coloradofavorfuturedominancebyquakingaspen(Populustremuloides).JournalofVegetationScience24:168‐176.
Little,E.L.,Jr.1971.AtlasoftheUnitedStatestrees.Volume1.Conifersandimportanthardwoods.Misc.Publ.1146.
Washington,DCU.S.DepartmentofAgriculture,ForestService.320p.
Logan,J.2008.GypsyMothRiskAssessmentintheFaceofaChangingEnvironment:ACaseHistoryApplicationinUtah
andtheGreaterYellowstoneEcosystem.RestoringtheWest2008:FrontiersinAspenRestoration,UtahStateUniversity,
Logan,Utah.
Morelli,T.L.andS.C.Carr.2011.Areviewofthepotentialeffectsofclimatechangeonquakingaspen(Populus
tremuloides)intheWesternUnitedStatesandanewtoolforsurveyingsuddenaspendecline.Gen.Tech.Rep.PSW‐GTR‐
235.Albany,CA:U.S.DepartmentofAgriculture,ForestService,PacificSouthwestResearchStation.31p.
Mueggler,W.F.1988.AspencommunitytypesoftheIntermountainRegion.USDAForestServiceGeneralTechnical
ReportINT‐250.IntermountainResearchStation,Ogden,Utah.135pp.
Perala,D.A.1990.PopulustremuloidesMichx.quakingaspen.Pp555‐569In:Burns,RussellM.;Honkala,BarbaraH.,
technicalcoordinators.SilvicsofNorthAmerica:Volume2,Hardwoods.AgricultureHandbook654.Washington,DC:U.S.
DepartmentofAgriculture,ForestService.Available:http://www.srs.fs.usda.gov/pubs/misc/ag_654_vol2.pdf
Rehfeldt,G.E.,D.E.Ferguson,andN.L.Crookston.2009.Aspen,climate,andsuddendeclineinwesternUSA.ForestEcology
andManagement258:2353–2364
Romme,W.H.,Turner,M.G.,Gardner,R.H.,Hargrove,W.W.,Tuskan,G.A.,Despain,D.G.,andRenkin,R.A.1997.ARare
EpisodeofSexualReproductioninAspen(PopulustremuloidesMichx.)Followingthe1988YellowstoneFires.Natural
AreasJournal.17:17‐25.
WorrallJ.J.,L.Egeland,T.Eager,R.Mask,E.Johnson,etal.2008.RapidmortalityofPopulustremuloidesinsouthwestern
Colorado,USA.ForestEcologyandManagement255(3‐4):686‐696.http://dx.doi.org/10.1016/j.foreco.2007.09.071.
ClimateChangeVulnerabilityAssessmentforColoradoBLM49
Worrall,J.J.,G.E.Rehfeldt,A.Hamann,E.H.Hogg,S.B.Marchetti,M.Michaelian,andL.K.Gray.2013.Recentdeclinesof
PopulustremuloidesinNorthAmericalinkedtoclimate.ForestEcologyandManagement229:35‐51.
50ColoradoNaturalHeritageProgram©2015
LODGEPOLE
Forestsdominatedbylodgepolepine
R.Rondeau
extentexaggeratedfordisplay
Climate Vulnerability Rank: Moderate
Vulnerability summary
Key Vulnerabilities:Warmeranddrierconditionsarelikelytoincreasetheimpactoffireandinsect
outbreaksinlodgepoleforests.Lodgepolestandsnearthesouthernendoftherangemaybelost.
Lodgepolepineforestisrankedmoderatelyvulnerabletothe
effectsofclimatechangebymid‐century.Primaryfactors
contributingtothisrankingareitsvulnerabilitytoforest
disturbancesthatmayincreaseinthefuture,andthefactthatitis
atthesouthernedgeofitsdistributioninColorado.Lodgepole
forestsinColoradohaveexperiencedsignificantmortalitydueto
themountainpinebeetle,andtheinteractionofthisfactorwith
increasedfireanddroughtfrequencyandintensitycouldleadto
conspicuouschangesinthefutureextentandformofthese
forests.
Distribution
ThismatrixformingsystemiswidespreadinuppermontanetosubalpineelevationsoftheRocky
Mountains,Intermountainregion,andnorthintotheCanadianRockies.Lodgepolepinereachesthe
southernextentofitsrangeataboutthemiddleoftheupperGunnisonBasin(Johnston1997),so
thisecosystemisnotfoundinsouthernColorado.
ClimateChangeVulnerabilityAssessmentforColoradoBLM51
Characteristic species
TheseforestsaredominatedbyRockyMountainlodgepolepine(Pinuscontortavar.latifolia)with
shrub,grass,orbarrenunderstories.Manystandsconsistofonlylodgepolepine,butothersare
intermingledwithmixedconiferorquakingaspenstands(thelatteroccurringwithinclusionsof
deeper,typicallyfine‐texturedsoils).Shrubandherbaceouslayersareoftenpoorlydevelopedin
lodgepolepineforests,andplantspeciesdiversityislow.Somecommonunderstoryshrubsinclude
kinnikinnick(Arctostaphylosuva‐ursi),snowbrushceanothus(Ceanothusvelutinus),twinflower
(Linnaeaborealis),creepingbarberry(Mahoniarepens),antelopebitterbrush(Purshiatridentata),
dwarfbilberry(Vacciniumcaespitosum),whortleberry(Vacciniummyrtillus),grousewhortleberry
(Vacciniumscoparium),andcurrant(Ribesspp.).
Environment
Soilssupportingtheseforestsaretypicallywell‐drained,gravelly,havecoarsetextures,areacidic,
andrarelyformedfromcalcareousparentmaterials.InColorado,lodgepolepineforestsgenerally
occurbetween8,000‐10,000feetongentletosteepslopesonallaspects.Somelodgepoleforests
persistonsitesthataretooextremeforotherconiferstoestablish.Theseincludeexcessivelywell‐
drainedpumicedeposits,glacialtillandalluviumonvalleyfloorswherethereiscoldair
accumulation,warmanddroughtyshallowsoilsoverfracturedquartzitebedrock,andshallow
moisture‐deficientsoilswithasignificantcomponentofvolcanicash.
Dynamics
Lodgepolepineisanaggressivelycolonizing,shade‐intolerantconifer.Establishmentisepisodic
andlinkedtostand‐replacingdisturbances,primarilyfire.ThefrequencyofnaturalfiresinRocky
Mountainlodgepolepinestandsrangesfromafewyearsto200ormoreyears(Davisetal.1980).
Lowtomoderateserveritysurfacefiresarelikelytohaveareturnintervalontheorderofafew
decades,whilestand‐replacingfiresaregenerallylessfrequent(Crane1982).
Lodgepolepinesproducebothopenandclosed,serotinouscones,andcanreproducequicklyaftera
fire.Followingstand‐replacingfires,lodgepolepinerapidlycolonizesanddevelopsintodense,
even‐agedstands(sometimesreferredtoas“doghair”stands).Thisfire‐adaptedspecieshasthe
potentialtomoveintoareaswherespruce‐firforestsburn.Theproductionofserotinousconesisa
highlyheritabletraitamongRockyMountainlodgepolepinepopulations(Parchmanetal.2012).
Serotinousconesappeartobestronglyfavoredbyfire,andallowrapidcolonizationoffire‐cleared
substrates(BurnsandHonkala1990),butserotinyisalsoselectedagainstbycontinuousremoval
ofthecanopyseed‐bankbyactiveseedpredators(BenkmanandSiepielski2004).Treeswith
serotinousconesarefavoredunderconditionsofhighfirefrequencyandlowpredation,but
nonserotinyhasanadvantageunderveryhighseedpredation,regardlessoffirefrequency(Talluto
andBenkman2014).
52ColoradoNaturalHeritageProgram©2015
CCVA Scoring
Exposure‐Sensitivity (Potential Impact) Rank
PercentColoradoacreswithprojectedtemp>max&pptdelta<5%0%
InitialExposure‐SensitivityRankLow
PercentColoradoacreswithtemp<=max&pptdelta<5%morethan50%?No(7.3%)
FinalExposure‐SensitivityRankLow
Exposuretotemperaturechange
Underprojectedmid‐centurytemperatures,lessthan1%ofthecurrentrangeoflodgepolepine
forestinColoradowouldexperienceannualmeantemperaturesabovethecurrentstatewide
maximum.
Exposuretoprecipitationchange
About7%oflodgepoleforestecosysteminColoradowillbeexposedtoeffectivelydrierconditions
evenunderunchangedorslightlyincreasedprecipitationprojectedformid‐century.
Sensitivityofecosystemtotemperatureandprecipitation
Lodgepolepineistolerantofverylowwintertemperatures,andinmanylodgepoleforestssummer
temperaturescanfallbelowfreezing,sothereisnotruefrost‐freeseason(LotanandPerry1983).
Lodgepolepineisalsoabletotakeadvantageofwarmgrowingseasontemperatures,andalonger
growingseasonduetowarmerfalltemperaturescouldfavorthegrowthoflodgepolepine(Villalba
etal.1994,Chhinetal.2008).InsouthernColorado,whitefir(Abiesconcolor)appearstotakethe
placeoflodgepolepineinconiferousforestsofsimilarelevations.Whitefirappearstotolerate
warmertemperaturesthanlodgepolepine(Thompsonetal.2000);underwarmerconditionsit
maybeabletomoveintoareascurrentlyoccupiedbylodgepoleforest.
Lodgepolepineisanorthernspeciesthatdoesexceptionallywellinverycoldclimatesandcan
tolerateawiderangeofannualprecipitationpatterns,fromfairlydrytofairlywet,butgenerally
growsonlywhereannualprecipitationisatleast18‐20inches(Mason1915,LotanandPerry
1983).Lodgepolepineforestsarefoundondriersitesthanspruce‐firforest,althoughsnowfallis
typicallyheavyintheseforests.Summersareoftenquitedry,andlodgepolepineisdependenton
snowmeltmoistureformostofthegrowingseason.Inlowsnowpackyears,growthisreduced(Hu
etal.2010).
Resilience and Adaptive Capacity Rank
OverallScore: 0.35Rank: Low
Bioclimaticenvelopeandrange
Averagedcategoryscore:0.50
ClimateChangeVulnerabilityAssessmentforColoradoBLM53
LodgepolepinesubspeciesarewidelydistributedinNorthAmerica,butRockyMountainlodgepole
reachesthesouthernedgeofitsdistributioninsouth‐centralColorado.Lodgepoleforestsarenot
foundatthehighestelevations,butrangefrommontanetosubalpine.Statewide,theannual
averageprecipitationrangeforlodgepoleforestcoversabout64%ofColorado’soverall
precipitationrange.Growingseasonlengthforlodgepolebroadlyoverlapsthatofthewarmerend
ofthespruce‐firdistribution,andcoversabout35%ofthestatewiderangeofgrowingdegreedays.
Growthformandintrinsicdispersalrate
Score:0
Thetreegrowthformandslowdispersalrateoflodgepolepinegivethisecosystemalowresilience
scoreinthiscategory.
Vulnerabilitytoincreasedattackbybiologicalstressors
Score:0
Althoughinvasivespeciesaregenerallynotathreat,lodgepoleforestsarevulnerabletothepest
outbreaksthatappeartoincreasewithwarmer,drier,drought‐proneclimates.Biologicalstressors
thatinteractwithfiredynamicsoflodgepoleforestincludeinfestationsoflodgepolepinedwarf‐
mistletoeandmountainpinebeetle(Anderson2003).Dwarfmistletoereducestreegrowthand
coneproduction,andgenerallyleadstoearliermortality(HawksworthandJohnson1989).
AlthoughlodgepoleforestsarestillcommonacrossColorado,mosthaveexperiencedwidespread
damagefromasevereoutbreakofmountainpinebeetle.Thepinebeetleisanativespecies,and
periodicoutbreaksofthisinsectarepartofthenaturalcyclethatmaintainsColorado’smountain
forests.LodgepoleforestsareexpectedtopersistinColorado(Kaufmannetal.2008),although
foreststructuremaydifferfromwhathasbeenpresenthistorically.
Vulnerabilitytoincreasedfrequencyorintensityofextremeevents
Score:0.5
Warmingtemperaturesandeffectivelydrierconditionsareexpectedtohaveaneffectonfire
frequencyandseverity.Firesuppressioneffectsinlodgepolepineforestsareevidentatalandscape
levelinanoveralllackofvarietyinsuccessionalstages.Individuallodgepolestandsmaynotbe
outsidethenaturalrangeofvariation,butatalandscapelevelfiresuppressionhasprobablyledto
larger,denser,morehomogenouspatchesthataremorefavorableforlargefireandheavy
infestationsofmountainpinebeetle(Keaneetal.2002).Thecurrentoutbreakofmountainpine
beetleappearstobesubsiding,leavingthepotentialforlargefireswithextremebehaviortooccur
inthekilledforests(Kaufmannetal.2008).
Otherindirecteffectsofnon‐climatestressors–landscapecondition
Score:0.75
LodgepoleforestlandscapesinColoradoaregenerallyingoodcondition.Althoughlarge,intact
patchesoflodgepoleforestpersistinColorado,thismaychangeastheeffectsofextensivemountain
pinebeetlemortalityandincreasedfireextentandfrequencyreshapethelodgepolematrix.
54ColoradoNaturalHeritageProgram©2015
Developmentofexurbanorrecreationalareasisaminorsourcesofdisturbanceandfragmentation
inlodgepoleforests,asaretheassociatedroadsandutilitycorridors.TimberharvestinColorado’s
lodgepoleforestshasdeclinedsignificantlysincethelate19thcentury,butarecentincreaseinthe
useofbeetle‐killwoodhadmaintainedasmallmarketforthisspecies.Woodharvestactivitiesarea
minorsourceofdisturbanceinthishabitattype,butextensivesalvageloggingandthinningmay
havelocallysevereimpacts.
Literature Cited
Anderson,M.D.2003.Pinuscontortavar.latifolia.In:FireEffectsInformationSystem,[Online].U.S.Departmentof
Agriculture,ForestService,RockyMountainResearchStation,FireSciencesLaboratory(Producer).Available:
http://www.fs.fed.us/database/feis/
Benkman,C.W.andA.M.Siepielski.2004.Akeystoneselectiveagent?Pinesquirrelsandthefrequencyofserotinyin
lodgepolepine.Ecology85:2082‐2087.
Burns,R.M.,andB.H.Honkala,technicalcoordinators.1990a.SilvicsofNorthAmerica:Volume1.Conifers.USDAForest
Service.AgricultureHandbook654.Washington,DC.675pp.
Chhin,S.,E.H.Hogg,V.J.Lieffers,andS.Huang.2008.Influencesofclimateontheradialgrowthoflodgepolepinein
Alberta.Botany86:167‐178.
Crane,M.F.1982.FireecologyofRockyMountainRegionforesthabitattypes.USDAForestServicefinalreport.272pp.
Davis,KathleenM.;Clayton,BruceD.;Fischer,WilliamC.1980.FireecologyofLoloNationalForesthabitattypes.INT‐79.
Ogden,UT:U.S.DepartmentofAgriculture,ForestService,IntermountainForestandRangeExperimentStation.77p.
Hawksworth,F.G.andD.W.Johnson.1989.BiologyandmanagementofdwarfmistletoeinlodgepolepineintheRocky
Mountains.Gen.Tech.Rep.RM‐169.FortCollins,CO:U.S.DepartmentofAgriculture,ForestService,RockyMountain
ForestandRangeExperimentStation.38p.
Hu,J.,D.J.P.Moore,S.P.Burns,andR.K.Monson.2010.Longergrowingseasonsleadtolesscarbonsequestrationbya
subalpineforest.GlobalChangeBiology16:771‐783.
JohnstonB.C.1997.EcologicaltypesoftheUpperGunnisonBasin.Reviewdraft.USDA,ForestService,Gunnison,CO.539
pp.
KaufmannM.R.,G.H.Aplet,M.Babler,W.L.Baker,B.Bentz,M.Harrington,B.C.Hawkes,L.StrohHuckaby,M.J.Jenkins,D.M.
Kashian,R.E.Keane,D.Kulakowski,C.McHugh,J.Negron,J.Popp,W.H.Romme,T.Schoennagel,W.Shepperd,F.W.Smith,
E.KennedySutherland,D.Tinker,andT.T.Veblen.2008.Thestatusofourscientificunderstandingoflodgepolepineand
mountainpinebeetles–afocusonforestecologyandfirebehavior.TheNatureConservancy,Arlington,VA.GFItechnical
report2008‐2.
Lotan,J.E.andD.A.Perry.1983.Ecologyandregenerationoflodgepolepine.Agric.Handb.606.Washington,DC:U.S.
DepartmentofAgriculture,ForestService.51p.
Mason,D.T.1915.LifehistoryoflodgepolepineintheRockyMountains.Bulletin154.Washington,DC:U.S.Departmentof
Agriculture,ForestService.35p.
ParchmanT.L.,Z.Gompert,J.Mudge,F.D.Schilkey,C.W.Benkman,andC.A.Buerkle.2012.Genome‐wideassociation
geneticsofanadaptivetraitinlodgepolepine.MolecularEcology21:2991–3005.
ClimateChangeVulnerabilityAssessmentforColoradoBLM55
Talluto,M.V.andC.W.Benkman.2014.Conflictingselectionfromfireandseedpredationdrivesfine‐scaledphenotypic
variationinawidespreadNorthAmericanconifer.PNAS111:9543‐9548.
Thompson,R.S.,K.H.Anderson,andP.J.Bartlein.2000.Atlasofrelationsbetweenclimaticparametersanddistributions
ofimportanttreesandshrubsinNorthAmerica.U.S.GeologicalSurveyProfessionalPaper1650‐A.
Villalba,R.,T.T.Veblen,andJ.Ogden.1994.ClimaticinfluencesonthegrowthofsubalpinetreesintheColoradoFront
Range.Ecology75:1450‐1462.
Wheeler,N.C.andW.B.Critchfield.1985.Thedistributionandbotanicalcharacteristicsoflodgepolepine:biogeographical
andmanagementimplications.In:Baumgartner,D.M.,R.G.Krebill,J.T.Arnott,andG.F.Weetman,compilersandeditors.
Lodgepolepine:Thespeciesanditsmanagement:Symposiumproceedings;1984May8‐10;Spokane,WA;1984May14‐
16;Vancouver,BC.Pullman,WA:WashingtonStateUniversity,CooperativeExtension:1‐13.
56ColoradoNaturalHeritageProgram©2015
MIXED CONIFER
Dry‐mesicandmesicforestsorwoodlandsofDouglasfir,whitefir,otherconiferspecies,and
occasionalaspenstands
R.Rondeau
extentexaggeratedfordisplay
Climate Vulnerability Rank: Moderate
Vulnerability summary
Key Vulnerabilities:Warmeranddrierconditionscanbeexpectedtochangetherelativetreespecies
abundanceinmixedconiferforests.Althoughsomestandsmayconverttoothertypes,thediverse
speciescompositionoftheseforestsincreasesthelikelihoodthatsomespecieswillbenefitunderfuture
conditions.Novelmixedconifertypesmayappear.
Theecotonalnatureofmixedconiferstandsincreasesthe
difficultyofinterpretingtheirvulnerabilitytoclimatechange,and
theircapacitytomoveintonewareas.Thediversityofspecies
withinmixedconiferforestmayincreaseitsflexibilityintheface
ofclimatechange.Changingclimateconditionsarelikelytoalter
therelativedominanceofoverstoryspecies,overallspecies
compositionandrelativecover,primarilythroughtheactionof
fire,insectoutbreak,anddrought.Droughtanddisturbance
tolerantspecieswillbefavoredoverdroughtvulnerablespecies.
Speciessuchasbluesprucethatareinfrequentandhavea
narrowbioclimaticenvelopearelikelytodeclineormoveupin
elevation.AbundantspeciesthathaveawidebioclimaticenvelopesuchasGambeloakandaspen
arelikelytoincrease.Outcomesforparticularstandswilldependoncurrentcompositionand
location.Currentstandsofwarm,drymixedconiferbelow8,500ftmaybeathigherriskormay
converttopureponderosapinestandsasfutureprecipitationscenariosfavorrainratherthan
snow.Upwardmigrationintonewareasmaybepossible.
ClimateChangeVulnerabilityAssessmentforColoradoBLM57
Distribution
InColoradothesemixed‐coniferforestsoccuronallaspectsatelevationsrangingfrom4,000to
10,800ft(1,200‐3,300m).Thecompositionandstructureofoverstoryisdependentuponthe
temperatureandmoisturerelationshipsofthesite,andthesuccessionalstatusoftheoccurrence.
Thesecomplexforestandwoodlandcommunitiesareoftenintermingledwithotherforesttypes,
includingponderosapine,aspen,lodgepole,andspruce‐fir,dependingonelevation,andmaybe
adjacenttoshrublandandripariantypesaswell.
Thesimilarenvironmentaltolerancesofmixed‐coniferandaspenforestmeansthatthetwoforest
typesaresomewhatintermixedinmanyareas.Theseforestsappeartorepresentabiophysical
spacewhereanumberofdifferentoverstoryspeciescanbecomeestablishedandgrowtogether.
Localconditions,biogeographichistory,andcompetitiveinteractionsovermanydecadesareprime
determinantsofstandcomposition.
Characteristic species
Severalsub‐typesorphases,representingacontinuumfromwarm‐drytocold‐wethavebeen
describedfortheseforests(Rommeetal.2009),andspeciescomposition,standstructure,andsite
characteristicsvaryaccordingly.
Thesemixed‐speciesforestsmayincludeDouglas‐fir(Pseudotsugamenziesii),whitefir(Abies
concolor),ponderosapine(Pinusponderosa),quakingaspen(Populustremuloides),bluespruce
(Piceapungens),Engelmannspruce(Piceaengelmannii),subalpinefir(Abieslasiocarpa),andlimber
pine(Pinusflexilis),whichreachesthesouthernlimitofitsdistributionintheSanJuanmountains.
Warm‐drysitesarecharacterizedbyDouglas‐fir,oftenwithponderosapineandGambeloak
(Quercusgambelii).Cool‐moiststandsarelikelytobedominatedbyDouglasfir,whitefir,blue
spruceandsomequakingaspen.TypicalunderstoryshrubspeciesincludeRockyMountainmaple
(Acerglabrum),Saskatoonserviceberry(Amelanchieralnifolia),kinnikinnick(Arctostaphylosuva‐
ursi),rockspirea(Holodiscusdumosus),fivepetalcliffbush(Jamesiaamericana),commonjuniper
(Juniperuscommunis),creepingbarberry(Mahoniarepens),Oregonboxleaf(Paxistimamyrsinites),
mountainninebark(Physocarpusmonogynus),mountainsnowberry(Symphoricarposoreophilus),
thimbleberry(Rubusparviflorus),andwhortleberry(Vacciniummyrtillus).Wheresoilmoistureis
favorable,theherbaceouslayermaybequitediverse.
CharacteristicanimalspeciesinmixedconiferforestincludeRuby‐crownedkinglet,Hermitthrush,
Hammond’sflycatcher,Williamson’ssapsucker,Yellow‐rumpedwarbler,Pinesiskin,Red‐breasted
nuthatch,Townsend’ssolitaire,Westerntanager,Browncreeper,Cassin’sfinch,Redcrossbill,Olive‐
sidedflycatcher,Mountainchickadee,Junco,Snowshoehare,Lynx,andPinemarten.
Environment
Thecompositionandstructureofoverstoryisdependentuponthetemperatureandmoisture
relationshipsofthesite,andthesuccessionalstatusoftheoccurrence(DeVeliceetal.1986,
Muldavinetal.1996).Driersites,oftenonsoutherlyaspects,maybesimilartoponderosapine
forest,butwithDouglas‐firandwhitefirasimportantcanopycomponents.Historically,these
standsweresubjecttofairlyfrequentlowtomoderateintensityfire,whichhelpedtomaintaina
58ColoradoNaturalHeritageProgram©2015
relativelyopenstructure(Rommeetal.2009).Moremesicstandsarefoundincoolravinesandon
north‐facingslopes,lackponderosapine,andarelikelytobedominatedbyDouglas‐firandwhite
firwithbluespruceorquakingaspenstands,andoccasionalinclusionsofEngelmannspruceor
subalpinefir.Thesecool‐moiststandswouldhavelessfrequentfires,andsoilmoistureconditions
thatallowthegrowthofdensestandsthateventuallyburninahigh‐intensityfire(Rommeetal.
2009).
Soilsofthisecosystemarevariable,andmaybederivedfromparentmaterialsofigneous,
metamorphic,orsedimentaryorigin.Moreopenwoodlandcommunitiesaretypicallyfoundonsoils
thatareshallow,rocky,andwell‐drained.
Dynamics
Long‐termecologicaldynamicsofmixedconiferforestsarerelativelyunderstudied(Rommeetal.
2009).Therehasbeenconsiderablerecentdebateabouthistoricrangeofvariationforstand
densityandhigh‐severityfireincidenceinmixedconiferforests(WilliamsandBaker2012,Fuleet
al.2013,WilliamsandBaker2014).Naturalfireprocessesinthissystemareprobablyhighly
variableinbothreturnintervalandseverity,dependingonstandcomposition,siteconditions,
biogeographichistory,andshort‐andlong‐termclimatepatterns.Forinstance,droughtandhigh
temperaturespriortofireinitiationareassociatedwithlargerburnedareaasfinefuelsbecomedry
(Littelletal.2009).
Althoughcoolmoistmixed‐coniferforestsaregenerallywarmeranddrierthanspruce‐firforests,
thesestandsareofteninrelativelycool‐moistenvironmentswherefireswerehistorically
infrequentwithmixedseverity.Whenstandsareseverelyburned,aspenoftenresprouts.Warm‐
drymixedconiferforestshadahistoricfire‐regimethatwasmorefrequent,withmixedseverity.In
areaswithhighseverityburns,aspenorGambeloakoftenresproutsanddominatesthesitefora
relativelylongperiodoftime.Insomelocations,muchoftheseforestshavebeenloggedorburned
duringEuropeansettlement,andpresent‐dayoccurrencesaresecond‐growthforestsdatingfrom
fire,logging,orotheroccurrence‐replacingdisturbances(MaukandHenderson1984,Chappellet
al.1997).
Additionaldisturbancesinmixedconiferforestsmaybeduetowindstormsorinsect‐pathogen
outbreaks.Sprucebudworminfestationsareamajorsourceoftreemortalityandcanaffect
landscape‐scaledynamicsinmixedconiferforest(Rommeetal.2009).
CCVA Scoring
Exposure‐Sensitivity (Potential Impact) Rank
PercentColoradoacreswithprojectedtemp>max&pptdelta<5%0.1%
InitialExposure‐SensitivityRankLow
PercentColoradoacreswithtemp<=max&pptdelta<5%morethan50%?Yes(61.0%)
FinalExposure‐SensitivityRankModerate
ClimateChangeVulnerabilityAssessmentforColoradoBLM59
Exposuretotemperaturechange
Underprojectedmid‐centurytemperatures,lessthan1%ofthecurrentrangeofmixedconifer
forestinColoradowouldexperienceannualmeantemperaturesabovethecurrentstatewide
maximum.
Exposuretoprecipitationchange
About61%ofmixedconiferforestecosysteminColoradowillbeexposedtoeffectivelydrier
conditionsevenunderunchangedorslightlyincreasedprecipitationprojectedformid‐century.
Sensitivityofecosystemtotemperatureandprecipitation
Withthevariationfromwarm‐drytypestocool‐moisttypes,mixedconiferforestshaveabroad
ecologicalamplitude,andvariationbetweenstandsisobviouslyinfluencedbybothtemperature
andprecipitation.Theeffectsofclimaticfactorsontheecosystemasawhole,however,arelittle
known,especiallyinColorado.GenerallywarmingconditionsduringtheearlyHoloceneallowedfor
theexpansionofsomemixedconiferforesttreespeciesincludingDouglas‐fir,ponderosapine,and
Gambeloak,andthedevelopmentofmixedconiferforestsinareaspreviouslycharacterizedby
subalpinespecies(Andersonetal.2008).
StudiesfromthesouthwesternUSindicatethatfactorscontrollingthedistributionandpersistence
ofthecomponenttreespeciesinmixedconiferforestsarecomplexandnoteasilyexplainedata
broadclimaticlevel.Forinstance,KaneandKolb(2014)foundthatalthoughdroughtwasan
importantdriverforaspenmortalityinmixedconifer,therewasnosimilareffectforthemuch
slower‐growinglimberpine.Douglas‐firandwhitefirmortalityduringthedroughtwasmoderately
associatedwithpreviousgrowthrate(i.e.,sitequality),indicatingthatlonger‐termprocessessuch
ascompetitionanddisturbancehistorymayalsoplayarole.Cool‐moistmixedconiferforestsof
higherelevationsmaybelesssusceptibletodrought(AdamsandKolb2005),butarenot
completelyprotectedbygenerallycooler,wetterconditions(Kaneetal.2014).
Resilience and Adaptive Capacity Rank
OverallScore: 0.60Rank: Moderate
Bioclimaticenvelopeandrange
Averagedcategoryscore:0.78
Mixedconiferforestsoccuratfoothillandmontaneelevationsthroughoutcentralandwestern
Colorado,andhaveafairlywideecologicalamplitude.Theseforestshavesignificantpresencein
60%ofColorado’soverallprecipitationrange,andin51%ofthestate’sgrowingdegreedaysrange.
Thehighlyvariableandecotonalnatureofmixedconiferforestscontributestothehigherresilience
scoreinthiscategory.
Growthformandintrinsicdispersalrate
Score:0
60ColoradoNaturalHeritageProgram©2015
Thetreegrowthformandslowdispersalrateofthedominantconiferspeciesgivethisecosystema
lowresiliencescoreinthiscategory.
Vulnerabilitytoincreasedattackbybiologicalstressors
Score:0.7
StandsinthesouthernpartofColoradohavebeenimpactedbythewesternsprucebudwormand
drought.Budwormoutbreaksarepartofanaturalcycleinmixedconiferforest,butmaybe
intensifiedbyincreasingdroughtfrequencyandthegenerallyhighertemperaturesprojectedin
comingdecades.
Vulnerabilitytoincreasedfrequencyorintensityofextremeevents
Score:0.7
Inareasadjacenttodevelopment,mixedconiferstandsmaybepartofthewildland‐urbaninterface,
wheretheyaremostlikelytobethreatenedbytheeffectsoffiresuppression.Theabsenceofa
naturalfireregimeintheseforestshasresultedinincreasedtreedensityandthebuildupofduff
andlitter,whichmayincreasetheseverityoffirewhenitdoesoccur.Asyear‐roundtemperatures
increaseandprecipitationshiftsmoretowardraininsteadofsnow,conditionsfavorablefor
increasingareaburnedmaydevelop(Littelletal.2009).However,manymixedconiferstandsin
Coloradoarenotasseverelyimpactedbyfiresuppression.
Otherindirecteffectsofnon‐climatestressors–landscapecondition
Score:0.81
MixedconiferforestlandscapesinColoradoaregenerallyinverygoodcondition.Exurban
developmentandrecreationalareadevelopmentareathreattotheseforestsalongtheFrontRange
andI‐70corridorinmountainareas.Roadsandutilitycorridorsareasourceofdisturbanceand
fragmentationinmixedconiferforeststatewide,butthesestandsnaturallyoccurinsmallerpatches
thansomeotherforesttypes,sothreatsareminor.Anumberoftreespeciesinmixedconiferare
suitablefortimberharvest,sologgingisanongoingsourceofdisturbanceintheseforests.Threats
fromlivestockgrazingandhuntingorrecreationalactivitiesareminimalformixedconiferforests.
Miningandminetailingsareasmallsourceofdisturbance.
Literature Cited
Adams,H.D.andT.E.Kolb.2005.Treegrowthresponsetodroughtandtemperatureinamountainlandscapeinnorthern
Arizona,USA.JournalofBiogeography32:1629‐1640.
Anderson,R.S.,R.B.Jass,J.L.Toney,C.D.Allen,L.M.Cisneros‐Dozal,M.Hess,J.Heikoop,J.Fessenden.2008.Developmentof
themixedconiferforestinnorthernNewMexicoanditsrelationshiptoHoloceneenvironmentalchange.Quaternary
Research69:263‐275.
Chappell,C.,R.Crawford,J.Kagan,andP.J.Doran.1997.Avegetation,landuse,andhabitatclassificationsystemforthe
terrestrialandaquaticecosystemsofOregonandWashington.UnpublishedreportpreparedforWildlifehabitatand
speciesassociationswithinOregonandWashingtonlandscapes:Buildingacommonunderstandingformanagement.
PreparedbyWashingtonandOregonNaturalHeritagePrograms,OlympiaWA,andPortland,OR.177pp.
ClimateChangeVulnerabilityAssessmentforColoradoBLM61
Crane,M.F.1982.FireecologyofRockyMountainRegionforesthabitattypes.USDAForestServicefinalreport.272pp.
DeVelice,R.L.,J.A.Ludwig,W.H.Moir,andF.Ronco,Jr.1986.AclassificationofforesthabitattypesofnorthernNew
MexicoandsouthernColorado.USDAForestService,RockyMountainForestandRangeExperimentStation.General
TechnicalReportRM‐131.FortCollins,CO.59pp.
Kane,J.M.andT.E.Kolb.2014.Short‐andlong‐termgrowthcharacteristicsassociatedwithtreemortalityinsouthwestern
mixed‐coniferforests.CanadianJournalofForestResearch44:1227‐1235.
Kane,J.M.,T.E.Kolb,andJ.D.McMillin.2014.Stand‐scaletreemortalityfactorsdifferbysiteandspeciesfollowingdrought
insouthwesternmixedconiferforests.ForestEcologyandManagement330:171‐182.
Littell,J.S.,D.McKenzie,D.L.Peterson,andA.L.Westerling.2009.ClimateandwildfireareaburnedinwesternU.S.
ecoprovinces,1916‐2003.EcologicalApplications19:1003‐1021.
Mauk,R.L.andJ.A.Henderson.1984.ConiferousforesthabitattypesofnorthernUtah.USDAForestService,Gen.Tech.
ReportINT‐170,Ogden,Utah.89p.
Muldavin,E.H.,R.L.DeVelice,andF.Ronco,Jr.1996.AclassificationofforesthabitattypessouthernArizonaandportions
oftheColoradoPlateau.USDAForestServiceGeneralTechnicalReportRM‐GTR‐287.RockyMountainForestandRange
ExperimentStation,FortCollins,CO.130pp.
Pfister,R.D.1977.EcologicalclassificationofforestlandinIdahoandMontana.Pages329‐358in:Proceedingsof
EcologicalClassificationofForestLandinCanadaandNorthwesternUSA,UniversityofBritishColumbia,Vancouver.
Romme,W.H.,Floyd,M.L.,Hanna,D.,2009.Historicalrangeofvariabilityandcurrentlandscapeconditionanalysis:South
CentralHighlandssection,SouthwesternColoradoandNorthwesternNewMexico.Col.For.Rest.Inst.,FortCollins,CO.
Steele,R.,R.D.Pfister,R.A.Ryker,andJ.A.Kittams.1981.ForesthabitattypesofcentralIdaho.USDAForestService
GeneralTechnicalReportINT‐114.IntermountainForestandRangeExperimentStation,Ogden,UT.138pp.
62ColoradoNaturalHeritageProgram©2015
PINYON‐JUNIPER
Woodlandsandshrublandsdominatedbypinyonpineandjuniperspecies
S.Kettler
extentexaggeratedfordisplay
Climate Vulnerability Rank: High
Vulnerability summary
Key Vulnerabilities:Hotanddryconditionsarelikelytoincreasetheimpactoffireandinsectoutbreaks,
andfavorjuniperoverpinyonpine.Substratesplayakeyroleindeterminingsoilmoistureavailability
forindividualstands.
Variabledisturbanceandsiteconditionsacrossthedistribution
ofthisecosystemhaveresultedinadynamicmosaicof
interconnectedcommunitiesandsuccessionalstagesacrossthe
landscape.Sincethelastmajorglacialperiod,thedistribution
andrelativeabundanceofpinyonandjuniperhasfluctuatedwith
changingclimaticconditions.Warmingconditionsduringthe
pasttwocenturies,togetherwithchangingfireregime,livestock
grazing,andatmosphericpollutionincreasedtheabilityofthis
ecosystemtoexpandintosomeneighboringcommunities,at
bothhigherandlowerelevations.However,precipitationand
temperaturepatternsareprojectedtochangeinadirectionthat
islessfavorableforpinyon,sothatjunipermaybecomemoredominant,andthesehabitatsare
unabletopersistorexpandintheircurrentform.Primaryfactorscontributingtothehighranking
arethevulnerabilityofthesewoodlandstotheinteractionofdrought,fire,andinsect‐caused
mortality,whichislikelytoincreaseunderchangingclimate,andtheextenttowhichthecurrent
landscapeconditionofthehabitathasbeenimpactedbyanthropogenicdisturbance.
ClimateChangeVulnerabilityAssessmentforColoradoBLM63
Distribution
TheNorthAmericandistributionofthisecosystemiscenteredintheColoradoPlateau,generally
southwestofColorado.Pinyon‐juniperformsthecharacteristicwoodlandofColorado’swestern
mesasandvalleys,whereitistypicallyfoundatlowerelevations(rangingfrom4,900‐8,000ft)on
drymountainsandfoothills.Pinyonandjunipermayformsparseshrublandsorwoodlandson
rockytablelandswherevegetationislargelyconfinedtosmallsoilpocketsinexposedbedrock.
Pinyon‐juniperwoodlandsalsooccurondrymountainsandfoothillsinsouth‐centralandsouth‐
easternColorado,inmountainsandplateausofnorthernNewMexicoandArizona,andextendout
ontoshalebreaksintheGreatPlains.Inthecanyonsandtablelandstothesoutheast,pinyonis
absent,andjuniperaloneformswoodlandsandsavannas.Standsareoftenadjacenttoand
intermingledwithoak,sagebrush,orsaltbushshrubland.
Characteristic species
Pinyonpine(Pinusedulis)andjuniperformthecanopy.Inwesternpinyon‐juniperwoodlandsof
lowerelevations,Utahjuniper(Juniperusosteosperma)isprevalentandRockyMountainjuniper(J.
scopulorum)maycodominateorreplaceitathigherelevations.Insoutheasternpinyon‐juniper
woodlandsone‐seedjuniper(Juniperusmonosperma) replacesUtahjuniper.Theunderstoryis
highlyvariable,andmaybeshrubby,grassy,sparselyvegetated,orrocky.Comeretal.(2003)
separateColorado’spinyon‐juniperintofourecologicalsystems:ColoradoPlateauPinyon‐Juniper
Woodland,ColoradoPlateauPinyon‐JuniperShrubland,ColoradoPlateauMixedBedrockCanyon
andTableland,andSouthernRockyMountainPinyon‐JuniperWoodland.
Pinyon‐juniperwoodlandassociationsarecharacterizedbystandswith25‐60%canopycoverof
treesthataretypically10‐30ft(3‐10m)inheight.Ondryrockymesatopsandslopesthesecanopy
dominantsmaybedwarfed(<3mtall),formingtallshrublands.Onsteepclifffaces,narrow
canyons,andopentablelandsofpredominantlysedimentarysandstone,shale,andlimestone,
pinyonandjunipermayformverysparseshrublandsincracksandpocketswheresoilhas
accumulated.Pinyon‐juniperstandsmaybesolelydominatedbypinyonpine,ormaybeco‐
dominatedbyjuniperspecies.Dependingonsubstrate,theunderstorycanrangefromarelatively
richmixtureofevergreenand/ordeciduousshrubs,toasparsetomoderatelydenseherbaceous
layerdominatedbyperennialgrasses(withorwithoutshrubs),tonovegetationatall(Reidetal.
1999).
Characteristicshrubsanddwarf‐shrubsincludeblacksagebrush(Artemisianova),bigsagebrush
(Artemisiatridentata),Utahserviceberry(Amelanchierutahensis),littleleafmountainmahogany
(Cercocarpusintricatus),mountainmahogany(Cercocarpusmontanus),yellowrabbitbrush
(Chrysothamnusviscidiflorus),mormon‐tea(Ephedraviridis),broomsnakeweed(Gutierrezia
sarothrae),Stansburycliffrose(Purshiastansburiana),antelopebitterbrush(Purshiatridentata),
Gambeloak(Quercusgambelii),andmountainsnowberry(Symphoricarposoreophilus).
Perennialgraminoidsarethemostabundantspeciesinthesparsetomoderatelydenseherbaceous
layer.CharacteristicspeciesincludeIndianricegrass(Achnatherumhymenoides),sideoatsgrama
(Boutelouacurtipendula),bluegrama(Boutelouagracilis),threeawn(Aristidaspp.),Arizonafescue
(Festucaarizonica),needle‐and‐thread(Hesperostipacomata),bluebunchwheatgrass
64ColoradoNaturalHeritageProgram©2015
(Pseudoroegneriaspicata),muttongrass(Poafendleriana),James'galleta(Pleuraphisjamesii),and
westernwheatgrass(Pascopyrumsmithii).Theforblayermaybediverse(andmayincludea
numberofrarespecies),butcontributeslittlecover.
Pinyonjay,Plumbeousvireo,Junipertitmouse,Grayflycatcher,Black‐throatedgraywarbler,and
Bushtitaregoodindicatorsfortheecosystem.
Environment
Dependingonsubstrate,pinyon‐juniperstandsarevariableinstructureandcomposition.Stands
occuronavarietyofaspectsandslopes.Slopemayrangefromnearlyleveltosteep(upto80%).
Soilsvaryintexturerangingfromstony,cobbly,gravellysandyloamstoclayloamorclay.Parent
materialslikewisevarywidelyfromgranite,basalt,limestone,andsandstonetomixedalluvium
(Springfield1976).Soildepthsmayrangefromshallowtodeep.
Mesicareasaregenerallypinyon‐dominated,whilejunipersareabletodominateondriersites
(Gottfried1992).Standsvaryconsiderablyinappearanceandcomposition,bothaltitudinallyand
geographically.Junipertendstobemoreabundantatthelowerelevations,pinyontendstobemore
abundantatthehigherelevations,andthetwospeciessharedominancewithinabroadmiddle‐
elevationzone(WoodinandLindsey1954,Heiletal.1993).Standsmayrangefromeven‐agedto
uneven‐agedstands.
Dynamics
Pinyon‐juniperwoodlandsareinfluencedbyclimate,fires,insect‐pathogenoutbreaks,andlivestock
grazing(West1999,Eager1999).Althoughitisclearthatthestructureandconditionofmany
pinyon‐juniperwoodlandshasbeensignificantlyalteredsinceEuropeansettlement(Tausch1999),
inrecentyearstherehasbeenanemergingrecognitionthatnotallofthesewoodlandsare
dramaticallychangedbyanthropogenicinfluence.Increasingdensityofpinyonjuniperwoodlands
andexpansionintoadjacentgrasslandorshrublandarewelldocumentedinsomeareas,butisnota
universalphenomenoninthewesternU.S.(Rommeetal.2009).Furthermore,thetree‐dominated
landscapecharacteristicofpinyon‐juniperwoodlandtodayisnotnecessarilyrepresentativeofthe
typicallandscapeofthepastfewmillennia(Tausch1999).Rommeetal.(2009)distinguishthree
pinyon‐junipertypes(persistentwoodlands,savannas,andwoodedshrublands),using
characteristicsofbasedcanopystructure,understory,anddisturbancehistory.Localsiteconditions
mayresultinafine‐scalemixtureoftypewithinalargermatrixofonetype.Thedifferences
betweenthesetypeshaveimportantimplicationsformanagementactions,andeffortstomaintain
orrestorenaturalprocessesinpinyon‐juniperhabitats.
Bothpinyonpineandjuniperarefairlyslowgrowing,andcanliveforhundredsofyears,alifecycle
thatiswelladaptedtoxerichabitats,butislesssuitableforquicklychangingconditions.Although
individualsofbothspeciesbecomereproductiveafterafewdecades,mostseedproductionisdue
tomaturetreesof75yearsofageorolder(Gottfried1992).Bothspeciesreproduceonlyfrom
seeds,anddonotresproutafterfire.Coneproductionofmaturepinyonpinetakesthreegrowing
seasons,andthelargeseedshaveafairlyshortlifespanof1‐2years(Ronco1990).Junipercones
(oftencalledberries)mayrequire1‐2yearsofripeningbeforetheycangerminate(Gottfried1992).
ClimateChangeVulnerabilityAssessmentforColoradoBLM65
Thesmallerseedsofjuniperaregenerallylong‐lived,survivingaslongas45years.Birdsare
importantdispersersofbothpinyonpineandjuniperseed(Gottfried1992).
Theeffectsoffireinalltypesofpinyon‐juniperdependinpartonfuelprovidedbybothcanopyand
understory,andbyweatherconditionsduringafire(Rommeetal.2009).Sparsewoodlandswith
littleunderstoryvegetationwouldtypicallyhavelimitedfirespreadandlittletreemortality.Astree
densityorunderstorycover(especiallyshrubs)increasesfirespreadisfacilitated,andtree
mortalitybecomesmorelikely.Rommeetal.(2009)concludedthatspreading,low‐intensity
surfacefireshavehistoricallyhadalimitedroleinthisecosystem,andthatinsteadthedominant
fireeffectismortalityofmosttreesandtop‐killofmostshrubswithintheburnedarea,regardless
oftreeorshrubsize.AtMesaVerdeNationalPark,wherepinyon‐juniperwoodlandshaveburnedin
fivelargefiressince1930,treeshavenotyetre‐established.Itisnotknownwhytreeshavenot
beensuccessfulintheseareas,whicharenowoccupiedbyshrubland(Floydetal.2000).
Formanypinyon‐juniperwoodlands,climatefluctuationandinsectordiseaseoutbreakaremore
importantinshapingstandstructurethanfire.Insectanddiseasemortalityisanaturalongoing
process,usuallyatalowlevel,butoccasionallyasmoresevereepisodicoutbreaks.Weather
patternsmayenhancepatternsofmortalityorrecruitment,shiftingstandcompositionand
structureonalocalorregionalscale(Eisenhart2004,Breshearsetal.2005,Shawetal.2005).
CCVA Scoring
Exposure‐Sensitivity (Potential Impact) Rank
PercentColoradoacreswithprojectedtemp>max&pptdelta<5%20.9%
InitialExposure‐SensitivityRankModerate
PercentColoradoacreswithtemp<=max&pptdelta<5%morethan50%?No(43.5%)
FinalExposure‐SensitivityRankModerate
Exposuretotemperaturechange
Underprojectedmid‐centurytemperatures,about23%ofthecurrentrangeofpinyon‐juniper
woodlandinColoradowouldexperienceannualmeantemperaturesabovethecurrentstatewide
maximum.
Exposuretoprecipitationchange
About64%ofpinyon‐juniperwoodlandinColoradowillbeexposedtoeffectivelydrierconditions
evenunderunchangedorslightlyincreasedprecipitationprojectedformid‐century.
Sensitivityofecosystemtotemperatureandprecipitation
Theseevergreenwoodlandsareadaptedtocoldwinterminimumtemperaturesandlowrainfall,
andareoftentransitionalbetweengrasslandordesertshrublandandmontaneconiferecosystems
(Brown1994,Peet2000).Thepinyon‐juniperecosystemhaslargeecologicalamplitude;warmer
conditionsmayallowexpansion,ashasalreadyoccurredinthepastcenturies,aslongasthereare
periodiccooler,wetteryearsforrecruitment.Increaseddroughtmaydrivefiresandinsect
66ColoradoNaturalHeritageProgram©2015
outbreaks,fromwhichthesewoodlandswouldbeslowtorecover.A40%declineinpinyonpine
coneproductionwasassociatedwithanaverage2.3°FincreaseinsummertemperaturesinNew
MexicoandOklahomasites(Redmondetal.2012).Warmingtemperaturesmayreducerecruitment
forpinyonpine,andmightincreasemortalityindrought‐stressedtrees(Adamsetal.2009).
Bargeretal.(2009)foundthatpinyonpinegrowthwasstronglydependentonsufficient
precipitationpriortothegrowingseason(winterthroughearlysummer),andcoolerJune
temperatures.Bothofthesevariablesarepredictedtochangeinadirectionthatislessfavorablefor
pinyonpine.Droughtcanresultinwidespreadtreedie‐off,especiallyofthemoresusceptible
pinyonpine(Breshearsetal.2008).Cliffordetal.(2013)detectedastrongthresholdat23.6in(60
cm)cumulativeprecipitationoveratwo‐yeardroughtperiod(i.e.,essentiallynormalannual
precipitationforpinyonpine).Sitesabovethisthresholdexperiencedlittlepinyondie‐off,while
sitesreceivinglessprecipitationincludedareaswithhighlevelsofmortality.Mortalityofpinyon
treeswasextensiveintheareaduringthe2002‐2003droughtandbarkbeetleoutbreak,butin
areaswherejuniperandshrubspeciesprovidemicrositesforseedlingestablishment,pinyonmay
beabletopersist(RedmondandBarger2013).Patternsofprecipitationandtemperature(i.e.,cool,
wetperiods)appeartobemoreimportantinrecruitmenteventsthanhistoryoflivestockgrazing
(Bargeretal.2009).
Resilience and Adaptive Capacity Rank
OverallScore: 0.41Rank: Low
Thestatewiderangeofannualaverageprecipitationisabout10‐23in(25‐60cm),withameanof
16in(40cm),similartosagebrushshrubland.Growingseasontemperaturesaregreaterinthe
rangeofpinyon‐juniperthanformanyotherwoodyvegetationtypesinColorado.
Extendeddroughtcanincreasethefrequencyandintensityofinsectoutbreaksandwildfire.Pinyon
aresusceptibletothefungalpathogenLeptographiumwagenerivar.wageneri,whichcausesblack
stainrootdisease,andtoinfestationsofthepinyonipsbarkbeetle(Ipsconfusus)(KearnsandJacobi
2005).Thedifferentialsusceptibilityofpinyonandjunipertodroughtandinsectoutbreakscould
eventuallyresultinthesewoodlandsbeingdominatedbyjuniper.
Bioclimaticenvelopeandrange
Averagedcategoryscore:0.76
TheNorthAmericandistributionofthisecosystemiscenteredintheColoradoPlateau,generally
southwestofColorado.Pinyon‐juniperwoodlandsoccuratfoothillandlowermontaneelevations
throughoutcentralandwesternColorado,andhaveafairlywideecologicalamplitude.Statewide,
theannualaverageprecipitationrangeforpinyon‐juniperwoodlandincludesabout44%of
Colorado’soverallprecipitationrange.Growingseasonlengthforthesewoodlandsofwarm,dry
areascoversabout60%ofthestatewiderangeofgrowingdegreedays.
Growthformandintrinsicdispersalrate
Score:0
ClimateChangeVulnerabilityAssessmentforColoradoBLM67
Thetreegrowthformandslowdispersalrateofthedominantconiferspeciesgivethisecosystema
lowresiliencescoreinthiscategory.Pinyonpinestandsareslowtorecoverfromintensefires;the
speciesreproducesonlyfromshort‐livedseedsandrecoveryisdependentonseedsourcesand/or
adequatedispersal,aswellassuitablemicrosites(e.g.,undercoveroftreesorshrubs)for
establishment(Floydetal.2015).Junipersarealsoslow‐growing,andsusceptibletobeingkilledby
fire.
Vulnerabilitytoincreasedattackbybiologicalstressors
Score:0
PinyonaresusceptibletothefungalpathogenLeptographiumwagenerivar.wageneri,whichcauses
blackstainrootdisease(primarilyonmoremesicsites),andtoinfestationsofthepinyonipsbark
beetle(Ipsconfusus)(KearnsandJacobi2005),whichhascausedextensivemortalityinpinyon‐
juniperhabitatsinsouthernColorado.Extendeddroughtcanincreasethefrequencyandintensity
ofinsectoutbreaks.
Vulnerabilitytoincreasedfrequencyorintensityofextremeevents
Score:0.7
Pinyonpinestandsareslowtorecoverfromintensefires;thespeciesreproducesonlyfromseed
andrecoveryisdependentonseedsourcesand/oradequatedispersal.Juniperarealsoslow‐
growing,andsusceptibletobeingkilledbyfire.Extendeddroughtcanincreasethefrequencyand
intensityofbothinsectoutbreaksandwildfire.
Otherindirecteffectsofnon‐climatestressors–landscapecondition
Score:0.59
Pinyon‐juniperhabitatsinColoradohavebeenmoderatelyimpactedbyanthropogenicdisturbance.
Ongoingbutlimitedthreatsfromurban,exurban,andcommercialdevelopmentareprimarilyinthe
southcentralandsouthwesternportionsofColorado,wheretowns,roads,andutilitycorridorsare
oftenincloseproximitytopinyon‐juniperwoodlands.Aswithotherhabitatsinthewildland‐urban
interface,areasneardevelopedareasaremostlikelytobethreatenedbytheeffectsoffire
suppression,whilemoreremoteareasaregenerallyingoodcondition.Livestockgrazinghas
degradedtheunderstorygrassesofsomestands,andinvasivecheatgrass(Bromustectorum)has
becomeestablishedinsomeareas.Treeremovalbychaining,orcuttingforfirewoodisaminor
sourceofdisturbancewithinthesewoodlands,butmaydramaticallychangethehabitatwhereit
hasoccurred.MilitarytrainingactivitiesareasourceofdisturbancetothishabitatatFortCarson
andPinyonCanyonManeuverSite.Oilandgasdevelopment,withassociatedroads,pipeline
corridors,andinfrastructure,isanongoingsourceofdisturbanceandfragmentationformost
pinyon‐juniperhabitats.
68ColoradoNaturalHeritageProgram©2015
Literature Cited
Adams,H.D.,M.Guardiola‐Claramonte,G.A.Barron‐Gafford,J.CamiloVillegas,D.D.Breshears,C.B.Zou,P.A.Troch,T.E.
Huxman,andH.A.Mooney.2009.Temperaturesensitivityofdrought‐inducedtreemortalityportendsincreasedregional
die‐offunderglobal‐change‐typedrought.PNAS106:7063‐7066.
Barger,N.N.,H.D.Adams;C.Woodhouse,J.C.Neff,andG.P.Asner.2009.Influenceoflivestockgrazingandclimateonpiñon
pine(Pinusedulis)dynamics.RangelandEcologyandManagement62:531–539.
Betancourt,J.L.,E.A.Pierson,K.Aasen‐Rylander,J.A.Fairchild‐Parks,andJ.S.Dean.1993.Influenceofhistoryand
climateonNewMexicopinyon‐juniperwoodlands.In:E.F.AldronandD.W.Shaw[EDS.].Managingpinyon‐juniper
ecosystemsforsustainabilityandsocialneeds:proceedingsofthesymposium;26–30April1993;SantaFe,NM,USA.
Washington,DC,USA:USDepartmentofAgriculture,ForestService,GeneralTechnicalReportRM‐236.p.42–62.
Bradley,A.F.,N.V.NosteandW.C.Fischer.1992.FireecologyofforestsandwoodlandsinUtah.USDAForestService
GeneralTechnicalReportINT‐287.IntermountainResearchStation.Ogden,UT.128pp.
Breshears,D.D.,N.S.Cobb,P.M.Rich,K.P.Price,C.D.Allen,R.G.Balice,W.H.Romme,J.H.Kastens,M.L.Floyd,J.Belnap,J.J.
Anderson,O.B.Myers,andC.W.Meyer.2005.Regionalvegetationdie‐offinresponsetoglobal‐change‐typedrought.
ProceedingsoftheNationalAcademyofSciences102:15144–15148.
Breshears,D.D.,O.B.Myers,C.W.Meyer,F.J.Barnes,C.B.Zou,C.D.Allen,N.G.McDowell,andW.T.Pockman.2008.Treedie‐
offinresponsetoglobalchange‐typedrought:mortalityinsightsfromadecadeofplantwaterpotentialmeasurements.
FrontiersinEcologyandtheEnvironment7:185‐189.
Brown,D.E.1994.GreatBasinConiferWoodland.InBioticcommunities:southwesternUnitedStatesandnorthwestern
Mexico.D.E.Brown,ed.UniversityofUtahPress,SaltLakeCity,UT.
Clifford,M.J.,P.D.Royer,N.S.Cobb,D.D.Breshears,andP.L.Ford.2013.Precipitationthresholdsanddrought‐inducedtree
die‐off:insightsfrompatternsofPinusedulismortalityalonganenvironmentalstressgradient.NewPhytologist200:413‐
421.
Comer,P.,S.Menard,M.Tuffly,K.Kindscher,R.Rondeau,G.Jones,G.Steinuaer,andD.Ode.2003.UplandandWetland
EcologicalSystemsinColorado,Wyoming,SouthDakota,Nebraska,andKansas.Reportandmap(10hectareminimum
mapunit)totheNationalGapAnalysisProgram.Dept.ofInteriorUSGS.NatureServe.
Eager,T.J.1999.Factorsaffectingthehealthofpinyonpinetrees(Pinusedulis)inthepinyon‐juniperwoodlandsof
westernColorado.Page397inS.B.MonsenandR.Stevens,eds.,Proceedings:ecologyandmanagementofpinyon‐juniper
communitieswithintheInteriorWest.U.S.Dept.Agric.,ForestService,RockyMountainResearchStation,Proc.RMRS‐P‐9
Ogden,UT.
Eisenhart,K.S.,2004.Historicrangeofvariabilityofpiñon‐juniperwoodlandsontheUncompahgrePlateau,western
Colorado.Ph.D.Dissertation,UniversityofColorado,Boulder,CO.
Floyd,M.L.,W.H.Romme,andD.D.Hanna.2000.FirehistoryandvegetationpatterninMesaVerdeNationalPark,
Colorado,USA.EcologicalApplications10:1666‐1680.
Floyd,M.L.,W.H.Romme,M.E.Rocca,D.P.Hanna,andD.D.Hanna.2015.Structuralandregenerativechangesinold‐
growthpiñon‐juniperwoodlandsfollowingdrought‐inducedmortality.ForestEcologyandManagement341:18‐29.
Gottfried,G.J.1992.Ecologyandmanagementofthesouthwesternpinyon‐juniperwoodlands.Pp78‐86In:Ffolliott,P.F.,
G.JGottfried,D.ABennett[andothers],technicalcoordinators.Ecologyandmanagementofoaksandassociated
woodlands:perspectivesintheSWUnitedStatesandMexico:Proceedings;1992April27‐30;SierraVista,AZ.Gen.Tech.
Rep.RM‐218.U.S.DepartmentofAgriculture,ForestService,RockyMountainForestandRangeExperimentStation,Fort
Collins,CO.
ClimateChangeVulnerabilityAssessmentforColoradoBLM69
Heil,K.D.,Porter,J.M.,Fleming,R.andRomme,W.H.1993.VascularfloraandvegetationofCapitolReefNationalPark,
Utah.NationalParkServiceTechnicalReportNPS/NAUCARE/NRTR‐93/01.
Kearns,H.S.J.andW.R.Jacobi.2005.Impactsofblackstainrootdiseaseinrecentlyformedmortalitycentersinthepiñon‐
juniperwoodlandsofsouthwesternColorado.Can.J.For.Res.35:461‐471.
Peet,R.K.2000.ForestsandmeadowsoftheRockyMountains.Chapter3inNorthAmericanTerrestrialVegetation,
secondedition.M.G.BarbourandW.D.Billings,eds.CambridgeUniversityPress.
Redmond,M.D.,F.Forcella,andN.N.Barger.2012.Declinesinpinyonpineconeproductionassociatedwithregional
warming.Ecosphere 3:120. http://dx.doi.org/10.1890/ES12-00306.1
Redmond,M.D.andN.N.Barger.2013.Treeregenerationfollowingdrought‐andinsect‐inducedmortalityinpiñon‐
juniperwoodlands.NewPhytologist200:402‐412.
Reid,M.S.,K.A.Schulz,P.J.Comer,M.H.Schindel,D.R.Culver,D.A.Sarr,andM.C.Damm.1999.Analliancelevel
classificationofvegetationofthecoterminouswesternUnitedStates.AreporttotheUniversityofIdahoCooperativeFish
andWildlifeResearchUnitandNationalGapAnalysisPrograminfulfillmentofcooperativeagreement1434‐HQ‐97‐AG‐
01779.TheNatureConservancy,WesternConservationScienceDepartment,BoulderCO.Compactdisk.
Romme,W.H.,C.D.Allen,J.D.Bailey,W.L.Baker,B.T.Bestelmeyer,P.M.Brown,K.S.Eisenhart,M.L.Floyd,D.W.Huffman,
B.F.Jacobs,R.F.Miller,E.H.Muldavin,T.W.Swetnam,R.J.Tausch,andP.J.Weisberg.2009.Historicalandmodern
disturbanceregimes,standstructures,andlandscapedynamicsinpiñon‐junipervegetationofthewesternUnitedStates.
RangelandEcologyandManagement62:203‐222.
Ronco,F.P.,Jr.1990.PinusedulisEngelm.pinyon.In:Burns,RussellM.;Honkala,BarbaraH.,technicalcoordinators.Silvics
ofNorthAmerica.Volume1.Conifers.Agric.Handb.654.Washington,DC:U.S.DepartmentofAgriculture,ForestService:
327‐337
Shaw,J.D.,B.E.Steed,andL.T.Deblander.2005.Forestinventoryandanalysis(FIA)annualinventoryanswersthe
question:whatishappeningtopinyonjuniperwoodlands?JournalofForestry103:280–285.
Springfield,H.W.1976.Characteristicsandmanagementofsouthwesternpinyon‐juniperColoradoStateUniversity,Fort
Collins,CO.181pp.
TauschR.J.1999.Historicpinyonandjuniperwoodlanddevelopment.In:S.B.MonsenandR.Stevens[eds.].Proceedings
oftheConferenceonEcologyandManagementofPinyon‐JuniperCommunitieswithintheInteriorWest.Ogden,UT,USA:
USDepartmentofAgriculture,ForestService,RockyMountainResearchStation.p.12–19.
Woodin,H.E.,andA.A.Lindsey.1954.Juniper‐pinyoneastoftheContinentalDivide,asanalyzedbythepine‐strip
method.Ecology35:473‐489.
West,N.E.1999.Distribution,composition,andclassificationofcurrentJuniper‐Pinyonwoodlandsandsavannasacross
westernNorthAmerica.Pages20‐23inS.B.MonsenandR.Stevens,eds.,Proceedings:ecologyandmanagementof
pinyon‐junipercommunitieswithintheInteriorWest.U.S.Dept.Agric.,ForestService,RockyMountainResearchStation,
Proc.RMRS‐P‐9Ogden,UT.
70ColoradoNaturalHeritageProgram©2015
PONDEROSA
Forestsandwoodlandsdominatedbyponderosapine
S.Neid
extentexaggeratedfordisplay
Climate Vulnerability Rank: Moderate
Vulnerability summary
Key Vulnerabilities:Increaseddroughtintensityand/orfrequencyislikelytoincreasetheimpactoffire
andinsectoutbreaksinponderosaforests.Areasinthewildland‐urbaninterfacearemostproblematic.
Ponderosapineforestsandwoodlandsarerankedmoderately
vulnerabletotheeffectsofclimatechangebymid‐century.
Primaryfactorscontributingtothisrankingaretheexposureof
largeareasofthishabitattowarmertemperaturesthatarelikely
tointeractwithforeststressors(mountainpinebeetle,drought,
andfire)thatare,inturn,exacerbatedbywarm,dryconditions.
Distribution
ThiswidespreadecosystemismostcommonthroughoutthecordilleraoftheRockyMountains,but
isalsofoundintheColoradoPlateauregion,westintoscatteredlocationsintheGreatBasin,and
northintosouthernBritishColumbia.Thesematrix‐formingwoodlandsoccuratthelower
treeline/ecotonebetweengrasslandorshrublandandmoremesicconiferousforests,typicallyin
warm,dry,exposedsites.
ClimateChangeVulnerabilityAssessmentforColoradoBLM71
Characteristic species
Ponderosapine(Pinusponderosa)isthepredominantconifer;Douglas‐fir(Pseudotsugamenziesii),
pinyonpine(Pinusedulis),andjuniper(Juniperusspp.)mayalsobepresentinthetreecanopy.The
understoryisusuallyshrubby,withSaskatoonservicebery(Amelanchieralnifolia),blacksagebrush
(Artemisianova),bigsagebrush(Artemisiatridentata),kinnikinnick(Arctostaphylosuva‐ursi),
mountainmahogany(Cercocarpusmontanus),chokecherry(Prunusvirginiana),antelope
bitterbrush(Purshiatridentata),Gambeloak(Quercusgambelii),andmountainsnowberry
(Symphoricarposoreophilus)beingcommonspecies.Bunchgrassesincludingbluebunchwheatgrass
(Pseudoroegneriaspicata)andspeciesofneedle‐and‐thread(Hesperostipa),needlegrass
(Achnatherum),fescue(Festuca),muhly(Muhlenbergia),andgrama(Bouteloua)arecommon
understorygrasses.
Grace'swarbler,Pygmynuthatch,andFlammulatedowlareindicatorsofahealthyponderosapine
woodland.
Environment
Thisecosystemoccursatthelowertreeline/ecotonebetweengrasslandorshrublandandmore
mesicconiferousforeststypicallyinwarm,dry,exposedsitesatelevationsrangingfrom6,500‐
9,200ft(1,980‐2,800m).Itcanoccuronallslopesandaspects,however,itcommonlyoccurson
moderatelysteeptoverysteepslopesorridgetops.Thisecosystemoccursonsoilsderivedfrom
igneous,metamorphic,andsedimentarysubstrates(YoungbloodandMauk1985).Characteristic
soilfeaturesincludegoodaerationanddrainage,coarsetextures,circumneutraltoslightlyacidpH,
anabundanceofmineralmaterial,andperiodsofdroughtduringthegrowingseason.Surface
texturesarehighlyvariableinthisecosystemrangingfromsandtoloamandsiltloam.Exposed
rockandbaresoilconsistentlyoccurtosomedegreeinalltheassociations.Annualprecipitationis
8‐24in(25‐60cm),mostlythroughwinterstormsandsomemonsoonalsummerrains.Typicallya
seasonaldroughtperiodoccursthroughoutthissystemaswell.
Dynamics
Ponderosapineisadrought‐resistantandshade‐intolerantconiferwhichoftenformsthelower
treelineinthemajormountainrangesofthewesternUnitedStates.Historically,groundfiresand
droughtwereinfluentialinmaintainingopen‐canopyconditionsinthesewoodlands.With
settlementandsubsequentfiresuppression,occurrenceshavebecomedenser.Presently,many
occurrencescontainunderstoriesofmoreshade‐tolerantspecies,suchasDouglas‐firand/orwhite
fir(Abiesconcolor)aswellasyoungercohortsofponderosapine.Thesestructuralchangeshave
affectedfuelloadsandalteredfireregimes.Presettlementfireregimeswereprimarilyfrequent(5‐
15yearreturnintervals),low‐intensitygroundfirestriggeredbylightningstrikesordeliberately
setfiresbyNativeAmericans.Withfiresuppressionandincreasedfuelloads,fireregimesarenow
lessfrequentandoftenbecomeintensecrownfires,whichcankillmatureponderosapine(Reidet
al.1999).
72ColoradoNaturalHeritageProgram©2015
CCVA Scoring
Exposure‐Sensitivity (Potential Impact) Rank
PercentColoradoacreswithprojectedtemp>max&pptdelta<5%0.9%
InitialExposure‐SensitivityRankLow
PercentColoradoacreswithtemp<=max&pptdelta<5%morethan50%?Yes(69.4%)
FinalExposure‐SensitivityRankModerate
Exposuretotemperaturechange
Underprojectedmid‐centurytemperatures,about1%ofthecurrentrangeofponderosawoodland
inColoradowouldexperienceannualmeantemperaturesabovethecurrentstatewidemaximum.
Exposuretoprecipitationchange
About70%ofponderosapinewoodlandinColoradowillbeexposedtoeffectivelydrierconditions
evenunderunchangedorslightlyincreasedprecipitationprojectedformid‐century.
Sensitivityofecosystemtotemperatureandprecipitation
Ponderosapineoccupiesrelativelydry,nutrient‐poorsitescomparedtoothermontaneconifers,
butshowswideecologicalamplitudethroughoutitsdistribution.Rehfeldtetal.(2012)wereableto
predictthedistributionofponderosapinelargelythroughtheuseofsummerandwinter
precipitation,andsummertemperatures(asgrowingdegreedays>5°C).Althoughperiodic
seasonaldroughtischaracteristicacrosstherangeofponderosapine,thisspeciesisgenerally
foundwhereannualprecipitationisatleast13inches(Barrettetal.1980,Thompsonetal.2000).
PonderosastandstothesouthofColoradowereprimarilyreliantonwinterprecipitation
(Kerhoulasetal.2013),whilegrowthofFrontRangestandswascorrelatedwithspringandfall
moisture(LeagueandVeblen2006),indicatingsomevariabilityintheabilityofponderosapineto
takeadvantageofseasonalwateravailability,dependingonsitefactorsandstandhistory.
Consequently,vulnerabilityofponderosaforeststochangesinprecipitationpatternsmaydiffer
accordingtotheirlocationinColorado.
Ponderosapineisabletotoleratefairlywarmtemperaturesaslongasthereisenoughmoisture,
especiallyinthegrowingseason.Optimalgerminationandestablishmentconditionsoccurwhen
temperaturesareabove50°Fandmonthlyprecipitationisgreaterthan1inch(Shepperdand
Battaglia2002).Significantrecruitmenteventsmayoccuronburnedareaswhenconditionsare
wetterthannormalafterafireyear,butnormalprecipitationmayalsobesufficientforseedling
establishmentinsuchcases(Mastetal.1998).Inlowerelevationponderosawoodlandsofthe
ColoradoFrontRange,episodicrecruitmentofponderosapinewasassociatedwithhighspringand
fallmoistureavailabilityduringElNiñoevents(LeagueandVeblen2006).Acorrelationbetween
droughtandlowratesofponderosaseedlingrecruitmenthasalsobeenidentifiedthroughoutthe
westernGreatPlains(Kayeetal.2010).Droughtincombinationwithfutureprojectedhigher
temperaturesislikelytoreduceponderosapineregeneration,especiallyindrier,lowerelevation
areas.TheworkofBrownandWu(2005)suggeststhatcoincidentconditionsofsufficientmoisture
ClimateChangeVulnerabilityAssessmentforColoradoBLM73
andfewerfiresareimportantforwidespreadrecruitmentepisodesofponderosapine;such
conditionsmaybecomelesslikelyunderfutureclimatescenarios.
Increaseddroughtmaydrivefiresandinsectoutbreaks.Relativeproportionsofassociatedspecies
(e.g.,otherconifers,aspen,understoryshrubsandgrasses)inponderosastandsmaychange.This
ecosystemiswelladaptedtowarm,dryconditionsifprecipitationisnottoomuchreduced,and
maybeabletoexpandintohigherelevations.
Althoughclimatechangemayalterfireregimesslightlybyaffectingthecommunitystructure,fireis
notexpectedtohaveasevereimpactinthefutureforthesestands,andmayactuallybebeneficial
insomeareasifitrestoressomepre‐settlementconditions(CovingtonandMoore1994).These
forestsaresusceptibletooutbreaksofthemountainpinebeetleandmistletoeinfestations,bothof
whichmaybeexacerbatedbyincreaseddrought.Impactsofnativegrazersordomesticlivestock
couldalsoalterunderstorystructureandcomposition,andhavethepotentialtonegativelyimpact
soilstability(Allenetal.2002).Whileponderosapineforestsmaybeabletoexpandupwardsin
elevationorremaininthesamevicinityifprecipitationdoesn’tdrasticallychange,thedensityof
somestandsmaydecreaseduetoareductioninavailablesoilmoisture.Standsoflowerelevations
andsouthwestern‐facingslopesaremostlikelytoexperiencereducedextentofponderosapine
forests,withthepotentialforreplacementbygrassland,shrublandorpinyon‐juniperwoodland.
Resilience and Adaptive Capacity Rank
OverallScore: 0.54Rank: Moderate
Bioclimaticenvelopeandrange
Averagedcategoryscore:0.76
Ponderosawoodlandsarenotfoundathighelevations,butinsteadformabroadzoneofconiferous
forestalongthesouthernflankoftheSanJuanMountains,aswellasalongtheeasternmountain
front,generallyatelevationsbetween6,000and9,000ft.Thesewoodlandsareinwithinthecentral
portionoftheirNorthAmericandistributioninColorado.Annualprecipitationissimilartothatfor
oakshrubland,andponderosaforestsarefoundin50%ofColorado’soverallprecipitationrange.
Ponderosaoccursin50%ofgrowingseasonlengthsacrossthestate.
Growthformandintrinsicdispersalrate
Score:0
Thetreegrowthformandslowdispersalrateofponderosapinegivethisecosystemalow
resiliencescoreinthiscategory.Althoughseedsaretypicallynotdispersedveryfar,ponderosa
pineisoftenpresentinmixedconiferstands;theseareasmayprovideaseedbankforregeneration
orashifttoponderosapine.Recruitmentisepisodic,dependingonprecipitationanddisturbance
patterns.
Vulnerabilitytoincreasedattackbybiologicalstressors
Score:0.7
74ColoradoNaturalHeritageProgram©2015
Theseforestsaresusceptibletooutbreaksofthemountainpinebeetle(Dendroctonusponderosae)
andmistletoeinfestations,bothofwhichmaybeexacerbatedbyincreaseddrought.Mountainpine
beetlehascausedextensivemortalityinponderosapinehabitatsthroughoutColorado,although
thecurrentoutbreakappearstobesubsiding.Impactsofnativegrazersordomesticlivestock,and
thespreadofinvasivegrassescouldalsoalterunderstorystructureandcomposition,withthe
potentialtonegativelyimpactsoilstability(Allenetal.2002).
Vulnerabilitytoincreasedfrequencyorintensityofextremeevents
Score:0.7
Ponderosapineiswelladaptedtosurvivefrequentsurfacefires,andmixed‐severityfiresare
characteristicinthesecommunities(Arno2000).Althoughclimatechangemayalterfireregimes
slightlybyaffectingthecommunitystructure,fireisnotexpectedtohaveasevereimpactinthe
futureforthesestands,andmayactuallybebeneficialinsomeareasifitrestoressomepre‐
settlementconditions(CovingtonandMoore1994).Aprojectedincreaseinthefrequencyof
droughtconditionsislikelytoexacerbatebothfireandinsectoutbreaks,andchangethestructure
andcompositionofponderosawoodlands.
Otherindirecteffectsofnon‐climatestressors–landscapecondition
Score:0.54
PonderosapinelandscapesinColoradohavebeenmoderatelyimpactedbyanthropogenic
activities.Urbanandexurbandevelopmentareaprimarythreattoponderosapinehabitat,
especiallyalongtheFrontRange,butalsoinotherpartsofthestate.Increasingdevelopmenthas
ledtoanextensivewildland‐urbaninterfaceinponderosahabitat,aswellasfragmentationof
standsinexurbanareasduetohousing,roads,andutilitycorridors;thistrendislikelytocontinue
(Theobald2005).Oilandgasdevelopment,mining,andloggingareminorsourcesofdisturbance
andfragmentationinponderosahabitat.
Ponderosaforestandwoodlandhistoricallyexperiencedrelativelyfrequentlowintensityfiresthat
controlledthedensity,age,andstructureofstands.Withfiresuppression,ponderosahasincreased
intofoothillsgrassland,standshavegreatlyincreasedindensity,andopenponderosasavanna
habitathasdecreased.Increasedtreedensityandfuelaccumulationhasresultedinmoresevere
firesinthishabitat,aswellasincreasedoccurrenceofmountainpinebeetleanddwarfmistletoe
infestation.Thealterationofnaturalfireregimesthroughfiresuppressionisanongoingthreatfor
ponderosahabitatwhereitisneardevelopedareas.
Literature Cited
Allen,C.D.,M.Savage,D.A.Falk,K.F.Suckling,T.W.Swetnam,T.Schulke,P.B.Stacey,P.Morgan,M.Hoffman,AndJ.T.
Klingel.2002.Ecologicalrestorationofsouthwesternponderosapineecosystems:abroadperspective.Ecological
Applications12:1418–1433.
Arno,S.F.2000.Fireinwesternforestecosystems.Chapter5inBrown,J.K.andJ.K.Smith,eds.Wildlandfirein
ecosystems:effectsoffireonflora.Gen.Tech.Rep.RMRS‐GTR‐42‐vol.2.Ogden,UT:U.S.DepartmentofAgriculture,Forest
Service,RockyMountainResearchStation.257p.
ClimateChangeVulnerabilityAssessmentforColoradoBLM75
Barrett,J.W.,P.M.McDonald,F.RoncoJr,andR.A.Ryker.1980.Interiorponderosapine.In:Eyer,F.H.,ed.Forestcover
typesoftheUnitedStatesandCanada.Washington,DC:U.S.DepartmentofAgriculture,ForestService:114‐115.
Brown,P.M.andR.Wu.2005.Climateanddisturbanceforcingofepisodictreerecruitmentinasouthwesternponderosa
pinelandscape.Ecology86:3030‐3038.
Covington,W.W.andM.M.Moore.1994.Southwesternponderosaforeststructure:changessinceEuro‐American
settlement.JournalofForestry92:39–47.
KayeM.W.,C.A.WoodhouseandS.T.Jackson.2010.Persistenceandexpansionofponderosapinewoodlandsinthewest‐
centralGreatPlainsduringthepasttwocenturies.JournalofBiogeography37:1668‐1683.
Kerhoulas,L.P.,T.E.Kolb,andG.W.Koch.2013.Treesize,standdensity,andthesourceofwaterusedacrossseasonsby
ponderosapineinnorthernArizona.ForestEcologyandManagement289:425‐433.
League,K.andT.Veblen.2006.ClimaticvariabilityandepisodicPinusponderosaestablishmentalongtheforest‐
grasslandecotonesofColorado.ForestEcologyandManagement228:98‐107.
Mast,J.N.,T.T.Veblen,andY.B.Linhart.1998.Disturbanceandclimaticinfluencesonagestructureofponderosapineat
thepine/grasslandecotone,ColoradoFrontRange.JournalofBiogeography.25:743‐755.
Rehfeldt,G.E.,N.L.Crookston,C.Saenz‐Romero,andE.M.Campbell.2012.NorthAmericanvegetationmodelforland‐use
planninginachangingclimate:asolutionoflargeclassificationproblems.EcologicalApplications22:119‐141.
Reid,M.S.,K.A.Schulz,P.J.Comer,M.H.Schindel,D.R.Culver,D.A.Sarr,andM.C.Damm.1999.Analliancelevel
classificationofvegetationofthecoterminouswesternUnitedStates.UnpublishedfinalreporttotheUniversityofIdaho
CooperativeFishandWildlifeResearchUnitandNationalGapAnalysisProgram,infulfillmentofCooperativeAgreement
1434‐HQ‐97‐AG‐01779.TheNatureConservancy,WesternConservationScienceDepartment,Boulder,CO.
Shepperd,W.D.andM.A.Battaglia.2002.Ecology,Silviculture,andManagementofBlackHillsPonderosaPine.General
TechnicalReportRMRS‐GTR‐97.USDAForestServiceRockyMountainResearchStation,FortCollins,CO.112
Theobald,D.M.2005.LandscapepatternsofexurbangrowthintheUSAfrom1980to2020.EcologyandSociety10:32
Thompson,R.S.,K.H.Anderson,andP.J.Bartlein.2000.Atlasofrelationsbetweenclimaticparametersanddistributionsof
importanttreesandshrubsinNorthAmerica.U.S.GeologicalSurveyProfessionalPaper1650‐A.
Youngblood,A.P.,andR.L.Mauk.1985.ConiferousforesthabitattypesofcentralandsouthernUtah.USDAForest
Service,IntermountainResearchStation.GeneralTechnicalReportINT‐187.Ogden,UT.89pp
76ColoradoNaturalHeritageProgram©2015
SPRUCE‐FIR
Dry‐mesicandmesicforestsdominatedbyEngelmannspruceandsubalpinefir
R.Rondeauextentexaggeratedfordisplay
Climate Vulnerability Rank: Moderate
Vulnerability summary
Key Vulnerabilities:Increaseddroughtintensityand/orfrequencyislikelytoincreasetheimpactoffire
andinsectoutbreaksinsubalpineforests.Theseforestsrecoverslowlyduetoslowdispersalandashort
growingseason.
Climatechangeprojectionsindicateanincreaseindroughtsand
fastersnowmelt,whichcouldincreaseforestfirefrequencyand
extent,aswellasinsectoutbreakswithinthisecosystem.Itisnot
knownifspruce‐firforestswillbeabletoregenerateundersuch
conditions,especiallyinlowerelevationstands,andthereisa
potentialforareductionorconversiontootherforesttypes,
dependingonlocalsiteconditions.
Thevulnerabilityoftheseforeststowarmertemperatures,
drought,andincreasedmortalityfrominsectoutbreaksare
primaryfactorscontributingtovulnerability.Therestrictionof
thishabitattohigherelevationsanditsrelativelynarrow
biophysicalenvelope,slow‐growth,andpositionnearthe
southernendofitsdistributioninColoradoareadditional
factors.However,theremaybealagtimebeforetheeffectsof
changingclimateareevident.
ClimateChangeVulnerabilityAssessmentforColoradoBLM77
Thelagtimeofthecurrenttreelinepositionbehindclimatechangeisestimatedtobe50‐100+
years,duetotherarityofrecruitmentevents,theslowgrowthandfrequentsetbacksfortreesin
theecotone,andcompetitionwithalreadyestablishedalpinevegetation(Körner2012).However,
onthebasisofhistoricevidence,treelinecanbeexpectedtomigratetohigherelevationsas
temperatureswarm,aspermittedbylocalmicrositeconditions(Smithetal.2003,Richardsonand
Friedland2009,Grafiusetal.2012).Thegradualadvanceoftreelineisalsolikelytodependon
precipitationpatterns,particularlythebalanceofsnowaccumulationandsnowmelt(Rochefortet
al.1994).Ouranalysisindicatedthatspruce‐firforestsinColoradohavemoderatevulnerabilityto
theeffectsofclimatechangebymid‐century.
Distribution
Spruce‐firdry‐mesicandmoist‐mesicforestecosystemsformtheprimarymatrixsystemsofthe
montaneandsubalpinezonesoftheSouthernRockyMountainsecoregion,andaccountfora
substantialpartofthesubalpineforestsoftheCascadesandRockyMountainsfromsouthern
BritishColumbiaeastintoAlberta,southintoNewMexicoandtheIntermountainregion.Spruce‐fir
forestalsoshowschangeswithlatitudeincludingtreelineelevation,speciescomposition,and
dominance.Subalpinefir(Abieslasiocarpa)decreasesinimportancerelativetoEngelmannspruce
(Piceaengelmannii)withincreasingdistancefromtheregionofMontanaandIdahowheremaritime
airmassesinfluencetheclimate.Firincreasesinimportancewithincreasinglatitude,andshares
dominancewithspruceattreelineoverthenorthernhalfoftheSouthernRockyMountains
ecoregion.Treelineoccursatover12,450ft(3800m)atthesouthernendoftheSouthernRocky
Mountainecoregion,butdoesnotexceed11,150ft(3400m)atthenorthernend(Peet1978).
Individualcommunitytypesmaybematrixorlargepatchincharacter,thoughmosttypicallyoccur
asamosaicoflargepatchesacrossthelandscape.Spruce‐firdominatedstandsoccuronallbutthe
mostxericsitesabove10,000ft(3,100m),andincool,shelteredvalleysatelevationsaslowas
8,200ft(2,500m).Therelativedominanceofthetwocanopytreespeciesandtheunderstory
compositionvarysubstantiallyoveragradientfromexcessivelymoisttoxericsites(Peet1981).
Themesicspruce‐firtypeoccursoncool,sheltered,butwell‐drainedsitesabove8,850ft(2,700m).
Openslopesabove9,850ft(3,000m)aretypicallycharacterizedbyamorexericspruce‐firtype,
withvaryingamountsoflodgepoleandlimberpine.
Characteristic species
Engelmannspruceandsubalpinefirdominatethecanopy,eithertogetheroralone.Lodgepolepine
(Pinuscontorta)iscommoninmanyoccurrencesasaremixedconifer/quakingaspen(Populus
tremuloides)stands.UnderstoryspeciesmayincludeGeyer'ssedge(Carexgeyeri),commonjuniper
(Juniperuscommunis),creepingbarberry(Mahoniarepens),Jacob's‐ladder(Polemonium
pulcherrimum)orwhortleberry(Vacciniumspp.).Moremesicunderstorymayincludered
baneberry(Actaearubra),sprucefirfleabane(Erigeroneximius),thimbleberry(Rubusparviflorus),
yellowdotsaxifrage(Saxifragabronchialis),oralpineclover(Trifoliumdasyphyllum),amongother
species.
78ColoradoNaturalHeritageProgram©2015
Pinemartensareprimarilyaspruce‐firobligatespeciesthatrequireahealthyandsizeable
occurrenceofmatureforestandareanindicatorofahealthyandviableoccurrenceofthespruce‐fir
ecosystem
Environment
Thesearethematrixforestsofthesubalpinezone,withrangewideelevationsrangingfrom5,000‐
11,000ft(1,525to3,355m).Sitesarecoldyear‐round,andprecipitationispredominantlyinthe
formofsnow,whichmaypersistuntillatesummer.Moist‐mesicoccurrencesaretypicallyfoundin
locationswithcold‐airdrainageorponding,orwheresnowpackslingerlateintothesummer,such
asnorth‐facingslopesandhigh‐elevationravines.Theycanextenddowninelevationbelowthe
subalpinezoneinplaceswherecold‐airpondingoccurs;northerlyandeasterlyaspects
predominate.Theseforestsarefoundongentletoverysteepmountainslopes,high‐elevation
ridgetopsandupperslopes,highplateaus,basins,alluvialterraces,well‐drainedbenches,and
inactivestreamterraces.
Dynamics
Fire,spruce‐beetleoutbreaks,avalanches,andwindthrowallplayanimportantroleinshapingthe
dynamicsofspruce‐firforests.Firesinthesubalpineforestaretypicallystandreplacing,resulting
intheextensiveexposureofmineralsoilandinitiatingthedevelopmentofnewforests.Stand
replacingfiresareestimatedtooccuratintervalsofabout300yearsfordry‐mesicareas,and
longer(350‐400years)formoremesicsites(RommeandKnight1981).Firereturnintervals,
intensity,andextentnaturallydependonavarietyoflocalenvironmentalfactors.Dependingon
siteconditions,spruceorlodgepolepinemayinitiallydominatethepost‐firesite,incombination
withlimberpine,andquakingaspen(DonneganandRebertus1999).Firisgenerallytheleast
abundantforseveraldecadesafterfire,butisabletoestablishinlow‐lightconditionsonforest
litter,andgraduallyincreasesinabundance(Veblenetal.1991).
Sprucebeetle(Dendroctonusrufipennis)outbreaksmaybeevenmoresignificantthanfireinthe
developmentofspruce‐firforests(Weedetal.2013).Whenlargersprucetreesarekilledbyspruce
beetleinfestation,smallerdiametersprucetreesandsubalpinefirtreesareabletoincreasegrowth
andcontinuetodominatethestand(Veblenetal.1991).Inadditiontofiresandbeetlekill,wind
disturbanceinspruce‐firforestshasbeenwelldocumented(Schauppetal.1999).Blowdowns
involvingmultipletreefallsaddtothemosaicofspruce‐firstands.Underanaturaldisturbance
regime,subalpineforestswereprobablycharacterizedbyamosaicofstandsinvariousstagesof
recoveryfromdisturbance,withold‐growthjustonepartofthelargerforestmosaic(Peet1981).
ClimateChangeVulnerabilityAssessmentforColoradoBLM79
CCVA Scoring
Exposure‐Sensitivity (Potential Impact) Rank
PercentColoradoacreswithprojectedtemp>max&pptdelta<5%0.2%
InitialExposure‐SensitivityRankLow
PercentColoradoacreswithtemp<=max&pptdelta<5%morethan50%?No(40.8%)
FinalExposure‐SensitivityRankLow
Exposuretotemperaturechange
Underprojectedmid‐centurytemperatures,lessthan1%ofthecurrentrangeofspruce‐firforestin
Coloradowouldexperienceannualmeantemperaturesabovethecurrentstatewidemaximum.
Exposuretoprecipitationchange
About41%ofspruce‐firforestinColoradowillbeexposedtoeffectivelydrierconditionseven
underunchangedorslightlyincreasedprecipitationprojectedformid‐century.
Sensitivityofecosystemtotemperatureandprecipitation
Spruce‐firforesttypicallydominatesthewettestandcoolesthabitatsbelowtreeline.Theseareas
arecharacterizedbylong,coldwinters,heavysnowpack,andshort,coolsummerswherefrostis
common(Uchytil1991).BothEngelmannspruceandsubalpinefiraredependentonsnowmelt
waterformostofthegrowingseason,andinlowsnowpackyearsgrowthisreduced(Huetal.
2010).
Thelengthofthegrowingseasonisparticularlyimportantforbothalpineandsubalpinezones,and
forthetransitionzonebetweenalpinevegetationandclosedforest(treeline).Treeline‐controlling
factorsoperateatdifferentscales,rangingfromthemicrositetothecontinental(Holtmeierand
Broll2005).Onaglobalorcontinentalscale,thereisgeneralagreementthattemperatureisa
primarydeterminantoftreeline.Körner(2012)attributesthedominanceofthermalfactorsatthis
scaletotherelativeconsistencyofatmosphericconditionsoverlargeareas,especiallyin
comparisontomorelocalinfluenceofsoilandmoisturefactors.Furthermore,thereappearstobea
criticaldurationoftemperaturesadequateforthegrowthoftreesinparticular(e.g.,individuals
>3mtall)thatdeterminesthelocationoftreeline.Atmorelocalscales,soilproperties,slope,aspect,
topography,andtheireffectonmoistureavailability,incombinationwithdisturbancessuchas
avalanche,grazing,fire,pests,disease,andhumanimpactsallcontributetotheformationof
treeline(RichardsonandFriedland2009,Körner2012).Patternsofsnowdepthandduration,
wind,insolation,vegetationcover,andtheautecologicaltolerancesofeachtreespeciesinfluence
theestablishmentandsurvivalofindividualswithinthetreelineecotone(Moiretal.2003,
HoltmeierandBroll2005,Smithetal.2009).IntheRockyMountains,treeestablishmentwas
significantlycorrelatedwithwarmerspring(Mar‐May)andcool‐season(Nov‐Apr)minimum
temperaturesaswell(Elliott2012).
Spruce‐firforestscurrentlyoccupycoldareaswithhighprecipitation;warmeranddrierclimate
conditionspredictedbymostmodelscouldresultinanupwardmigrationoftheseforestsintothe
80ColoradoNaturalHeritageProgram©2015
alpinezone.However,inCanadianspruce‐firforests,warmerthanaveragesummertemperatures
ledtoadecreaseingrowththefollowingyear(HartandLaroque2013).Sincespruce‐firmaybe
abletotoleratewarmersummertemperatures,thelowerextentofthishabitattypecouldremainat
currentlevelsforsometime,evenifgrowthisreduced.
Thecurrentlocationoftreelineisaresultoftheoperationofclimaticandsite‐specificinfluences
overthepastseveralhundredyears,anddoesnotexactlyreflectthecurrentclimate(Körner2012).
Thetreelinepositionlagtimebehindclimatechangeisestimatedtobe50‐100+years,duetothe
rarityofrecruitmentevents,theslowgrowthandfrequentsetbacksfortreesintheecotone,and
competitionwithalreadyestablishedalpinevegetation(Körner2012).Nevertheless,onthebasisof
historicevidence,treelineisgenerallyexpectedtomigratetohigherelevationsastemperatures
warm,aspermittedbylocalmicrositeconditions(Smithetal.2003,RichardsonandFriedland
2009,Grafiusetal.2012).Infact,treelineadvancehasalreadybeendocumentedatsitesintheSan
JuanMountains(Finketal.2014).
Furthermore,thelagtimeofdecadesorlongerfortreelinetorespondtowarmingtemperatures
mayallowthedevelopmentofnovelvegetationassociations(ChapinandStarfield1997),andmake
itdifficulttoidentifytemperatureconstraintsonthedistributionofthishabitat(Grafiusetal.
2012).Thegradualadvanceoftreelineisalsolikelytodependonprecipitationpatterns.Seedling
establishmentandsurvivalaregreatlyaffectedbythebalanceofsnowaccumulationandsnowmelt.
Soilmoisture,largelyprovidedbysnowmelt,iscrucialforseedgerminationandsurvival.Although
snowpackinsulatesseedlingsandshieldssmalltreesfromwinddesiccation,itspersistence
shortensthegrowingseasonandcanreducerecruitment(Rochefortetal.1994).
Resilience and Adaptive Capacity Rank
OverallScore: 0.34Rank: Low
Bioclimaticenvelopeandrange
Averagedcategoryscore:0.30
Spruce‐firforestsinColoradohaveawideelevationalrange,extendingfromabout8,900ftupto
over12,000ft.Althoughnotasrestrictedasalpinehabitats,spruce‐firforestsaregenerallylimited
tohigher,coolerelevations,andarealsonearthesouthernextentoftheircontinentalrangein
Colorado.Statewide,annualaverageprecipitationisonlyslightlylowerthanthatofalpine,and
theseforestshavesignificantpresencein82%ofColorado’soverallprecipitationrange.Spruce‐fir
requiresalongergrowingseasonthanalpinehabitat,butissuccessfulatmuchcoolertemperatures
thanmostotherforesttypes,coveringonly38%ofthestate’sgrowingdegreerange.Thesefactors
combinetoproducearelativelypoorresiliencescoreinthiscategory.
Growthformandintrinsicdispersalrate
Score:0
Thetreegrowthformandslowdispersalrateofthedominantconiferspeciesgivethisecosystema
lowresiliencescoreinthiscategory.Subalpinefirseedsrequirecold‐moistconditionstotrigger
ClimateChangeVulnerabilityAssessmentforColoradoBLM81
germination(Uchytil1991),andthereissomeindicationthatEngelmannspruceseedsgerminate
fasteratrelativelylowtemperatures(Smith1985),givingitacompetitiveadvantageoverlesscold‐
tolerantspecies.Underwarmerconditions,however,currentspruce‐fircommunitiesmaybe
graduallyreplacedbyamixed‐coniferforest.Therearenoobviousbarrierstothegradualdispersal
ofseedlingsintoadjacent,newlysuitablehabitat,althoughthedominantspeciesaregenerally
slow‐growing.
Vulnerabilitytoincreasedattackbybiologicalstressors
Score:0
Althoughthesesubalpineforestsarenotsusceptibletoincreasedprevalenceofinvasivespecies,
theyarevulnerabletooutbreaksofthenativepestspeciessprucebudwormandsprucebeetle.
Warmertemperatures(bothwinterandsummer)arelikelytofacilitatetheseinfestations.Warmer
wintersarecorrelatedwithreducedbeetlemortality,whilehighersummertemperaturesallowa
greaterproportionofthesprucebeetlepopulationtocompleteagenerationinasingleyear,witha
correspondinglyhigherprobabilityofpopulationoutbreak(Bentzetal.2010).Thecurrent
distributionofspruce‐firhabitatisthereforelikelytobeatincreasedriskofsignificantmortality.
Insectoutbreaksarealsotypicallyassociatedwithdroughts.
Vulnerabilitytoincreasedfrequencyorintensityofextremeevents
Score:0.5
Historicnaturalfire‐returnintervalsintheseforestshavebeenontheorderofseveralhundred
years,andthetreespeciesarenotadaptedtomorefrequentfires.Withanincreaseindroughtsand
fastersnowmelts,wecanexpectanincreaseinforestfirefrequencyandextentwithinthiszoneas
ignitionofheavyfuelloadsbecomeslesslimitedbycool,wetconditions.Itisnotknownifspruce‐
firforestswillbeabletoregenerateundersuchconditions,especiallyinlowerelevationstands,and
thereisapotentialforareductioninspruce‐firforests,atleastintheshortterm.
Otherindirecteffectsofnon‐climatestressors–landscapecondition
Score:0.89
Spruce‐firforestlandscapesinColoradoaregenerallyinverygoodcondition,wellprotected,and
minimallyimpactedbyanthropogenicdisturbance.Becausenaturalfirereturnintervalsinthese
habitatsarelong,firesuppressionhasnothadwidespreadeffectsontheconditionofspruce‐fir
habitat.Atalandscapescale,however,agestructuresofspruce‐firforestareprobablysomewhat
alteredfrompre‐settlementconditions.Spruce‐firforestsaresubjecttodisturbancebyrecreational
use,hunting,livestockgrazing,mining,andlogging,butingeneral,threatsfromhousing,roads,and
recreationaldevelopmentandsimilaranthropogenicdisturbanceareminorforspruce‐firhabitats.
Literature Cited
Alexander,R.R.1987.Ecology,silviculture,andmanagementoftheEngelmannspruce‐subalpinefirtypeinthecentral
andsouthernRockyMountains.Agric.Handb.659.Washington,DC:U.S.DepartmentofAgriculture,ForestService.144p.
82ColoradoNaturalHeritageProgram©2015
Bentz,B.J.,J.Régnière,C.J.Fettig,E.M.Hansen,J.L.Haynes,J.A.Hicke,R.G.Kelsey,J.F.Negrón,andS.J.Seybold.2010.
ClimatechangeandbarkbeetlesofthewesternUnitedStatesandCanada:directandindirecteffects.BioScience60:602‐
613.
Chapin,F.S.andA.M.Starfield.1997.Timelagsandnovelecosystemsinresponsetotransientclimaticchangeinarctic
Alaska.Climaticchange35:449‐461.
Donnegan,J.A.andA.J.Rebertus.1999.Ratesandmechanismsofsubalpineforestsuccessionalonganenvironmental
gradient.Ecology80:1370‐1384.
Elliott,G.P.2012.ExtrinsicregimeshiftsdriveabruptchangesinregenerationdynamicsatuppertreelineintheRocky
Mountains,USA.Ecology93:1614‐1625.
Fink,M.,R.Rondeau,andK.Decker.2014.TreelinemonitoringintheSanJuanMountains.ColoradoNaturalHeritage
Program,ColoradoStateUniversity,FortCollins,CO.
Grafius,D.R.,G.P.Malanson,andD.Weiss.2012.SecondarycontrolsofalpinetreelineelevationsinthewesternUSA.
PhysicalGeography33:146‐164.
Hart,S.J.andC.P.Laroque.2013.Searchingforthresholdsinclimate‐radialgrowthrelationshipsofEngelmannspruceand
subalpinefir,JasperNationalPark,Alberta,Canada.Dendrochronologia31:9‐15.
Holtmeier,F‐K.andG.Broll.2005.Sensitivityandresponseofnorthernhemispherealtitudinalandpolartreelinesto
environmentalchangeatlandscapeandlocallevels.GlobalEcologyandBiogeography14:395‐410.
Hu,J.,D.J.P.Moore,S.P.Burns,andR.K.Monson.2010.Longergrowingseasonsleadtolesscarbonsequestrationbya
subalpineforest.GlobalChangeBiology16:771‐783.
Körner,C.2012.Alpinetreelines:functionalecologyoftheglobalhighelevationtreelimits.Springer,Basel,Switzerland.
Moir,W.H.,S.G.Rochelle,andA.W.Schoettle.1999.Microscalepatternsoftreeestablishmentnearuppertreeline,Snowy
Range,Wyoming.Arctic,Antarctic,andAlpineResearch31:379‐388.
Peet,R.K.1978.LatitudinalvariationinsouthernRockyMountainforests.JournalofBiogeography5:275‐289.
Peet,R.K.1981.ForestvegetationoftheColoradoFrontRange–Compositionanddynamics.Vegetatio45:3‐75.
Richardson,A.D.andA.J.Friedland.2009.Areviewofthetheoriestoexplainarcticandalpinetreelinesaroundtheworld.
JournalofSustainableForestry28:218‐242.
Rochefort,R.M.,R.L.Little,A.Woodward,andD.L.Peterson.1994.Changesinsub‐alpinetreedistributioninwestern
NorthAmerica:areviewofclimaticandothercausalfactors.TheHolocene4:89‐100.
Romme,W.H.andD.H.Knight.1981.Firefrequencyandsubalpineforestsuccessionalongatopographicgradientin
Wyoming.Ecology62:319‐326.
SchauppW.C.J.F.M.andS.Johnson.1999.Evaluationofthesprucebeetlein1998withintheRouttDivideblowdownof
October1997,ontheHahnsPeakandBearsEarsRangerDistricts,RouttNationalForest,Colorado.USDAForestService,
RenewableResources,RockyMountainRegion,Lakewood,CO.15pp.
Smith,W.K.1985.Westernmontaneforests.Chapter5inChabot,R.F.andH.A.Money,eds.,PhysiologicalEcologyofNorth
AmericanPlantCommunities.ChapmanandHall,NewYork,351pp.
Smith,W.K.,M.J.Germino,T.E.Hancock,andD.M.Johnson.2003.Anotherperspectiveonaltitudinallimitsofalpine
timberlines.TreePhysiology23:1101‐1112.
ClimateChangeVulnerabilityAssessmentforColoradoBLM83
Uchytil,R.J.1991.PiceaengelmanniiandAbieslasiocarpa.In:FireEffectsInformationSystem,[Online].U.S.Departmentof
Agriculture,ForestService,RockyMountainResearchStation,FireSciencesLaboratory(Producer).Available:
http://www.fs.fed.us/database/feis/
Veblen,T.T.1986.AgeandsizestructureofsubalpineforestsintheColoradoFrontRange.BulletinoftheTorreyBotanical
Club113(3):225‐240.
Veblen,T.T.,K.S.Hadley,M.S.Reid,andA.J.Rebertus.1991.Theresponseofsubalpineforeststosprucebeetleoutbreakin
Colorado.Ecology72:213‐231.
Weed,A.S.,M.P.Ayres,andJ.A.Hicke.2013.ConsequencesofclimatechangeforbioticdisturbancesinNorthAmerica
forests.EcologicalMonographs83:441‐470.
84ColoradoNaturalHeritageProgram©2015
Shrubland
Table 2.6.Keyvulnerabilities,shrublandecosystems.
Habitat Climate factor(s) Consequences Other considerations
DesertshrublandSoilmoistureConversiontoothertypeHighlyaltered
Oak&mixedmtn.
shrub
Drought,lastfrostdate
variability
Diebackwithdroughtand
latefrost;mayincreaseby
resproutingafterfire
Anthropogenicdisturbance
SagebrushDroughtIncreaseininvasivespecies
suchascheatgrass;fire
Variablebysubspecies
SandsageExtendeddroughtSoilmobilizationLossofnativebiodiversity
ClimateChangeVulnerabilityAssessmentforColoradoBLM85
DESERT SHRUBLAND
Shrubland,shrub‐steppe,dwarf‐shrubland,andsparselyvegetatedareascharacterizedbysaltbush,
rabbitbrush,winterfat,andotherxericshrubspecies
CNHP
extentexaggeratedfordisplay
Climate Vulnerability Rank: Moderate
Vulnerability summary
Key Vulnerabilities:Theinteractionofsoiltypesandprecipitationpatternslargelydeterminesthe
compositionandextentoftheseshrublands,whichmayundergoconversiontoothertypesunderfuture
climateconditions.Thealteredconditionofmanystandsisaconfoundingfactor.
Theprimaryfactorcontributingtothemoderatevulnerability
rankingofdesertshrublandsinColoradoistheextenttowhich
standshavebeenimpactedbyanthropogenicdisturbance,with
greatlyalteredspeciescompositioninmanyinstances.The
resiliencescoreforthisecosystemisotherwisehigh,and,since
thesearecommunitiesofaridlandscapes,theycouldbeless
vulnerabletoclimatechangewherestandsareingoodcondition.
However,changingsoilmoisturepatternsmayeventuallyfavor
semi‐desertgrasslandinareascurrentlyoccupiedbydesert
shrubland.
Distribution
DesertshrublandcommunitiesoccurthroughouttheintermountainwesternU.S.,andaretypically
open‐canopiedshrublandsdominatedbysaltbushspeciesorothershrubstolerantofsalineor
alkalinesoilstypicallyderivedfrommarineshales,siltstonesandclay.Forthisassessment,we
groupedshrub‐steppe,mixedsaltdesertshrub,matsaltbushshrublands,andsparselyvegetated
shalebadlandstogetherasdesertshrubland.Thesesparsetomoderatelydenselow‐growing
86ColoradoNaturalHeritageProgram©2015
shrublandsarewidespreadatlowerelevationsinColorado’swesternvalleys,butalsooccurtoa
smallerextentontheeasternplains.Desertshrublandsarefoundprimarilybetween4,500and
7,000feet,althoughshrub‐steppemayextendupto9,500feetinsomeareas.Shrub‐steppedoes
notformextensivestandsinColoradoexceptintheSanLuisValley.Pinyon‐juniperwoodlandsand
sagebrushshrublandscommonlyareadjacentattheupperelevations.
Characteristic species
Matsaltbushshrublandtypicallysupportsrelativelypurestandsoflow‐growingmatsaltbush
(Atriplexcorrugata)orGardner'ssaltbush(Atriplexgardneri).Otherdwarf‐shrubspeciesthatmay
bepresentincludebudsagebrush(Picrothamnusdesertorum)andshortspinehorsebrush
(Tetradymiaspinosa).Scatteredperennialforbsoccur,suchasdesertprincesplume(Stanleya
pinnata),eveningprimrose(Oenotheraspp.),andphacelia(Phaceliaspp.).Indianricegrass
(Achnatherumhymenoides)andalkalisacaton(Sporobolusairoides)maybepresentinswales.
Annualsmayincludedeserttrumpet(Eriogonuminflatum),andintroducedspeciessuchasAfrican
mustard(Malcolmiaafricana)andcheatgrass(Bromustectorum).Someareasareessentially
barren,orverysparselyvegetated.
Mixedsaltdesertscrubischaracterizedbythetallersaltbushspeciesshadscalesaltbush(Atriplex
confertifolia)orfourwingsaltbush(Atriplexcanescens),andmayincludewinterfat
(Krascheninnikovialanata),paledesert‐thorn(Lyciumpallidum),horsebrush(Tetradymia
canescens),andvarioussagebrush(Artemisia)species.Grassesandforbsaresparsetomoderately
dense,anddominatedbyspeciestolerantoftheharshsoils.Typicalperennialgrassesinclude
Indianricegrass,bluegrama(Boutelouagracilis),thickspikewheatgrass(Elymuslanceolatusssp.
lanceolatus),westernwheatgrass(Pascopyrumsmithii),James’galleta(Pleuraphisjamesii),
Sandbergbluegrass(Poasecunda),oralkalisacaton.
Colorado’sshrub‐steppesaregrass‐dominatedareaswithanopenshrublayer.Typicalgrass
speciesincludebluegrama,needle‐and‐thread(Hesperostipacomata),James’galleta,saltgrass
(Distichlisspicata),Indianricegrass,andalkalisacaton.Historically,theshrublayerwasdominated
bywinterfat,butthisspecieshasdecreasedundergrazingpressureinmanyareas.Winterfathas
largelybeenreplacedbyrabbitbrush(EricameriaandChrysothamnus)speciesandotherwoody
shrubs.
Environment
Desertshrublandclimateisgenerallyaridorsemi‐aridwithextremetemperaturedifferences
betweensummerandwinter.ForoccurrencesinsouthernColorado,themonsoonalperiodofmid‐
tolatesummernormallyprovidesmostoftheannualmoisture;innorthernareasprecipitationis
moreevenlyspreadthroughouttheyear,includingduringthecoldestmonths.Inthesecolddesert
shrublands,however,theyeartoyearvariationofprecipitationislikelytobegreaterthanseasonal
variablity,withresultanteffectsoninterannualvariabilityingrowthandreproductionofshrubland
species(BlaisdellandHolmgren1984).
Desertshrublandsubstratesaregenerallyshallow,typicallysalineoralkaline,fine‐texturedsoils
developedfromshaleoralluvium.Suchsoilsarepoorlydeveloped,duetothearidclimate,with
ClimateChangeVulnerabilityAssessmentforColoradoBLM87
verylowinfiltrationrates(West1983).Unvegetatedsubstrateiscommon,and,ifundisturbed,is
oftencoveredbyabiologicalsoilcrust.Althoughperennialspeciestendtosortoutalonga
moisture/salinitygradientaccordingtoindividualspeciestolerances(West1983),theredonot
appeartobeanyexceptionallynarrowtolerancesorrequirementsforapartcularsoilfactor
presentintypicaldesertshrublandplants(BlaisdellandHolmgren1984).
Dynamics
Thenaturallysparseplantcovermakestheseshrublandsespeciallyvulnerabletowaterandwind
erosion,especiallyifvegetationhasbeenimpactedbygrazingordisturbancesincludingfire.
Historically,saltdesertshrublandshadlowfirefrequency(Simonin2001),andarecharacterized
bylowfuelmassandlowsoilmoisture,whichtendstomitigatefireimpacts(Allenetal.2011).
However,increasedextentofintroducedannualgrasses,especiallycheatgrass,hasfacilitatedthe
spreadoffirebyprovidingcontinuoussurfacefuelsinmanyareas(West1994,).IntheGreatBasin,
cheatgrasshasdemonstrablyincreasedfireactivityinsagebrushshrublands(Balchetal.2013),but
lessisknownaboutfire‐sensitivityofsalinedeserttypes.FiretoleranceofAtriplexspeciesisvaried;
mostsurvivingindividualsareabletoresprout.FourwingsaltbushinNewMexicohadsevere
mortalityfromfire(62%killed),butsurvivingshrubsquicklyresproutedandeventuallyrecovered
prefirestature(Parmenter2008).Shadscaleisgenerallykilledbyfireandreliesonseedfor
revegetationofburnedareas(West1994).Althoughtheirstudydidnotincludeungrazedplotsfor
comparison,Haubensaketal.(2009)notedthat,afterfire,grazeddesertshrublandshad
significantlylowervegetationcover,andweremoreinvadedbynon‐nativespeciesincomparison
withunburnedplots.
Manyofthedominantshrubsarepalatabletodomesticlivestock,sograzingcanalterspecies
compositionaswellasincreasingerosionpotential.Incombinationwithclimaticvariability,these
disturbancesacttochangefloristiccompositionofdesertshrublandsovertime.Forexample,
winterfatwashistoricallyatypicaldominantinsemi‐desertshrubsteppe.Thispalatableshrubis
consideredadecreaserunderdomesticlivestockgrazing.Asaconsequenceofanthropogenically
inducedchangesingrazingpatterns,Greene'srabbitbrush(Chrysothamnusgreenei)isnow
dominantinSanLuisValleyshrubsteppe,althoughthewetterareasstillhavesignificantamounts
ofwinterfat.
CCVA Scoring
Exposure‐Sensitivity (Potential Impact) Rank
PercentColoradoacreswithprojectedtemp>max&pptdelta<5%30.6%
InitialExposure‐SensitivityRankModerate
PercentColoradoacreswithtemp<=max&pptdelta<5%morethan50%?No(48.0%)
FinalExposure‐SensitivityRankModerate
88ColoradoNaturalHeritageProgram©2015
Exposuretotemperaturechange
Underprojectedmid‐centurytemperatures,about37%ofthecurrentrangeofdesertshrublandin
Coloradowouldexperienceannualmeantemperaturesabovethecurrentstatewidemaximum.
Exposuretoprecipitationchange
About79%ofdesertshrublandinColoradowillbeexposedtoeffectivelydrierconditionseven
underunchangedorslightlyincreasedprecipitationprojectedformid‐century.
Sensitivityofecosystemtotemperatureandprecipitation
Thedominantdesertshrubsareabletogrowwhenevertemperaturesarefavorable,butonlyif
thereissufficientsoilmoisture.Soilmoistureaccumulationisprimarilyinwinter,andinfluences
theamountofspringplantgrowth.Ifnoadditionalmoistureisreceivedinspring,growthends,and
plantsbecomedormant.Laterrainsduringthewarmseasonmayre‐inducegrowth(Blaisdelland
Holmgren1984).Soilsaturationmaycausemortalityofthedominantshrubs(Ewingand
Dobrowolski1992).Thecharacteristicinterannualvariabilityofprecipitationindesertshrubareas,
andthedifferentlifehistorystrategies/phenologyofthecomponentspeciescanproducedramatic
differencesinshrublandappearancefromoneyeartothenext(BlaisdellandHolmgren1984).
Munsonetal.(2011)founddecreasedcanopycoverinAtriplexshrublandswithincreasing
temperature,whichtheyattributedtoincreasedevaporationandreducedwateravailabilityinthe
shale‐derivedsoils.Thus,theseshrublandsmaybeabletotoleratehighertemperaturesonlywhen
precipitationisadequate.However,insomesemi‐aridandaridsystems,temporalvariationin
wateravailabilitymaycreatepositivefeedbacksthatfacilitateencroachmentofC3woodyplant
speciesintoareasformerlydominatedbyC4grasses.Otherdesertshrubspecieswithdeeperroot
systems(e.g.,blackbrush,greasewood,mormontea,sagebrush)arebetteradaptedtoexpandinto
grassyareasthanrelativelyshallow‐rootedAtriplexspecies(Munsonetal.2011).Further
differentiationbetweenshrubspeciesintheabilitytoutilizerainfallduringparticularseasons(Lin
etal.1996)mayleadtochangesinspeciescompositionintheseshrublands.Shadscalesaltbush(A.
confertifolia)andotherdesertshrubsaretypicallydependentonspringsoilmoistureforgrowth,
andhavelowmetabolicactivityduringsummerasthesoildries(Mata‐Gonzálezetal.2014).
Resilience and Adaptive Capacity Rank
OverallScore: 0.69Rank: Moderate
Bioclimaticenvelopeandrange
Averagedcategoryscore:0.72
Desertshrublandsaregenerallyconfinedtowarm,dryhabitatswithinColorado,occupying31%of
Colorado’soverallprecipitationrangeand57%ofthestatewiderangeofgrowingdegreedays.
Theseshrublandsarenotlimitedbyelevationalconstraints,andarenotatthesouthernedgeof
theirrangeinColorado,whichgivesthemagoodresiliencescoreinthiscategory.
Growthformandintrinsicdispersalrate
Score:0.5
ClimateChangeVulnerabilityAssessmentforColoradoBLM89
Althoughthedominantshrubspeciesarelikelytobefairlyfastgrowing,lackofinformationabout
thedispersalratesofthesespeciesgivesthisecosystemanintermediateresiliencescoreforthis
category.
Vulnerabilitytoincreasedattackbybiologicalstressors
Score:0.7
Increasedinvasionbynon‐nativeannualgrassesandconsequentincreaseinfirefrequencyislikely
todepressrecruitmentofsaltdesertshrubspecies(Haubensaketal.2009).
Vulnerabilitytoincreasedfrequencyorintensityofextremeevents
Score:1
Theseshrublandsarewelladaptedtodrought,sohaveahighresiliencescoreforthiscategory.
Increasedfireeffectsarescoredinthepreviouscategoryasbeingmediatedbycheatgrassinvasion.
Otherindirecteffectsofnon‐climatestressors–landscapecondition
Score:0.51
DesertshrublandlandscapesinColoradohavebeenmoderatelyimpactedbyanthropogenic
activities.Significantportionshavebeenconvertedtoagriculturaluse,especiallyinvalleybottoms
whereirrigationisavailable.Remainingstandsaregenerallyingoodcondition,exceptforaltered
speciescompositioninareaswheregrazinghasreducedoreliminatedsomenativebunchgrasses.
Ongoinglimitedthreatsfromexurbandevelopmentorconversiontoagricultureareaminorsource
ofdisturbance,fragmentation,andhabitatlossintheremainingextentoftheseshrublands.Oiland
gasdevelopment,withassociatedroads,pipelinecorridors,andinfrastructureistheprimary
ongoingsourceofanthropogenicdisturbance,fragmentation,andlossinthishabitat.Livestock
grazinghasalteredpre‐settlementspeciescomposition,andthistrendislikelytocontinueata
reducedrate.Roadsandutilitycorridors,includingthoseassociatedwithsolarenergydevelopment
intheSanLuisValleyareanongoingsourceofdisturbance,andcanfacilitatethespreadofinvasive
plantspecies,whichhavebecomeestablishedinsomeareas.
Literature Cited
Allen,E.B.,R.J.Steers,andS.J.Dickens.2011.Impactsoffireandinvasivespeciesondesertsoilecology.Rangeland
EcologyandManagement64:450‐462.
Balch,J.K.,B.A.Bradley,C.M.D’Antonio,andJ.Gómez‐Dans.2013.Introducedannualgrassincreasesregionalfireactivity
acrossthearidwesternUSA(1980‐2009).GlobalChangeBiology19:173‐183.
Blaisdell,J.P.andR.C.Holmgren.1984.ManagingIntermountainrangelands‐salt‐desertshrubranges.USDAForest
ServiceGeneralTechnicalReportINT‐163.IntermountainForestandRangeExperimentStation,Ogden,Utah.52pp
Haubensak,K.,C.D’Antonio,andD.Wixon.2009.Effectsoffireandenvironmentalvariablesonplantstructureand
compositioningrazedsaltdesertshrublandsoftheGreatBasin(USA).JournalofAridEnvironments73:643‐650.
90ColoradoNaturalHeritageProgram©2015
Lin,G.S.L.Phillips,andJ.R.Ehleringer.1996.Monsoonalprecipitationresponsesofshrubsinacolddesertcommunityon
theColoradoPlateau.Oecologia106:8‐17.
Mata‐GonzálezR.,T.L.Evans,D.W.Martin,T.McLendon,J.S.Noller,C.Wan,andR.E.Sosebee.2014.PatternsofWaterUse
byGreatBasinPlantSpeciesUnderSummerWatering.AridLandResearchandManagement28:428‐446.
Munson,S.M.,J.Belnap,C.D.Schelz,M.Moran,andT.W.Carolin.2011.Onthebrinkofchange:plantresponsestoclimate
ontheColoradoPlateau.Ecosphere2:art68.
Parmenter,R.R.2008.Long‐TermEffectsofaSummerFireonDesertGrasslandPlantDemographicsinNewMexico.
RangelandEcologyandManagement61:156–168.
Simonin,K.A.2001.Atriplexconfertifolia.In:FireEffectsInformationSystem,[Online].U.S.DepartmentofAgriculture,
ForestService,RockyMountainResearchStation,FireSciencesLaboratory(Producer).Available:
http://www.fs.fed.us/database/feis/
West,N.E.1983.Intermountainsaltdesertshrublands.Pages375‐397in:N.E.West,editor.Temperatedesertsandsemi‐
deserts.Ecosystemsoftheworld,Volume5.ElsevierPublishingCompany,Amsterdam.
West,N.E.1994.Effectsoffireonsalt‐desertshrubrangelands.InMonsen,S.B.,S.G.Kitchen,comps.1994.Proceedings‐
ecologyandmanagementofannualrangelands;1992May18‐21;Boise,ID.Gen.Tech.RepINT‐GTR‐313.Ogden,UT:U.S.
DepartmentofAgriculture,ForestService,IntermountainResearchStation.416p.
ClimateChangeVulnerabilityAssessmentforColoradoBLM91
OAK & MIXED MOUNTAIN SHRUB
ShrublandsdominatedbyGambeloakorserviceberryandothermontaneshrubspecies
S.Kettler
extentexaggeratedfordisplay
Climate Vulnerability Rank: Low
Vulnerability summary
Key Vulnerabilities:Oakshrublandsaremostvulnerabletodroughtandvariabilityoflatefrosts.The
vulnerabilityofothermountainshrubspeciesisnotwellknown.Theabilitytoresproutafterdisturbance
increasesshrubresilience.
Oakandmixedmountainshrublandsarerankedashavinglow
vulnerabilitytotheeffectsofclimatechangebymid‐century.
Primaryfactorscontributingtothisrankingarethewide
ecologicalamplitudeoftheseshrublandsinColorado,andtheir
abilitytowithstandorrecoverfromdisturbancerelatively
quickly,whichoffsetsthelowerlandscapeconditionscoredueto
pastanthropogenicdisturbancelevels.
Distribution
Thislargepatchecosystemoccursinthemountains,plateaus,andfoothillsintheSouthernRocky
MountainsandColoradoPlateauecoregions.Oakandmixedmountainshrublandsarewidespread
inthewesternhalfofColorado,andalongthesouthernstretchofthemountainfront.These
shrublandsaremostcommonlyfoundalongdryfoothillsandlowermountainslopesfrom
approximately6,500to9,500ft(2,000‐2,900m)inelevation,oftensituatedabovepinyon‐juniper
woodlands,andadjacenttoponderosawoodlands.Theremaybeinclusionsofothermesicmontane
92ColoradoNaturalHeritageProgram©2015
shrublandswithGambeloak(Quercusgambelii)absentorasarelativelyminorcomponent.This
ecosystemintergradeswiththelowermontane‐foothillsshrublandsystemandsharesmanyofthe
samesitecharacteristics.
Characteristic species
StandsdominatedbyGambeloakarecommoninthesouthernpartofColorado,butarecompletely
interspersedwithstandsdominatedbyothershrubspecies,especiallyserviceberry(Amelanchier
spp.)andmahogany(Cercocarpusspp.)athigherelevations.Thevegetationistypicallydominated
byGambeloakaloneorcodominantwithSaskatoonserviceberry(Amelanchieralnifolia),Utah
serviceberry(Amelanchierutahensis),bigsagegrush(Artemisiatridentata),mountainmahogany
(Cercocarpusmontanus),chokecherry(Prunusvirginiana),Stansburycliffrose(Purshia
stansburiana),antelopebitterbrush(Purshiatridentata),mountainsnowberry(Symphoricarpos
oreophilus),orroundleafsnowberry(Symphoricarposrotundifolius).Vegetationtypesinthissystem
mayoccurassparsetodenseshrublandscomposedofmoderatetotallshrubs.Occurrencesmaybe
multi‐layered,withsomeshortshrubbyspeciesoccurringintheunderstoryofthedominant
overstoryspecies.Occurrencescanrangefromdensethicketswithlittleunderstorytorelatively
mesicmixed‐shrublandswitharichunderstoryofshrubs,grassesandforbs.Theseshrubsoften
haveapatchydistributionwithgrassgrowinginbetween.Scatteredtreesareoccasionallypresent
instandsandtypicallyincludespeciesofpineorjuniper.Annualgrassesandforbsareseasonally
present,andweedyannualsareoftenpresent,atleastseasonally.
Non‐oakdominatedmontaneshrublandsareofvariablespeciescomposition,dependingonsite
conditionssuchaselevation,slope,aspect,soiltype,moistureavailability,andpasthistory.Species
presentmayincludemountainmahogany(Cercocarpusmontanus),skunkbushsumac(Rhus
trilobata),clifffendlerbush(Fendlerarupicola),antelopebitterbrush(Purshiatridentata),wildcrab
apple(Peraphyllumramosissimum),snowberry(Symphoricarposspp.),andserviceberry
(Amelanchierspp.).Mostofthesespeciesreproducebothvegetativelyandbyseedlingrecruitment,
aswellasresproutingeasilyafterfire.Variabledisturbancepatternsmayaccountforthelocal
dominanceofaparticularspecies(Keeley2000).Althoughfireisanobvioussourceofdisturbance
intheseshrublands,snowpackmovements(creep,glide,andslippage)mayalsoprovidesignificant
disturbanceinslide‐proneareas(Jamiesonetal.1996).
Spottedtowhee,Virginiawarblers,Green‐tailedtowhee,Blue‐graygnatcatcher,Turkey,blackbear,
deer,elk,andmountainlionarecharacteristicoftheseshrublands.
Environment
Thisecosystemtypicallyoccupiesthelowerslopepositionsofthefoothillandlowermontanezones
whereitmayoccuronleveltosteepslopes,cliffs,escarpments,rimrockslopes,rockyoutcrops,and
screeslopes.Climateissemi‐aridandcharacterizedbymostlyhot‐drysummerswithmildtocold
wintersandannualprecipitationof10‐27in(25‐70cm).Mostprecipitationoccursaswintersnow
butlatesummermonsoonalrainmaybesignificantinsouthernstands.Substratesarevariableand
includesoiltypesrangingfromcalcareous,heavy,fine‐grainedloamstosandyloams,gravelly
loams,clayloams,deepalluvialsand,orcoarsegravel.Soilsaretypicallypoorlydeveloped,rockyto
veryrocky,andwell‐drained.Parentmaterialsincludealluvium,colluvium,andresiduumderived
ClimateChangeVulnerabilityAssessmentforColoradoBLM93
fromigneous,metamorphic,orsedimentaryrockssuchasgranite,gneiss,limestone,quartz,
monzonite,rhyolite,sandstone,schist,andshale.
Dynamics
Theseshrublandsarehighlyfiretolerant.Firecausesdie‐backofthedominantshrubspeciesin
someareas,promotesstumpsproutingofthedominantshrubsinotherareas,andcontrolsthe
invasionoftreesintotheshrublandsystem.DensityandcoverofGambeloakandserviceberry
oftenincreaseafterfire.Naturalfirestypicallyresultinasystemwithamosaicofdenseshrub
clustersandopeningsdominatedbyherbaceousspecies.Historicnaturalfirereturnintervalswere
ontheorderof100yearsinMesaVerde(Floydetal.2000);undersuchconditionsoflowfire
frequency,vulnerablenewlysproutedstemsareabletopersistandformdensethickets.
InsectpestsaffectingGambeloakincludethewoodborer(Agrilusquercicola)andtheoakleafroller
(Archipssemiferana).Thewesterntentcaterpillar(Malacosomacalifornicum)isacommon
defoliatorofshrubspecies.Largeoutbreaksoftheseinsectshavehistoricallybeeninfrequentin
Coloradooakandmixedmountainshrublands(USDAForestService2010).
Oakandmixedmountainshrublandsareimportanthabitatforwildlife,especiallymuledeer,
turkey,andblackbear(Jesteretal.2012).Becauseoakisgenerallyunpalatabletocattle,livestock
grazingcanfacilitatetheincreaseofoakcoverattheexpenseofunderstorygrasses(Mandanyand
West1983).Nativemuledeer,however,browseoakandmixedmountainshrubspeciesduring
mostseasons(Kufeldetal.1973).
CCVA Scoring
Exposure‐Sensitivity (Potential Impact) Rank
PercentColoradoacreswithprojectedtemp>max&pptdelta<5%1.8%
InitialExposure‐SensitivityRankLow
PercentColoradoacreswithtemp<=max&pptdelta<5%morethan50%?No(47.0%)
FinalExposure‐SensitivityRankLow
Exposuretotemperaturechange
Underprojectedmid‐centurytemperatures,about2%ofthecurrentrangeofoak‐mixedmountain
shrublandinColoradowouldexperienceannualmeantemperaturesabovethecurrentstatewide
maximum.
Exposuretoprecipitationchange
About49%ofoak‐mixedmountainshrublandinColoradowillbeexposedtoeffectivelydrier
conditionsevenunderunchangedorslightlyincreasedprecipitationprojectedformid‐century.
Sensitivityofecosystemtotemperatureandprecipitation
Ingeneral,theupperandlowerelevationallimitsofGambeloakshrublandarebelievedtobe
controlledbytemperatureandmoisturestress.NeilsonandWullstein(1983)foundthatseedling
94ColoradoNaturalHeritageProgram©2015
mortalitywasprimarilyduetospringfreezing,grazing,orsummerdroughtstress.Atmore
northernlatitudes,thezoneoftolerablecoldstressisfoundatlowerelevations,but,atthesame
time,theareaswheresummermoisturestressistolerableareathigherelevations.Neilsonand
Wullstein(1983)hypothesizethatthenortherndistributionallimitofGambeloakcorrespondsto
thepointwherethesetwoopposingfactorsconverge.Oakshrublandsaretypicallyfoundinareas
withmeanannualtemperaturesbetween45and50F(7‐10C;Harperetal.1985).Athigher,
coolerelevations,acornproductionmaybelimitedbytheshortnessofthegrowingseason,and
mostreproductionislikelytobevegetative(Christensen1949).Warmingtemperaturesmay
increasebothacornproductionandseedlingsurvival.
Althoughoaksaremostlikelytodowellunderclimatechange,droughtsmayreducethefrequency
ofestablishmentthroughseedlingrecruitmentbyreducingseedlingsurvival(Neilsonand
Wullstein1983).Thelargeracorn‐producingstemsalsoappeartobemorevulnerabletodrought
inducedmortality.
Resilience and Adaptive Capacity Rank
OverallScore: 0.85Rank: High
Bioclimaticenvelopeandrange
Averagedcategoryscore:0.76
OakandmixedmountainshrublandsarewidespreadinwesternColorado,andhavearelatively
broadecologicalamplitude.Theseshrublandsarenotconfinedtohighelevations,andarenotatthe
southernedgeoftheirrangeinColorado.Oakandmixedmountainshrublandshavesignificant
presencein52%ofColorado’soverallprecipitationrange,and53%ofthestate’sgrowingdegree
dayrange,resultinginafairlyhighresiliencescoreforthiscategory
Growthformandintrinsicdispersalrate
Score:1
Theshrubgrowthformofthedominantspecies,andabilitytoquicklycolonizenewareasgivethis
ecosystemahighresiliencescoreforthiscategory.Gambeloakreproducesprimarilybysprouting
ofnewstems,especiallyafterdisturbancessuchasbrushcontrol,fire,andgrazing,although
recruitmentfromseedlingsdoesoccur(Brown1958,Harperetal.1985).Theextensiveclonalroot
systemofGambeloakisaprimarycontributortoitsabilitytosurviveduringperiodswhenseedling
establishmentisimpossible.
Vulnerabilitytoincreasedattackbybiologicalstressors
Score:1
Ingeneraloakandmixedmountainshrublandsarenothighlyvulnerabletoincreasedeffectsof
biologicalstressors.Insomeareas,oakstandsarevulnerabletoincreasedprevalenceofinvasive
speciessuchascheatgrass(Bromustectorum)andknapweeds(Centaureaspp.).Livestockgrazing
ClimateChangeVulnerabilityAssessmentforColoradoBLM95
hasdegradedtheunderstorygrasscommunityofsomeoakstands,andcheatgrassandknapweed
havebecomeestablishedinsomeareas.Mixedmountainshrublandsarelessimpactedbyinvasives.
Vulnerabilitytoincreasedfrequencyorintensityofextremeevents
Score:1
Theseshrublandsarehighlyfiretolerant.Itispossibleforthissystemtomoveupinelevation,
especiallyiffiresopenupsomeoftheadjacentforestedecosystems.
Otherindirecteffectsofnon‐climatestressors–landscapecondition
Score:4.9
OakandmixedmountainshrublandlandscapesinColoradohavebeenmoderatelyimpactedby
anthropogenicactivities.Ongoingbutlimitedthreatsfromurban,exurban,commercial,andenergy
developmentareprimarilyinthesouthernandwesternportionsofColorado,wheretowns,roads,
andutilitycorridorsareoftenincloseproximitytooakshrublands.Mixedmountainshrublandsare
somewhatlessimpactedbydevelopments,primarilythoseassociatedwithrecreationareasor
exurbanhousing.Fireisasourceofdisturbanceintheseshrublands,andtheyarehighlyfire
tolerant.Aswithotherhabitatsinthewildland‐urbaninterface,areasneardevelopedareasare
mostlikelytobethreatenedbytheeffectsoffiresuppression,whilemoreremoteareasare
generallyingoodcondition.
Literature Cited
Brown,H.E.1958.Gambeloakinwest‐centralColorado.Ecology39:317‐327.
Christensen,E.M.1949.Theecologyandgeographicdistributionofoakbrush(Quercusgambelii)inUtah.Thesis.70p.
UniversityofUtah,SaltLakeCity,UT.
Floyd,M.L.,W.H.Romme,andD.D.Hanna.2000.FirehistoryandvegetationpatterninMesaVerdeNationalPark,
Colorado,USA.EcologicalApplications10:1666‐1680.
Harper,K.T.,F.J.Wagstaff,andL.M.Kunzler.1985.BiologymanagementoftheGambeloakvegetativetype:aliterature
review.Gen.Tech.Rep.INT‐179.Ogden,UT:U.S.DepartmentofAgriculture,ForestService,IntermountainForestand
RangeExperimentStation.31p.
Jamieson,D.W.,W.H.Romme,andP.Somers.1996.Bioticcommunitiesofthecoolmountains.Chapter12inTheWestern
SanJuanMountains:TheirGeology,Ecology,andHumanHistory,R.Blair,ed.UniversityPressofColorado,Niwot,CO.
Jester,N.,K.Rogers,andF.C.Dennis.2012.Gambeloakmanagement.NaturalResourcesSeries‐ForestryFactSheetNo.
6.311.ColoradoStateUniversityExtension,FortCollins,Colorado.
Keeley,J.E.2000.Chaparral.Chapter6inNorthAmericanTerrestrialVegetation,secondedition.M.G.BarbourandW.D.
Billings,eds.CambridgeUniversityPress.
Kufeld,R.C.,O.C.Wallmo,andC.Feddema,.1973.FoodsoftheRockyMountainmuledeer.Res.Pap.RM‐111.FortCollins,
CO:U.S.DepartmentofAgriculture,ForestService,RockyMountainForestandRangeExperimentStation.31p.
Madany,M.H.andN.E.West.1983.Livestockgrazing‐fireregimeinteractionswithinmontaneforestsofZionNational
Park,Utah.Ecology64:661‐667.
96ColoradoNaturalHeritageProgram©2015
Neilson,R.P.andL.H.Wullstein.1983.BiogeographyoftwosouthwestAmericanoaksinrelationtoatmospheric
dynamics.JournalofBiogeography10:275‐297.
ClimateChangeVulnerabilityAssessmentforColoradoBLM97
SAGEBRUSH
Shrublandandsteppecharacterizedbysagebrush,includingthreesubspeciesofbigsagebrush,
blacksagebrush,Bigelowsage,andlittlesagebrush
R.Rondeau
extentexaggeratedfordisplay
Climate Vulnerability Rank: Low
Vulnerability summary
Key Vulnerabilities:Increaseddroughtintensityand/orfrequencyislikelytoincreasetheimpactsoffire
insagebrushshrublands,aswellasplayaroleinthespreadofinvasivespecies.Thevulnerabilityof
sagebrushshrublandsisexpectedtobevariablebysubspecies.
Sagebrushshrublandsarerankedashavinglowvulnerabilityto
theeffectsofclimatechangebymid‐century.Theprimaryfactor
contributingtothisrankingisthecomparativelylowprojected
exposuretowarmeranddrierfutureconditionsinthepartof
Coloradowherethegreaterportionofthishabitatisfound.The
combinationofthethreebigsagebrushsubspeciesinour
analysiscollectivelygivesthishabitattypeawideecological
amplitude.Underalongertimeframe,theseshrublandsmay
havehighervulnerability,similartotheassessmentofPocewicz
etal.(2014)forsagebrushhabitatsinWyoming.Inparticular,the
degradedconditionofsomeareas,andthevulnerabilityofthis
ecosystemtopotentialincreasesinfirefrequencyandseverity,
couldincreasethevulnerabilitytoclimatechange.
Distribution
Asevaluatedherein,thethreesubspeciesofbigsagebrush(basinbigsagebrush,Artemisia
tridentatassp.tridentata,mountainbigsagebrush,A.tridentatassp.vaseyana,andWyomingbig
98ColoradoNaturalHeritageProgram©2015
sagebrush,A.tridentatassp.wyomingensis)arecombinedasthesagebrushecosystem.Ingeneral,
Wyomingbigsagebrushisfoundindrier,warmerareaswhereprecipitationismorelikelytobein
theformofrain,whilemountainbigsagebrushisfoundathigher,coolerelevationswheresnowis
thedominantformofprecipitation(Howard1999,Johnson2000).Changesintemperatureand
precipitationpatternsmayresultinshiftsintherelativeabundanceanddistributionofthethree
subspecies.
ThismatrixformingecosystemoccursthroughoutthemuchofwesternU.S.InColorado,thelargest
occurrencesareinthewesternhalfofthestate,butthissystemcanalsobefoundineastern
Colorado.NorthwesternColorado,NorthPark,MiddlePark,andtheupperGunnisonBasinhave
largeandcontinuousstandsofsagebrushshrublands.
Characteristic species
Sagebrushshrublandsoflower,drierelevationsaredominatedbybasinbigsagebrushand/or
Wyomingbigsagebrush.Additionalshrubspeciespresentmayincludesilversagebrush(Artemisia
cana),rabbitbrush(ChrysothamnusorEricameriaspp.),winterfat(Krascheninnikovialanata),and
antelopebitterbrush(Purshiatridentata).Understoriesaretypicallygrassy,andcommon
graminoidspeciesincludeIndianricegrass(Achnatherumhymenoides),bluegrama(Bouteloua
gracilis),Geyer’ssedge(Carexgeyeri),thickspikewheatgrass(Elymuslanceolatus),Idahofescue
(Festucaidahoensis),Thurberfescue(F.thurberi),needle‐and‐thread(Hesperostipacomata),basin
wildrye(Leymuscinereus),westernwheatgrass(Pascopyrumsmithii),James’galleta(Pleuraphis
jamesii),Sandbergbluegrass(Poasecunda),orbluebunchwheatgrass(Pseudoroegneriaspicata).
Perennialforbspeciestypicallycontributelessthan25%vegetativecover.
Montanesagebrushshrublandorsteppeischaracterizedbymountainbigsagebrush,andavariety
ofothershrubsincludingSaskatoonserviceberry(Amelanchieralnifolia),littlesagebrush
(Artemisiaarbuscula),prairiesagewort(Artemisiafrigida),rubberrabbitbrush(Ericameria
nauseosa),yellowrabbitbrush(Chrysothamnusviscidiflorus),mountainsnowberry(Symphoricarpos
oreophilus),antelopebitterbrush,waxcurrant(Ribescereum),andWoods’rose(Rosawoodsii),may
bepresent.Bothforbsandgrassesaretypicallywellrepresentedintheunderstory.Common
graminoidsincludeIdahofescue,Thurberfescue,timberoatgrass(Danthoniaintermedia),Parry’s
oatgrass(Danthoniaparryi),squirreltail(Elymuselymoides),slenderwheatgrass(Elymus
trachycaulus),spikefescue(Leucopoakingii),westernwheatgrass,bluebunchwheatgrass,
muttongrass(Poafendleriana),Sandbergbluegrassanduplandsedges(Carexspp.).Forbspecies
mayincludecommonyarrow(Achilleamillefolium),rosypussytoes(Antennariarosea),white
sagebrush(Artemisialudoviciana),milkvetch(Astragalusspp.),arrowleafbalsamroot
(Balsamorhizasagittata),Indianpaintbrush(Castillejaspp.),fleabane(Erigeronspp.),buckwheat
(Eriogonumspp.),strawberry(Fragariavirginiana),avens(Geumspp.),owl's‐claws(Hymenoxys
hoopesii),lupine(Lupinus,spp.),phlox(Phloxspp.),andcinquefoil(Potentillaspp.).
Sage‐grouse(Centrocercusspp.)isanindicatorofahealthysagebrushshrubland.
ClimateChangeVulnerabilityAssessmentforColoradoBLM99
Environment
Bigsagebrushshrublandsaretypicallyfoundinbroadbasinsbetweenmountainranges,onplains
andfoothills.Sitesaretypicallyflattorollinghillswithdeep,well‐drainedsandyorloamsoils
between7,000to10,000feetinelevation.Mostannualprecipitationfallsassnowinwinter.
Temperaturesexhibitlargeannualanddiurnalvariation.
Dynamics
Althoughsagebrushtoleratesdryconditionsandfairlycooltemperaturesitisnotfireadapted,and
islikelytobeseverelyimpactedbyintensefiresthatenhancewinderosionandeliminatetheseed
bank(Schlaepferetal.2014).Increasedfirefrequencyandseverityintheseshrublandscouldresult
increasingareadominatedbyexoticgrasses,especiallycheatgrass(Bromustectorum)(D’Antonio
andVitousek1992,ShinnemanandBaker2009).Warmer,driersites(typicallyfoundatlower
elevations)aremoreinvasiblebycheatgrass(Chambersetal.2007).Thereisamoderatepotential
forinvasionbyknapweedspecies,oxeyedaisy,leafyspurge,andyellowtoadflaxunderchanging
climaticconditions,andapotentialforchangingfiredynamicstoaffecttheecosystem.Thereisno
informationonthevulnerabilityofthisecosysteminColoradotoinsectordiseaseoutbreak,
althoughsevereoutbreaksofthesagebrush‐defoliatingmothArogawebsterihavebeenrecorded
furtherwestintheGreatBasin(Bentzetal.2008).Grazingbylargeungulates(bothwildlifeand
domesticlivestock)canchangethestructureandnutrientcyclingofsagebrushshrublands(Manier
andHobbs2007),buttheinteractionofgrazingwithotherdisturbancessuchasfireandinvasive
speciesunderchangingclimaticconditionsappearscomplex(e.g.Daviesetal.2009)andnotwell
studiedinColorado.
CCVA Scoring
Exposure‐Sensitivity (Potential Impact) Rank
PercentColoradoacreswithprojectedtemp>max&pptdelta<5%3.7%
InitialExposure‐SensitivityRankLow
PercentColoradoacreswithtemp<=max&pptdelta<5%morethan50%?No(22.1%)
FinalExposure‐SensitivityRankLow
Exposuretotemperaturechange
Underprojectedmid‐centurytemperatures,about5%ofthecurrentrangeofsagebrushshrubland
inColoradowouldexperienceannualmeantemperaturesabovethecurrentstatewidemaximum.
Exposuretoprecipitationchange
About26%ofsagebrushshrublandinColoradowillbeexposedtoeffectivelydrierconditionseven
underunchangedorslightlyincreasedprecipitationprojectedformid‐century.
Sensitivityofecosystemtotemperatureandprecipitation
Bradley(2010)pointsoutthatsagebrushshrublandsinthewesternU.S.arecurrentlyfoundacross
awidelatitudinalgradient(fromabout35to48degreesnorthlatitude),whichsuggestsadaptation
toacorrespondinglywiderangeoftemperatureconditions.However,becausetheseshrublandsare
100ColoradoNaturalHeritageProgram©2015
apparentlyabletodominateazoneofprecipitationbetweendriersaltbushshrublandsandhigher,
somewhatmoremesicpinyon‐juniperwoodland,thedistributionofsagebrushshrublandsislikely
tobeaffectedbychangesinprecipitationpatterns(Bradley2010).Seasonaltimingofprecipitation
isimportantforsagebrushhabitats;summermoisturestressmaybelimitingifwinterprecipitation
islow(GerminoandReinhardt2014).Seedlingsofmountainbigsagebrusharemoresensitiveto
freezingunderreducedsoilmoistureconditions(Lambrechtetal.2007).Wintersnowpackis
criticalforsagebrushgrowth;lowerelevationsareprobablymoreatriskfromtemperatureimpacts
incomparisontoupperelevationsduetolesssnow,andconsequentlygreaterwaterstress.
Underexperimentalwarmingconditionsinahigh‐elevationpopulation,mountainbigsagebrush
hadincreasedgrowth,suggestingthatlongergrowingseasonlengthcouldfacilitatetheexpansion
ofsagebrushhabitatintoareasthatwereformerlytoocoldfortheshrub(Perforsetal.2003).
However,Pooreetal.(2009)foundthathighsummertemperaturesresultedinlowergrowthrate,
duetoincreasedwaterstress.
Schlaepferetal.(2012)modeledfuturedistributionofthebigsagebrushecosysteminthewestern
U.S.Overtheentirestudyarea,sagebrushdistributionwaspredictedtodecrease,especiallyunder
higherCO2emissionsscenarios.Thestrongestdecreasesareinthesouthernpartoftherange
(includingsouthwesternColorado),whilethedistributionispredictedtoincreaseathigher
elevationsandinareasfartothenorthofColorado.
Resilience and Adaptive Capacity Rank
OverallScore: 0.61Rank: Moderate
Bioclimaticenvelopeandrange
Averagedcategoryscore:0.83
Theseshrublandsareprimarilyfoundinthewesternpartofthestate,atelevationsfromabout
5,000to9,500ft,andarenotrestrictedtohighelevations.TheNorthAmericandistributionof
sagebrushhabitatislargelytothewestandnorthofColorado.Thethreesubspeciesofbig
sagebrushshowanelevationalseparation,withmountainbigsagebrushinwetter,cooler
conditionsofhigherelevations,andWyomingbigsagebrushinthewarmestanddriestconditions
atlowerelevations(Howard1999).Duetotheadaptationsofthevarioussubspecies,therangeof
annualaverageprecipitationforsagebrushhabitatsisfairlywide,fromabout8‐40in(20‐100cm),
withameanof18in(45cm),covering64%ofthestatewideprecipitationrange.Growingseason
heataccumulationisalsohighlyvariableacrosstherangeofthehabitat,forthesamereason,and
covers67%ofthestatewiderange.Thiscombinationoffactorsgivessagebrushshrublandsahigh
resiliencescoreinthiscategory.
Growthformandintrinsicdispersalrate
Score:0.5
Sagebrushreceivedanintermediateresiliencescoreduetoitsgenerallyslowergrowthratesand
inabilitytoresproutafterfire.Sagebrushisgenerallyapoorseeder,withsmalldispersaldistances,
ClimateChangeVulnerabilityAssessmentforColoradoBLM101
however,therearenoapparentbarrierstodispersalfortheseshrublands.Thesestandsmayalso
besomewhatvulnerabletochangesinphenology.
Vulnerabilitytoincreasedattackbybiologicalstressors
Score:0.7
Otherstressorsforsagebrushshrublandsareinvasionbycheatgrassandexpansionofpinyon‐
juniperwoodlands.Thereisamoderatepotentialforinvasionbyknapweedspecies,oxeyedaisy,
leafyspurge,andyellowtoadflaxunderchangingclimaticconditions,andapotentialforchanging
firedynamicstoaffecttheecosystem.Thereisnoinformationonthevulnerabilityofthisecosystem
toinsectordiseaseoutbreak.
Grazingbylargeungulates(bothwildlifeanddomesticlivestock)canchangethestructureand
nutrientcyclingofsagebrushshrublands(ManierandHobbs2007),buttheinteractionofgrazing
withotherdisturbancessuchasfireandinvasivespeciesunderchangingclimaticconditions
appearscomplex(e.g.Daviesetal.2009)andnotwellstudiedinColorado.
Vulnerabilitytoincreasedfrequencyorintensityofextremeevents
Score:0.5
Althoughsagebrushtoleratesdryconditionsandfairlycooltemperaturesitisnotfireadapted,and
noneofthesubspeciesresproutafterfire(Tirmenstein1999).Sagebrushshrublandislikelytobe
severelyimpactedbyintensefiresthatenhancewinderosionandeliminatetheseedbank(Young
andEvans1989).Increaseddroughtmayincreasefirefrequencyandseverity,eliminating
sagebrushinsomeareas,especiallyatdriersitesoflowerelevations.Increasedfirefrequencyand
severityintheseshrublandsmayresultintheirconversiontograsslandsdominatedbyexotic
species.
Otherindirecteffectsofnon‐climatestressors–landscapecondition
Score:0.53
SagebrushshrublandlandscapesinColoradohavebeenmoderatelyimpactedbyanthropogenic
disturbance.Threatstosagebrushshrublandsfromexurbanorrecreationalareadevelopmentare
limited,butongoingataverylowlevel.Huntingandrecreationareminorsourcesofdisturbancein
thishabitat.Chainingorothershrubremovalformownhay,andtoalesserextentconversionto
croplandisasubstantialthreatinnorthwesternColorado.Largecoalminingoperationsthat
completelyremovethishabitatpriortoreclamationactivityareanongoingthreattothe
connectivityandqualityoftheseshrublands.Oilandgasdevelopment,withassociatedroads,
pipelinecorridors,andinfrastructureisanotherongoingsourceofanthropogenicdisturbance,
fragmentation,andlossinthishabitatinnorthwesternColorado.
Literature Cited
Bentz,B.,D.Alston,andT.Evans.2008.GreatBasininsectoutbreaks.In:Chambers,J.C.,N.Devoe,andA.Evenden,eds.
CollaborativemanagementandresearchintheGreatBasin‐examiningtheissuesanddevelopingaframeworkforaction.
102ColoradoNaturalHeritageProgram©2015
Gen.Tech.Rep.RMRS‐GTR‐204.FortCollins,CO:U.S.DepartmentofAgriculture,ForestService,RockyMountainResearch
Station.p.45‐48.
Bradley,B.A.2010.Assessingecosystemthreatsfromglobalandregionalchange:hierarchicalmodelingofriskto
sagebrushecosystemsfromclimatechange,landuseandinvasivespeciesinNevada,USA.Ecography33:198‐208.
Chambers,J.C.,B.A.Roundy,R.R.Blank,S.E.Meyer,andA.Whittaker.2007.WhatmakesGreatBasinsagebrush
ecosystemsinvasiblebyBromustectorum?EcologicalMonographs77:117‐145.
D’Antonio,C.M.andP.M.Vitousek.1992.Biologicalinvasionsbyexoticgrasses,thegrass/firecycle,andglobalchange.
AnnualReviewofEcologyandSystematics23:63–87.
Davies,K.E.,T.J.Sevjcar,andJ.D.Bates.2009.Interactionofhistoricalandnonhistoricaldisturbancesmaintainsnative
plantcommunities.EcologicalApplications19:1536‐1545.
Germino,M.J.andK.Reinhardt.2014.Desertshrubresponsestoexperimentalmodificationofprecipitationseasonality
andsoildepth:relationshiptothetwo‐layerhypothesisandecohydrologicalniche.JournalofEcology102:989‐997.
Howard,J.L.1999.Artemisiatridentatasubsp.wyomingensis.In:FireEffectsInformationSystem,[Online].U.S.
DepartmentofAgriculture,ForestService,RockyMountainResearchStation,FireSciencesLaboratory(Producer).
Available:http://www.fs.fed.us/database/feis/
Johnson,K.A.2000.Artemisiatridentatasubsp.vaseyana.In:FireEffectsInformationSystem,[Online].U.S.Departmentof
Agriculture,ForestService,RockyMountainResearchStation,FireSciencesLaboratory(Producer).Available:
http://www.fs.fed.us/database/feis/
Lambrecht,S.C.,A.K.Shattuck,andM.E.Loik.2007.Combineddroughtandepisodicfreezingonseedlingsoflow‐and
high‐elevationsubspeciesofsagebrush(Artemisiatridentata).PhysiologiaPlantarum130:207‐217.
Manier,D.J.andN.T.Hobbs.2007.Largeherbivoresinsagebrushsteppeecosystems:livestockandwildungulates
influencestructureandfunction.Oecologia152:739‐750.
Perfors,T.,J.Harte,andS.E.Alter.2003.Enhancedgrowthofsagebrush(Artemisiatridentata)inresponsetomanipulated
ecosystemwarming.GlobalChangeBiology9:736‐742.
Pocewicz,A.,H.E.Copeland,M.B.Grenier,D.A.Keinath,andL.M.Washkoviak.2014.Assessingthefuturevulnerabilityof
Wyoming’sterrestrialwildlifespeciesandhabitats.ReportpreparedbyTheNatureConservancy,WyomingGameand
FishDepartmentandWyomingNaturalDiversityDatabase.
Poore,R.E.,C.A.Lamanna,J.J.Ebersole,andB.J.Enquist.2009.Controlsonradialgrowthofmountainbigsagebrushand
implicationsforclimatechange.WesternNorthAmericanNaturalist69:556‐562.
Schlaepfer,D.R.,W.K.Lauenroth,andJ.B.Bradford.2012.Effectsofecohydrologicalvariablesoncurrentandfuture
ranges,localsuitabilitypatterns,andmodelaccuracyinbigsagebrush.Ecography35:374‐384.
Shinneman,D.J.andW.L.Baker.2009.Environmentalandclimaticvariablesaspotentialdriversofpost‐firecoverof
cheatgrass(Bromustectorum)inseededandunseededsemiaridecosystems.InternationalJournalofWildlandFire
18:191‐202.
Tirmenstein,D.1999.Artemisiatridentataspp.tridentata.In:FireEffectsInformationSystem,[Online].U.S.Department
ofAgriculture,ForestService,RockyMountainResearchStation,FireSciencesLaboratory(Producer).Available:
http://www.fs.fed.us/database/feis/
Young,J.A.andR.A.Evans.1989.Dispersalandgerminationofbigsagebrush(Artemisiatridentata)seeds.WeedScience
37:201‐206.
ClimateChangeVulnerabilityAssessmentforColoradoBLM103
SANDSAGE
Shrublandorsteppecharacterizedbysandsagebrush
S.Kettler
extentexaggeratedfordisplay
Climate Vulnerability Rank: Moderate
Vulnerability summary
Key Vulnerabilities:Extendedperiodsofdroughtthatdecreaselevelsofvegetationcoverwould
increasethelikelihoodthatsandysubstrateswillbemobilized.Thelossofnativeplantbiodiversityin
manystandsdecreasestheavailableassemblageofdrought‐adaptedspeciesthatcanboostresilienceto
thisvulnerability.
Sandsageshrublandsarerankedmoderatelyvulnerabletothe
effectsofclimatechangebymid‐century.Thisrankingis
primarilyduetotheconcentrationofgreatestexposureforall
temperaturevariablesontheeasternplainsofColorado,where
thisecosystemisfound.Inaddition,anthropogenicdisturbance
intheseshrublandshasreducedtheoveralllandscapecondition
ofthehabitat.Theseshrublandsarewelladaptedtosandysoils,
andmaybeabletoexpandintoadjacentareasunderwarmer,
drierconditions,dependingondisturbanceinteractions.Overall
conditionandcompositionoftheseshrublandsmaychangewith
changingclimate.
Distribution
Thesandsageecosystemisfoundprimarilyinthesouth‐centralareasoftheWesternGreatPlains.
OccurrencesgenerallyrangefromtheNebraskaSandhillregionsouthtocentralTexas,although
someexamplesmaybefoundasfarnorthastheBadlandsofSouthDakota.Thegreaterpartofthe
ecosystemoccursintheCentralShortgrassPrairieecoregionineasternColorado,westernKansas
104ColoradoNaturalHeritageProgram©2015
andsouthwesternNebraska.SandsageshrublanddominatessandysoilsofColorado’seastern
plains,atelevationsgenerallybelow5,500ft.
Theseshrublandshaveoftenbeentreatedasanedaphicvariantofeasternplainsmixed‐grass
prairie(Albertson&Weaver1944,Daley1972),orofshortgrassprairie(Ramaley1939,Simsand
Risser2000).Sandsage(Artemisiafilifolia)formsextensiveopenshrublandsinsandysoilsof
Colorado’seasternplains,andisofparticularimportanceforbothgreaterandlesserprairie
chickenhabitat,aswellasforothergrasslandbirds.IneasternColorado,thissystemisfoundin
extensivetractsonQuaternaryeoliandepositsalongtheSouthPlatte,ArikareeandRepublican
Rivers,betweenBigSandyandRushCreeks,andalongtheArkansasandCimarronRivers,whereit
iscontiguouswithareasinKansasandOklahoma(Comeretal.2003).
Characteristic species
Throughoutitsrange,thissystemischaracterizedbyasparsetomoderatelydensewoodylayer
dominatedbysandsage.Theseshrubsusuallydonotgrowasclumpsbutratherasindividuals,and
theinterveninggroundismostoftendominatedbyasparsetomoderatelydenselayeroftall,mid‐
orshortgrasses.Associatedspeciescanvarywithgeography,precipitation,disturbanceandsoil
texture.Graminoidspeciessuchassandbluestem(Andropogonhallii),threeawn(Aristidaspp.),
grama(Boutelouaspp.),prairiesandreed(Calamovilfalongifolia),needle‐and‐thread(Hesperostipa
comata),andsanddropseed(Sporoboluscryptandrus)aretypical.Othershrubspeciesmayalsobe
presentincludingtreecholla(Cylindropuntiaimbricata),broomsnakeweed(Gutierreziasarothrae),
pricklypear(Opuntiaspp.),westernsandcherry(Prunuspumilavar.besseyi),andsoapweedyucca
(Yuccaglauca).
Greaterandlesserprairie‐chickens,Cassin’ssparrows,andornateboxturtlesareindicatorsofa
healthysandsageprairiesystem.
Environment
Throughoutitsrangeitiscloselytiedtosandysoils,andthisedaphicrestrictionischaracteristicof
largepatchsystems.Littleisknownaboutthetoleranceofsandsageforsoilsotherthanwell‐
drainedsandwithalowsiltandclaycomponent.Suchsoilsareoften“droughty”,withreduced
water‐holdingability,andconsequently,thepotentialforincreasedwaterstresstoresidentplants
(SoilSurveyDivisionStaff1993).RasmussenandBrotherson(1984)speculatedthatsandsageis
adaptedtolessfertilesoilsthanspeciesofadjacentgrasslandcommunities.
Dynamics
Ramaley(1939)indicatedthatthepersistenceofsandsagewasfacilitatedbyfireandlong
overgrazing,intheabsenceofwhichasitewouldtransitiontosandprairie.However,thereisno
evidencetosuggestthat,undercertaincombinationsoftemperature,precipitation,grazing,and
otherdisturbance,sandsagewouldbeunabletoexpandontoothersoiltypes.Firesuppressionmay
alsocontributetoanincreaseinshrubdensityinthishabitat,althoughsandsagequicklyresprouts
afterburning.Disturbancefromgrazing,fire,anddrought,incombinationwithrangeimprovement
practices,haspermittedtheestablishmentandspreadofnon‐nativespecies.
ClimateChangeVulnerabilityAssessmentforColoradoBLM105
Colorado’seasternplainsexhibitclimaticdifferencesfromnorthtosouthwhichmaybereflectedin
thelocalexpressionofsandsageshrubland.OccurrencesinsouthernColoradoexperiencealonger
growingseason,lowerannualprecipitation,anddifferencesinprecipitationpatterns(Western
RegionalClimateCenter2004),andmaybedominatedbydifferentspeciesthannorthernstands.In
thesouthernrangeofthissystem,Havardoak(Quercushavardii)mayalsobepresentand
representsonesuccessionpathwaythatdevelopsovertimefollowingadisturbance.Havardoakis
abletoresproutfollowingafireandthusmaypersistforlongperiodsoftimeonceestablished
(WrightandBailey1982).
Duringthepast10,000years,theseareasarelikelytohavefluctuatedbetweenactivedunefields
andstabilized,vegetateddunes,dependingonclimateanddisturbancepatterns(Formanetal.
2001).Extendedperiodsofseveredroughtorotherdisturbancethatresultsinlossofstabilizing
vegetationcanquicklyleadtosoilmovementandblowoutsthatinhibitvegetationre‐
establishment,andmayeventuallyleadtodramaticallydifferentspeciescomposition.
CCVA Scoring
Exposure‐Sensitivity (Potential Impact) Rank
PercentColoradoacreswithprojectedtemp>max&pptdelta<5%44.1%
InitialExposure‐SensitivityRankHigh
PercentColoradoacreswithtemp<=max&pptdelta<5%morethan50%?No(21.3%)
FinalExposure‐SensitivityRankHigh
Exposuretotemperaturechange
Underprojectedmid‐centurytemperatures,about50%ofthecurrentrangeofsandsageshrubland
inColoradowouldexperienceannualmeantemperaturesabovethecurrentstatewidemaximum.
Exposuretoprecipitationchange
About65%ofsandsageshrublandinColoradowillbeexposedtoeffectivelydrierconditionseven
underunchangedorslightlyincreasedprecipitationprojectedformid‐century.
Sensitivityofecosystemtotemperatureandprecipitation
Sandsagesharesthedryandwarmclimateofshortgrass.Annualaverageprecipitationisonthe
orderof10‐18inches(25‐47cm),withameanof16in(40cm).Thegrowingseasonisgenerally
long,withfrequenthightemperatures.
SandsageoccurrencesinColoradohavehistoricallyexperiencedseasonaldifferencesin
precipitationpatternsfromnorthtosouth(WesternRegionalClimateCenter2004).North‐south
gradientsintemperatureandprecipitationonColorado’seasternplainsappeartobereflectedin
thespeciescompositionofsandsagehabitat,especiallyinmidgrassspecies(Daley1972),which
maycontributetovariablevulnerabilitybetweennorthernandsouthernstands.
106ColoradoNaturalHeritageProgram©2015
Resilience and Adaptive Capacity Rank:
OverallScore: 0.71Rank: High
Bioclimaticenvelopeandrange
Averagedcategoryscore:0.62
Theseshrublandsarenotlimitedtohighelevations,andinColoradoarewellwithintherangeof
continentaldistribution.Thegeneralrestrictionofsandsageshrublandstowarm,dryareason
Colorado’seasternplainsmeansthattheydisplayasomewhatrestrictedecologicalenvelope,
covering18%ofthestatewideprecipitationrange,and57%ofthegrowingdegreedayrange.The
moderateresiliencescoreforthiscategorymaynotreflectthetruecapacityoftheseshrublandsto
adapttochangingclimateconditionsifsuitablesubstratesareavailable.
Growthformandintrinsicdispersalrate
Score:1
Sandsageisoftenabletoresproutquicklyafterfire,althoughitmayhavepoordispersalability,
withmostseedslandingclosetotheparentplant(McWilliams2003).Theapparentabilityofthis
speciestoestablishquicklyafterdisturbancegivesitahighresiliencescoreinthiscategory.
Vulnerabilitytoincreasedattackbybiologicalstressors
Score:1
Domesticlivestockgrazingtendstofavortheincreaseofsandsageoverassociatednativegrasses.
Long‐termcontinuousgrazingofdomesticlivestockhascontributedtothealterationofthese
shrublandhabitatsfromtheirpre‐settlementcondition,however,thisfactorisgenerallylessofa
threatthanchangesintemperatureandprecipitation.
Vulnerabilitytoincreasedfrequencyorintensityofextremeevents
Score:0.5
Droughtisthemostimportantextremeeventthatislikelytoalterthecharacterofthese
shrublands.Warmeranddrierconditions,andresultingreducedvegetationcovercouldallow
reactivationofcurrentlystabilizedsandysoilsthroughouteasternColorado.Althoughsandsage
doesnotreproducevegetatively,itisabletoresproutafterfire.Fireextentandintensityare
correlatedwithclimateandgrazingeffectsonfuelloads.Fireandgrazingarebothimportant
disturbanceprocessesforsandsagehabitat,andmayinteractwithdrought,aswellaspermitting
invasiveexoticplantspeciestoestablishandspread.
Otherindirecteffectsofnon‐climatestressors–landscapecondition
Score:0.43
SandsagelandscapesinColoradoaresignificantlyimpactedbyanthropogenicactivities.Insome
casesthishasincreasedtheextentofsandsageshrublandifmidgrassprairieisconvertedto
ClimateChangeVulnerabilityAssessmentforColoradoBLM107
shortgrass‐sandsagecommunity,dueinlargeparttolong‐termcontinuousgrazingbydomestic
livestock(LANDFIRE2006).Sandsageshrublandshavelimitedbutongoingthreatofconversionto
tilledagricultureorurban/exurbanandcommercialdevelopment.Oilandgasdevelopment,and
windturbinefarms,withassociatedroads,utilitycorridors,andinfrastructureisaprimaryongoing
sourceofanthropogenicdisturbance,fragmentation,andlossinthishabitat.
Literature Cited
Albertson,F.W.andJ.E.Weaver.1944.NatureanddegreeofrecoveryofgrasslandfromtheGreatDroughtof1933to
1940.EcologicalMonographs14:393‐479.
Comer,P.,S.Menard,M.Tuffly,K.Kindscher,R.Rondeau,G.Jones,G.Steinuaer,andD.Ode.2003.UplandandWetland
EcologicalSystemsinColorado,Wyoming,SouthDakota,Nebraska,andKansas.Reportandmap(10hectareminimum
mapunit)totheNationalGapAnalysisProgram.Dept.ofInteriorUSGS.NatureServe.
Daley,R.H.1972.ThenativesandsagevegetationofeasternColorado.M.S.Thesis,ColoradoStateUniversity,FortCollins,
Colorado.
Forman,S.L.,R.Oblesby,andR.S.Webb.2001.TemporalandspatialpatternsofHoloceneduneactivityontheGreatPlains
ofNorthAmerica:megadroughtsandclimatelinks.GlobalandPlanetaryChange29:1‐29.
LANDFIRE.2006.LANDFIREBiophysicalSettingModels.BiophysicalSetting3310940,WesternGreatPlainsSandhill
Steppe.USDAForestService;U.S.DepartmentofInterior.Availableat:
http://www.landfire.gov/national_veg_models_op2.php
McWilliams,J.2003.ArtemisiafilifoliaIn:FireEffectsInformationSystem,[Online].U.S.DepartmentofAgriculture,Forest
Service,RockyMountainResearchStation,FireSciencesLaboratory(Producer).Available:
http://www.fs.fed.us/database/feis/
Ramaley,F.1939.Sand‐hillvegetationofnortheasternColorado.EcologicalMonographs9(1):1‐51.
Rasmussen,L.L.andJ.D.Brotherson.1986.Habitatrelationshipsofsandsage(Artemisiafilifolia)insouthernUtah.In:
McArthur,E.D.,andB.L.Welch,compilers.Proceedings‐‐symposiumonthebiologyofArtemisiaandChrysothamnus;
1984July9‐13;Provo,UT.Gen.Tech.Rep.INT‐200.Ogden,UT:U.S.DepartmentofAgriculture,ForestService,
IntermountainResearchStation:58‐66.
Sims,P.L.,andP.G.Risser.2000.Grasslands.In:Barbour,M.G.,andW.D.Billings,eds.,NorthAmericanTerrestrial
Vegetation,SecondEdition.CambridgeUniversityPress,NewYork,pp.323‐356.
SoilSurveyDivisionStaff.1993.Soilsurveymanual.SoilConservationService.U.S.DepartmentofAgricultureHandbook
18.Availableat:http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/ref/?cid=nrcs142p2_054261
WesternRegionalClimateCenter[WRCC].2004.ClimateofColoradonarrativeandstateclimatedata.Availableat
http://www.wrcc.dri.edu
Wright,H.A.andA.W.Bailey.1982.Fireecology:UnitedStatesandsouthernCanada.JohnWileyandSons.NY.501p.
108ColoradoNaturalHeritageProgram©2015
Grassland or Herbaceous
Table 2.7.Keyvulnerabilities,grasslandorotherherbaceousecosystems.
Habitat Climate factor(s) Consequences Other considerations
AlpineExtendedgrowingseason
withearliersnowmelt
Conversiontoothertype
thatincludesshrubsor
trees
Barrierstodispersal
MontanegrasslandDrought,warmer
temperatures
Woodyspeciesinvasion,
exotics;potentialtoexpand
intoburnedforestareas
Highlyaltered
Semi‐desert
grassland
‐‐‐‐ MayincreasePoorconnectivity
ShortgrassExtendeddrought,warmer
summernighttime
temperatures
Changeinrelativespecies
abundance,woodyspecies
invasion,orconversionto
othertype
Anthropogenicdisturbance
ClimateChangeVulnerabilityAssessmentforColoradoBLM109
ALPINE
Thisecosystemincludeshigh‐elevationdrytundraturf,dwarf‐shrublands,fellfield,androckand
screecommunities.
R.Rondeau
Extentexaggeratedfordisplay
Climate Vulnerability Rank: Low
Vulnerability summary
Key Vulnerabilities:Warmerconditionsleadingtoearliersnowmeltandanextendedgrowingseasonin
higherelevationsareexpectedtoallowtheestablishmentofwoodyspeciesabovecurrenttreeline
levels,althoughthisprocessislikelytobeslow.Photoperiodcues(notinfluencedbyclimatechange)for
manyspeciescouldnegatetheeffectsofalongergrowingseason.Theabilityofmostalpinespeciesto
disperseacrossinterveninglowerelevationhabitatisdoubtful.
Alpinehabitatsarerankedashavinglowvulnerabilitytothe
effectsofclimatechangebymid‐century,duetolimitedexposure
towarmeranddrierconditions.Overall,alpineareasareingood
condition,withmoderateresilience.Becauseoftheshortgrowing
seasonlengthinalpineandsubalpineareas,changeisexpected
tooccurrelativelyslowly.Underalonger‐termevaluationframe,
vulnerabilityofthishabitatisexpectedtobegreater,sincethese
habitatsarerestrictedtothehighestelevationsofColorado,and
consequentlyhaveanarrowbiophysicalenvelope.
Distribution
ThiswidespreadecosystemoccursaboveuppertimberlinethroughouttheRockyMountain
cordillera.Alpinevegetationisfoundatthehighestelevations,usuallyabove11,000feetin
110ColoradoNaturalHeritageProgram©2015
Colorado,wherethelongwinters,abundantsnowfall,highwinds,andshortsummerscreatea
harshenvironment.Althoughalpinedryturfformsthematrixofthealpinezone,itintermingles
withbedrockandscree,icefield,fellfield,alpinedwarf‐shrubland,andalpine/subalpinewet
meadowsystems.Areasdominatedbyherbaceouscovermaybedrytundra,cushion‐plant
dominatedfellfield,orwetmeadows.Shrub‐dominatedareasarecharacterizedby ericaceous
dwarf‐shrubsordwarfwillows.
Characteristic species
Alpinedryturfisformedbyadensecoveroflow‐growing,perennialgraminoidsandforbs.
Rhizomatous,sod‐formingsedgesarethedominantgraminoids,andprostrateandmat‐forming
plantswiththickrootstocksortaprootscharacterizetheforbs.Dominantspeciesincludeboreal
sagebrush(Artemisiaarctica),blackrootsedge(Carexelynoides),spikesedge(Carexnardina),
northernsinglespikesedge(Carexscirpoidea),dryspikesedge(Carexsiccata),curlysedge(Carex
rupestris),tuftedhairgrass(Deschampsiacaespitosa),alpinefescue(Festucabrachyphylla),Idaho
fescue(Festucaidahoensis),Ross'avens(Geumrossii),Bellardibogsedge(Kobresiamyosuroides),
cushionphlox(Phloxpulvinata),andalpineclover(Trifoliumdasyphyllum).Dwarf‐shrublandsof
thealpinearecharacterizedbyanintermittentlayerofsnowwilloworericaceousdwarf‐shrubs
lessthan0.5minheight,withamixtureofforbsandgraminoids,especiallysedges.Snowwillow
(Salixnivalis)isatypicaldominantshrub.Blueberry(Vacciniumspp.)andalpinelaurel(Kalmia
microphylla)mayalsobeshrubassociates.
Mostfellfieldplantsarecushionedormatted,frequentlysucculent,low‐growingrosettesandoften
denselyhairedandthicklycutinized.Plantcovermaybesparsetomoderatebetweenexposed
rocks.CommonfellfieldspeciesincludeRoss'avens,Bellardibogsedge,twinflowersandwort
(Minuartiaobtusiloba),Asianforget‐me‐not(Myosotisasiatica),RockyMountainnailwort
(Paronychiapulvinata),cushionphlox(Phloxpulvinata),creepingsibbaldia(Sibbaldiaprocumbens),
mosscampion(Sileneacaulis),alpinecloverandParry’sclover(Trifoliumparryi).Barrenand
sparselyvegetatedalpinesubstratesincludebothbedrockoutcropandscreeslopes,with
nonvascular(lichen)dominatedcommunities.Therecanbesparsecoverofforbs,grasses,lichens
andlowshrubs.ClumpsofColoradobluecolumbine(Aquilegiacaerulea)andmountainthistle
(Cirsiumscopulorum)arecommoninscreeslopes.
Environment
Thedistributionofvegetationtypesinthealpineiscontrolledinpartbylocaltopographythat
influencessnowdepositionandretention,aswellassoildevelopment.Alpineturfisgenerally
foundonmoregentletomoderateslopes,flatridges,valleys,andbasins,wherethesoilhasbecome
relativelystabilizedandthewatersupplyismoreorlessconstant.Alpinedwarf‐shrublandtypically
isfoundinareasoflevelorconcaveglacialtopography,withlate‐lyingsnowandsub‐irrigation
fromsurroundingslopes.Thesemoistbutwell‐drainedareashavedevelopedrelativelystablesoils
thatarestronglyacidic,oftenwithsubstantialpeatlayers.Fellfieldsarerockyandwind‐scoured
areasthatarefreeofsnowinthewinter,suchasridgetopsandexposedsaddles,wherevegetation
isexposedtosevereenvironmentalstress.Soilsonthesewindysitesareshallow,stony,lowin
organicmatter,andpoorlydeveloped;winddeflationoftenresultsinagravellypavement.
ClimateChangeVulnerabilityAssessmentforColoradoBLM111
Thereissomeevidencethatalpinevegetationisresponsivetofine‐scaleenvironmental
heterogeneity,whichmayenhanceitsresiliencetochangingclimateconditionsinsome
topographicallycomplexareas(Spasojevicetal.2013).
Dynamics
Alpineenvironmentsaregenerallynotsusceptibletooutbreaksofpestspeciesordisease,butmay
havesomeslightvulnerabilitytoinvasiveplantspeciessuchasyellowtoadflax(Linariavulgaris),
knapweed(Centaureaspp.),anddandelion(Taraxacumofficinale).Thesetreelessenvironmentsare
notvulnerabletofire,butcouldbecomesoiftreesareabletoestablish.
Patternsofvegetationgrowth,flowering,andsenescenceinalpinehabitatsareprobablydependent
onbothdaylengthandtemperature(BillingsandMooney1968).Thecharacteristicforband
graminoiddominatedtundraisaresultoflowtemperaturesduringthegrowingseasonthatlimit
vegetationgrowthanddecomposition.Withlongerdaylengthandincreasingsolarradiationin
spring,warmerairandsoiltemperatures,togetherwithmoisturefromsnowmeltenabletheonset
ofplantgrowth.Althoughtemperatureappearstobethedominantcontrolondevelopmental
phenology(BillingsandMooney1968),anumberofalpinespeciesareknowntobesensitiveto
day‐length(KellerandKörner2003).Theprevalenceandimportanceofphotoperiodsensitivityin
Colorado’salpinefloraislittleknown.Ifsomealpinespeciesareunabletoquicklyadaptto
changingtemperaturesbecauseofphotoperiodconstraints,thiscouldchangespeciesinteractions
andrelativeabundancesinalpinehabitats,withconsequencesthatarenotwellunderstood(Hülber
etal.2010,Ernakovichetal.2014).
CCVA Scoring
Exposure‐Sensitivity (Potential Impact) Rank
PercentColoradoacreswithprojectedtemp>max&pptdelta<5%0%
InitialExposure‐SensitivityRankLow
PercentColoradoacreswithtemp<=max&pptdelta<5%morethan50%?No(38.9%)
FinalExposure‐SensitivityRankLow
Exposuretotemperaturechange
Underprojectedmid‐centurytemperatures,lessthan1%ofthecurrentrangeofalpinehabitatin
Coloradowouldexperienceannualmeantemperaturesabovethecurrentstatewidemaximum.
Exposuretoprecipitationchange
About39%ofalpinehabitatinColoradowillbeexposedtoeffectivelydrierconditionsevenunder
unchangedorslightlyincreasedprecipitationprojectedformid‐century.
Sensitivityofecosystemtotemperatureandprecipitation
Snowpackisacrucialcomponentofalpineecosystems,anddependsonbothprecipitationamounts
andwinter‐springtemperature(Williamsetal.2002).Vegetationinalpineareasiscontrolledby
112ColoradoNaturalHeritageProgram©2015
patternsofsnowretention,winddesiccation,permafrost,andashortgrowingseason(Greenland
andLosleben2001).
Thelengthofthegrowingseasonisparticularlyimportantforthealpinezone,andforthetransition
zonebetweenalpineandforest(treeline).Alpineareashavethefewestgrowingdegreedaysand
lowestpotentialevapotranspirationofanyhabitatinColorado.Treeline‐controllingfactorsoperate
atdifferentscales,rangingfromthemicrositetothecontinental(HoltmeierandBroll2005).Ona
globalorcontinentalscale,thereisgeneralagreementthatcoolsummertemperatureisaprimary
determinantoftreeline.Atthisscale,thedistributionofalpineecosystemsisdeterminedbythe
numberofdaysthatarewarmenoughforalpineplantgrowth,butnotsufficientfortreegrowth.
Otheralpineconditionsthatmaintaintreelessvegetationathighelevationsincludelackofsoil
development,persistentsnowpack,steepslopes,wind,anddenseturfthatrestrictstreeseedling
establishmentandsurvivalwithinthetreelineecotone(Moiretal.2003,Smithetal.2003,
HoltmeierandBroll2005).However,increasedextentoftallshrubwillows(e.g.,Salixplanifoliaand
S.glauca)throughclonalgrowthhasalreadyoccurredinsomeareas(Formicaetal.2014).
Onthebasisofhistoricevidence,treelineisgenerallyexpectedtomigratetohigherelevationsas
temperatureswarm,aspermittedbylocalmicrositeconditions(Smithetal.2003,Richardsonand
Friedland2009,Grafiusetal.2012).Itisunlikelythatalpinespecieswouldbeabletomovetoother
alpineareas.Intheshort‐termwithwarmertemperatures,alpineareasmaybeabletopersist,
especiallyinareaswhereitisdifficultfortreestoadvanceupslope.Theslowgrowthofwoody
speciesandrarityofrecruitmenteventsmaydelaytheconversionofalpineareastoforestortall
shrubfor50‐100+afterclimaticconditionshavebecomesuitablefortreegrowth(Körner2012).
Thus,alpineecosystemsmaypersistforawhilebeyondmid‐century,butarelikelytoeventually
largelydisappearfromColorado.
Resilience and Adaptive Capacity Rank:
OverallScore: 0.69Rank: Moderate
Bioclimaticenvelopeandrange
Averagedcategoryscore:0.25
ElevationsofalpinehabitatsinColoradorangefromabout11,000toover14,000ft.,withameanof
about12,000ft.Alpinehabitatsarerestrictedtohighelevations,andarealsonearthesouthern
extentoftheircontinentalrangeinColorado.Althoughalpineareascover74%ofthestatewide
precipitationrange,alpinegrowingseasonsaretheshortestofanyhabitatinColorado,
encompassingonly26%ofthestatewiderangeofgrowingdegreedays.Thesefactorscombineto
givealpineareasalowresiliencescoreinthiscategory.
Growthformandintrinsicdispersalrate
Score:0.50
ClimateChangeVulnerabilityAssessmentforColoradoBLM113
Althoughalpineareasaredominatedbyrelativelyquick‐growingforbandgraminoidspecies,the
shortgrowingseasonsarelimiting.Furthermore,thedifficultyofdispersalacrossintervening
lowerelevationhabitatgivesthisecosystemanintermediateresiliencescoreinthiscategory.
Vulnerabilitytoincreasedattackbybiologicalstressors
Score:0.8
Alpineenvironmentsaregenerallynotsusceptibletooutbreaksofpestspeciesordisease,butmay
havesomeslightvulnerabilitytoinvasiveplantspeciessuchasyellowtoadflaxunderfuture
climaticconditions.Thesetreelessenvironmentsarenotvulnerabletofire,butcouldbecomesoif
treesareabletoestablish.Xericalpineenvironmentsarealreadysubjecttoextremeconditions,but
themoremesicareasarevulnerabletodroughtandchangesinsnowmelttiming.Evenunder
increasedsnowpack,warmertemperaturesarelikelytoalterpatternsofsnowmelt,andmay
reduceavailablemoisture.Thesechangesarelikelytoresultinshiftsinspeciescomposition,
perhapswithanincreaseinshrubsonxerictundra.Withwarmingtemperaturesandearlier
snowmelt,however,elkmaybeabletomoveintoalpineareasearlierandstaylonger,thereby
increasingstressonalpinewillowcommunities(Zeigenfussetal.2011).
Vulnerabilitytoincreasedfrequencyorintensityofextremeevents
Score:0.9
Alpinehabitatsarealsoindirectlyaffectedbybothdroughtandland‐usepracticesinupwindareas
thatleadtodustemissions.Whenwind‐blowndustisdepositedonmountainsnowpack,the
resultingdarkeningofthesnowallowsincreasedabsorptionofsolarradiantenergy,andearlier
meltingthanunderdustfreeconditions.Unlikewarmingtemperatures,whichadvanceboth
snowmelttimingandgrowingseasononsetforalpinevegetation,theeffectofdustdepositionon
mountainsnowpackisasourceofearliersnowmeltthatisnotdirectlylinkedtoseasonalshifting
(Steltzeretal.2009).Althoughdustdepositionmaybeasignificantcontributortosoildevelopment
insomeareas(Lawrenceetal.2011),itcanincreaseevapotranspirationanddecreaseannual
runoffflows(Deemsetal.2013).Changesinsoilmoisturelevelsduetoearliersnowmeltmay
interactwithotherclimatechangeeffectstoproducechangesinspeciescompositionandstructure
ofalpinehabitats.
Otherindirecteffectsofnon‐climatestressors–landscapecondition
Score:0.98
AlpinelandscapesinColoradoaregenerallyinexcellentcondition,andwellprotected.Ongoing
threatsfromdevelopmentinalpinehabitatsassociatedwithrecreationareasandactivities,
includingassociatedroadsandinfrastructure;thesearegenerallyarelimitedinextent.Old
privately‐ownedminingclaimsarescatteredthroughout,butthereareveryfewactivemines
operatingtodayInsouthwesternColorado,sheepgrazingandisolatedminingactivityareminor
sourcesofdisturbanceinalpineareas.Anthropogenicnitrogendepositionisanongoinginfluence
onalpinephenology(Smithetal.2012)andspeciesdiversity(Farreretal.2015)whichmay
114ColoradoNaturalHeritageProgram©2015
interactwithwarmingtemperatures,althoughthelong‐termeffectsofthisdisturbancearenotwell
known.
Literature Cited
Billings,W.D.andH.A.Mooney.1968.Theecologyofarcticandalpineplants.BiologicalReviews43:481‐529.
Deems,J.S.,T.H.Painter,J.J.Barsugli,J.Belnap,andB.Udall.2013.Combinedimpactsofcurrentandfuturedustdeposition
andregionalwarmingonColoradoRiverBasinsnowdynamicsandhydrology.Hydrol.EarthSyst.Sci.17:4401‐4413.
Ernakovich,J.G.,K.A.Hopping,A.B.Berdanier,R.T.Simpson,E.J.Kachergis,H.Steltzer,andM.D.Wallenstein.2014.
Predictedresponsesofarcticandalpineecosystemstoalteredseasonalityunderclimatechange.GlobalChangeBiology
20:3256‐3269.
Farrer,E.C.,I.W.Ashton,M.J.Spasojevic,S.Fu,D.J.X.Gonzalez,andK.N.Suding.2015.Indirecteffectsofglobalchange
accumulatetoalterplantdiversitybutnotecosystemfunctioninalpinetundra.JournalofEcology103:351‐360.
Formica,A.,E.C.Farrer,I.W.Ashton,andK.N.Suding.2014.Shrubexpansionoverthepast62yearsinRockyMountain
alpinetundra:possiblecausesandconsequences.Arctic,Antarctic,andAlpineResearch46:616‐631.
Grafius,D.R.,G.P.Malanson,andD.Weiss.2012.SecondarycontrolsofalpinetreelineelevationsinthewesternUSA.
PhysicalGeography33:146‐164.
Greenland,D.andM.Losleben.2001.Climate.Chapter2inBowman,W.D.,andT.R.Seastedt,eds.StructureandFunction
ofanAlpineEcosystem:NiwotRidge,Colorado.NewYork:OxfordUniversityPress.
Holtmeier,F‐K.andG.Broll.2005.Sensitivityandresponseofnorthernhemispherealtitudinalandpolartreelinesto
environmentalchangeatlandscapeandlocallevels.GlobalEcologyandBiogeography14:395‐410.
Hülber,K.,M.Winkler,andG.Grabherr.2010.Intraseasonalclimateandhabitat‐specificvariabilitycontrolstheflowering
phenologyofhighalpineplantspecies.FunctionalEcology24:245‐252.
Keller,F.andC.Körner.2003.Theroleofphotoperiodisminalpineplantdevelopment.Arctic,Antarctic,andAlpine
Research35:361‐368.
Körner,C.2012.Alpinetreelines:functionalecologyoftheglobalhighelevationtreelimits.Springer,Basel,Switzerland.
Lawrence,C.R.,J.C.Neff,andG.L.Farmer.2013.TheaccretionofaeoliandustinsoilsoftheSanJuanMountains,Colorado,
USA.JournalofGeophysicalResearch116,F02013,doi:10.1029/2010JF001899.
Moir,W.H.,S.G.Rochelle,andA.W.Schoettle.1999.Microscalepatternsoftreeestablishmentnearuppertreeline,Snowy
Range,Wyoming.Arctic,Antarctic,andAlpineResearch31:379‐388.
Richardson,A.D.andA.J.Friedland.2009.Areviewofthetheoriestoexplainarcticandalpinetreelinesaroundtheworld.
JournalofSustainableForestry28:218‐242.
Smith,J.G.,W.Sconiers,M.J.Spasojevic,I.W.Ashton,andK.N.Suding.2012.Phenologicalchangesinalpineplantsin
responsetoincreasedsnowpack,temperature,andnitrogen.Arctic,Antarctic,andAlpineResearch44:135‐142.
Smith,W.K.,M.J.Germino,T.E.Hancock,andD.M.Johnson.2003.Anotherperspectiveonaltitudinallimitsofalpine
timberlines.TreePhysiology23:1101‐1112.
Spasojevic,M.J.,W.D.Bowman,H.C.Humphries,T.R.Seastedt,andK.N.Suding.2013.Changesinalpinevegetationover21
years:Arepatternsacrossaheterogeneouslandscapeconsistentwithpredictions?Ecosphere4:117.
http://dx.doi.org/10.1890/ES13‐00133.1
ClimateChangeVulnerabilityAssessmentforColoradoBLM115
Steltzer,H.,C.Landry,T.H.Painter,J.Anderson,andE.Ayres.2009.Biologicalconsequencesofearliersnowmeltfrom
desertdustdepositioninalpinelandscapes.PNAS106:11629‐11634.
Williams,M.E.,M.V.Losleben,andH.B.Hamann.2002.AlpineareasintheColoradoFrontRangeasmonitorsofclimate
changeandecosystemresponse.GeographicalReview92:180‐191.
Zeigenfuss,L.C.,K.A.Schonecker,andL.K.VanAmburg.2011.UngulateherbivoryonalpinewillowintheSangredeCristo
MountainsofColorado.WesternNorthAmericanNaturalist71:86‐96.
116ColoradoNaturalHeritageProgram©2015
MONTANE GRASSLANDS
Bunch‐grassdominatedgrasslandsatelevationsbetweenfoothillsandsubalpine
D.Culver
Extentexaggeratedfordisplay
Climate Vulnerability Rank: Moderate
Vulnerability summary
Key Vulnerabilities:Warmeranddrierconditionsarelikelytofacilitatethespreadofinvasivespecies,
andmayallowwoodyspeciestoestablishingrasslands.Anincreaseinforestfireactivityunderfuture
conditionsmayallowgrasslandtoexpandintoadjacentburnedareas.
Montanegrasslandsarerankedasmoderatelyvulnerabletothe
effectsofclimatechangebymid‐century.Primaryfactors
contributingtothisrankingarevulnerabilityoftheseareato
invasivespecies,andthegenerallyhighlydisturbedconditionof
occurrences,bothofwhicharelikelytointeractwiththe
significantincreasesintemperatureacrossmuchofthe
distributionofthehabitatinColoradotoreduceresilienceof
thesehabitats.
Distribution
Montane‐subalpinegrasslandsintheColoradoRockiesaretypicallygrasslandsofforestopenings
andpark‐likeexpansesinthemontaneandsubalpineconiferousforestsatelevationsof7,200‐
10,000feet(2,200‐3,000m),intermixedwithstandsofspruce‐fir,lodgepole,ponderosa,andaspen.
AlthoughsmallermontanegrasslandsarescatteredthroughouttheSouthernRockyMountains
ecoregion,thelargestoccurrencebyfar(overamillionacres)isonthevalleyfloorofthelarge
intermountainbasinSouthParkincentralColorado.Thelargestoccurrencesareprimarilywithin
Colorado,butexamplesarescatteredthroughouttheregionfromWyomingtoNewMexico.
ClimateChangeVulnerabilityAssessmentforColoradoBLM117
Characteristic species
Theselargepatchgrasslandsareintermixedwithvarioustypesofforeststands,dependingon
elevation.Withinthesubalpinezone,forbstendtobemoreprominentathigherelevations,and
shrubsatlowerelevations(TurnerandPaulsen1976).Associationsarevariabledependingonsite
factorssuchasslope,aspect,andprecipitation,butgenerallylowerelevationmontanegrasslands
aremorexericanddominatedbymuhly(Muhlenbergiaspp.),bluebunchwheatgrass
(Pseudoroegneriaspicata),Arizonafescue(Festucaarizonica),andIdahofescue(Festuca
idahoensis),whileuppermontaneorsubalpinegrasslandsaremoremesicandmaybedominated
byThurberfescue(Festucathurberi)ortimberoatgrass(Danthoniaintermedia).Parry’soatgrass
(Danthoniaparryi)isfoundacrossmostoftheelevationalrangeofthissystem.Montanegrasslands
intheColoradoFrontRangeareoftendominatedbyspikefescue(Leucopoakingii)ormountain
muhly(Muhlenbergiamontana)(Peet1981).IntheSanJuanMountainsofsouthwesternColorado,
thesegrasslandsaredominatedbyThurberfescueandotherlargebunchgrasses(Jamiesonetal.
1996).Grassesofthefoothillsandpiedmont,suchasbluegrama(Boutelouagracilis),sideoats
grama(Boutelouacurtipendula),needle‐and‐thread(Hesperostipacomata),prairieJunegrass
(Koeleriamacrantha),westernwheatgrass(Pascopyrumsmithii),Sandbergbluegrass(Poasecunda),
andlittlebluestem(Schizachyriumscoparium)maybeincludedinlowerelevationoccurrences.
Higher,moremesiclocationsmaysupportadditionalgraminoidspeciesincludingbentgrass
(Agrostisspp.),sedge(Carexspp.),alpinefescue(Festucabrachyphylla),Drummond'srush(Juncus
drummondii),alpinetimothy(Phleumalpinum),bluegrass(Poaspp.),orspiketrisetum(Trisetum
spicatum).Woodyspeciesaregenerallysparseorabsent,butoccasionalindividualsfromthe
surroundingforestcommunitiesmayoccur.Scattereddwarf‐shrubsmaybefoundinsome
occurrences;speciesvarywithelevationandlocation.Forbsaremorecommonathigherelevations.
Environment
Thisecosystemtypicallyoccursongentletosteepslopes,parks,oronlowersideslopesthataredry,
andmayextendupto11,000ft(3,350m)onwarmaspects.Thegeneralclimateintherangeofthis
ecosystemistypicallymontanetosubalpine,characterizedbycoldwintersandrelativelycool
summers,althoughtemperaturesaremoremoderateatlowerelevations.Precipitationpatterns
differbetweentheeastandwestsidesoftheContinentalDivide.Ingeneral,thesegrasslands
experiencelongwinters,deepsnow,andshortgrowingseasons.Averageannualprecipitation
rangesbetween20to40inches(51‐102cm),andthemajorityofthisfallsassnow(Turnerand
Paulsen1976).SnowcoverinsomeareascanlastfromOctobertoMay,andservestoinsulatethe
plantsbeneathfromperiodicsubzerotemperatures.Otherareasarekeptfreefromsnowbywind.
Rapidspringsnowmeltusuallysaturatesthesoil,andwhentemperaturesriseplantgrowthis
rapid.Precipitationduringthegrowingseasonishighlyvariable,butprovideslessmoisturethan
snowmelt.Growingseasonsareshort,typicallyfromJunethroughAugustatintermediatelocations,
althoughfrostcanoccuratalmostanytime.
ThegeologyoftheSouthernRockyMountainsisextremelycomplex.Notsurprisingly,soilsarealso
highlyvariable,dependingontheparentmaterialsfromwhichtheywerederivedandthe
conditionsunderwhichtheydeveloped.Podzolicsoilshavedevelopedonmosthighmountain
areasasaresultofcooltocoldtemperatures,relativelyabundantmoisture,andthedominant
118ColoradoNaturalHeritageProgram©2015
coniferousforestvegetation.Intheintermingledparksandopentreelessslopesorridges,grassland
soilshavedeveloped.Soiltextureisimportantinexplainingtheexistenceofmontane‐subalpine
grasslands(Peet2000).Thesegrasslandsoftenoccupythefine‐texturedalluvialofcolluvialsoilsof
valleybottoms,incontrasttothecoarse,rockymaterialofadjacentforestedslopes(Peet2000).
Soilsareoftensimilartoprairiesoils,withadarkbrownA‐horizonthatisrichinorganicmatter,
welldrained,andslightlyacidic(TurnerandPaulsen1976).Otherfactorsthatmayexplainthe
absenceoftreesinthissystemaresoilmoisture(toomuchortoolittle),competitionfrom
establishedherbaceousspecies,coldairdrainageandfrostpockets,highsnowaccumulation,
beaveractivity,slowrecoveryfromfire,andsnowslides(Daubenmire1943,Knight1994,Peet
2000).Wheregrasslandsoccurintermixedwithforestedareas,thelesspronouncedenvironmental
differencesmeanthattreesaremorelikelytoinvade(TurnerandPaulsen1976).
Dynamics
Avarietyoffactors,includingfire,wind,cold‐airdrainage,climaticvariation,soilproperties,
competition,andgrazinghavebeenproposedasmechanismsthatmaintainopengrasslandsand
parksinforestsurroundings.Observationsandrepeatphotographystudiesinsitesthroughoutthe
southernRockyMountainsindicatethattreesdoinvadeopenareas,butthatthemechanisms
responsibleforthistrendmaydifferfromsitetosite.AndersonandBaker(2005)discountedfire
suppressionasthecauseoftreeinvasionsinWyoming’sMedicineBowMountains,concludingthat
edaphicconditionswerethemostlikelyfactorlimitingtreeestablishment.IntheSanJuan
MountainsofsoutheasternColorado,ZierandBaker(2006)alsofoundthattheprobabilityoftree
invasionvariedwithforesttype.Climaticvariation,fireexclusion,andgrazingappeartointeract
withedaphicfactorstofacilitateorhindertreeinvasioninthesegrasslands(ZierandBaker2006).
IntheGunnisonBasin,Schaueretal.(1998)identifiedseedlingmortalityastheprimaryfactor
preventinginvasionsofEngelmannspruce,butdidnotdetermineifthiswasduetocompetition
fromestablishedgrasslandplants,ortoedaphicconditions.TheworkofCoopandGivnish(2007)
intheJemezMountainsofnorthernNewMexicosuggeststhatbothchangingdisturbanceregimes
andclimaticfactorsarelinkedtotreeestablishmentinsomemontanegrasslands.Pocketgophers
(Thomomysspp.)areawidespreadsourceofdisturbanceinmontane‐subalpinegrasslands.The
activitiesoftheseburrowingmammalsresultinincreasedaeration,mixingofsoil,andinfiltration
ofwater,andareanimportantcomponentofnormalsoilformationanderosion(Ellison1946).In
addition,CantorandWhitham(1989)foundthatbelow‐groundherbivoryofpocketgophers
restrictedestablishmentofaspentorockyareasinArizonamountainmeadows.Theinteractionof
multiplefactorsindicatesthatmanagementforthemaintenanceofthesemontaneandsubalpine
grasslandsmaybecomplex.
Grazingbydomesticlivestockmayacttooverrideormaskwhatevernaturalmechanismis
responsibleformaintaininganoccurrence.Montane‐subalpinegrasslandswerefirstgrazedby
domesticlivestockbeginninginthelate1800’s(TurnerandPaulsen1976).Afterlower‐elevation,
moreaccessiblerangelandswereoverstockedinthe1870’sand1880’s,useofmontaneand
subalpinegrasslandsincreaseddramatically.Bytheturnofthecenturynearlyallgrazablelandwas
beingutilized,andmuchwasalreadyovergrazed(TurnerandPaulsen1976).AsNationalForests
wereestablishedfollowingtheOrganicAdministrationActof1897,regulationofgrazingonthese
highelevationgrasslandswasinstituted.UselevelspeakedneartheendofthefirstWorldWar,and
ClimateChangeVulnerabilityAssessmentforColoradoBLM119
currentuselevelsaresubstantiallylowerthanthehighestpreviouslevel(TurnerandPaulsen
1976).
Floristiccompositioninthesegrasslandsisinfluencedbybothenvironmentalfactorsandgrazing
history.Grazingisgenerallybelievedtoleadtothereplacementofpalatablespecieswithless
palatableonesmoreabletowithstandgrazingpressure(Smith1967,Paulsen1975,Brown1994,
butseeStohlgrenetal.1999).Ingeneral,palatablegrassesarereplacedbynonpalatableforbsor
shrubsundercattlegrazing(Smith1967),whilepalatableforbsarecharacteristicallyabsentfrom
grasslandswithalonghistoryofsheepuse(TurnerandPaulsen1976).Annualspeciesare
uncommonexceptonheavilydisturbedareas.Someoccurrencesaredominatedbyseededpasture
grasses,especiallysmoothbrome(Bromusinermis),timothy(Phleumpratense),andKentucky
bluegrass(Poapratensis).
Historically,soildisturbancewaslargelytheresultofoccasionalconcentrationsoflargenative
herbivores,orthediggingactionoffossorialmammals.Domesticlivestockranchinghaschanged
thetimingandintensityofgrazingdisturbancefromthatofnativeherbivores,withthepotentialto
alterspeciescomposition,soilcompaction,nutrientlevels,andvegetationstructure.Incombination
withgrazingofdomesticlivestock,various“rangeimprovement”activities(e.g.seeding,rodent
control,herbicideapplication)havethepotentialtoalternaturalecosystemprocessesandspecies
composition.Increasingsmall‐acreageexurbandevelopmentwithlivestock(“ranchettes”)appears
tobeincreasingtheincidenceofweedyexoticspeciesinthesehabitats.ExoticsincludeDalmatian
toadflax(Linariadalmatica),knapweed(Centaureaspp.),cheatgrass(Bromustectorum),
sweetclover(Melilotusofficinalis),andothers.
CCVA Scoring
Exposure‐Sensitivity (Potential Impact) Rank
PercentColoradoacreswithprojectedtemp>max&pptdelta<5%1.0%
InitialExposure‐SensitivityRankLow
PercentColoradoacreswithtemp<=max&pptdelta<5%morethan50%?Yes(79.6%)
FinalExposure‐SensitivityRankModerate
Exposuretotemperaturechange
Underprojectedmid‐centurytemperatures,about1%ofthecurrentrangeofmontanegrasslandin
Coloradowouldexperienceannualmeantemperaturesabovethecurrentstatewidemaximum.
Exposuretoprecipitationchange
About81%ofmontanegrasslandinColoradowillbeexposedtoeffectivelydrierconditionseven
underunchangedorslightlyincreasedprecipitationprojectedformid‐century.
Sensitivityofecosystemtotemperatureandprecipitation
Higherelevationgrasslandsarecharacterizedbycoldwintersandrelativelycoolsummers,
althoughtemperaturesaremoremoderateatlowerelevations.
120ColoradoNaturalHeritageProgram©2015
Soiltexturehasasignificanteffectonthedistributionandpersistenceofmontane‐subalpine
grasslands(Peet2000),determiningsoilmoistureconditionsthatacttoexcludetrees.Droughtand
warmertemperaturesmaychangespeciescomposition,orallowinvasionbydrought‐tolerant
shrubsorinvasivespeciesinsomeareas.
Resilience and Adaptive Capacity Rank
OverallScore: 0.74Rank: High
Bioclimaticenvelopeandrange
Averagedcategoryscore:0.82
Thesegrasslandsarenotrestrictedtohighelevations,andarewellwithinthecoreareaoftheir
continentaldistributioninColorado.Thevariationpresentinthevariousgrasslandoccurrences
givesthisecosystemawideecologicalamplitude,covering79%ofColorado’soverallprecipitation
range,and48%ofthegrowingdegreerange.Thesefactorscombinetogivemontanegrasslandsa
highresiliencescoreinthiscategory.
Growthformandintrinsicdispersalrate
Score:1
Thisecosystemisdominatedbyrelativelyfastgrowinggraminoidandherbaceousspecies,andis
abletodispersetoavailablehabitatquicklyincomparisonwithecosystemsdominatedbywoody
species.
Vulnerabilitytoincreasedattackbybiologicalstressors
Score:0.5
TheworkofCoopandGivnish(2007)intheJemezMountainsofnorthernNewMexicosuggests
thatbothchangingdisturbanceregimesandclimaticfactorsarelinkedtotreeestablishmentin
somemontanegrasslands.Increasedtreeinvasionintomontanegrasslandswasapparentlylinked
tohighersummernighttimetemperatures,andlessfrostdamagetotreeseedlings;thistrendcould
continueunderprojectedfuturetemperatureincreases.Increaseddisturbancemayalsofacilitate
thecontinuedspreadofintroducedexoticspeciesasclimateconditionschange.Theinteractionof
multiplefactorsindicatesthatmanagementforthemaintenanceofthesemontaneandsubalpine
grasslandsmaybecomplex.
Vulnerabilitytoincreasedfrequencyorintensityofextremeevents
Score:1
Althoughincreasedincidenceorseverityofdroughtmayacttohelppreventtreeinvasioninto
montanegrasslands,thereissomeevidencethatwarmer,driersoilconditionscouldfacilitateshrub
growthinmontanemeadowsorotherwisealterspeciescomposition(Perforsetal.2003).
ClimateChangeVulnerabilityAssessmentforColoradoBLM121
Otherindirecteffectsofnon‐climatestressors–landscapecondition
Score:0.37
MontanegrasslandlandscapesinColoradoarehighlyalteredbyanthropogenicdisturbance.Higher
elevationgrasslandsonrelativelyflatsitesareofteninprivateownership,andareoftenvulnerable
tosubdivisionforresidentialdevelopmentand/ortransportationcorridordevelopment.The
extensivegrasslandsofSouthPark,inparticular,arethreatenedbythesubdivisionoflarge
properties,anddevelopmentoftransportationcorridors.Recreationaluse(publicopenspaceuse
inlowerelevations;hunters,packersandsnow‐mobilersinhigherelevations)isanongoingsource
ofdisturbanceinthishabitat.
Literature Cited
Anderson,M.D.andW.L.Baker.2005.Reconstructinglandscape‐scaletreeinvasionusingsurveynotesintheMedicine
BowMountains,Wyoming,USA.LandscapeEcology21:243–258.
Borchert,J.R.1950.TheclimateofthecentralNorthAmericangrassland.AnnalsoftheAssociationofAmerican
Geographers40:1‐39.
Brown,D.E.1994.Grasslands.Part4inBioticcommunities:southwesternUnitedStatesandnorthwesternMexico.D.E.
Brown,ed.UniversityofUtahPress,SaltLakeCity,UT.
Cantor,L.F.andT.J.Whitham.1989.Importanceofbelowgroundherbivory:pocketgophersmaylimitaspentorock
outcroprefugia.Ecology70:962‐970.
Coop,J.D.andT.J.Givnish.2007.Spatialandtemporalpatternsofrecentforestencroachmentinmontanegrasslandsof
theVallesCaldera,NewMexico,USA.JournalofBiogeography34:914‐927.
Covich,A.P.,S.C.Fritz,P.J.Lamb,R.D.Marzolf,W.J.Matthews,K.A.Poiani,E.E.Prepas,M.B.Richman,andT.C.Winter.1997.
PotentialeffectsofclimatechangeonaquaticecosystemsoftheGreatPlainsofNorthAmerica.HydrologicalProcesses
11:993‐1021.
Daubenmire,R.F.1943.VegetationalzonationintheRockyMountains.BotanicalReview9:325‐393.
Debinski,D.M.,H.Wickham,K.Kindscher,J.C.Caruthers,andM.Germino.2010.Montanemeadowchangeduringdrought
varieswithbackgroundhydrologicregimeandplantfunctionalgroup.Ecology91:1672‐1681.
Ellison,L.1946.Thepocketgopherinrelationtosoilerosiononmountainrange.Ecology27:101‐114.
Jamieson,D.W.,W.H.Romme,andP.Somers.1996.Bioticcommunitiesofthecoolmountains.Chapter12inTheWestern
SanJuanMountains:TheirGeology,Ecology,andHumanHistory,R.Blair,ed.UniversityPressofColorado,Niwot,CO.
Knight,D.H.1994.MountainsandPlains:theEcologyofWyomingLandscapes.YaleUniversityPress,NewHavenand
London.338pages.
Paulsen,H.A.,Jr.1969.Foragevaluesonamountaingrassland‐aspenrangeinwesternColorado.JournalofRange
Management22:102–107.
Paulsen,H.A.,Jr.1975.RangemanagementinthecentralandsouthernRockyMountains:asummaryofthestatusofour
knowledgebyrangeecosystems.USDAForestServiceResearchPaperRM‐154.RockyMountainForestandRange
ExperimentStation,USDAForestService,FortCollins,Colorado.
Peet,R.K.1981.ForestvegetationoftheColoradoFrontRange:compositionanddynamics.Vegetatio45:3‐75.
122ColoradoNaturalHeritageProgram©2015
Peet,R.K.2000.ForestsandmeadowsoftheRockyMountains.Chapter3inNorthAmericanTerrestrialVegetation,
secondedition.M.G.BarbourandW.D.Billings,eds.CambridgeUniversityPress.
Perfors,T.,J.Harte,andS.E.Alter.2003.Enhancedgrowthofsagebrush(Artemisiatridentata)inresponsetomanipulated
ecosystemwarming.GlobalChangeBiology9:736‐742
Schauer,A.J.,B.K.Wade,andJ.B.Sowell.1998.Persistenceofsubalpineforest‐meadowecotonesintheGunnisonBasin,
Colorado.GreatBasinNaturalist58:273‐281.
Smith,D.R.1967.Effectsofcattlegrazingonaponderosapine‐bunchgrassrangeinColorado.USDAForestService
TechnicalBulletinNo.1371.RockyMountainForestandRangeExperimentStation,USDAForestService,FortCollins,
Colorado.
Stockton,C.W.andD.M.Meko.1983.DroughtreoccurrenceintheGreatPlainsasreconstructedfromlong‐termtree‐ring
records.JournalofClimateandAppliedMeteorology22:17‐29.
Stohlgren,T.J.,L.D.Schell,andB.VandenHuevel.1999.Howgrazingandsoilqualityaffectnativeandexoticplant
diversityinrockymountaingrasslands.EcologicalApplications9:45‐64.
Turner,G.T.,andH.A.Paulsen,Jr.1976.ManagementofMountainGrasslandsintheCentralRockies:TheStatusofOur
Knowledge.USDAForestServiceResearchPaperRM‐161.RockyMountainForestandRangeExperimentStation,USDA
ForestService,FortCollins,Colorado.
WesternRegionalClimateCenter[WRCC].2004.ClimateofColoradonarrativeandstateclimatedata.Availableat
http://www.wrcc.dri.edu
Zier,J.L.andW.L.Baker.2006.AcenturyofvegetationchangeintheSanJuanMountains,Colorado:Ananalysisusing
repeatphotography.ForestEcologyandManagement228:251–262.
ClimateChangeVulnerabilityAssessmentforColoradoBLM123
SEMI‐DESERT GRASSLAND
Drygrasslandscharacterizedbydrought‐tolerantbunchgrassspeciesandscatteredshrubs
P.Lyon
extentexaggeratedfordisplay
Climate Vulnerability Rank: Low
Vulnerability summary
Key Vulnerabilities:Climaterelatedvulnerabilityforthesegrasslandsisminimal,buttheimpacted
conditionofmanystandsmayinhibittheirpotentialforexpansion.
Lowexposureandsensitivitytoprojectedconditionsoutsidethe
currentrangeexperiencedbythesegrasslandsistheprimary
factorcontributingtothelowvulnerabilityrankingofthis
ecosystem.Thegenerallyfairtopoorconditionofmany
occurrencesinColoradomaytendtoinhibitthepotentialofthis
ecosystemtoexploitandmoveintonewareasunderfuture
climateconditions.
Distribution
ThesearethedriestgrasslandsoftheintermountainwesternU.S.,occurringinlargepatchesin
mosaicswithshrublandsystemsdominatedbysagebrush,saltbush,blackbrush,mormon‐tea,and
othershrubspecies.Climatesaresemi‐aridtoarid.Colorado’ssemi‐desertgrasslandsarefound
primarilyondryplainsandmesasofthewestslopeatelevationsof4,750‐7,600feet
Characteristic species
Thesegrasslandsaretypicallydominatedbydrought‐resistantperennialbunchgrassessuchas
Indianricegrass(Achnatherumhymenoides),bluegrama(Boutelouagracilis),needle‐and‐thread
124ColoradoNaturalHeritageProgram©2015
(Hesperostipacomata),ringmuhly(Muhlenbergiatorreyi),orJames'galleta(Pleuraphisjamesii),or
bluebunchwheatgrass(Pseudoroegneriaspicata).Scatteredshrubsandsub‐shrubsmaybepresent,
includingsagebrush(Artemisiaspp.),saltbush(Atriplexspp.),jointfir(Ephedraspp.),snakeweed
(Gutierreziasarothrae),orwinterfat(Krascheninnikovialanata).Blackbrush(Coleogyne
ramosissima)isuncommoninColoradooccurrences,buttypicalfurtherwest.
Environment
WestSlopelow‐elevationgrasslandsoccurinsemi‐aridtoaridclimateswithcoldtemperate
conditions.Hotsummersandcoldwinterswithfreezingtemperaturesandsnowarecommon.
GrasslandsofthewesternvalleysreceiveasignificantportionofannualprecipitationinJuly
throughOctoberduringthesummermonsoonstorms,withtherestfallingassnowduringthe
winterandearlyspringmonths.Annualprecipitationisusuallyfrom8‐16in(20‐40cm).
Thesegrasslandsoccurinxericlowlandanduplandareasandmayoccupyswales,playas,mesa
tops,plateauparks,alluvialflats,andplains.Substratesaretypicallywell‐drainedsandstone‐or
shale‐derivedsoils.Somesandysoiloccurrenceshaveahighcoverofcryptogamsonthesoil.Soil
salinitydependsontheamountandtimingofprecipitationandflooding.
Dynamics
Thissystemismaintainedbyfrequentfiresthateliminatewoodyplants.Acombinationof
precipitation,temperature,andsoilslimitsthissystemtothelowerelevationswithintheregion.
Thedominantperennialbunchgrassesandshrubswithinthissystemareallverydrought‐resistant
plants.Grassesthatdominatesemi‐aridgrasslandsdevelopadensenetworkofrootsconcentrated
intheupperpartsofthesoilwhererainfallpenetratesmostfrequently.
Thesemi‐desertgrasslandsystemisvulnerabletoinvasionbyexoticspecies,particularly
cheatgrass(Bromustectorum).Althoughfrequentfiresingrasslandsmayhavebeencommon
historically,theintroductionofcheatgrasshasalteredthedynamicsofthesystem,increasingboth
firefrequencyandpost‐firecheatgrassdominance(ShinnemanandBaker2009,Balchetal.2013).
Cheatgrassiseasilyignited,andalsoprovidesanabundanceoffinefuelsthatcarryfire(Knapp
1998).
Floristiccompositioningrasslandsisinfluencedbybothenvironmentalfactorsandgrazinghistory.
Manygrasslandoccurrencesarealreadyhighlyalteredfrompre‐settlementcondition.Grazingis
generallybelievedtoleadtothereplacementofpalatablespecieswithlesspalatableonesmore
abletowithstandgrazingpressure(Smith1967,Paulsen1975,Brown1994,butseeStohlgrenetal.
1999).Grazingbydomesticlivestockmayacttooverrideormaskwhatevernaturalclimaticor
edaphicmechanismisresponsibleformaintaininganoccurrence.Thishabitatisalsoadaptedto
grazingandbrowsingbynativeherbivoresincludingdeer,elk,bison,andpronghorn,aswellas
burrowingandgrazingbysmallmammalssuchasgophers,prairiedogs,rabbits,andground
squirrels.Activitiesoftheseanimalscaninfluencebothvegetationstructureandsoildisturbance,
potentiallysuppressingtreeestablishment.Periodicdroughtiscommonintherangeoffoothilland
semi‐desertgrasslands,butmaynotbeasgreatafactorinthevegetationdynamicsofthissystem
asingrasslandsoftheplains.
ClimateChangeVulnerabilityAssessmentforColoradoBLM125
Remnantstandsofdesertgrasslandshavebeenhighlyalteredbylivestockgrazing,anditislikely
thatgrasslandsformerlyoccupiedsomesitesthatarenowcoveredbypinyon‐juniperorshrubland
(Dick‐Peddie1993).Grazingbydomesticlivestockcanalsoinfluencetherelativeproportionof
cool‐vs.warm‐seasongrasses,orfavortheincreaseofwoodyshrubspecies.
CCVA Scoring
Exposure‐Sensitivity (Potential Impact) Rank
PercentColoradoacreswithprojectedtemp>max&pptdelta<5%14.0%
InitialExposure‐SensitivityRankLow
PercentColoradoacreswithtemp<=max&pptdelta<5%morethan50%?No(35.2%)
FinalExposure‐SensitivityRankLow
Exposuretotemperaturechange
Underprojectedmid‐centurytemperatures,about19%ofthecurrentrangeofsemi‐desert
grasslandinColoradowouldexperienceannualmeantemperaturesabovethecurrentstatewide
maximum.
Exposuretoprecipitationchange
About49%ofsemi‐desertgrasslandinColoradowillbeexposedtoeffectivelydrierconditionseven
underunchangedorslightlyincreasedprecipitationprojectedformid‐century.
Sensitivityofecosystemtotemperatureandprecipitation
Semi‐desertgrasslandspeciesaregenerallydroughttolerant(Dick‐Peddie1993),andareadapted
tolowprecipitationlevelsandalonggrowingseason.Soilsaretypicallyaridisols,whicharedryfor
mostoftheyear,evenduringthegrowingseason,andthereislittleinfiltrationofwaterintothesoil
(SimsandRisser2000).Changesinthetimingandamountofprecipitationcanaffectthestructure
andpersistenceofgrasslands.Withtheircomparitivelyshallowerrootsystems,grasseshavean
advantageovershrubsonshallow,poorlydrainedsoils,whereasshrubsarefavoredondeepersoils
wherewinterprecipitationcanpenetratedeeplyintothesoil.BecauseshrubsareC3plantswith
highercool‐seasonactivity(AsnerandHeidebrecht2005)theyareabletoutilizewinter
precipitationtoagreaterextentthanarewarm‐seasongrasses.SimsandRisser(2000)reportthat
ameanannualtemperatureof50F(10C)isathresholdbetweengrasslandsdominatedbycool‐
season(C3)grassesandthosedominatedbywarm‐season(C4)species.However,Munsonetal.
(2011)reportadeclineinperennialvegetationcoveringrasslandsoftheColoradoPlateauwith
increasesintemperature.
Resilience and Adaptive Capacity Rank
OverallScore: 0.72Rank: High
Bioclimaticenvelopeandrange
Averagedcategoryscore:0.59
126ColoradoNaturalHeritageProgram©2015
Thesegrasslandsarenotrestrictedtohighelevations,noraretheyatthesouthernendoftheir
continentaldistributioninColorado.However,becausetheyoccurinthewarmestanddriestparts
ofthestate,theyoccupyonly1%ofColorado’soverallprecipitationrange,and34%ofthe
statewidegrowingdegreedayrange.Thesefactorscombinetolowertheoverallresiliencescorein
thiscategory,butmaybesomewhatoverstatedduetothecurrentlimiteddistributionofthistype
inColorado.
Growthformandintrinsicdispersalrate
Score:1
Thisecosystemisdominatedbyrelativelyfastgrowinggraminoidandherbaceousspecies,andis
abletodispersetoavailablehabitatquicklyincomparisonwithecosystemsdominatedbywoody
species.
Vulnerabilitytoincreasedattackbybiologicalstressors
Score:0.5
Semi‐desertgrasslandsarevulnerabletoinvasionbyexoticspecies,particularlycheatgrass.
Extendeddroughtcanleadtowidespreadmortalityofperennialgrassesandallowtheinvasionof
cheatgrass.
Vulnerabilitytoincreasedfrequencyorintensityofextremeevents
Score:1
Droughtandwarmertemperaturesmaychangespeciescomposition,orallowinvasionbydrought‐
tolerantwoodyorinvasivespeciesinsomeareas.Droughtcanincreaseextentofbaregroundand
decreaseforbcoverage,especiallyinmorexericgrasslands(Debinskietal.2010).
Althoughfrequentfiresingrasslandsmayhavebeencommonhistorically,theintroductionof
cheatgrasshasalteredthedynamicsofthesystem,andfireoftenresultsincheatgrassdominance.
Onceovertakenbycheatgrass,morefrequentfiresareencouragedbythedryflammablematerial,
leadingtofurtherdominationbycheatgrass.Evenafewcheatgrassplantsinastandwillproduce
enoughseedtodominatethestandwithinafewyearsafterfire.Increasingdroughtislikelyto
facilitatethistrend.
Otherindirecteffectsofnon‐climatestressors–landscapecondition
Score:0.51
Semi‐desertgrasslandlandscapesinColoradohavebeensignificantlyimpactedbyanthropogenic
activity,especiallyconversiontoagricultureinareasnearrivers.Thecurrentrateofconversionof
lowerelevationnativegrasslandtoagricultureislow,butremainsathreatforsomelimitedareas.
Nativegrasslandhabitatcanalsobelostorfragmentedbysuburbanandexurbandevelopment,and
transportation,oilandgas,orutilityinfrastructuredevelopment.
ClimateChangeVulnerabilityAssessmentforColoradoBLM127
Literature Cited
Asner,G.P.andK.B.Heidebrecht.2005.Desertificationaltersregionalecosystem‐climateinteractions.GlobalChange
Biology11:182‐194.
Balch,J.K.,B.A.Bradley,C.M.D’Antonio,andJ.Gómez‐Dans.2013.Introducedannualgrassincreasesregionalfireactivity
acrossthearidwesternUSA(1980‐2009).GlobalChangeBiology19:173‐183.
Brown,D.E.1994.Grasslands.InBioticcommunities:southwesternUnitedStatesandnorthwesternMexico.D.E.Brown,
ed.UniversityofUtahPress,SaltLakeCity,UT.
Debinski,D.M.,H.Wickham,K.Kindscher,J.C.Caruthers,andM.Germino.2010.Montanemeadowchangeduringdrought
varieswithbackgroundhydrologicregimeandplantfunctionalgroup.Ecology91:1672‐1681.
Dick‐Peddie,W.A.1993.NewMexicovegetation,past,present,andfuture.WithcontributionsbyW.H.MoirandRichard
Spellenberg.UniversityofNewMexicoPress,Albuquerque,NewMexico.
Knapp,P.A.1998.Spatio‐temporalpatternsoflargegrasslandfiresintheIntermountainWest,USA.GlobalEcologyand
Biogeography7:259–272.
Munson,S.M.,J.Belnap,C.D.Schelz,M.Moran,andT.W.Carolin.2011.Onthebrinkofchange:plantresponsestoclimate
ontheColoradoPlateau.Ecosphere2:art68.
Paulsen,H.A.,Jr.1975.RangemanagementinthecentralandsouthernRockyMountains:asummaryofthestatusofour
knowledgebyrangeecosystems.USDAForestServiceResearchPaperRM‐154.RockyMountainForestandRange
ExperimentStation,USDAForestService,FortCollins,Colorado.
Shinneman,D.J.andW.L.Baker.2009.Environmentalandclimaticvariablesaspotentialdriversofpost‐firecoverof
cheatgrass(Bromustectorum)inseededandunseededsemiaridecosystems.InternationalJournalofWildlandFire
18:191‐202.
Sims,P.L.,andP.G.Risser.2000.Grasslands.Chapter9in:Barbour,M.G.,andW.D.Billings,eds.,NorthAmerican
TerrestrialVegetation,SecondEdition.CambridgeUniversityPress.
Smith,D.R.1967.Effectsofcattlegrazingonaponderosapine‐bunchgrassrangeinColorado.USDAForestService
TechnicalBulletinNo.1371.RockyMountainForestandRangeExperimentStation,USDAForestService,FortCollins,
Colorado.
Stohlgren,T.J.,L.D.Schell,andB.VandenHuevel.1999.Howgrazingandsoilqualityaffectnativeandexoticplant
diversityinrockymountaingrasslands.EcologicalApplications9:45‐64.
128ColoradoNaturalHeritageProgram©2015
SHORTGRASS PRAIRIE
Grasslandsdominatedbybluegrama
R.Rondeau
extentexaggeratedfordisplay
Climate Vulnerability Rank: High
Vulnerability summary
Key Vulnerabilities:Warmersummernighttimelowtemperaturesand/orextendedperiodsofdrought
arelikelytochangethebalanceofwarm‐andcool‐seasongrasses,and,iffirefrequencyremainslow,
allowtheestablishmentofwoodyspecies,withthepotentialforconversiontoamorearidgrassland
typeorsavanna.
Shortgrassprairieisrankedashavinghighvulnerabilitytothe
effectsofclimatechangebymid‐century.Primaryfactors
contributingtothisrankingarethefactthatthesegrasslandsare
foundontheeasternplainsofColorado,wherethegreatestlevels
ofexposureforalltemperaturevariablesoccur.Inaddition,
anthropogenicdisturbanceinthesegrasslandshasreducedthe
overalllandscapeconditionofthehabitat,whichislikelyto
reduceitsresilienceinthefaceofincreasingfrequencyof
extremeevents.
Distribution
Shortgrassprairieischaracteristicofthewarm,drysouthwesternportionoftheGreatPlains,lying
totheeastoftheRockyMountains,andrangingfromtheNebraskaPanhandlesouthintoTexasand
NewMexico.ThehighplainsoftheLlanoestacadodefinethesouthernextentoftheshortgrass
prairie,boundedbyescarpmentsformedintheOgalallaCaprock(calledtheMescaleroescarpment
tothewestandtheCaprockescarpmentontheeast).Theeasternboundaryoftheshortgrass
prairieisafluctuatingecotoneontheeast‐westprecipitationgradientbetweenshortandmidgrass
ClimateChangeVulnerabilityAssessmentforColoradoBLM129
prairie,definedbyatransitionareawhereprecipitationbecomesinsufficienttoprovidesoil
moistureforthetallergrasses(Shantz1923,Carpenter1940).Thenorthernboundaryrepresents
thetransitiontocooler,moremesicmixed‐grasstypes,generallyoccuringinsoutheastern
WyomingandsouthwesternNebraska,althoughoccasionalshortgrassstandsmaybefoundfurther
north.Inspiteofextensiveconversiontoagricultureorotheruses,shortgrassprairiestillforms
extensivetractsontheeasternplainsofColorado,atelevationsbelow6,000feet.
Characteristic species
Thissystemspansawiderangeandthustherecanbesomedifferencesintherelativedominanceof
somespeciesfromnorthtosouthandfromeasttowest.
Priortosettlement,theshortgrassprairiewasagenerallytreelesslandscapecharacterizedbyblue
grama(Boutelouagracilis)andbuffalograss(Buchloedactyloides).Inmuchofitsrange,shortgrass
prairieformsthematrixvegetationwithbluegramadominant.Othergrassesincludethree‐awn
(Aristidapurpurea),side‐oatsgrama(Boutelouacurtipendula),hairygrama(Bouteloua
hirsuta),needle‐and‐thread(Hesperostipacomata),Junegrass(Koeleriamacrantha),western
wheatgrass(Pascopyrumsmithii),James'galleta(Pleuraphisjamesii),alkalisacaton(Sporobolus
airoides),andsanddropseed(Sporoboluscryptandrus).Localinclusionsofmesicorsandysoilsmay
supporttallergrassspeciesincludingsandbluestem(Andropogonhallii),littlebluestem
(Schizachyriumscoparium),Indiangrass(Sorghastrumnutans),andprairiesandreed(Calamovilfa
longifolia),aswellasscatteredshrubspeciesincludingsandsage(Artemisiafilifolia),prairie
sagewort(Artemisiafrigida),fourwingsaltbush(Atriplexcanescens),treecholla(Cylindroputia
imbricata),spreadingbuckwheat(Eriogonumeffusum),snakeweed(Gutierreziasarothrae),pale
wolfberry(Lyciumpallidum),andsoapweedyucca(Yuccaglauca)mayalsobepresent.One‐seed
juniper(Juniperusmonosperma)andoccasionalpinyonpine(Pinusedulis)treesareoftenpresent
onshalebreakswithintheshortgrassprairiematrix.
Thisecosystem,incombinationwiththeassociatedwetlandsystems,representsoneoftherichest
areasintheUnitedStatesforlargemammals.Ahealthyshortgrassprairiesystemshouldsupport
endemicgrasslandbirds,prairiedogcomplexes,viablepopulationsofpronghorn,andotherGreat
Plainsmammals.Historically,suchareaswouldalsohavebeenpopulatedbybisoninsufficient
numberstosupportpopulationsofwolves.Grasslandbirdspeciesmayconstituteoneofthefastest
decliningvertebratepopulationsinNorthAmerica(Knopf1996).
Environment
Theclimateoftheshortgrassprairieischaracterizedbylargeseasonalcontrasts,aswellas
interannualandlongertermvariability(PielkeandDoesken2008).Wintersintheshortgrass
prairiecanbemildanddrywhenPacificairmassesareblockedbytheRockyMountainsunder
zonalflowconditions,orcoldandsnowyundermeridionalflowpatternsthatbringarcticairor
upslopesnow.Springistransitionalwithwarmingconditionsandlingeringarcticairandpossible
heavysnow.Springwarmingbringsthermalinstabilityandatmosphericmixingproducingwindy
conditions,andthunderstormsbecomecommon.Tornadosandslow‐movingstormsproducing
heavyprecipitationmayalsooccur.InsummeradrylineseparatinghumidGulfairfromdrydesert
southwestairformsinthewesternplains,andthunderstormsoftenformalongthisboundary.
130ColoradoNaturalHeritageProgram©2015
Summerthunderstormscanproducelocallyheavyprecipitation.Inlatesummer,theNorth
Americanmonsooncanbringmoisturefromthesouthwest.Typicalautumnweatherinthe
shortgrassregionisrelativelyfairanddry,withperiodiccool,wetweatherandthepossibilityof
earlysnow(PielkeandDoesken2008).
Thesegrasslandsoccurprimarilyonflattorollinguplandswithloamy,ustic(dry,butusuallywith
adequatemoistureduringgrowingseason)soilsrangingfromsandytoclayey,atelevations
generallybelow6,000feet(1,830m).Organicmatteraccumulationinshortgrassprairiesoilsis
primarilyconfinedtotheupper8in(20cm,Kellyetal.2008).Theactionofafreeze‐thawcycleon
thesegrasslandsoilsincreasestheirvulnerabilitytowinderosioninlatewinterandspring(Pielke
andDoesken2008).
Dynamics
Large‐scaleprocessessuchasclimate,fireandgrazinginfluencethissystem.Theroleoffirein
maintainingherbaceouscoverandsuppressingwoodyvegetationiswelldemonstratedinmost
prairietypes.Althoughfireisofsomewhatlesserimportanceinshortgrassprairiecomparedto
otherprairietypes,itisstillasignificantsourceofdisturbance(Engleetal.2008),anddocumented
historicfireswereoftenexpansive.Bothfloraandfaunaoftheshortgrassprairiearesensitiveto
theseasonalityandfrequencyoffire(FordandMcPherson1997).Largescaleclimaticconditions
acttodetermineseasonalityandfrequencyofwildfireontheshortgrassprairie,whileextentand
localfireeffectsaredependentontopographicandedaphicconditions.Thexericclimateofthe
shortgrassreducesoverallfuelloads,butalsodriesvegetationsufficientlyforittobecome
flammable.Thegenerallyopen,rollingplainsandoftenwindyconditionsintheshortgrassprairie
facilitatethespreadoffirewhenfuelloadsaresufficient(Axelrod1985).Conversly,breaksand
rockyareasthatareprotectedfromfireareabletosupportwoodyvegetation,eveninthedry
conditionstypicaloftheregion(Wells1965).
Theshortgrassesthatdominatethissystemareextremelydrought‐andgrazing‐tolerant.These
speciesevolvedwithdroughtandlargeherbivoresand,becauseoftheirstature,arerelatively
resistanttoovergrazing.
CCVA Scoring
Exposure‐Sensitivity (Potential Impact) Rank:
PercentColoradoacreswithprojectedtemp>max&pptdelta<5%58.3%
InitialExposure‐SensitivityRankHigh
PercentColoradoacreswithtemp<=max&pptdelta<5%morethan50%?No(20.2%)
FinalExposure‐SensitivityRankHigh
Exposuretotemperaturechange
Underprojectedmid‐centurytemperatures,about57%ofthecurrentrangeofshortgrassprairiein
Coloradowouldexperienceannualmeantemperaturesabovethecurrentstatewidemaximum.
ClimateChangeVulnerabilityAssessmentforColoradoBLM131
Exposuretoprecipitationchange
About78%ofshortgrassprairieinColoradowillbeexposedtoeffectivelydrierconditionseven
underunchangedorslightlyincreasedprecipitationprojectedformid‐century.
Sensitivityofecosystemtotemperatureandprecipitation
Temperaturesintheshortgrassregionshowsignificantvariationbothdailyandseasonally.
Averagedailytemperaturespansare25‐30°F,anddiurnalvariationisgenerallygreatestin
summer.Wintertemperaturesarecold,withnightsbelowfreezingandchillydaytime
temperatures.Seasonalextremelowsbelow‐20°F(‐29°C)havebeenrecordedthroughoutmostof
theregion(WRCC2014).Ingeneral,thenumberoffrostfreedaysisgreaterinmoresouthern
latitudes,althoughfreezingtemperatureshavebeenrecordedinallmonthsexceptJulyandAugust.
Summermaximumtemperaturesarefrequentlyinthe90’s,especiallyinsouthernlocations;
temperaturesof100°F(38°C)orabovehavebeenrecordedeveninthenorthernpartofthe
shortgrassprairie(WRCC2014).
Grasslandsinareaswheremeanannualtemperatureisabove50°F(10°C)aregenerallydominated
byC4(warm‐season)grassspecies,whicharetolerantofwarmertemperaturesandmoreefficient
inwateruse(SimsandRisser2000).InColorado,shortgrassprairiehasahistoricannualmean
temperatureslightlygreaterthan50°F,althoughtherangeincludesslightlycoolerannualmean
temperaturesaswell.Althoughthesegrasslandsareadaptedtowarm,dryconditions,Alwardetal.
(1999)foundthatwarmingnight‐timetemperaturesinspringweredetrimentaltothegrowthof
bluegrama,andinsteadfavoredcool‐season(C3)species,bothnativeandexotic.Consequently,the
effectofincreasingtemperaturesonshortgrassprairieisdifficulttopredict.
PrecipitationtrendsintheshortgrassprairiearesimilartothoseofthelargerGreatPlainsarea,in
thatwesternareasaredriest.Annualprecipitationisgenerallylessthan20inches(51cm),and
soilsareperiodicallymoistonlyinashallowtoplayertypicallylessthan1‐2feetdeep(Shantz
1923).Meanannualprecipitationvariesfrom20+inchesintheeastto12inches(30cm)insome
westernlocations(PielkeandDoesken2008).Precipitationmaybethemostimportantecological
driverintheshortgrassprairie.LauenrothandSala(1992)foundthatshortgrassproductivitywas
primarilyinfluencedbyprecipitationratherthantemperatureinnortheasternColorado.Alarge
proportion(70‐80%)ofannualprecipitationfallsduringthegrowingseason(WRCC2014),and
mostofthisisreceivedduringalimitednumberoflargerainfallevents(PielkeandDoesken2008).
Dailyprecipitationamountsaretypicallyquitesmall(5mmorless),anddonotcontribute
significantlytosoilwaterrecharge,whichinsteadisprimarilydependentonlargebutinfrequent
rainfallevents(Partonetal.1981,Heisler‐Whiteetal.2008).Snowfallamountsarehighestinthe
north,butgenerallysnowisasmallcomponentofannualprecipitation.Mostoftheannual
precipitationisquicklyevaporatedandtranspiredintotheatmosphereratherthansoakingintothe
soil(PielkeandDoesken2008).Largerrainfalleventspermitdeepermoisturepenetrationinthe
soilprofile,andenableanincreaseinabove‐groundnetprimaryproduction(Heisler‐Whiteetal.
2008).
Soilmoisturelevelisakeydeterminantofthedistributionofshortgrassprairiehabitat;changein
precipitationseasonality,amount,orpatternwillaffectsoilmoisture.Grasslandsgenerallyoccurin
132ColoradoNaturalHeritageProgram©2015
areaswherethereisatleastoneannualdryseasonandsoilwateravailabilityislowerthanthat
requiredfortreegrowth(Partonetal.1981,SimsandRisser2000).Soilwateravailabilityactson
bothplantwaterstatusandnutrientcycling(Salaetal.1992).Thedominantshortgrassspecies
bluegramaisabletorespondquicklytoverysmallrainfallevents,althoughthisabilityis
apparentlyreducedduringextendeddroughtperiods(SalaandLauenroth1982,Salaetal.1982,
CherwinandKnapp2012).Nevertheless,bluegramaexhibitedextensivespreadduringthedrought
oftheDustbowlyears(AlbertsonandWeaver1944).Iflargerainfalleventsaremorecommon,the
sensitivityofshortgrassprairieisreduced(CherwinandKnapp2012).
Warmeranddrierconditionswouldbelikelytoreducesoilwateravailabilityandotherwisehave
detrimentaleffectsonecosystemprocesses,whilewarmerandwetterconditionscouldbe
favorable.Furthermore,changingclimatemayleadtoashiftintherelativeabundanceand
dominanceofshortgrassprairiespecies,givingrisetonovelplantcommunities(Polleyetal.2013).
BecausewoodyplantsaremoreresponsivetoelevatedCO2,andmayhavetaprootscapableof
reachingdeepsoilwater(Morganetal.2007),anincreaseofshrubbyspecies(e.g.,cholla,yucca,
snakeweed,sandsage),orinvasiveexoticspecies,especiallyinareasthataredisturbed(for
instance,byheavygrazing)mayalsoresult.
Resilience and Adaptive Capacity Rank
OverallScore: 0.62Rank: Moderate
Bioclimaticenvelopeandrange
Averagedcategoryscore:0.66
Shortgrassprairieexperiencesamuchdrierandwarmerclimatethanmostotherhabitattypesin
Colorado.Annualaverageprecipitationisontheorderof10‐18inches(25‐47cm),withameanof
15in(38cm),andthegrowingseasonisgenerallylong,withfrequenthightemperatures.
Growthformandintrinsicdispersalrate
Score:1
Thisecosystemisdominatedbyrelativelyfastgrowinggraminoidandherbaceousspecies,andis
abletodispersetoavailablehabitatquicklyincomparisonwithecosystemsdominatedbywoody
species.
Vulnerabilitytoincreasedattackbybiologicalstressors
Score:0.5
Theshortgrassesthatcharacterizethishabitatareextremelydrought‐andgrazing‐tolerant.These
speciesevolvedwithdroughtandlargeherbivoresand,becauseoftheirstature,arerelatively
resistanttoovergrazing.Grazingbydomesticlivestockistheprimaryuseofremainingshortgrass
prairie.Managementforincreasedlivestockproductiontendstoproduceamorehomogeneous
grasslanddominatedbykeyforagespecies(FuhlendorfandEngle2001),andrequiresadditional
managementefforttorestoreamosaicofhabitatstructuresuitableforcharacteristicwildlife
ClimateChangeVulnerabilityAssessmentforColoradoBLM133
species.Thus,thereisanongoingthreatofhabitatdegradationorlossoffunctionforshortgrass
prairie.Intactshortgrassprairiehasgenerallyresistedinvasionbynon‐nativespecies(Kotanenet
al.1998),includingcheatgrass(Bromustectorum),butdisturbedareasaremoresuceptibleto
invasion.
Vulnerabilitytoincreasedfrequencyorintensityofextremeevents
Score:0.5
Droughthasbeenanaturalprocessinshortgrassprairiebothduringhistoricalrecording,andin
centuriespriortoEuropeansettlement.Moreover,thereisevidencefortheoccurrenceofmega‐
droughtsthatsignificantlyeclipsedtheDustBowlyearsinseverity,duration,andspatialextent
(WoodhouseandOverpeck1998).Althoughshortgrassprairiehasadaptedtoandpersistedunder
conditionsofextremedrought,thedifferentialimpactofdroughtoncomponentspeciesmayalter
speciescomposition(Rondeauetal.2013).Cultivationofmarginallandsmaycompoundthe
vulnerabilityofremainingshortgrassoccurrencestoincreaseddroughtintensityorfrequency.
Dryclimateconditionscandecreasethefuelloadandthustherelativefirefrequencywithinthe
ecosystem.Currently,firesuppressionandcertaingrazingpatternsintheregionhavelikely
decreasedthefirefrequencyevenmore,anditisunlikelythatfirefrequencyandintensitywould
increaseunderprojectedclimateconditions.However,morefrequentoccurrenceofclimate
extremes(e.g.,verywetconditionsfollowedbyverydryconditions)couldincreasethefrequency
andextentofgrasslandwildfires(Polleyetal.2013).
Otherindirecteffectsofnon‐climatestressors–landscapecondition
Score:0.44
ShortgrasslandscapesinColoradohavebeenheavilyimpactedbyanthropogenicdisturbance,
especiallyinthenortheasternpartofthestate.Alargepartoftherangeforthissystemhasbeen
convertedtoagriculture.AreasinsoutheasternColoradohavebeenimpactedbytheunsuccessful
attemptstodevelopdrylandcultivationpreceedingtheDustBowlofthe1930s.Habitatlossisa
continuingthreattoshortgrassprairie.Tilledagriculturehasbeenlargelysurpassedbyincreasing
urbanizationastheprimarysourceofshortgrassprairiehabitatconversion,althoughthereissome
possibilitythatthiscouldreverseifdemandfordrylandbiofuelcropsweretoaccelerate.Inthe
northeasternportionofColorado,patternsofcultivatedlandhavelargelyfragmentedthematrixof
theshortgrassprairie,reducingoreliminatingconnectivityforspeciesthatdependonthem,and
thistrendislikelytocontinue.Residentialandcommercialdevelopmentisasignificantsourceof
habitatlossandfragmentationonthewesternmarginsofColorado’sshortgrassprairie
distribution,lesssoinotherareas,butrarelyentirelyabsent.
Developmentofoilandgasresourcesisongoinginshortgrassprairiehabitat,especiallyinthe
NiobrarashaleoftheDenver‐JulesburgBasinthatliesundermostofthenorthernportionof
shortgrassprairieextentinColorado.Thedensityofassociatedroads,pipelinecorridors,and
infrastructureisaprimaryongoingsourceofanthropogenicdisturbance,fragmentation,andlossin
thishabitat.Disturbancefromrenewableenergydevelopmentremainssmall,andlargelydueto
134ColoradoNaturalHeritageProgram©2015
concentratedwindturbine“farms”.Utility‐scalesolarinstallationshavethusfarbeenconfinedto
areasnearurbandevelopment,butthereisapotentialforfuturedisturbancefromthistypeof
facility,whichwouldrequireassociatedutilitycorridordevelopment.
Literature Cited
Albertson,F.W.,andJ.E.Weaver.1944.NatureanddegreeofrecoveryofgrasslandfromtheGreatDroughtof1933to
1940.EcologicalMonographs14:393‐479.
Alward,R.D.,J.K.Detling,andD.G.Milchunas.1999.Grasslandvegetationchangesandnocturnalglobalwarming.Science
238(5399):229‐231.
Axelrod,D.I.1985.Riseofthegrasslandbiome,centralNorthAmerica.BotanicalReview51:163‐201.
Carpenter,J.R.1940.Thegrasslandbiome.EcologicalMonographs10:617‐684.
Cherwin,K.,andA.Knapp.2012.Unexpectedpatternsofsensitivitytodroughtinthreesemi‐aridgrasslands.Oecologia
169:845‐852.
Engle,D.M.,B.R.Coppedge,andS.D.Fuhlendorf.2008.FromtheDustBowltotheGreenGlacier:humanactivityand
environmentalchangeintheGreatPlainsgrasslands.Chapter14inO.W.VanAuken,ed.,WesternNorthAmerican
JuniperusCommunities:adynamicvegetationtype.EcologicalStudies,Vol.196.Springer,NewYork.
Ford,P.L.andG.R.McPherson.1997.EcologyoffireinshortgrassprairieofthesouthernGreatPlains.InEcosystem
DisturbanceandWildlifeConservationinWesternGrasslands.pp.20‐39.USDAForestServiceRockyMountainForestand
RangeExperimentStationGeneralTechnicalReportRM‐285.FortCollins,Colorado.
Fuhlendorf,S.D.andD.M.Engle.2001.Restoringheterogeneityonrangelands:ecosystemmanagementbasedon
evolutionarygrazingpatterns.BioScience51:625‐632.
Heisler‐White,J.L.,A.K.Knapp,andE.F.Kelly.2008.Increasingprecipitationeventsizeincreasesabovegroundnet
primaryproductivityinasemi‐aridgrassland.Oecologia158:129‐140.
Kelly,E.F.,C.M.Yonker,S.W.Blecker,andC.G.Olson.2008.Soildevelopmentanddistributionintheshortgrasssteppe
ecosystem.Chapter3(pp30‐54)inLauenroth,W.K.andI.C.Burke(eds.)2008.EcologyoftheShortgrassSteppe:along‐
termperspective.OxfordUniversityPress.
Kotanen,P.M.,J.Bergelson,andD.L.Hazlett.1998.HabitatsofnativeandexoticplantsinColoradoshortgrasssteppe:a
comparativeapproach.CanadianJournalofBotany76:664‐672.
Knopf,F.L.1996.PrairieLegacies–Birds.Chapter10inF.B.SamsonandF.L.Knopfeds.PrairieConservation:Preserving
NorthAmerica’sMostEndangeredEcosystem.IslandPress,Washington,DC.
Lauenroth,W.K.andO.E.Sala.1992.Long‐termforageproductionofNorthAmericanshortgrasssteppe.Ecological
Applications2:397‐403.
Morgan,J.A.,D.G.Milchunas,D.R.LeCain,M.West,andA.R.Mosier.2007.Carbondioxideenrichmentaltersplant
communitystructureandacceleratesshrubgrowthintheshortgrasssteppe.PNAS104:14724‐14729.
Parton,W.J.,W.K.Lauenroth,andF.M.Smith.1981.Waterlossfromashortgrasssteppe.AgriculturalMeteorology24:97‐
109.
PielkeSr.,R.A.andN.J.Doesken.2008.Climateoftheshortgrasssteppe.Chapter2(pp14‐29)inLauenroth,W.K.andI.C.
Burke(eds.)2008.EcologyoftheShortgrassSteppe:along‐termperspective.OxfordUniversityPress.
ClimateChangeVulnerabilityAssessmentforColoradoBLM135
Polley,H.W.,D.D.Briske,J.A.Morgan,K.Wolter,D.W.Bailey,andJ.R.Brown.2013.ClimatechangeandNorthAmerican
rangelands:trends,projections,andimplications.RangelandEcology&Management66:493‐511.
Rondeau,R.J.,K.T.Pearson,andS.Kelso.2013.VegetationresponseinaColoradograssland‐shrubcommunitytoextreme
drought:1999‐2010.AmericanMidlandNaturalist170:14‐25.
Sala,O.E.,andW.K.Lauenroth.1982.Smallrainfallevents:anecologicalroleinsemiaridregions.Oecologia53:301‐304.
Sala,O.E.,W.K.Lauenroth,andW.J.Parton.1982.Plantrecoveryfollowingprolongeddroughtinashortgrasssteppe.
AgriculturalMeteorology27:49‐58.
Sala,O.E.,W.K.Lauenroth,andW.J.Parton.1992.Long‐termsoilwaterdynamicsintheshortgrasssteppe.Ecology
73:1175‐1181.
Shantz,H.L.1923.ThenaturalvegetationoftheGreatPlainsregion.AnnalsoftheAssociationofAmericanGeographers
13:81‐107.
Sims,P.L.,andP.G.Risser.2000.Grasslands.In:Barbour,M.G.,andW.D.Billings,eds.,NorthAmericanTerrestrial
Vegetation,SecondEdition.CambridgeUniversityPress,NewYork,pp.323‐35
Wells,P.V.1965.Scarpwoodlands,transportedgrasslandsoils,andconceptofgrasslandclimateintheGreatPlains
region.Science148:246‐249.
WesternRegionalClimateCenter[WRCC].2014.PeriodofRecordGeneralClimateSummaries‐Temperature,for
Cheyenne,WY,Akron,CO,LaJunta,CO,Goodland,KS,BoiseCity,OK,Tucumcari,NM,Amarillo,TX,andLubbock,TX
stations.[website.]Availableat:http://www.wrcc.dri.edu/summary/Climsmco.html
Woodhouse,C.A.andJ.T.Overpeck.1998.2000yearsofdroughtvariabilityinthecentralUnitedStates.Bulletinofthe
AmericanMeteorologicalSociety79:2693‐2714.
136ColoradoNaturalHeritageProgram©2015
Riparian and Wetland
Table 2.8.Keyvulnerabilities,riparianandwetlandecosystems.
Habitat Climate factor(s) Consequences Other considerations
Riparian‐East Warmeranddrier
conditions,runoffamount
&timing
Earlierpeakflows,lowlate
summerflows,changein
relativespeciesabundance
Highlyaltereddueto
diversionsanddams,
agriculturallanduse
patterns
Riparian‐Mtn.Warmertemperatures,
runofftiming
Earlierpeakflows,lowlate
summerflows,changein
relativespeciesabundance
Connectivity
Riparian‐West Warmeranddrier
conditions,runoffamount
&timing
Earlierpeakflows,lowlate
summerflows,changein
relativespeciesabundance
Highlyaltereddueto
diversionsanddams,
agriculturallanduse
patterns
Wetland‐East Warmer,drierconditionsLowerwatertables,
reducedinput
Strictirrigationcontrol,
highlyaltered
Wetland‐Mtn.Warmertemperatures,
snowmelttiming
Potentialchangeinspecies
composition
Groundwater‐driventypes
morestable
Wetland‐West DrierconditionsLowerwatertables,
reducedinput
Highlyaltered
ClimateChangeVulnerabilityAssessmentforColoradoBLM137
RIPARIAN WOODLANDS AND SHRUBLANDS
Areasofgenerallywoodyvegetationassociatedwithmovingwaterandintermittentflooding
K.Carsey
extentexaggeratedfordisplay
Climate Vulnerability Ranks:
High (Eastern), Low (Mountain), Very High (Western)
Vulnerability summary
Key vulnerabilities:Warmeranddrierconditionsandtheconsequentchangeinrunoffamountand
timingareexpectedtoresultinearlierpeakflowsandlowlate‐summerflows,whicharelikelytoimpact
thestructureandspeciescompositionofriparianvegetation,especiallyatlowerelevations.
Riparianwoodlandandshrublandsoftheeasternplainsandwesternareasarerankedashaving
hightoveryhighvulnerabilitytotheeffectsofclimatechangebymid‐century,whilethoseofthe
mountainregionareconsideredtohavecomparativelylowvulnerability.Thevulnerabilityofsome
speciesassemblagesmaybehigherorlowerthanisreflectedbythecollectiveassessment.The
primaryfactorcontributingtotheserankingsisthedegreetowhichriparianwoodlandsatlower
elevationsareexpectedtoexperiencehighertemperatureswithoutcompensatoryprecipitation
increase.Thelowtomoderateresilienceranksreflectthehighlyalteredconditionofmostofthese
habitats,andingeneral,mostriparianwoodlandsandshrublandsthroughoutthestateshould
probablyberegardedashavingsomedegreeofvulnerabilitytoclimatechangethatisnotcaptured
byourbroad‐scaleassessmentmethods.
Distribution
Weassessedtheconditionofriparianwoodlandsandshrublandsineachofthreeregionsin
Colorado,correspondingroughlytoecoregionsasdefinedbyTheNatureConservancy(2009,
modifiedfromBailey1998):theeasternplains(CentralShortgrassPrairieecoregion);mountains
138ColoradoNaturalHeritageProgram©2015
(SouthernRockyMountainecoregion);andwesternplateausandvalleys(ColoradoPlateau,
WyomingBasins,andotherecoregions).
RiparianwoodlandsandshrublandsoccurthroughoutColorado.IneasternColoradotheyarefound
alongsmall,mediumandlargestreamsontheplains,includingthewidefloodplainsoftheSouth
PlatteandArkansasRivers.Montanetosubalpineriparianwoodlandsareseasonallyflooded
forestsandwoodlandsthroughouttheRockyMountains.Atmontanetosubalpineelevations,
riparianshrublandsmayoccurasnarrowbandsofshrubsliningstreambanksandalluvialterraces,
orasextensivewillowcarrsinbroadfloodplainsandsubalpinevalleys.Theyincludetheconifer
andaspenwoodlandsthatlinemontanestreams.Theyaremostoftenconfinedtospecific
streamsideenvironments,occurringonfloodplainsorterracesofriversandstreamsorinV‐
shaped,narrowvalleysandcanyons(wherethereiscold‐airdrainage).Lessfrequently,high
elevationriparianwoodlandsarefoundinmoderatetowidevalleybottoms,onlargefloodplains
alongbroad,meanderingrivers,andonpondorlakemargins.Theycanalsobefoundaroundseeps,
fens,andisolatedspringsonhillslopesawayfromvalleybottoms.Atlowerelevationsonthe
westernslope,riparianwoodlandsandshrublandsarefoundwithinthefloodzoneofrivers,on
islands,sandorcobblebars,andimmediatestreambanks.Theyoftenoccurasamosaicofmultiple
communitiesthataretree‐dominatedwithadiverseshrubcomponent.
Characteristic species
Ontheeasternplains,riparianwoodlandsandshrublandsaregenerallydominatedbyplains
cottonwood(Populusdeltoides)andwillow(Salixspp.),butalsooccurasamosaicofmultiple
communitiesinterspersedwithherbaceouspatches.
Dominantshrubswithinthemontanetosubalpineelevationzoneincludealder(Alnustenuifolia),
birch(Betulaoccidentalis),dogwood(Cornussericea),andwillowspecies.Generallytheupland
communitiessurroundingtheseripariansystemsareeitherconiferoraspenforests.
Westernriparianforestsaretypicallydominatedbycottonwood(Populusangustifolia,P.deltoides)
andwillow,butmayincludemaple(Acerglabrum),Douglasfir(Pseudotsugamenziesii),spruce
(Piceaspp.),andjuniper(Juniperusspp.).Shrublandsareprimarilydominatedbywillow,alder,and
birch.
Environment
RiparianareasofColorado’seasternplainsareprimarilyassociatedwithintermittentlyflowing
streamsofsmalltomoderatesize,butalsoincludethelargerfloodplainsofthelargesnowmelt‐fed
rivers(SouthPlatteandArkansas).Smallerstreamsreceivewaterfromprecipitationand
groundwaterinflow,havegreaterseasonalflowvariationthanthelargerrivers,andhaveminimal
ornoflowexceptduringfloods(Covichetal.1997).InmountainousareasofColorado,riparian
areasaremuchmorelikelytobeassociatedwithperenniallyflowingstreams,andtheseplant
communitiesareadaptedtohighwatertablesandperiodicflooding.Runoffandseepagefrom
snowmeltisaprimarysourceofstreamflow.LowerelevationriparianareasinwesternColorado
areadaptedtoperiodicflooddisturbanceandpredominantlyaridconditions.Largerstreamsand
riversaresustainedbyrunofffrommountainareas.Smallerstreamsareprimarilysupportedby
ClimateChangeVulnerabilityAssessmentforColoradoBLM139
groundwaterinflow,oroccasionallargeprecipitationevents,andareoftendryforsomeportionof
theyear.
Dynamics
Riparianwoodlandsaretolerantofperiodicfloodingandhighwatertables.Snowmeltmoisturein
thissystemmaycreateshallowwatertablesorseepsforaportionofthegrowingseason.
Manyhigherelevationriparianshrublandsareassociatedwithbeaver(Castorcanadensis)activity,
whichcanbeimportantformaintainingthehealthoftheriparianecosystem(historicallythis
wouldhavebeentrueforlowerelevationstreamsaswell).Beaverdamsabatechanneldown
cutting,bankerosion,anddownstreammovementofsediment.Beaverdamsalsoraisethewater
tableacrossthefloodplainandprovideyear‐roundsaturatedsoils.Plantestablishmentand
sedimentbuild‐upbehindbeaverdamsraisesthechannelbedandcreatesawetlandenvironment.
Hydrologically,smallerriverstendtohavegreaterseasonalvariationinwaterlevelswithless
developedfloodplainthanthelargerrivers,andcandrydowncompletelyforsomeportionofthe
year.Cottonwooddie‐offsrelatedtoprolonged,intensedroughtandhydrologicalalterationshave
affectedsomestands.
Lowerelevationriparianwoodlandsandshrublandsaredependentonanaturalhydrologicregime,
especiallyannualtoepisodicflooding.Thesewoodlandsandshrublandsgrowwithinacontinually
changingalluvialenvironmentduetotheebbandflowoftheriver,andriparianvegetationis
constantlybeing“re‐set”byfloodingdisturbance.Insomeareas,Russianolive(Elaeagnus
angustifolia),tamarisk(Tamarixspp.),andotherexoticspeciesarecommon.
CCVA Scoring
Exposure‐Sensitivity (Potential Impact) Ranks
EasternMountainWestern
PercentColoradoacreswithprojectedtemp>
max&pptdelta<5%55.5%1.8%37.2%
InitialExposure‐SensitivityRankHighLowHigh
PercentColoradoacreswithtemp<=max&ppt
delta<5%morethan50%?No(6.7%)No(25.3%)No(14.7%)
FinalExposure‐SensitivityRankHighLow High
Exposuretotemperaturechange
Underprojectedmid‐centurytemperatures,about60%ofthecurrentrangeofriparianwoodland
andshrublandineasternColoradowouldexperienceannualmeantemperaturesabovethecurrent
statewidemaximum.Theproportionissimilar(54%)forwesternriparianareas,butmuchlower
(2%)inmountainareas.
140ColoradoNaturalHeritageProgram©2015
Exposuretoprecipitationchange
About62%ofriparianwoodlandandshrublandineasternColoradowillbeexposedtoeffectively
drierconditionsevenunderunchangedorslightlyincreasedprecipitationprojectedformid‐
century.Forwesternriparianareas,theproportionisslightlylower(52%),andmountainriparian
areascanexpecttoseeeffectivelydrierconditionsinabout27%oftheirdistribution.
Sensitivityofecosystemtotemperatureandprecipitation
Riparianwoodlandsandshrublandsareadjacenttoandaffectedbysurfaceorgroundwaterof
perennialorephemeralwaterbodies.Theyarecharacterizedbyintermittentfloodinganda
seasonallyhighwatertable.Thecloseassociationofriparianareaswithstreamflowandaquatic
habitatsmeansthatchangingpatternsofprecipitationandrunoffthatalterhydrologicregimesare
likelytohaveadirecteffectonthesehabitats(Caponetal.2013).Inaddition,theinteractionof
increasedgrowthduetoincreasedCO2concentration,warming‐induceddrought,andheat‐stress
withpotentiallyreducedstreamflowsarelikelytoaffectripariancommunitystructureand
composition,especiallyinmorearidareas(Perryetal.2012).
Climateprojectionsformid‐centuryaregenerallyforwarmeranddrieroutcomes,although
precipitationchangeismoreuncertainindirectionandmagnitude(Lucasetal.2014).Annual
runoffandstreamflowareaffectedbybothtemperatureandprecipitation,andeffectsoffuture
changesinthesefactorsaredifficulttoseparate.Warming‐inducedchangesinsnowpackand
snowmelttimingincludeearlierspringsnowmelt,ashifttowardsprecipitationfallingasrain
insteadofsnowinspringandfall,andincreasedsublimationfromthesnowpackthroughoutthe
season.Thesechangesareexpectedtohavegreaterimpactatlowerelevations(Lucasetal.2014).
Theeffectsofwarmingtemperaturesarelikelytochangethehydrologiccyclebyshiftingrunoffand
peakflowstoearlierinthespring,andreducinglatesummer‐earlyautumnflows(Roodetal.
2008).Riparianvegetationisinpartdeterminedbyflowlevels(Aubleetal.1994).Reduced
summerflowsarepredictedtoresultinmorefrequentdroughtstressforriparianhabitats,witha
resultinglossorcontractionofthehabitat(Roodetal.2008).
Resilience and Adaptive Capacity Ranks
EasternOverallScore: 0.52Rank:Moderate
MountainOverallScore:0.60Rank:Moderate
WesternOverallScore:0.49Rank:Low
Bioclimaticenvelopeandrange
Scores:0.57(Eastern),0.81(Mountain),0.66(Western)
Theseshrublandsarenotlimitedtohighelevations,andinColoradoarewellwithintherangeof
continentaldistribution.Lowerelevationtypesoftheeastandwestslopehavesomewhatnarrower
bioclimaticrangesthanmontanetypes.
Growthformandintrinsicdispersalrate
Score:0.5
ClimateChangeVulnerabilityAssessmentforColoradoBLM141
Themixedgrowth‐forms(trees,shrubs,andherbaceous)thatmaybedominantorcharacteristicof
theseecosystemsgivesthemanintermediateresiliencescoreinthiscategory.
Vulnerabilitytoincreasedattackbybiologicalstressors
Scores:0.5
Seedingwithnon‐nativepasturegrasses,invasionbytamariskandexoticforbshasalreadyaltered
speciescompositioninmanyeasternandwesternriparianecosystem,andwillhavealastingeffect.
Invasivespecieswiththepotentialtoalterecosystemfunction(e.g.,tamarisk)areanongoing
managementchallenge.
Forhigherelevationriparianhabitats,invasivespeciesandgrazingareminorimpacts(Chimneret
al.2010),butthesefactorsareanongoingsourceofdisturbanceinlowermontaneriparianareas.
Manyofthesecommunitieshavedegradedunderstories,withweedyherbaceouslayersand
Russianoliveandtamariskinvadingtheshrublayers.
Vulnerabilitytoincreasedfrequencyorintensityofextremeevents
Scores:0.5
Increasedfrequencyandmagnitudeofdroughtislikelytohavesignificantimpactonthesehabitats.
Althoughfirehasoftennotbeenconsideredanimportantdisturbanceinwetlandandriparian
areas,recentevidencesuggeststhatfiresinmosttypesofadjacentuplandvegetationarelikelyto
burnintothesehabitatsaswell(CharronandJohnson2006,StrombergandRychener2010).
Otherindirecteffectsofnon‐climatestressors–landscapecondition
EasternPlainsScore:0.44
RiparianhabitatsofColorado’seasternplainscontinuetobethreatenedbyurban,exurban,and
recreationaldevelopmentaswellasagriculturalactivities(e.g.,tillageandcropproduction,
livestockgrazing,concentratedanimalfeedingoperations)inadjacentuplandswhoseeffects
contributetoagraduallossofhabitatareaandquality.Landusewithintheriparianareaaswellas
inadjacentanduplandareascanfragmentthelandscapeandreduceconnectivitybetweenriparian
patchesandbetweenripariananduplandareas,adverselyaffectingthemovementofsurface/
groundwater,nutrients,anddispersalofplantsandanimals.Roads,bridges,anddevelopmentcan
alsofragmentbothripariananduplandareas.Gravelminingisanadditionalsourceofdisturbance
tothesehabitats,especiallyalongthelargerrivers.
Alterationofnaturalhydrologicalprocessesbydams,diversions,ditches,roads,etc.,andabiotic
resourceconsumptionthroughgroundwaterpumpinghaveconsiderablyalteredthepresettlement
conditionofthesehabitats,andareanongoingthreat.Dams,reservoirs,diversions,ditchesand
otherhumanlandusesalterthenaturalflowregimeofastream,andcandisrupttheecological
integrityoftheripariansystem.Physicalchangesresultingfromalteredflowregimesinclude
downstreamerosionandchannelization,reducedchannelmorphologydynamics,reducedbase
and/orpeakflows,lowerwatertablesinfloodplains,andreducedsedimentdepositioninthe
floodplain(Poffetal.1997).Mosthydrologicalalterationisduetoagriculturalneeds,exceptin
142ColoradoNaturalHeritageProgram©2015
highlydevelopedareasalongthemountainfrontwhereotherusesareovertakingagriculturaluse.
ContinuedgroundwaterpumpingfromtheOgallala‐HighPlainsaquiferhasloweredthewatertable
suchthatmanyformerlyflowingstreamsarenowdryformuchoftheyear(Dodds1997).Flood
controlcangreatlyreducethespatialcomplexityofriparianandwetlandhabitat.
MountainScore:0.69
Riparianareasinmountainareasaregenerallyingoodcondition,althoughnotwithoutimpactfrom
anthropogenicdisturbance.Threatstoriparianwoodlandandshrublandinmountainareasof
Coloradovarywithelevation.Additionalfragmentationandlossofriparianhabitatsatlower
elevationinmountainousareasofColoradoduetourbanizationandagricultureisanongoing
threatinmanyareas.Athigherelevationswherelandsareinpublicownershipthesehabitatsare
mostthreatenedbyrecreationaldevelopmentandusewhereroadsprovideaccessandareasource
ofsedimentationandpollutantrunoff.Exceptatthehighestelevations,fewmountainriparian
habitatsarewithouthydrologicalmodification,andtheongoingstressesfromreservoirs,dams,
diversions,andsimilaralterationsincludedownstreamerosionandchannelization,reduced
channelmorphologydynamics,reducedbaseand/orpeakflows,lowerwatertablesinfloodplains,
andreducedsedimentdepositioninthefloodplain(Poffetal.1997).
WesternSlopeScore:0.40
RiparianareasinwesternColoradoaregenerallyinfaircondition,andhavebeenheavilyimpacted
byanthropogenicdisturbanceinmanyareas.Threatstoriparianhabitatsfromongoingurbanand
exurbandevelopmentaregenerallylessinmostareasofColorado’swestslopeincomparisonwith
theFrontRange,butnotabsent.Agriculturalactivitiesareubiquitousinlowerelevationriparian
habitats,includingirrigatedtilledanduntilledcrops,anddomesticlivestockgrazing.Gravelmining
iscommonalongthelargerrivers.Thesedisturbancesarelikelytocontinuetoproduceagradual
reductioninhabitatareaandqualityinwestsloperiparianhabitats.
Literature Cited
Auble,G.T.,J.M.Friedman,andM.L.Scott.1994.Relatingriparianvegetationtopresentandfuturestreamflows.Ecological
Applications4:544‐554.
Bailey,R.1998.EcoregionsmapofNorthAmerica:Explanatorynote.USDAForestService,Misc.Publicationno.1548.10
pp.+mapscale1:15,000,000
Capon,S.J.,L.E.Chambers,R.MacNally,R.J.Naiman,P.Davies,N.Marshall,J.Pittock,M.Reid,T.Capon,M.Douglas,J.
Catford,D.S.Baldwin,M.Stewardson,J.Roberts,M.parsons,andS.E.Williams.2013.Riparianecosystemsinthe21st
century:hotspotsforclimatechangeadaptation?Ecosystems16:359‐381.
Charron,I.andE.A.Johnson.2006.Theimportanceoffiresandfloodsontreeagesalongmountainousgravel‐bedstreams.
EcologicalApplications16:1757‐1770.
Chimner,R.A.,J.M.Lemly,andD.J.Cooper.2010.Mountainfendistribution,typesandrestorationpriorities,SanJuan
Mountains,Colorado,USA.Wetlands30:763‐771.
ClimateChangeVulnerabilityAssessmentforColoradoBLM143
Covich,A.P.,S.C.Fritz,P.J.Lamb,R.D.Marzolf,W.J.Matthews,K.A.Poiani,E.E.Prepas,M.B.Richman,andT.C.Winter.1997.
PotentialeffectsofclimatechangeonaquaticecosystemsoftheGreatPlainsofNorthAmerica.HydrologicalProcesses
11:993‐1021.
Dodds,W.K.1997.DistributionofRunoffandRiversRelatedtoVegetativeCharacteristics,Latitude,andSlope:AGlobal
Perspective.JournaloftheNorthAmericanBenthologicalSociety,16:162‐168.
Holsinger,L.,R.E.Keane,D.J.Isaak,L.Eby,andM.K.Young.2014.Relativeeffectsofclimatechangeandwildfireson
streamtemperatures:asimulationmodelingapproachinarockyMountainwatershed.ClimaticChange124:191‐206.
Lucas,J.,J.Barsugli,N.Doesken,I.Rangwala,andK.Wolter.2014.ClimateChangeinColorado:asynthesistosupport
waterresourcesmanagementandadaptation.Secondedition.ReportfortheColoradoWaterConservationBoard.
WesternWaterAssessment,CooperativeInstituteforResearchinEnvironmentalSciences(CIRES),UniversityofColorado
Boulder.
Perry,L.G.,D.C.Andersen,L.V.Reynolds,S.M.Nelson,andP.B.Shafroth.2012.Vulnerabilityofriparianecosystemsto
elevatedCO2andclimatechangeinaridandsemiaridwesternNorthAmerica.GlobalChangeBiology18:8221‐842.
Poff,N.L.,M.M.Brinson,andJ.W.Day.2002.Aquaticecosystemsandglobalclimatechange:potentialimpactsoninland
freshwaterandcoastalwetlandecosystemsintheUnitedStates.PreparedforthePewCenteronGlobalClimateChange.
Available:http://www.c2es.org/publications/aquatic‐ecosystems‐and‐climate‐change
Rood,S.B.,J.Pan,K.M.Gill,C.G.Franks,G.M.Samuelson,andA.Shepherd.2008.DecliningsummerflowsofRocky
Mountainrivers:changingseasonalhydrologyandprobableimpactsonfloodplainforests.JournalofHydrology349:397‐
410.
Stromberg,J.C.andT.J.Rycheneer.2010.Effectsoffireonriparianforestsalongafree‐flowingdrylandriver.Wetlands
30:75‐86.
TheNatureConservancy[TNC].2009.TerrestrialEcoregionsoftheWorld,digitalvectordata.TheNatureConservancy,
Arlington,Virginia.
144ColoradoNaturalHeritageProgram©2015
WETLANDS
Herbaceousvegetationdominatedareascharacterizedbywatersaturationandhydricsoils
G.Doyle
extentexaggeratedfordisplay
Climate Vulnerability Ranks:
High (Eastern), Moderate (Mountain and Western)
Vulnerability summary
Key vulnerabilities:Warmeranddrierconditionsforlowerelevationwetlandsarelikelytoresultin
reducedinputstothesehabitats,andlowergroundwaterlevelsingeneralthatmayreducetheextent
anddegradetheconditionofwetlands.Inhigherelevationswarmertemperaturesandconsequent
earliersnowmeltmayinfluencethespeciescompositionofwetlandhabitats.Ground‐waterdependent
wetlandsathigherelevationsareexpectedtobesomewhatbufferedfromhydrologicchange.
Wetlandhabitatsofthewesternvalleysandmountainareasarerankedashavingmoderate
vulnerabilitytotheeffectsofclimatechangebymid‐century,whilethoseoftheeasternplainsare
consideredhighlyvulnerable.Theprimaryfactorcontributingtothehigherrankingforeastern
plainswetlandsisthedegreeofincreasedtemperatureprojectedforthatregion,incomparison
withtheotherregions.Thevulnerabilityofsomespeciesassemblagesmaybehigherthanis
reflectedbythecollectiveassessment.Themoderateresilienceranksreflectthehighlyaltered
conditionofmostofthesehabitats,andingeneral,allwetlandsthroughoutthestateshould
probablyberegardedashavingsomedegreeofvulnerabilitytoclimatechangethatisnotcaptured
byourbroad‐scaleassessmentmethods.
Distribution
Weassessedtheconditionofnon‐riparianwetlandsineachofthreesectionsofColorado,
correspondingapproximatelytoecoregionsasdefinedbyTheNatureConservancy(2009,modified
fromBailey1998):theeasternplains(CentralShortgrassPrairieecoregion);mountains(Southern
ClimateChangeVulnerabilityAssessmentforColoradoBLM145
RockyMountainecoregion);andwesternplateausandvalleys(ColoradoPlateau,WyomingBasins,
andotherecoregions).Asconsideredherein,wetlandsareareascharacterizedbywatersaturation
andhydricsoilstypicallysupportinghydrophyticvegetation.
InColorado,non‐riparianwetlandhabitatsincludemoisttowetmeadows,emergentmarshes,fens,
andseepsandsprings.Non‐riparianwetlandsofColorado’seasternplainsandwesternvalleysare
primarilymarshes,seepsandsprings,andwetmeadows.Playas(shallow,temporarywetlands)are
scatteredthroughouttheeasternplains,andoccurinlimiteddistributiononthewesternslopeas
well.Althoughnaturalmarshesandwetmeadowsareprimarilyfoundathigherelevations,
irrigationpractices(directfloodapplication,irrigationtailwaters,elevatedgroundwaterlevels,
etc.)havegreatlyincreasedtheincidenceofwetmeadowsontheeasternplains(Sueltenfussetal.
2013).Mostofthestate’swetmeadowsoccurinmountainousareasofColorado,andmarshesare
generallylesscommon.Fensarealsocharacteristicofthemountainregion.
Characteristic species
Naturalwetmeadowsaredominatedbynativesedgesandgrasses,whilethoseinfluencedby
irrigationmaybedominatedbynon‐nativepasturegrasses.Seepsandspringshavegenerally
similarvegetationtowetmeadows.
Standingwaterinemergentmarshesrestrictsthedominantspeciestorobustwetlandplants,such
ascattail(Typha),bulrush(ScirpusandSchoenoplectusspp.),andlargesedges(Carexspp.).Atlower
elevations,marshescanbecomedenselyvegetatediftheyarenotperiodicallyflushedby
floodwaterormechanicalthinning.
Fenvegetationisgenerallycharacterizedbyadensecoverofsedgesandmoss,oftenintermixed
withforbsandshorttodwarfshrubssuchaswillowandbogbirch(Betulanana).
Environment
MeadowsoccurthroughoutColorado,butmostnaturalwetmeadowsarefoundwithinthemontane
tosubalpinezone.Naturalwetmeadowsaretightlyassociatedwithsnowmeltorsubsurface
groundwaterdischargeandtypicallynotsubjectedtohighdisturbanceeventssuchasflooding.
Withinmountainvalleysandatlowerelevations,extensiveacresofwetmeadowsarealsolinkedto
irrigationpractices,includingfloodirrigationandseepagefromirrigationditches.
Emergentmarshesarewetlandsthatexperiencefrequentorprolongedponding.Marshesoccurin
depressionsandkettleponds,asfringesaroundlakes,alongstreamsandrivers,andbehindmany
typesofimpoundments.Theycanbefoundatallelevations,butaremorecommonatmidtolower
elevations.
Fensarewetlandswiththickorganicsoilsthataresupportedbystablegroundwaterdischarge.
Fensaretypicallyfoundwithinthemontanetosubalpinezone,generallyabove7,000ft.,andcan
formalongtheedgesofvalleybottoms,atbreaksinslope,aroundhillslopeseeps,inshallowbasins
oranywherewheresufficientgroundwateremergestoperenniallysaturatesoils.Fensare
146ColoradoNaturalHeritageProgram©2015
considered“oldgrowth”wetlands,astheaccumulationofthickorganicsoilscantakethousandsof
years.
Seepsandspringsincludesmallwetlandsthatarehydrologicallysupportedbygroundwater
discharge.TheyarefoundthroughoutColoradoandcanbeacomponentofthepreviously
describedwetlandtypes,butaremostnotablewithinthecliffandcanyoncountryoftheColorado
PlateauandtheLowerArkansasbasin.
Dynamics
Hydrologyistheprimarydeterminantofthedevelopmentandpersistenceofwetlandecosystems,
andvariationsintiminganddurationofinundationlargelydeterminethetypeofwetland.The
waterbudgetorhydroperiodofawetlandincludesprecipitation,evapotranspiration,andboth
surfaceflowandgroundwater.Althoughwatermaynotbecontinuouslypresentinwetlands,asa
generalruleofthumbinundationduringatleast14consecutivegrowingseasondaysissufficientto
exertasignificantinfluenceonwetlandprocesses(CulverandLemly2013).
CCVA Scoring
Exposure‐Sensitivity (Potential Impact) Rank
EasternMountainWestern
PercentColoradoacreswithprojectedtemp>
max&pptdelta<5%37.2%0.8%15.3%
InitialExposure‐SensitivityRankHighLowModerate
PercentColoradoacreswithtemp<=max&ppt
delta<5%morethan50%?No(11.3%)Yes(54.5%)No(43.5%)
FinalExposure‐SensitivityRankHighModerate Moderate
Exposuretotemperaturechange
Underprojectedmid‐centurytemperatures,about43%ofthecurrentrangeofwetlandecosystem
ineasternColoradowouldexperienceannualmeantemperaturesabovethecurrentstatewide
maximum.Theproportionislower(19%)forwesternwetlands,andquitelow(1%)inmountain
areas.
Exposuretoprecipitationchange
About49%ofwetlandhabitatsineasternColoradowillbeexposedtoeffectivelydrierconditions
evenunderunchangedorslightlyincreasedprecipitationprojectedformid‐century.Forwestern
wetlandecosystems,theproportionissomewhathigher(59%),andmountainwetlandscanalso
expecttoseeeffectivelydrierconditionsinabout55%oftheirdistribution.
Sensitivityofecosystemtotemperatureandprecipitation
Bothtemperatureandprecipitationcanaffectthepresenceandextentofwetlandsonthe
landscape.Warmer,drierconditionsarelikelytoleadtolowergroundwaterlevels,atleastduring
certainseasons,andcanhaveanegativeimpactontheseecosystems.Earlierspringrun‐offwould
ClimateChangeVulnerabilityAssessmentforColoradoBLM147
resultindryingconditionsbylatesummer,possiblyreducingthesizeofexistingwetlands.
Similarly,wetlandscurrentlysupportedbylate‐meltingsnowfieldsarelikelytodrysoonerthan
undercurrentconditions.
Effectsofclimatechangeonwetlandsareexpectedtobelargelymediatedthroughthesourceof
water,eitherprecipitation,groundwaterdischarge,or,forwetlandsassociatedwithriparianareas,
surfaceflow(Winter2000).Precipitationsupportedwetlandsarethoughttobemostvulnerableto
drierclimaticoutcomes,butdecreasingprecipitationwouldalsobelikelytolowerwatertable
levelsandleadtocontractionofgroundwater‐fedwetlands(Winter2000,Poffetal.2002).Under
wetterconditions,somewetlandtypesmaybeabletoexpandoratleastmaintaincurrentextents.
Considerationoftheeffectsofchangingprecipitationisfurthercomplicatedbythefactthat
wetlandsmayreceivewaterinputfromthesurroundingbasin,notjusttheimmediateenvirons
(Gitayetal.2001).
Temperatureaffectswetlanddistributionandfunctionprimarilythroughitseffectsonratesof
chemical,physicalandbiologicalprocesses(GageandCooper2007).Althoughwetlandsareto
someextentbufferedfromtheimmediateeffectsofwarmingonwatertemperature,warmingcould
increasebothplantgrowthandmicrobialactivitydrivingdecomposition(Fischlinetal.2007).
Temperatureisalsoadriverofevapotranspirationrate,andthewatercycleingeneral(Gitayetal.
2001).
Variationinclimaticconditionsaffectsgroundwaterlevelsbothdirectlyviarechargerates,and
indirectlythroughchangesinpatternsofgroundwateruse,especiallyirrigation(Tayloretal.2012).
Drierfutureconditionsarelikelytoresultintightercontrolsonirrigationseepage,anda
consequentreductioninwetlandacressupportedbythissource.Althoughclimatechangeis
expectedtohaveasignificanteffectonwetlandsthroughchangesintheseasonalityandvariability
ofprecipitationandextremeevents(Gitayetal.2005),changingwaterusepatternsinresponseto
climatechangearealsolikelytoplayamajorroleinthefutureofwetlands(Tayloretal.2012).
Resilience and Adaptive Capacity Rank
EasternOverallScore: 0.52Rank:Moderate
MountainOverallScore:0.59Rank:Moderate
WesternOverallScore:0.52Rank:Moderate
Bioclimaticenvelopeandrange
Scores:0.66(Eastern),0.77(Mountain),0.69(Western)
Mostwetlandsarenotlimitedtohighelevations,andinColoradoarewellwithintherangeof
continentaldistribution.Lowerelevationtypesoftheeastandwestslopehavesomewhatnarrower
bioclimaticrangesthanmontanetypes.
Growthformandintrinsicdispersalrate
Score:0.5
148ColoradoNaturalHeritageProgram©2015
Thisecosystemisdominatedbyrelativelyfastgrowinggraminoidandherbaceousspecies,butmay
berestrictedindispersalabilityifhabitatsareisolatedwithinthelandscape.
Vulnerabilitytoincreasedattackbybiologicalstressors
Scores:0.5
Forhigherelevationwetlands,invasivespeciesandgrazingareminorimpacts(Chimneretal.
2010),butthesefactorsareanongoingsourceofdisturbanceinlowerelevationwetlandsthat
lowertheresilienceoftheseoccurrences.Invasivespecieswiththepotentialtoalterecosystem
functionareanongoingmanagementchallenge.Impactedwetlandsmaybemorevulnerableto
invasionbyexoticspecies.
Vulnerabilitytoincreasedfrequencyorintensityofextremeevents
Scores:0.5
Increasedfrequencyandmagnitudeofdroughtislikelytohavesignificantimpactonthesehabitats.
Eventualimpactsofclimatechangeonaquifersourceofwatercouldeventuallyeliminatesome
types(seeps)fromsomeareas.
Otherindirecteffectsofnon‐climatestressors–landscapecondition
EasternPlainsScore:0.43
WetlandsofColorado’seasternplainscontinuetobethreatenedbyurbanandexurban
developmentaswellasagriculturalactivities(e.g.,tillageandcropproduction,livestockgrazing,
concentratedanimalfeedingoperations)inadjacentuplandswhoseeffectscontributetoagradual
lossofhabitatareaandquality.Theincidentalcreationofwetlandsthroughwatermanagement
activitiesisgenerallynotsufficienttocompensateforlossesinthisecosystem.
MountainScore:0.67
WiththeexceptionoftheextensivewetlandsoftheSanLuisValley,wherewaterdevelopmentfor
agriculturaluseisextensive,wetlandhabitatsinmountainareasofColoradoaregenerallyingood
condition,withfeweranthropogenicimpacts,andareoveralllessthreatenedbydevelopmentand
agriculturethanthoseinlowerelevationsofthestate.
WesternSlopeScore:0.41
WetlandhabitatsinwesternColoradohavebeenheavilyimpactedbyanthropogenicactivities,and
areofteninonlyfaircondition.Alteredhydrologyduetodams,diversions,andgroundwater
pumpingmayinteractwithwarmingtemperaturesandchangesinprecipitationpatterntoalter
groundwaterrechargerates,andleadtodryingorcontractionofwetlands.Hanginggardensarean
especiallyfragilewetlandtypeofthewesternslope.Wheretheyareaccessibletofoottrafficor
livestock,erosion,trampling,andintroductionofexoticspeciesareanongoingthreat.
ClimateChangeVulnerabilityAssessmentforColoradoBLM149
Literature Cited
Bailey,R.1998.EcoregionsmapofNorthAmerica:Explanatorynote.USDAForestService,Misc.Publicationno.1548.10
pp.+mapscale1:15,000,000
Culver,D.R.andJ.M.Lemly.2013.FieldGuidetoColorado’sWetlandPlants:Identification,EcologyandConservation.
ColoradoNaturalHeritageProgram,WarnerCollegeofNaturalResources,ColoradoStateUniversity,FortCollins,
Colorado.
Fischlin,A.,G.F.Midgley,J.T.Price,R.Leemans,B.Gopal,C.Turley,M.D.A.Rounsevell,O.P.Dube,J.Tarazona,A.A.Velichko.
2007.Ecosystems,theirproperties,goods,andservices.ClimateChange2007:Impacts,AdaptationandVulnerability.
ContributionofWorkingGroupIItotheFourthAssessmentReportoftheIntergovernmentalPanelonClimateChange,
M.L.Parry,O.F.Canziani,J.P.Palutikof,P.J.vanderLindenandC.E.Hanson,Eds.,CambridgeUniversityPress,Cambridge,
211‐272.
Gage,E.,andD.J.Cooper.2007.Historicrangeofvariationassessmentforwetlandandriparianecosystems,U.S.Forest
ServiceRegion2.PreparedforUSDAForestService,RockyMountainRegion.DepartmentofForest,Rangelandand
WatershedStewardship,ColoradoStateUniversity,FortCollins,Colorado.
Gitay,H.,A.SuarezandR.T.Watson.2002.ClimateChangeandBiodiversity.IPCCTechnicalPaper,Intergovernmental
PanelonClimateChange,Geneva,77pp.
Gitay,H.,S.Brown,W.EasterlingandB.Jallow.2001.Ecosystemsandtheirgoodsandservices.ClimateChange2001:
Impacts,Adaptation,andVulnerability.ContributionofWorkingGroupIItotheThirdAssessmentReportofthe
IntergovernmentalPanelonClimateChange,J.J.McCarthy,O.F.Canziani,N.A.Leary,D.J.DokkenandK.S.White,Eds.,
CambridgeUniversityPress,Cambridge,237‐342.
Poff,N.L.,M.M.Brinson,andJ.W.Day.2002.Aquaticecosystemsandglobalclimatechange:potentialimpactsoninland
freshwaterandcoastalwetlandecosystemsintheUnitedStates.PreparedforthePewCenteronGlobalClimateChange.
Available:http://www.c2es.org/publications/aquatic‐ecosystems‐and‐climate‐change
Sueltenfuss,J.P.,D.J.Cooper,R.L.Knight,andR.M.Waskom.2013.Thecreationandmaintenanceofwetlandecosystems
fromirrigationcanalandreservoirseepageinasemi‐aridlandscape.Wetlands33:799‐810.
Taylor,R.G.,B.Scanlon,P.Dölletal.2012.Groundwaterandclimatechange.NatureClimateChange3:322‐329.
TheNatureConservancy[TNC].2009.TerrestrialEcoregionsoftheWorld,digitalvectordata.TheNatureConservancy,
Arlington,Virginia.
Winter,T.C.2000.Thevulnerabilityofwetlandstoclimatechange:ahydrologiclandscapeperspective.Journalofthe
AmericanWaterResourcesAssociation.36:305‐311.
150ColoradoNaturalHeritageProgram©2015
FRESHWATER ECOSYSTEMS – METHODS
InconsultationwithBLM,CNHPidentifiedsixfreshwaterecosystemgroupstobeassessed(Table
2.9).Ouranalysisevaluatedtheassociatedwetlandandriparianecosystemsseparately,sothat
vulnerabilityresultsherearenotnecessarilytiedtotheassessmentspresentedabove.
Table 2.9.Freshwaterecosystemtargets.
Freshwater Ecosystems
Streams–highelevation(>6,500ft)coldwaterRivers
Streams–midelevation(<6,500ft)coolandwarmerwaterLakes
CooltocoldwatertransitionalstreamareasReservoirs
Thevulnerabilityoffreshwaterecosystemstoclimatechangebymid‐centurywasevaluated
throughacombinationofspatialandnarrativemethods.Theprimarymethodofspatialevaluation
isbasedonamodelofprojectedchangeinwatertemperaturearoundacoldtocool‐waterfisheries
transitionline.
Transition line model
STORETwatertemperaturedatawithinColoradoweredownloadedfromtheEPAwebsite.Sample
datesrangedfrom1964to2013duringalltimesofyearandday.Thenumberofdatarecordsper
stationrangesfrom1tonearly2,000.Julywasassumedtobethecriticalmonthduringwhichwater
temperaturesreaching68°F(20°C)couldnegativelyimpactcoldwaterfishes.Fromthefulldataset
(68,948records),7,373datapointsfrom1,413stationsweretakenduringthemonthofJuly,
rangingover1964‐1984.Julysamplestationsarenotevenlydistributedacrossthestate,with
relativelyfewacrosstheeasternplainsandneartheWyomingborder,andwithgenerallyclumped
spacing(Figure2.10).
MultipleJulydatarecordsforasinglestationwereaveraged.MeanJulywatertemperatureper
stationrangedfrom33.8‐87.1°F(1‐30.6°C).
A2‐power,cross‐validatedlocalpolynomialinterpolationwascalculatedonthemeanJulywater
temperaturestoderivewatertemperaturecontourlinesacrossthestate.Temperaturevalueswere
weightedbynumberofsamplerecordsperstation,togivehigherweighttothemorecertainvalues.
Notsurprisingly,modelfitwaspoorinthoseareaswithfewdatapoints,butwasexcellenttogood
inthoseareasmostlikelytorepresentthetemperaturetransitionline(Figure2.11),sowedeemed
themodelacceptableforthecurrentpurpose.
ClimateChangeVulnerabilityAssessmentforColoradoBLM151
Figure 2.10.STORETstationswithJulywatertemperaturereadings.
Figure 2.11.PredictionStandardError.
152ColoradoNaturalHeritageProgram©2015
AfilledcontourforJulywatertemperaturesbetween67‐69°F(19.5‐20.5°C)wasgeneratedfrom
thelocalpolynomialinterpolationpredictionsurface(Figure2.12).Projectedfuturetemperatureis
availableassurfaceairtemperature,andthereisnotaone‐to‐onerelationshipbetweenairand
watertemperaturesoverColorado'scomplextopographical,elevational,andlatitudinalranges.To
accountfornorth‐southandeast‐westgradientsintranslatingthewatertemperaturecontourtoair
temperature,wedividedthestateintosixequalsections.Foreachoffoursections(thetwoeastern
sectionswerenotusedduetolackofdata)wecalculatedthemeanandstandarddeviationofthe
currentmeanJulyairtemperatureforeachwatertemperaturecontoursegmentwithinthesection
(theSouth‐CentralsectionhastwoseparatecontourstodistinguishtheconditionswithintheSan
LuisValley(Figure2.12).
Figure 2.12.Interpolatedwatertemperature67‐69°Ffilledcontour,splitintoNorth‐West,North‐Central,South‐
West,andSouth‐Centralsections.ColorsrepresentthemeanJulyairtemperaturecoincidingwitheachcontour
section.
Eachfilledcontoursectionisnotasinglelinebutanarea.Airtemperaturesbelowthemeancanbe
thoughtofasrepresentingthe"leading"edgeofthetransitionbetweencoldandcool‐water
fisheries,whilevaluesabovethemeanwouldrepresentthe"trailing"edgeforthetransitionfrom
cooltowarm‐waterfisheries.Ouranalysisfocusedonmeanvalues(Table2.10)asthebest
representationoftheoveralltransitionarea.
Foreachcontoursegmentshownabove(NW,NC,SW,SC,andtheSanLuisValley),wegenerateda
contourofthecurrentJulyairtemperaturemeanvalue(tablecolumnshadedinblue).Thesefive
sectionalcontourswerethenmanuallystitchedtogetherintoasinglecohesivetemperature
ClimateChangeVulnerabilityAssessmentforColoradoBLM153
contourforthestate,representingthecurrentcoldtowarm‐waterfisheriestransitionline.The
sameprocedurewasfollowedtocreateprojectedfuturetransitionlinesforRCP4.5andRCP8.5
(Figure2.13).ThevulnerabilityanalysiswasmadebycomparingthecurrentandRCP8.5lines,to
maintainconsistencywiththeterrestrialecosystemevaluation.Notethat,becauseweareusingair
temperatureasaproxyforwatertemperature,cold‐waterreleasesfromreservoirstoragearenot
accountedforinthemodel.
Table 2.10.Meanandstandarddeviation(STD)currentJulyairtemperature(°F)valuesforeachcontoursegment
withinasection.Valuesinparenthesesare°C.
Section Mean STD
SC,valley63.4(17.4)2.78(1.55)
NW66.7(19.3)3.61(2.00)
SC,east68.6(20.3)4.76(2.64)
SW69.6(20.9)3.49(1.94)
NC69.8(21.0)3.13(1.74)
Themodeledtransitionlinewasusedtoassignstreamandriverreachestocold,transitional,or
warmwatercategories.Transitionalreachesarethoselyingwithinapproximately0.5kmoneither
sideofthetransitionline;exactdistancesaresomewhatvariabledependingonlocalstream
morphologyandreachsegmentlength.
Exposuretoclimatechangewasevaluatedbycomparingthetotalstreamlengthcurrentlyfallingin
eachcategorywiththetotalsunderprojectedmid‐centuryconditions.Percentchangebetween
categoriesissummarizedbyregion(Eastern,Mountain,Western),usingthesamedivisionsthat
wereappliedtowetlandandriparianecosystems.
Tofocusthevulnerabilityanalysisonthelossofcoldwaterandtransitionalreaches,weuseda
decision‐treebasedoncurrentandprojectedstreamlengthsinthesecategoriestoassignexposure
ranksforstreamsandrivers(Figure2.14).Vulnerabilityishighestinregionswherecurrently
existingcoldwaterandtransitionalreachesareessentiallyentirelyeliminated.Inregionswhere
currentpresenceofcoldortransitionalreachesisalreadyverylow,vulnerabilityismoderate,in
thatlossesareminimal,butalreadywarmreachesareexposedtoadditionalwarminganddrying.
Vulnerabilityisalsomoderateinareaswherelengthsofcoldandtransitionalreacheswilldecline
substantially,butremainpresent.Areaswherecoldandtransitionalreachesremainpresentin
substantiallengthshavecomparativelylowvulnerability.
154 ColoradoNaturalHeritageProgram©2015
Figure 2.13.Modeledtransitionline.
ClimateChangeVulnerabilityAssessmentforColoradoBLM155
Cold+Transitionalreachescurrently>50km?
No Yes
ModerateCold+Transitionalreachesinmid‐century>50km?
No Yes
HighCold+Transitionalreachesinmid‐century>500km?
No Yes
ModerateCold+Transitionalreachesinmid‐century>10,000km?
No Yes
ModerateLow
Figure 2.14.Decision‐treeforexposurecriteriaappliedtoriversandstreams.
LakesandreservoirsarepoorlydistinguishedinmostGISdata,andtherearefewnaturallakesin
Coloradothathavenotbeenmodifiedtosomeextentforwaterstorage.Weconsideredanywater
bodywithsurfaceareagreaterthanorequalto3km2areservoir,andsmallerwaterbodieswere
classifiedaslakes.Bothlakesandreservoirsweredesignatedaseither“high”or“low”elevation,
accordingtotheirpositioninrelationtothemodeledtransitionaltemperatureline.GISmetrics
werecalculatedusingthesamesixdivisionsofthestateshowninFigure2.12,toaccountfornorth‐
southandeast‐westtemperaturedifferencesinherentinColorado.Exposurewascalculatedfor
lakesandreservoirsusingmethodssimilarforthoseusedinevaluatingterrestrialecosystems
(proportionofacreagewhereprojectedannualmeantemperatureformid‐centuryunderRCP8.5
wasgreaterthananyannualmeantemperaturescurrentlyexperiencedbythatecosystemwithin
Colorado,ANDprojectedfutureprecipitationchangeswerelessthan5%increaseovercurrent
levels,butwithoutadditionalmodifiers(Table2.11).
Table 2.11.Criteriaforscoringexposureoflakesandreservoirsfreshwaterecosystems.
PercentColoradoacreswithprojected
temp>max&pptdelta<5%36–100%16–35%0–15%
InitialExposure‐SensitivityScoreHighModerateLow
Resilience‐Adaptive Capacity Assessment – Freshwater Ecosystems
Thisscoresummarizesindirecteffectsandnon‐climatestressorsthatmayinteractwithclimate
changetoinfluencetheadaptivecapacityandresilienceofanecosystem.Factorsevaluatedare
adaptedfromthemethodologyusedbyManometCenterforConservationScienceand
MassachusettsDivisionofFishandWildlife(MCCSandMAFW2010),combinedunderfiveheadings
(Table2.12).Factorswerescoredonascaleof0(lowresilience)to1(highresilience).
156ColoradoNaturalHeritageProgram©2015
Table 2.12.Descriptionoffactorsusedtoassessresilience‐adaptivecapacityinfreshwaterecosystems.
Assessment factor Description
Restrictiontospecifichydro‐
geomorphicsetting
Fundamentalgeomorphiccharacteristicsthatdefinestreamandwetland
systems(elevation,slope,drainagearea)donotchangeappreciablyover
decades.However,headwaterstreamsareconstrainedbyupperlimitsto
watersheds,somelargerstreamsorriversareconstrainedattheirlower
limitsbythepresenceofwaterbodies,includinglargereservoirs,andlakes
orreservoirsarefixedinlocation.Inaddition,increasingtemperatureand
accompanyingchangesinhydrologyandwaterqualitycouldresultinthe
transitionofonestreamorrivertypetoanother.
Vulnerabilitytochangein
snowmelttimingand
magnitude,and/ordecreasing
baseflows
Thetimingandmagnitudeofsnowmeltrunoffprovideakeyhabitat
componentforsomeaquaticspecies.Earlierpeakflows,reducedflows,
changesinfloodfrequencyormagnitude,andtheoverallshapeofthe
hydrographmaychangeunderprojectedclimaticconditions.Effectscould
includeshiftsinspawningbehavior,aswellaslossordisplacementof
spawningbedsandotherimportanthabitatstructure.Lowerbaseflows,and
reducedgroundwaterdischargearepossibleunderprojectedincreased
temperatures.Thesechangescanreducehabitatarea,aswellasincreasing
habitatvulnerabilitytotemperatureandwaterqualitystress.Finally,if
overallwatersuppliesdecrease,anthropogeniceffortstodivertandstore
waterarelikelytoincreasethelevelofhydrologicmodificationinthese
ecosystems.
Vulnerabilitytoincreased
impactbybiologicalstressors
Thisfactorsummarizeswhetherexpectedfuturebiologicalstressors
(invasivespecies,pestsandpathogens)havehad,orarelikelytohave,an
increasedeffectduetointeractionswithchangingclimate.Climatechange
mayresultinmorefrequentormoresevereoutbreaksofthesestressors.
Ecosystemsthatarecurrentlyvulnerabletothesestressorsmaybecome
moresounderclimatechange.Aquaticpathogensofconcerninclude
whirlingdisease,giardia,andcryptosporidium.Increasedtemperaturesand
theresultinghydrologicchangesmaymakefreshwaterecosystemsmore
susceptibletoinvasionbynon‐nativespecies,includingquaggamussel,New
Zealandmudsnail,rustycrayfish,Eurasianmillefoil,andothers.Finally,native
species(e.g.,thealgaDidymospheniageminata)canproliferateasnuisance
speciesunderchangingclimaticconditions.
Vulnerabilitytoincreased
frequencyorintensityof
extremeevents
Thisfactorevaluatescharacteristicsofanecosystemthatmakeitrelatively
morevulnerabletoextremeevents(floods,drought,fire)thatareprojected
tobecomemorefrequentand/orintenseunderclimatechange.Flooding
anddroughtfrequencymayaltergeomorphicprocesses,sedimentation,
waterquality,andthestabilityofsmallpopulations.Anincreaseinlargefires
maychangesedimentloadsandwaterquality.
Otherindirecteffectsofnon‐
climatestressors
Thisfactorsummarizestheoverallconditionoftheecosystematthe
landscapelevelacrossColorado,andisderivedfromasummaryimpactscore
indexingthedegreeofhydrologicalmodificationandanthropogenic
disturbance(TNC2012).
ClimateChangeVulnerabilityAssessmentforColoradoBLM157
Restriction to specific hydro‐geomorphic setting
Scoresof0=lowresilience,0.5=intermediateoruncertainresilience,and1=highresiliencewere
assigned,basedonbestprofessionaljudgementfocusedontherelativevulnerabilityofeachtypein
comparisonwithothertypes.
Vulnerability to change in snowmelt timing and magnitude, and/or decreasing baseflows
Scoresof0=lowresilience,0.5=intermediateoruncertainresilience,and1=highresiliencewere
assigned,basedonbestprofessionaljudgementfocusedontherelativevulnerabilityofeachtypein
comparisonwithothertypes.
Vulnerability to increased impact by biological stressors
Foreachbiologicalstressor(invasivespeciesandpathogens‐pests)towhichanecosystemis
believedvulnerable,0.5wassubtractedfromadefaultscoreof1,toproducethefinalecosystem
score.
Vulnerability to increased frequency or intensity of extreme events
Foreachnon‐biologicalstressor(drought,flooding,andfire)towhichanecosystemisbelieved
vulnerable,0.33wassubtractedfromadefaultscoreof1,toproducethefinalecosystemscore.
Other indirect effects of non‐climate stressors
Resiliencetoclimatechangewasevaluatedusingthemeasuresofaquaticresourcecondition
databaseforColoradodevelopedbyTheNatureConservancy(2012).Thedatabaseincludesa
metricthatsummarizesconditionfactorsunderfiveprimaryheadingsasshowninTable2.13for
eachstreamreach.Thesummarymeasurerangesfrom1(verygoodcondition,littleornoimpact)
to4(poorcondition,heavilyimpacted).Wereportthelength‐weightedaverageofthesummary
metricbystreamorrivercategorywithinthesamethreeregions(Eastern,Mountain,Western)
describedabove.
Table 2.13.FactorsincludedinTNCfreshwatermeasuresofconditiondatabase.
Natural Flow Regime Riparian Condition Development Connectivity Water Quality
ConsumptiveUse
(AgriculturalUse,
MunicipalUse,
Transbasin
Diversions)
ReservoirStorage
RiparianLandUse
Non‐nativePlants
–Tamarisk–in
theRiparian
Vegetation
LandUse
RoadDensity
RoadCrossings
OilandGas
Mining
InstreamBarriers
toFish
Movement
Streamswitha
303dand/or
Monitoringand
Evaluation
Designation
Vulnerability Assessment Ranking
Overall Vulnerability Ranking
TheExposure‐SensitivityscoreandtheResilience‐AdaptiveCapacityscorearecombinedinthe
samewayasforterrestrialecosystems(Figure2.2)toproduceanoverallvulnerabilityrankfor
eachfreshwaterecosystem.
158ColoradoNaturalHeritageProgram©2015
FRESHWATER ECOSYSTEMS ‐ RESULTS
Table 2.14.Keyvulnerabilities,freshwaterecosystems.
Habitat Climate factor(s) Consequences Other considerations
Streams‐west WarmingwatertempsLossofcool‐waterreachesConnectivity;altered
hydrologyduetodiversions
Streams‐mtn.Timingandamountof
snowmelt/runoff
AlteredhydrographsConnectivity(including
transbasindiversion),
potentialforincreased
wildfiredisturbance
Streams‐eastWarmeranddrier
conditions
LossofperennialreachesConnectivity;altered
hydrologyduetodiversions
Rivers‐west WarmingwatertempsLossofcool‐waterreaches,
lowsummerflows
Connectivity(including
transbasindiversion),
potentialforincreased
wildfiredisturbance
Rivers‐mtn.Timingandamountof
runoff
AlteredhydrographsConnectivity(including
transbasindiversion)
Rivers‐eastTimingandamountof
runoff
AlteredhydrographsConnectivity;altered
hydrologyduetodamsand
diversions
Lakes,highWarmeranddrier
conditions
ReducedwaterqualityNitrogendeposition
Lakes,lowWarmeranddrier
conditions
LowwaterlevelsMunicipal&agricultural
supplypressure
Reservoirs,highTimingandamountof
snowmelt/runoff
EarlierhighwaterlevelsFloodcontrolreleases,
reducedlaterstorage
Reservoirs,lowWarmeranddrier
conditions
LowwaterlevelsMunicipal&agricultural
supplypressure
ClimateChangeVulnerabilityAssessmentforColoradoBLM159
STREAMS, RIVERS, LAKES, AND RESERVOIRS
FreshwaterecosystemsinColoradoincludebothcold‐andwarm‐waterstreamsandrivers,aswell
astransitionalcool‐waterstreamandriverreaches.Lakesandreservoirsarealsoincludedinour
analysis.
CNHPphotos
Climate Vulnerability Ranks:
Threeofthe10regionalecosystemsubtypesassessedhaveanoverallvulnerabilityrankofHigh,
andtwoarerankedVeryHigh(Table2.15).Theprimaryfactorcontributingtothehighexposure
rankingsforriversistheessentiallycompletelossofcurrentcoldandtransitionalreaches.Lakes
andreservoirsatallelevationsareprojectedtoexperiencetemperaturesoutsidethecurrentrange,
aswellaseffectivelydrierconditions.Mostecosystemsubtypeswereassessedashavingmoderate
resilience,withonlymountainstreamshavinghighresilienceandlowoverallvulnerabilitybymid‐
century.
160ColoradoNaturalHeritageProgram©2015
Table 2.15.Vulnerabilityranksummaryforallassessedfreshwaterecosystems.
Freshwater Ecosystem Target
Exposure ‐
Sensitivity final
ranking
Resilience ‐
Adaptive capacity
final ranking
Combined
ranks
Overall
vulnerability
rank
StreamsWestModerateModerateM/MModerate
StreamsMountainLowHighL/HLow
StreamsEastModerateModerateM/MModerate
RiversWestHighModerateH/MHigh
RiversMountainModerateModerateM/MModerate
RiversEastHighModerateH/MHigh
Lakes‐highHighHighH/MModerate
Lakes‐lowHighLowH/LVeryHigh
Reservoirs‐highModerateModerateM/MModerate
Reservoirs‐lowHighLowH/LVeryHigh
Vulnerability summary
Key vulnerabilities:
RiversandStreams
Warmingwatertemperaturesareexpectedtoleadtolossofcool‐waterreachesinbothriversand
streamsinwesternColorado,andtolowersummerflows.Warmertemperatureswillgenerallyresultin
earliersnowmeltandrunoffformountainstreamsandrivers.IneasternColorado,warmeranddrier
conditionsarelikelytoreducetheextentofperennialstreamreaches,andalterthehydrographsof
largeriversthatdependonsnowmelt.Nearlyallriverandstreamhabitatsarealreadyimpactedbydams
anddiversionsthathavedegradedtheconnectivityandhydrologyoftheecosystem.
LakesandReservoirs
Warmeranddrierconditionsforlowerelevationlakesandreservoirsarelikelytoresultingenerally
lowerwaterlevelsunderpressurefrommunicipalandagriculturalconsumers.Highelevationlakesmay
seereducedwaterqualityastemperatureswarm;someareasarealreadyaffectedbynitrogen
deposition.Changesintimingandamountofsnowmeltrunoffmaychangestoragepatternsinhigher
elevationreservoirs;earlyfloodcontrolreleasesmayleadtoreducedlate‐seasonwaterlevels.
Smallerloticecosystems(streams)havegenerallylowervulnerability,especiallyathigher
elevationswherecoldwaterreachesarelikelytoremainviable.Theprimaryfactorcontributingto
highorveryhighvulnerabilityranksforfreshwaterecosystemsistheprojectedchangeinthe
transitionzonebetweenwarmandcoldwaterareas.Mostfreshwaterecosystemswererankedas
moderatelyresilient,indicatingthattherearelikelytobemanagementopportunitiestomitigate
someeffectsofexposuretowarmerconditions.
ClimateChangeVulnerabilityAssessmentforColoradoBLM161
Distribution
FreshwaterecosystemsinColoradoarefoundthroughoutthestate,althoughperennialstreamsand
lakesaremorecommonathigherelevations.WiththeexceptionoftheGreenRiver,whichcrosses
thenorthwesterncornerofthestate,allofColorado’smajorriversoriginatewithinthestateand
flowawayfromthecontinentaldivide.Totheeastofthedivide,streamsandriversdraintoward
theGulfofMexico.Onthewesternslope,flowingwatersaretributarytotheColoradoRiver,
drainingtowardthePacificOcean.ConditionsinColoradowatershedsaffectmanydownstream
users,bothwithinthestate’sbordersandbeyond.WaterdistributioninColoradohasevolveda
complexsystemofdiversions,irrigationwells,andwaterstoragefacilitiesthathavealteredthe
originalhydrologicregimeofmanyareas.
Environment
Freshwaterecosystemsasevaluatedinthisassessmentareallpartofaninterconnectedhydrologic
networkthatincludesbothsurfaceandgroundwater.Forthepurposesofourassessment,we
dividethesurfacewatersofthisnetworkintoseveralbroadtypesbysize,flowpatterns,and
location.Flowingwatersofstreamorder5through7(thelargestinColorado)arediscussedherein
as“rivers”,whileflowingwatersoflowerorderaretermed“streams.”Underthisgrouping,rivers
includethelargerperennialstreamreaches,togetherwiththeirmajortributaries,thatdrain
watershedsontheorder10,000+squaremilesinextent.Streamsincludeallothersmallerreaches
bothperennialandintermittent,fromheadwaterstotheirjunctionwithrivers,ifany.
Lakesandreservoirsarealsopartofthehydrologicnetwork,buthavegenerallymuchslower
current,suchthattheygenerallyappearasstandingbodiesofwater,andmaybeisolatedfrom
perennialsurfaceflow.Becausemanylakeshavebeenmodifiedtosomeextenttoregulatewater
flow,wegroupedlargerimpoundments(greaterthanorequalto3km2inarea)togetheras
reservoirs,andsmallerwaterbodies(lessthan3km2inarea)aslakes,regardlessofmodification.
Finally,weassessedfreshwaterhabitatsaccordingtoelevationandregionallocationwithinthe
state.
Dynamics
BaronandPoff(2004)identifiedfivedynamicfactorsthatshapethestructureandfunctionof
freshwaterecosystems:theflowpatternofwaterthroughthesystem,inputsofsedimentand
organicmatter,nutrientandchemicalconditions,temperatureandlightlevels,andplantand
animalassemblages.
Flowpatternsdescribethewaywaterpassesintoandoutofstreams,rivers,lakesandassociated
wetlands.Importantcharacteristicsincludebaseflowlevels,theperiodicityandmagnitudeofboth
annualorfrequentfloodsandrareandextremefloodevents,seasonalityofflows,andannual
variability(BaronandPoff2004).Patternsofwaterflowandtheirinteractionwithlocallandforms
andsubstratesatavarietyofscalesaretheprimarydeterminantofphysicalhabitatforriver
organisms.Aquaticorganismsevolvedwithandareadaptedtothecharacteristicnaturalflow
regimeoftheirhabitat;changesinflowregimecancauseseriousdisruptiontothereproduction
andsurvivalofmanyaquaticspecies,leadingtoaneventuallossofbiodiversity(Bunnand
Arthington2002).Reducedconnectivityinaquatichabitats,bothin‐streamandbetweentheriver
162ColoradoNaturalHeritageProgram©2015
channelandassociatedfloodplainhabitats,reduceshabitatavailabilityanddiversity,with
consequentnegativeeffectsonthepopulationviabilityofaquaticspecies.Alteredflowregimes,and
transbasindiversionscanfacilitatetheinvasionandestablishmentofexoticspecies(Bunnand
Arthington2002).Finally,riverinesystemsacttointegrateandcollecttheeffectsofdisturbances
withinthecatchment,includingthoseduetoflowmodification(Naimanetal.2002).
Sedimentandorganicmatterinputstofreshwaterecosystemsmayincludebothnaturaland
anthropogenicsources.Thearrivalofnaturalorganicmatter(e.g.,plantmaterial)fromadjacent
uplandareasisaregularseasonaloccurrence,andsedimentmovementsoccurnaturallywith
seasonalandinterannualvariationinwaterflow.Manyplantandanimalspeciesofthesehabitats
arecloselyadaptedtospecificsedimentandorganicmatterconditions,andareeasilyeliminatedby
changesintheenvironment(BaronandPoff2004).Anthropogenicdisturbancessuchas
agriculture,logging,roadconstruction,dams,anddiversionshavehighlymodifiedthenatural
sedimentandorganicinputoffreshwaterecosystems.Unmodifiedstreamsdisplayamosaicof
habitatscreatedbyflowandsedimentationpatterns.Extensiveremovalofbeaverthroughout
Coloradointhefirsthalfofthe19thcenturyprobablyhadaconsiderableeffectonchannel
structure,diversity,andstability,aswellassedimentlevelsinmountainstreams(Wohl2006).
Placerminingwasanevenstrongeragentofhydrologicmodificationinmanyareas.Diversion
damstendtoshifthabitattowardslowerflowandincreasedfinesedimentation(Bakeretal.2011).
Thelegacyofthesehistoricanthropogenicdisturbancesisreducedhabitatsuitabilityfornative
species.
Naturalnutrientandchemicalconditionsinfreshwaterecosystemsarelargelydeterminedby
climate,bedrock,soil,vegetation,andtopographyinthevicinity,andareconsequentlyhighly
variablebylocale(BaronandPoff2004).Humanactivitiescanaddnutrients(eutrophication),ora
varietyofman‐madechemicals(herbicides,pesticides,pharmaceuticals,etc.)thatchangethe
speciescompositionandqualityofthesehabitats(Carpenter1998).
Watertemperatureiskeyindeterminingoxygenconcentrationandthelifeprocessesofaquatic
organisms.Patternsoftemperatureandsolarenergyabsorptiondifferbetweenmovingandstill
waters.Thereleaseofcoldwaterfromreservoirstorageinterruptsthenaturaltemperature
patternsimmediatelydownstream.
Changingclimateconditionscanaffectallthesefactors,butdirectlyactthroughtemperatureand
flow.
Characteristic species
Thecompletebioticcommunityofanaquaticecosystemincludesplantsandalgae,aswellas
invertebrateandvertebrateanimals.Environmentalconditionsanddynamicsinpartdeterminethe
plantandanimalassemblagesthatwillbeassociatedwithaparticularfreshwaterecosystem.In
turn,thebiotaareactiveparticipantsinecologicalprocesses.Acompletedescriptionofspecies
characteristicofColorado’sfreshwaterecosystemsisbeyondthescopeofthisassessment,but
commonandimportantmacroinvertebratesincludecrustaceansandspeciesofEphemeroptera,
Plecoptera,Trichoptera,andOdonata,amongothers.
ClimateChangeVulnerabilityAssessmentforColoradoBLM163
FishofColorado’sfreshwaterecosystemsincludebothnativeandintroducedspecies.Fishspecies
showninTable2.16arerepresentativeofsomeofthefreshwaterecosystemsevaluated.
Vulnerabilityresultsfromspecies‐specificClimateChangeVulnerabilityIndexanalysis(seeChapter
3)areshown,ifavailable.
Table 2.16.Representativefishspeciesforfreshwaterecosystems.
Cold Water Transitional
Warm
Water Lakes ‐ high
Representative fish
species CCVI rank
Rivers
Streams
Rivers
Streams
Rivers
Streams
ColoradoRiverCutthroatExtremelyvulnerableXXXX X
GreenbackCutthroatXXXX X
RioGrandeCutthroatExtremelyvulnerableXXXX X
MottledsculpinXXXX
SpeckleddaceXXXX
BrowntroutXX
BlueheadsuckerHighlyvulnerableXXXX
FlannelmouthsuckerHighlyvulnerableXXXX
RoundtailChubHighlyvulnerable XXXX
BonytailchubExtremelyvulnerable XX
ColoradopikeminnowExtremelyvulnerable XX
HumpbackchubExtremelyvulnerable XX
RazorbacksuckerHighlyvulnerableXX
164ColoradoNaturalHeritageProgram©2015
CCVA Scoring
Exposure‐Sensitivity (Potential Impact) Ranks
Ecosystem Method Score
StreamsWestDecisiontreeModerate
StreamsMountainDecisiontreeLow
StreamsEastDecisiontreeModerate
RiversWestDecisiontreeHigh
RiversMountainDecisiontreeModerate
RiversEastDecisiontreeHigh
Lakes–highelev.Avg.“outofrange”High
Lakes–lowelev.Avg.“outofrange”High
Reservoirs–highelev.Avg.“outofrange”Moderate
Reservoirs–lowelev.Avg.“outofrange”High
Underthescopeofouranalysis,thetotalstreamandriverlengthpresentinthestateisassumedto
remainconstantbetweenthepresentandmid‐century.Theeffectsofwarmingtemperatureare
measuredbycomparingtheproportionofstreamandriverreachesthatmovefromonecategoryto
thenext.Undertheconstraintsofthetechnique,areachcanremaininthesamecategory,ormove
toawarmercategory,butnevermovetoacoolercategory.
Asexpected,bothstreamsandriversinthemountainregionarecurrentlydominatedbycoldwater
reaches,andtherearelimitedcoldwaterreachespresentinboththeeasternandwesternregions
(Figure2.15,Table2.17).Cooltocoldwatertransitionreachesarecurrentlymostcommonin
westernriversandstreams.Botheasternandwesternriversandstreamscurrentlyhavea
significantproportionofwarmwaterreaches.
StatewidepatternsoftransitionareshowninFigure2.16.Anoverallretreatofcoldwater
conditionstohigherelevationsisevident.Majorriversonboththeeastandwestslopeare
projectedtoseewarmerwatertemperaturesfarupstream.Thiseffectisparticularlyevidentonthe
westernrivers.
Underprojectedwarmingwatertemperaturesatmid‐century,forallregionstheproportionof
warmwaterreachlengthincreases.Transitionalareasgenerallymoveupinelevation,andbecome
concentratedinthemountainregion.Withoutaccountingforwatertemperaturesmaintainedby
storagerelease,coldwaterreachesessentiallydisappearfromthelowerelevationsofbotheastern
andwesternColorado.
ClimateChangeVulnerabilityAssessmentforColoradoBLM165
Exposureto“outofrange”conditionsforlakesandreservoirswaslowestforhighelevation
reservoirs.Bothlowandhighelevationlakeswereinthemoderatelyvulnerablecategory,although
higherelevationlakeshadslightlylessexposure.Lowelevationreservoirshadhighestexposure
underprojectedmid‐centuryclimateconditions.
Figure 2.15.Categorytransitionsbetweencurrentandprojected(RCP8.5)conditionsforstreamsandrivers.
166ColoradoNaturalHeritageProgram©2015
Table 2.17.Reachlengthstatistics(km)forwatertemperaturecategoriesbothstatewideandbyregion.
Cold Water Transitional Warm Water
Statewide: Rivers Streams Rivers Streams Rivers Streams
Current 1,394 64,728 395 12,342 4,48063,386
%Total1% 44% 0% 8% 3%43%
RCP8.5560 36,882 117 14,227 5,59189,348
%Total0.4% 25% 0.1% 10% 4%61%
%changefromCurrent‐60% ‐43% ‐70% 15% 25%41%
By Region:
West Slope
Current58 3,044 129 4,564 1,40818,515
%Total0.2% 11% 0.5% 16% 5%67%
RCP8.5020 0362 1,59625,741
%Total0% 0.07% 0% 1% 6%93%
%changefromCurrent‐100% ‐99% ‐100% ‐92% 13%39%
Southern Rocky Mountains
Current1,321 59,640 245 5,640 5693,547
%Total2% 84% 0% 8% 1%5%
RCP8.5560 36,862 117 13,663 1,45618,303
%Total1% 52% 0.2% 19% 2%26%
%changefromCurrent‐58% ‐38% ‐52% 142% 156%416%
Eastern Plains
Current15 2,044 14 2,138 2,51041,324
%Total0.03% 4% 0.03% 4% 5%86%
RCP8.50 0 0 201 2,53945,304
%Total0% 0% 0% 0.4% 5%94%
%changefromCurrent‐100% ‐100% ‐100% ‐91% 1%10%
ClimateChangeVulnerabilityAssessmentforColoradoBLM167
Figure 2.16.Comparisonofcurrent(top)andprojected(bottom)streamtemperatureclassification.
168ColoradoNaturalHeritageProgram©2015
Resilience and Adaptive Capacity Ranks
Ecosystem Score Rank
StreamsWest0.54Moderate
StreamsMountain0.71High
StreamsEast0.61Moderate
RiversWest0.49Moderate
RiversMountain0.58Moderate
RiversEast0.66Moderate
Lakes‐high0.68High
Lakes‐low0.39Low
Reservoirs‐high0.59Moderate
Reservoirs‐low0.27Low
Restrictiontospecifichydro‐geomorphicsetting
Highelevationlakesarescoredasmostrestrictedbytheirlocation.Otherwaterbodiesarescored
asintermediateinlocationrestriction,asarehigherelevationstreamsandrivers.Lowerelevation
streamsandriversarepresumedtobeunrestricted.
Ecosystem Score
StreamsWest1
StreamsMountain0.5
StreamsEast1
RiversWest1
RiversMountain0.5
RiversEast1
Lakes–highelev.0
Lakes–lowelev.0.5
Reservoirs–highelev.0.5
Reservoirs–lowelev.0.5
ClimateChangeVulnerabilityAssessmentforColoradoBLM169
Vulnerabilitytochangeinsnowmelttimingandmagnitude,and/ordecreasingbaseflows
Streams,lakes,andreservoirsofhighelevationsarescoredasleastvulnerabletochangesin
snowmelttimingandmagnitude,andwithlessvulnerabilitytodecreasingbaseflows,underthe
assumptionthathigherelevationsarelesslikelytoseeeffectivelydrierconditionsbymid‐century.
Streams,rivers,andlakesoflowerelevationsarescoredashavingintermediatevulnerabilityfor
thesefactors,basedontheassumptionthattheeffectsofincreasingtemperaturesandeffectively
drierconditionswilltendtoaccumulateinthesedownstreamreaches.Lowelevationreservoirsare
assumedtobemostvulnerable.
Ecosystem Score
StreamsWest0.5
StreamsMountain1
StreamsEast0.5
RiversWest0.5
RiversMountain0.5
RiversEast1
Lakes–highelev.1
Lakes–lowelev.0.5
Reservoirs–highelev.1
Reservoirs–lowelev.0
Vulnerabilitytoincreasedimpactbybiologicalstressors
Ingeneral,freshwaterhabitatsofthehighestelevationsarescoredasnotvulnerabletoincreased
impactbypathogensorinvasives,duetocomparativelycoolertemperaturesintheseareas,andthe
currentlowlevelsofsuchstressors.Lowelevationecosystemsarescoredasmorevulnerableto
invasivespeciesandpathogens,duetothewarmertemperatures,andthefactthatsomeinvasives
andpathogensarealreadypresentinthesehabitats.
Ecosystem Score Factors
StreamsWest0.5Pathogens
StreamsMountain1 ‐‐‐
StreamsEast0.5Invasives
RiversWest0Pathogens&Invasives
RiversMountain1 ‐‐‐
RiversEast0.5Invasives
Lakes–highelev.1 ‐‐‐
Lakes–lowelev.0Pathogens&Invasives
170ColoradoNaturalHeritageProgram©2015
Ecosystem Score Factors
Reservoirs–highelev.0.5Invasives
Reservoirs–lowelev.0Pathogens&Invasives
Vulnerabilitytoincreasedfrequencyorintensityofextremeevents
Increasingfrequencyandseverityofdroughtistheprimaryfactorthatislikelytoincrease
vulnerabilityoffreshwaterecosystems.Streamsinwesternandmountainareasarescoredasbeing
vulnerabletoincreasedsedimentationfollowingapotentialincreaseinfirefrequency.Mountain
riversarescoredasvulnerabletoapotentialincreaseinextremeprecipitationevents.High
elevationlakesarenotthoughttobevulnerableinthiscategory.
Ecosystem Score Factors
StreamsWest0.33Drought,fire
StreamsMountain0.67Fire
StreamsEast0.67Drought
RiversWest0.67Drought
RiversMountain0.67Flooding
RiversEast0.67Drought
Lakes–highelev.1 ‐‐‐
Lakes–lowelev.0.67Drought
Reservoirs–highelev.0.67Drought
Reservoirs–lowelev.0.67Drought
Otherindirecteffectsofnon‐climatestressors
Thelength‐weightedmeanscorebyregionforthesummaryconditionfactor(TNC2012)was
convertedtoaproportionofpotentialbestscore(4)usingtheformula:1–((regionmean‐1)/3).A
lowermeanbeforescoreconversionindicatesbettercondition,andhigherresilience.Ingeneral,
higherelevationareasareinbettercondition.
Ecosystem Mean Score
StreamsWest2.570.48
StreamsMountain2.450.52
StreamsEast2.570.48
RiversWest2.940.35
RiversMountain3.080.31
RiversEast3.530.16
Lakes–highelev.2.340.55
Lakes–lowelev.2.800.40
ClimateChangeVulnerabilityAssessmentforColoradoBLM171
Ecosystem Mean Score
Reservoirs–highelev.2.940.35
Reservoirs–lowelev.3.250.25
Conclusions
Allfreshwaterecosystemsareexpectedtobeaffectedtosomeextentbyclimatechange.Aswater
temperatureschange,somewarm‐waterhabitattypesmayexpandattheexpenseofcool‐orcold‐
watertypes.Nearlyallevaluatedfreshwatertypeswererankedwithmoderatetoveryhigh
vulnerabilityinouranalysis,withreasonablecertaintythatthesehabitatswillbeimpactedby
climatechange.Althoughwedidnotincorporatefreshwaterfishspecies‐specificscoringintoour
vulnerabilityanalysis,thoseresults(Chapter3)tendtosupportthegenerallyhighervulnerability
levelsforfreshwaterecosystems.Uncertaintyintheevaluationisduetouncertaintyinclimate
projections,thescopeofcurrentknowledge,andongoingmanagementactions.
Thereisevidencefrommonitoringrecordsthatwarmerairtemperatureshavealreadyaffected
watertemperaturesandhydrographsinmountainstreams(Isaaketal.2012).Bymid‐century,
underbothmoderateandhighradiativeforcingscenarios(RCP4.5andRCP8.5),wecanexpectto
seeevenwarmertemperaturesstatewide,especiallyontheeasternplains.Warmerair
temperaturesareexpectedtoleadtowarmerwatertemperatures,earliersnowmelt,lossof
permanenticefields,andpossiblydrierconditions.Evenifprecipitationlevelsathigherelevations
areessentiallyunchanged,warmerconditionswillleadtomoreprecipitationfallingasraininstead
ofsnow,adecreasedsnowpack,earlierrunoff,andearlierdryconditionsinlatesummer(Lucaset
al.2014).Allofthesefactorsarelikelytointeractwithstressesarisingfromalteredhydrology
(dams,diversions,etc.),andsocio‐economicdemandsforcontinuedwateravailabilityatpreviously
establishedlevels.
ThehighlymanagednatureofwaterresourcesinColoradotosomeextentconfoundsour
preliminaryevaluationofvulnerabilitytoclimatechangefortheseecosystems.Waterstorageand
releasepatternsdonotalwaysmimicconditionsthatwouldbefoundonanunmanipulatedreach,
andthismaybenefitsomespecieswhileharmingothers.Furthermore,theimpactsofwarming
temperaturesandpotentiallychangingprecipitationpatternsonfreshwaterecosystemscanbe
enhancedbyfragmentationormitigatedbyincreasedconnectivityintheseinterconnected
networksofhabitats.Formostspecies,intactconnectivitywithinthehydrologicnetworkwillbe
crucialforadaptationtochangingconditions;however,speciesassemblagesarelikelytochangeas
lessmobilecommunitymembersareeliminated.Enhancingconnectivitywithconcomitant
reductioninanthropogenicstressesislikelytobethemostproductiveapproachforconserving
freshwaterecosystemsunderfutureclimaticconditions(Khamisetal.2014).
Strategiesformeetingthechallengesoffutureconditionsareperhapsmostcomplexandyetmost
urgentforfreshwaterecosystems.Althoughdaunting,earlieractionislikelytoallowincreased
opportunityforfutureadaptivemanagementthandelayorinaction.
172ColoradoNaturalHeritageProgram©2015
Literature Cited
Baker,D.W.,B.P.Bledsoe,C.M.Albano,andN.L.Poff.2011.Downstreameffectsofdiversiondamsonsedimentand
hydraulicconditionsofRockyMountainStreams.RiverResearchandApplications27:388‐401.
Baron,J.S.andN.L.Poff.2004.Sustaininghealthyfreshwaterecosystems.UniversitiesCouncilonWaterResources,Water
ResourcesUpdate127:52‐58.
Bunn,S.E.andA.H.Arthington.2002.Basicprinciplesandecologicalconsequencesofalteredflowregimesforaquatic
biodiversity.EnvironmentalManagement30:492‐507.
Carpenter,S.R.,N.F.Caraco,D.L.Correll,R.W.Howarth,A.N.Sharpley,andV.H.Smith.1998.Nonpointpollutionofsurface
waterswithphosphorusandnitrogen.EcologicalApplications8:559‐568.
Isaak,D.J.,C.C.Huhlfeld,A.S.Todd.R.Al‐Chokhachy,J.Roberts,J.L.Kershner,K.D.Fausch,andS.W.Hostetler.2012.The
pastaspreludetothefutureforunderstanding21st‐centuryclimateeffectsonRockyMountaintrout.Fisheries37:542‐
556.
Khamis,K.,D.M.Hannah,M.HillClarvis,L.E.Brown,E.Castella,andA.M.Milner.Alpineaquaticecosystemconservation
policyinachangingclimate.EnvironmentalScience&Policy43:39‐55.
Lucas,J.,J.Barsugli,N.Doesken,I.Rangwala,andK.Wolter.2014.ClimateChangeinColorado:asynthesistosupport
waterresourcesmanagementandadaptation.Secondedition.ReportfortheColoradoWaterConservationBoard.
WesternWaterAssessment,CooperativeInstituteforResearchinEnvironmentalSciences(CIRES),UniversityofColorado
Boulder.
Naiman,R.J.,S.E.Bunn,C.Nilsson,G.E.Petts,G.Pinay,L.C.Thompson.2002.Legitimizingfluvialecosystemsasusersof
water:anoverview.EnvironmentalManagement30:455‐467
TheNatureConservancy[TNC].2012.FreshwatermeasuresofconditionforColorado.Geodatabase.
Wohl,E.2006.Humanimpactstomountainstreams.Geomorphology79:217‐248.
ClimateChangeVulnerabilityAssessmentforColoradoBLM173
3 ANIMALS
Authors:
JeremySiemers
BernadetteKuhn
BradLambert
RobertSchorr
JohnSovell
Recommendedchaptercitation:
Siemers,J.,B.Kuhn,B.Lambert,R.Schorr,andJ.Sovell2015.Animals.Chapter3InColoradoNaturalHeritageProgram2015.
ClimateChangeVulnerabilityAssessmentforColoradoBureauofLandManagement.K.Decker,L.Grunau,J.Handwerk,andJ.
Siemers,editors.ColoradoNaturalHeritageProgram,ColoradoStateUniversity,FortCollins,Colorado.
174ColoradoNaturalHeritageProgram©2015
TableofContents–3Animals
Methods....................................................................................................................................................176
Results.......................................................................................................................................................180
AnimalSpeciesCCVASummaries.............................................................................................................182
Borealtoad................................................................................................................................................183
CanyonTreefrog........................................................................................................................................187
GreatBasinSpadefoot..............................................................................................................................191
NorthernLeopardFrog.............................................................................................................................195
AmericanPeregrineFalcon....................................................................................................................... 199
BlackSwift.................................................................................................................................................203
Brewer’sSparrow......................................................................................................................................206
BurrowingOwl..........................................................................................................................................210
GoldenEagle.............................................................................................................................................214
Greatersage‐grouse.................................................................................................................................218
Gunnisonsage‐grouse...............................................................................................................................222
Long‐BilledCurlew....................................................................................................................................226
MountainPlover.......................................................................................................................................230
NorthernGoshawk....................................................................................................................................235
WesternSnowyPlover..............................................................................................................................239
WesternYellow‐billedCuckoo.................................................................................................................. 243
White‐facedIbis............................................................................................................................... .........247
BlueheadSucker.......................................................................................................................................251
BonytailChub............................................................................................................................................256
Coloradopikeminnow...............................................................................................................................260
ColoradoRiverCutthroatTrout................................................................................................................265
FlannelmouthSucker................................................................................................................................270
HumpbackChub........................................................................................................................................274
RazorbackSucker......................................................................................................................................278
RioGrandeCutthroatTrout......................................................................................................................282
RoundtailChub.........................................................................................................................................286
GreatBasinSilverspot...............................................................................................................................290
Americanbeaver.......................................................................................................................................294
DesertBighornSheep...............................................................................................................................
297
ClimateChangeVulnerabilityAssessmentforColoradoBLM175
FringedMyotis..........................................................................................................................................301
GunnisonPrairieDog................................................................................................................................304
Townsend’sbig‐earedbat.........................................................................................................................308
White‐tailedprairiedog............................................................................................................................311
Desertspinylizard.....................................................................................................................................314
Longnoseleopardlizard............................................................................................................................318
Midgetfadedrattlesnake.........................................................................................................................321
ListofFiguresandTables
Figure 3.1.Summaryofclimatechangevulnerabilityscoresforanimalspecies.EV=Extremely
Vulnerable;HV=HighlyVulnerable;MV=ModeratelyVulnerable;PS=PresumedStable;IL=Increase
Likely.........................................................................................................................................................181
Table 3.1.Climatechangevulnerabilityscoresforanimalspecies.EV=ExtremelyVulnerable;HV=
HighlyVulnerable;MV=ModeratelyVulnerable;PS=PresumedStable;IL=IncreaseLikely................180
176ColoradoNaturalHeritageProgram©2015
METHODS
NatureServe Climate Change Vulnerability Index
Overview
Thisoverviewhasbeensynthesizedandreprinted,withpermission,fromYoungetal.(2011).The
ClimateChangeVulnerabilityIndex(CCVI),developedbyNatureServe,isaMicrosoftExcel‐based
toolthatfacilitatesrapidassessmentofthevulnerabilityofplantandanimalspeciestoclimate
changewithinadefinedgeographicarea.Inaccordancewithwell‐establishedpractices(Schneider
etal.2007,Williamsetal.2008),theCCVIdividesvulnerabilityintotwocomponents:
exposuretoclimatechangewithintheassessmentarea(e.g.,ahighlysensitivespecieswill
notsufferiftheclimatewhereitoccursremainsstable).
sensitivityofthespeciestoclimatechange(e.g.,anadaptablespecieswillnotdeclineeven
inthefaceofsignificantchangesintemperatureand/orprecipitation).
Exposuretoclimatechangeismeasuredbyexaminingthemagnitudeofpredictedtemperatureand
moisturechangeacrossthespecies’distributionwithinthestudyarea.CCVIguidelinessuggest
usingthedownscaleddatafromClimateWizard(http://climatewizard.org)forpredictedchangein
temperature.ProjectionsforchangesinprecipitationareavailableinClimateWizard,but
precipitationestimatesaloneareoftenanunreliableindicatorofmoistureavailabilitybecause
increasingtemperaturespromotehigherratesofevaporationandevapotranspiration.Moisture
availability,ratherthanprecipitationperse,isacriticalresourceforplantsandanimalsand
thereforeformstheotherpartoftheexposuremeasurewithintheCCVI,togetherwith
temperature.Topredictchangesinmoistureavailability,NatureServeandpartnersdevelopedthe
HamonAET:PETmoisturemetricaspartoftheCCVI.Themetricrepresentstheratioofactual
evapotranspiration(i.e.,theamountofwaterlostfromasurfacethroughevaporationand
transpirationbyplants)topotentialevapotranspiration(i.e.,thetotalamountofwaterthatcould
beevaporatedundercurrentenvironmentalconditions,ifunlimitedwaterwasavailable).Negative
valuesrepresentdryingconditions.
Sensitivityisassessedusing20factorsdividedintotwocategories:1)indirectexposuretoclimate
change;and2)speciesspecificfactors(includingdispersalability,temperatureandprecipitation
sensitivity,physicalhabitatspecificity,interspecificinteractions,andgeneticfactors).Foreach
factor,speciesarescoredonaslidingscalefromgreatlyincreasing,tohavingnoeffecton,to
decreasingvulnerability.TheCCVIaccommodatesmorethanoneanswerperfactorinorderto
addresspoordataorahighlevelofuncertaintyforthatfactor.Thescoringsystemintegratesall
exposureandsensitivitymeasuresintoanoverallvulnerabilityscorethatindicatesrelative
vulnerabilitycomparedtootherspeciesandtherelativeimportanceofthefactorscontributingto
vulnerability.
ClimateChangeVulnerabilityAssessmentforColoradoBLM177
TheIndextreatsexposuretoclimatechangeasamodifierofsensitivity.Iftheclimateinagiven
assessmentareawillnotchangemuch,noneofthesensitivityfactorswillweighheavily,anda
speciesislikelytoscoreattheNotVulnerableendoftherange.Alargechangeintemperatureor
moistureavailabilitywillamplifytheeffectofanyrelatedsensitivity,andwillcontributetoascore
reflectinghighervulnerabilitytoclimatechange.Inmostcases,changesintemperatureand
moistureavailabilitywillcombinetomodifysensitivityfactors.However,forfactorssuchas
sensitivitytotemperaturechange(factor2a)orprecipitation/moistureregime(2b),onlythe
specifiedclimatedriverwillhaveamodifyingeffect.
Thesixpossiblescoresare:
ExtremelyVulnerable:Abundanceand/orrangeextentwithingeographicalareaassessed
extremelylikelytosubstantiallydecreaseordisappearby2050.
HighlyVulnerable:Abundanceand/orrangeextentwithingeographicalareaassessedlikelyto
decreasesignificantlyby2050.
ModeratelyVulnerable:Abundanceand/orrangeextentwithingeographicalareaassessedlikely
todecreaseby2050.
NotVulnerable/PresumedStable:Availableevidencedoesnotsuggestthatabundanceand/or
rangeextentwithinthegeographicalareaassessedwillchange(increase/decrease)substantially
by2050.Actualrangeboundariesmaychange.
NotVulnerable/IncreaseLikely:Availableevidencesuggeststhatabundanceand/orrangeextent
withingeographicalareaassessedislikelytoincreaseby2050.
InsufficientEvidence:Availableinformationaboutaspecies'vulnerabilityisinadequateto
calculateanIndexscore.
Scoring Factors in the CCVI
ThefactorsusedtogeneratetheCCVIscorearelistedinthefollowingsection.Detaileddefinitions
ofscoringcategoriesarelistedinAppendixB.
A.ExposuretoLocalClimateChange
1. Temperature
2. Moisture
B.IndirectExposuretoClimateChange
1. Exposuretosealevelrise.(NotapplicabletoColorado)
2. Distributionrelativetonaturalandanthropogenicbarriers.
178ColoradoNaturalHeritageProgram©2015
3. Predictedimpactoflandusechangesresultingfromhumanresponsestoclimate
change.
C.Sensitivity
1. Dispersalandmovements.
2. Predictedsensitivitytotemperatureandmoisturechanges.
a.Predictedsensitivitytochangesintemperature.
b.Predictedsensitivitytochangesinprecipitation,hydrology,ormoisture
regime.
c.Dependenceonaspecificdisturbanceregimelikelytobeimpactedby
climatechange.
d.Dependenceonice,ice‐edge,orsnow‐coverhabitats.
3. Restrictiontouncommongeologicalfeaturesorderivatives.
4. Relianceoninterspecificinteractions.
a.Dependenceonotherspeciestogeneratehabitat.
b.Dietaryversatility(animalsonly).
c.Pollinatorversatility(plantsonly).
d.Dependenceonotherspeciesforpropaguledispersal.
e.FormspartofaninterspecificinteractionnotcoveredbyC4a‐d.
5. Geneticfactors.
a.Measuredgeneticvariation.
b.Occurrenceofbottlenecksinrecentevolutionaryhistory.
6. Phenologicalresponsetochangingseasonaltemperatureandprecipitation
dynamics.
D.DocumentedorModeledResponsetoClimateChange
1. Documentedresponsetorecentclimatechange.
2. Modeledfuturechangeinrangeorpopulationsize.
3. Overlapofmodeledfuturerangewithcurrentrange.
4. Occurrenceofprotectedareasinmodeledfuturedistribution.
Factorsnotconsidered—TheIndexdevelopmentteamdidnotincludefactorsthatarealready
consideredinconservationstatusassessments.Thesefactorsincludepopulationsize,rangesize,
anddemographicfactors.ThegoalisfortheNatureServeClimateChangeVulnerabilityIndexto
complementNatureServeConservationStatusRanksandnottopartiallyduplicatefactors.Ideally,
Indexvaluesandstatusranksshouldbeusedinconcerttodetermineconservationpriorities.
Application of Climate Data
Scoringfactorsrelatedtohistoricandpredictedfutureclimate(temperature,precipitation,and
moistureavailability,FactorsA1,A2,C2ai,andC2biintheCCVI)werecalculatedinGISusingthe
ClimateChangeVulnerabilityAssessmentforColoradoBLM179
methodsdescribedbelow.Refertothespeciesprofilesinthefollowingsectionofthisreportfor
detailsonscoringrationaleandreferencesforallotherfactors.
Exposuretopredictedtemperatureincreasewascalculatedusingspeciesdistributiondataandan
ensembleaverageof16CMIP3climatepredictionmodels(seeAppendixA)averagedoverthe
summerseason(June–August)usingthehigh(A2)CO2emissionsscenario.Thehighemissions
scenariowasusedbecauseitismostsimilartocurrentemissions.DatawereobtainedfromClimate
Wizard,andtheanalysisperiodwastotheyear2050(whichisactuallyanaverageofprojections
foryears2040–2069).Thesummerseason–growingseasonforplants,breedingseasonfor
animals–wasusedbecauseitwasconsideredthemostcriticaltimeperiodformostspecies.
Exposuretoprojecteddrying(integrationofprojectedtemperatureandprecipitationchange,i.e.,
theHamonAET:PETmoisturemetric)wascalculatedusingthedatasetcreatedbyNatureServeas
partoftheCCVI.NotethatNatureServebasedtheirmoisturemetriccalculationsonthesame
ClimateWizarddatasetasabove,exceptthattheyusedtheA1Bcarbondioxideemissionsscenario.
BecausethemodelingmethodsusedbyNatureServewerenotavailable,wewereunableto
recalculateusingtheA2scenario.Thus,weusedthedataasprovided,whichweconsidereda
reasonablealternativesincetheA1BandA2scenariospredictsimilarchangesthroughthemid‐21st
Century,theperiodusedinthisanalysis.Wecalculatedthepercentofeachspecies’range/
distributionthatfallswithineachratingcategory.Allcalculationsusedthe“summer”(June–
August)datasubset.
Thehistoricalthermalnichefactormeasureslarge‐scaletemperaturevariationthataspecieshas
experiencedinrecenthistoricaltimes(i.e.,thepast50years),asapproximatedbymeanseasonal
temperaturevariation(differencebetweenhighestmeanmonthlymaximumtemperatureand
lowestmeanmonthlyminimumtemperature).Itisaproxyforspecies'temperaturetoleranceata
broadscale.ThisfactorwascalculatedinGISbyassessingtherelationshipbetweenspecies’
distributionsandhistoricaltemperaturevariationdatadownloadedfromNatureServe.Historical
temperaturevariationwasmeasuredasthemeanJulyhighminusthemeanJanuarylow,using
PRISMdatafrom1951‐2006,expressedasasingleaveragedvaluefortheentirespeciesrange.
Thehistoricalhydrologicalnichefactormeasureslarge‐scaleprecipitationvariationthataspecies
hasexperiencedinrecenthistoricaltimes(i.e.,thepast50years),asapproximatedbymeanannual
precipitationvariationacrossoccupiedcellswithintheassessmentarea.Ratingsforthisfactor
werecalculatedinGISbyoverlayingthespecies’distributionsonmeanannualprecipitationdata
(PRISM4kmannualaverageprecipitation,ininches,1951‐2006)downloadedfromClimateWizard,
andsubtractingthelowestpixelvaluefromthehighestvalue.
Representing Species’ Distributions
Avarietyofsourceswereusedforanimalspecies,includingelementoccurrencerecordsand/or
observationdatafromCNHP’sdatabases,onlinedistributiondatafromCPW,existingspecies
distributionmodels,rangemapsfrompublishedliterature,andcriticalhabitatmaps.
180ColoradoNaturalHeritageProgram©2015
Thelistofanimalspeciesincludedinthisclimatechangevulnerabilityassessmentwasdeveloped
throughconsultationwithBLMstaff,usingtheBLMSensitiveSpecieslistasastartingpoint.This
listincludesallfederallylistedspecies.TheentireBLMsensitivelistwasbeyondthescopeofthe
project,sospecieswereprioritizedaccordingtothelevelofpriorworkavailableandthe
managementimportanceofthespecies.Afewwide‐rangingspeciesofparticularmanagement
interestthatarenotontheBLMsensitivelistwereincluded.
RESULTS
CCVIresultsaresummarizedinTable3.1,andpresentedinfullinAppendixC.Animal species results
are sorted alphabetically by common name within taxonomic group.Therationaleforscoringand
literaturecitationsareincludedinthefollowingspeciesprofiles.
Table 3.9.Climatechangevulnerabilityscoresforanimalspecies.EV=ExtremelyVulnerable;HV=Highly
Vulnerable;MV=ModeratelyVulnerable;PS=PresumedStable;IL=IncreaseLikely.
Taxonomic Group English Name Species Score
AmphibianBorealToadAnaxyrusboreasboreasHV
AmphibianCanyonTreefrogHylaarenicolorMV
AmphibianGreatBasinSpadefootSpeaintermontanaPS
AmphibianNorthernLeopardFrogLithobatespipiensMV
BirdAmericanPeregrineFalconFalcoperegrinusanatumPS
BirdBlackSwiftCypseloidesnigerPS
BirdBrewer'sSparrowSpizellabreweriPS
BirdBurrowingOwlAthenecuniculariahypugaeaMV
BirdGoldenEagleAquilachrysaetosMV
BirdGreatersage‐grouseCentrocercusurophasianusHV
BirdGunnisonSage‐grouseCentrocercusminimusHV
BirdLong‐billedCurlewNumeniusamericanusHV
BirdMountainPloverCharadriusmontanusPS
BirdNorhernGoshawkAccipitergentilisMV
BirdWesternSnowyPloverCharadriusalexandrinusnivosusHV
BirdWesternYellow‐billedCuckooCoccyzusamericanusoccidentalisMV
BirdWhite‐facedIbisPlegadischihiMV
FishBlueheadSuckerCatostomusdiscolobusHV
FishBonytailChubGilaelegansEV
FishColoradoPikeminnowPtychocheilusluciusEV
FishColoradoRiverCutthroatTroutOncorhynchusclarkiipleuriticusEV
FishFlannelmouthSuckerCatostomuslatipinnisHV
FishHumpbackChubGilacyphaEV
FishRazorbackSuckerXyrauchentexanusHV
ClimateChangeVulnerabilityAssessmentforColoradoBLM181
Taxonomic Group English Name Species Score
FishRioGrandeCutthroatTroutOnchorhynchusclarkiivirginalisEV
FishRoundtailChubGilarobustaHV
Invert‐InsectGreatBasinSilverspotSpeyerianokomisnokomisHV
MammalAmericanBeaverCastorcanadensisMV
MammalDesertBighornSheepOviscanadensisnelsoniMV
MammalFringedMyotisMyotisthysanodesPS
MammalGunnison'sPrairieDogCynomysgunnisoniPS
MammalTownsend'sBig‐earedBatCorynorhinustownsendiiPS
MammalWhite‐tailedPrairieDogCynomysleucurusPS
ReptileDesertSpinyLizardSceloporusmagisterPS
ReptileLongnoseLeopardLizardGambeliawislizeniiPS
ReptileMidgetFadedRattlesnakeCrotalusoreganusconcolorHV
Animalspeciesincludedfouramphibians,thirteenbirds,ninefish,oneinsect,sixmammals,and
threereptiles.Fivespecieswererankedasextremelyvulnerabletoclimatechange.Fish,in
particular,wererankedonthehightoextremelyvulnerableendoftherange(Figure3.1);other
taxonomicgroupsweregenerallymoreevenlydistributedbetweenpresumedstabletohighly
vulnerable.Noevaluatedspecieswereassessedaslikelytoincreaseunderfutureconditions.
Figure 3.1.Summaryofclimatechangevulnerabilityscoresforanimalspecies.EV=ExtremelyVulnerable;HV=
HighlyVulnerable;MV=ModeratelyVulnerable;PS=PresumedStable;IL=IncreaseLikely.
182ColoradoNaturalHeritageProgram©2015
ANIMAL SPECIES CCVI SUMMARIES
ClimateChangeVulnerabilityAssessmentforColoradoBLM183
Boreal toad
Anaxyrusboreasboreas
G4T1/S1
Family:Bufonidae
Climate Vulnerability Rank: Highly Vulnerable
ThisColoradostate‐widerankisbasedon:themajorityofborealtoadpopulationsinColorado
beingborderedbyhighmountainsthatactasnaturalbarriers,whichcouldlimittheabilityofthis
speciestoshiftitsrangeinresponsetoclimatechange;thephysiologicalnicheofthisspeciesbeing
coolerhighelevationareaswheresnowfallandsummerevaporationcouldaffectseasonalwetland
breedinghabitat;thedependenceofthisspeciesonspecifichydrologyforbreedingandthe
potentialdisruptionofthetimingofbreedingandlarvaldevelopmentbyclimatechange.Additional
importantrankingfactorsincludetheimportanceofsnowpacklevelsforbreedingpondwater
levelsandasaninsulatorforhibernation.Borealtoadsarealsooftendependentonbeaversto
createandmaintainbreedinghabitat.
Distribution:BorealtoadswerefoundhistoricallythroughoutthemountainousareasofColorado,
buthavenotbeenreportedfromtheSangreDeCristoMountainRange,WetMountains,orthePikes
Peakregion(Hammerson1999).BorealToadsarealsoabsentfromtheLaPlataMountainsand
UncompahgrePlateauinSouthwestColorado(CNHP2014).Habitat:Borealtoadsarerestrictedto
montanehabitatsatelevationsof8,000–12,200feet(2,400–3,400meters).Commonhabitats
includebeaverponds,wetmeadows,glacialkettlepondsandlakesinsubalpineforests
(Hammerson1999).Breedingoccursalongthemarginsofshallowpondsinstillwater.
Occasionally,floodedtireruts,man‐madepondsandstreambackflowsareusedaswellfor
breeding(Loeffler2001).
CCVI Scoring
Temperature:CalculatedusingClimateWizard:ensembleaverage,highemissionscenario(A2),
mid‐centurytimeframe,averageannualchange.InColoradobymid‐centurythisspeciesisexpected
184ColoradoNaturalHeritageProgram©2015
tobeexposedtomeanannualtemperatureincreasesof5.0oFto5.5oFover100percentofitsrange
(NatureServe2012).
Moisture:CalculatedinGISusingNatureServeHamonAET:PETmoisturemetricdata(thisindex
integratesprojectedtemperatureandprecipitationchangestoindicatehowmuchdryingwilltake
place).Rangewidethisspeciesispredictedtobeexposedtonetdryingofgreaterthan11.9percent
on17percentofitsrange,9.7to11.9percentdryingon49percentofitsrangeand7.4to9.6
percentdryingon32percentofitsrange(NatureServe2012).
B1)Exposuretosealevelrise.Neutral.
B2a)Distributionrelativetonaturalbarriers.Increase.Mountainrangeswithhigh,>12,500ft.
passesshouldbeconsideredasnaturalbarriersforborealtoadmovement(NatureServe2014).The
majorityofborealtoadpopulationsinColoradoaremostlyborderedbyhighmountains.
B2b)Distributionrelativetoanthropogenicbarriers.Neutral.Intensiveresidentialor
commercialdevelopmentandhightrafficvolumehighwayscouldbeconsideredasanthropogenic
barriers(NatureServe2014).ThemajorityofborealtoadpopulationsoccuronUSFSmanagedland
wheredevelopmentisverylow.
B3)Impactoflandusechangesresultingfromhumanresponsestoclimatechange.
Somewhatincreasetoneutral.Landalterationssuchas,timberharvest,grazing,recreationand
waterdevelopmentwouldlikelynotbebeneficialforborealtoadhabitat,buthavenotbeenshown
asprimarycausativeagentsfordeclinesinthesouthernRockyMountains(Loeffler2001).Landuse
changesassociatedwithclimatechangemaybeconsideredathreatbutthescopeandtypeof
changeintherangeoftheborealtoadishardtopredict.
C1)Dispersalandmovements.Somewhatdecreasetoneutral.Borealtoadsaredependentupon
breeding,foragingandhibernatinghabitat,whichencompassesbothwetlandanduplandhabitat
(Adamsetal.2005).Theevidenceshowsseasonalvariabilityintoadmovementsandindividual
movementsandindividualtoadsmaymove4kmormorebetweenbreedingandnonbreeding
habitat(Hammerson1999;Jones2000)anduptoapproximately7.6kmforanadultmale(Lambert
andSchneider2013).
C2ai)Predictedsensitivitytotemperature:historicthermalniche.Neutral.Therangeoccupied
bytheborealtoadintheassessedareahasexperiencedaverage(57.1‐77°F/31.8‐43°C)mean
seasonaltemperaturevariationinthelast50years.
C2aii)Predictedsensitivitytotemperature:physiologicalthermalniche.:Somewhatincrease.
TherangeofthisspeciesinColoradoisrestrictedtocoolerhighelevationareas.Reducedsnowfall
andincreasedsummerevaporationcouldhavedramaticeffectsonthedurationoroccurrenceof
seasonalwetlands(Corn2005).Longeractiveseasonswerefoundtoincreaserecruitmentattwo
breedingsitesinChaffeeCounty,Colorado(Lambertetal.InPrep),e.g.,increasedtemperatureswill
allowforearlierdevelopmentofyoungwithlargermetamorphsenteringhibernationthus
increasingoverwintersurvival.
ClimateChangeVulnerabilityAssessmentforColoradoBLM185
C2bi) Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime:
historicalhydrologicalniche.Somewhatdecrease.Thisspecieshasundergonegreaterthan
average(>40inches/1,016mm)precipitationvariationoverthelast50years.
C2bii)Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime:
physiologicalhydrologicalniche.Increase.Theborealtoadishighlydependentofspecific
hydrologyforbreeding.Holland(2002)foundthatborealtoadtadpolesinColoradoexperienced
thatgreatestlarvalgrowthratesatbreedingsiteswiththewarmestandleastvariablewater
temperatures.Timingofbreedingandtimeforlarvaldevelopmentcouldalsobeimpactedby
changesinhydrologicallevels(Corn2005).
C2c)Dependenceonaspecificdisturbanceregimelikelytobeimpactedbyclimatechange.
Neutral.Theborealtoadisnotdependentuponspecificdisturbanceregimessuchasfires,floods,
severewinds,pathogenoutbreaks,orsimilarevents.
C2d)Dependenceonice,ice‐edge,orsnowcoverhabitats.Somewhatincrease.Borealtoad
breedingpondsoftendependonsnowpackmelttomaintainwaterlevelsforbreeding.Depthof
Snowpackcanbeimportantinprotectinghibernatingtoadsfromfreezing(Campbell1970;Corn
2003;Schereretal.2005).
C3)Restrictiontouncommongeologicalfeaturesorderivatives.Neutral.Borealtoadsarenot
dependentonanyspecificgeologicfeature.
C4a)Dependenceonotherspeciestogeneratehabitat.Increase.Borealtoadbreedingponds
arecommonlyfoundinbeaverpondcomplexes(Hammerson1999;Holland2002)andareoften
dependentonbeaverstomaintainbreedinghabitat.
C4b)Dietaryversatility(animals).Neutral.Borealtoadsfeedonawidevarietyofinvertebrates
(Hammerson1999).
C4d)Dependenceonotherspeciesforpropaguledispersal.Neutral.Theborealtoadisaself‐
disperser.
C4e)FormspartofaninterspecificinteractionnotcoveredbyC4a‐d.Neutral.Noother
interspecificinteractionsareimportanttothepersistenceoftheborealtoad.
C5a)Measuredgeneticvariation.Somewhatdecrease.Switzeretal.(2009)foundpatternsof
highlevelsofgeneticdifferentiationamongrelativelyclosebreedingsitesofborealtoadsandfound
thepopulationswithinthesouthernRockyMountainstobeisolatedwithlimitedgeneflowamong
populations.
C5b)Occurrenceofbottlenecksinrecentevolutionaryhistory.Neutral.Thereisnoevidence
thatthetotalpopulationofborealtoadswerereducedto<1000individualsortheoccupiedarea
wasreducedby>30%overthelast500years.
186ColoradoNaturalHeritageProgram©2015
C6)Phenologicalresponsetochangingseasonaltemperatureandprecipitationdynamics.
Neutral.Theeffectsofchangesintemperatureandprecipitationmayhavealargeeffectonthe
timingofbreedingforamphibians(Corn2005)andhasbeenobservedinsomespecies(Blaustein
etal.2001).
Literature Cited
Adams,S.B.,D.S.Schmetterling,andM.K.Young.2005.Instreammovementsbyborealtoads.HerpetologicalReview
36(1):27‐33.
Blaustein,A.R.,L.K.Belden,D.H.Olson,D.M.Green,T.L.Root,andJ.M.Kiesecker.2001.Amphibianbreedingandclimate
change.ConservationBiology15:1804‐1809.
Campbell,J.B.1970.Life‐historyofBufoboreasboreasintheColoradoFrontRange.Ph.D.thesis,UniversityofColorado,
Boulder,CO.
Corn,P.S.2003.Amphibianbreedingandclimatechange:Importanceofsnowinthemountains.ConservationBiology
17(2):622‐625.
Corn,P.S.2005.Climatechangeandamphibians.AnimalBiodiversityandConservation28(1):59‐67.
ColoradoNaturalHeritageProgram(CNHP).2014.BiodiversityTrackingandConservationSystem(BIOTICS).Colorado
NaturalHeritageProgram,ColoradoStateUniversity,FortCollins,CO.
Hammerson,G.A.1999.AmphibiansandreptilesinColorado.Seconded.UniversityPressofColoradoandColorado
DivisionofWildlife.
Holland,A.A.2002.EvaluatingBorealToad(Bufoboreas)BreedingHabitatSuitability.M.S.Thesis,ColoradoState
University,FortCollins,CO.
Jones,M.S.,J.P.Goettl,K.L.Scherff‐Norris,S.Brinkman,L.J.Livo,A.M.Goebel.1998.ColoradoDivisionofWildlifeBoreal
ToadResearchProgressReport1995‐1997.UnpublishedreportColoradoDivisionofWildlife,Denver,CO.
Lambert,B.andS.Schneider.2013.ColoradoNaturalHeritageProgramborealtoadsurveyandmonitoringproject
summary1999‐2012.UnpublishedreporttotheColoradoDivisionofWildlife,FortCollins,CO.
Loeffler,C.(ed.),2001.ConservationplanandagreementforthemanagementandrecoveryofthesouthernRocky
Mountainpopulationoftheborealtoad(Bufoboreasboreas),BorealToadRecoveryTeam.76pp.+appendices.
NatureServe2012.ClimateChangeVulnerabilityAssessmentTool,version2.1.Availableonlineat
https://connect.natureserve.org/science/climate‐change/ccvi.
NatureServe.2014.NatureServeExplorer:Anonlineencyclopediaoflife[webapplication].Version7.1.NatureServe,
Arlington,Virginia.Availablehttp://explorer.natureserve.org.Accessed2014.
Scherer,R.D.,E.Muths,B.R.Noon,andP.S.Corn.2005.Anevaluationofweatheranddiseaseascausesofdeclineintwo
populationsofborealtoads.EcologicalApplications15(6):2150‐2160.
Switzer,J.F.,R.Johnson,B.A.Lubinski,andT.L.King.2009.GeneticstructureintheAnaxyrusboreasspeciesgroup(Anura,
Bufonidae):anevaluationoftheSouthernRockyMountainspopulation.FinalReportSubmittedtotheU.S.Fishand
WildlifeService.
ClimateChangeVulnerabilityAssessmentforColoradoBLM187
Canyon Treefrog
Hylaarenicolor
G5/S2
Family:Hylidae
Climate Vulnerability Rank: Moderately Vulnerable
ThisColoradostate‐widerankisbasedon:themajorityofcanyontreefrogpopulationsinColorado
beingrestrictedtorockycanyonsandcanyon‐bottompoolsthatactasnaturalbarriers,whichcould
limittheabilityofthisspeciestoshiftitsrangeinresponsetoclimatechange;Thecanyontreefrog
ishighlydependentonspecifichydrology(rainfall)forbreedingandthepotentialdisruptionofthe
timingofbreedingandlarvaldevelopmentbyclimatechangeisaconcern.
Distribution:CanyontreefrogsoccurinwesternColoradoatelevationsrangingfromabout4,500‐
6,300ft.alongthesouthernedgeoftheColoradoRivervalleyandalongtheDoloresRiverandits
tributariessouthtoSanMiguelCounty,(Hammerson1999).ThereisanisolatedpopulationinLas
AnimasCountyatMesadeMaya(CNHP2014).Habitat:Canyontreefrogsarefoundalong
intermittentstreamsindeeprockycanyons(Hammerson1999).
CCVI Scoring
Temperature:CalculatedusingClimateWizard:ensembleaverage,highemissionscenario(A2),
mid‐centurytimeframe,averageannualchange.InColoradobymid‐centurythisspeciesisexpected
tobeexposedtomeanannualtemperatureincreasesof5.0oFto5.5oFover100percentofitsrange
(NatureServe2012).
Moisture:CalculatedinGISusingNatureServeHamonAET:PETmoisturemetricdata(thisindex
integratesprojectedtemperatureandprecipitationchangestoindicatehowmuchdryingwilltake
place).Rangewidethisspeciesispredictedtobeexposedtonetdryingofgreaterthan11.9percent
on12.1percentofitsrange,9.7to11.9percentdryingon43.2percentofitsrangeand7.4to9.6
Photo:CopyrightbyLaurenJ.Livoand
SteveWilcox
188ColoradoNaturalHeritageProgram©2015
percentdryingon31.3percentofitsrangeand5.1to7.3percentdryingon13percentofitsrange
(NatureServe2012).
B1)Exposuretosealevelrise.Neutral.
B2a)Distributionrelativetonaturalbarriers.Somewhatincreasevulnerability.InColorado,
thisspeciesisrestrictedtorockycanyonsandbreedsincanyonbottompools(Hammerson1999).
Geneticanalysissuggeststhatgeographicbarriersareresponsibleforphylogeographicpatternsin
canyontreefrogsfromArizonaandNewMexico(Barber1999).
B2b)Distributionrelativetoanthropogenicbarriers.Neutral.Intensiveresidentialor
commercialdevelopmentandhightrafficvolumehighwayscouldbeconsideredasanthropogenic
barriers(NatureServe2014).Themajorityofcanyontreefrogpopulationsoccuronfederally
managedlandsindeepcanyonswheredevelopmentisverylow.
B3)Impactoflandusechangesresultingfromhumanresponsestoclimatechange.Neutral.
Landalterationssuchas,timberharvest,grazing,recreationandwaterdevelopmentwouldlikely
notbebeneficialforcanyontreefroghabitat,buttheremotenessofoccurrencesmakesitunlikely
areasforfuturehumandisturbances.Landusechangesassociatedwithclimatechangemaybe
consideredathreatbutthescopeandtypeofchangeintherangeofthecanyontreefrogishardto
predict.
C1)Dispersalandmovements.Neutral.Canyontreefrogsaredependentonrockycanyonslopes
andbottomsforbreeding,foragingandhibernatinghabitat(Hammerson1999).Hylidsgenerally
exhibitlimitedmovementsonashort‐termbasis(NatureServe2014).Exceptforwarmrainy
nights,canyontreefrogsdonotrangefarfromcanyon‐bottompools(Hammerson1999).
C2ai)Predictedsensitivitytotemperature:historicthermalniche.Neutral.Therangeoccupied
bythecanyontreefrogintheassessedareahasexperiencedaverage(57.1‐77°F/31.8‐43°C)
meanseasonaltemperaturevariationinthelast50years.
C2aii)Predictedsensitivitytotemperature:physiologicalthermalniche.Somewhatdecrease.
Thisspeciesshowsapreferenceforenvironmentswithwarmertemperatures(Synderand
Hammerson1993).
C2bi) Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime:
historicalhydrologicalniche.Neutral.Thisspecieshasundergoneaverage(21‐40inches/509‐
1,016mm)precipitationvariationoverthelast50years.
C2bii)Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime:
physiologicalhydrologicalniche.Increase.Thecanyontreefrogishighlydependentonspecific
hydrology(rainfall)forbreeding(Hammerson1999).
C2c)Dependenceonaspecificdisturbanceregimelikelytobeimpactedbyclimatechange.
Neutral.Thecanyontreefrogisnotdependentuponspecificdisturbanceregimessuchasfires,
floods,severewinds,pathogenoutbreaks,orsimilarevents.
ClimateChangeVulnerabilityAssessmentforColoradoBLM189
C2d)Dependenceonice,ice‐edge,orsnowcoverhabitats.Neutral.Canyontreefrogsdonot
dependoniceorsnow‐coverhabitats.
C3)Restrictiontouncommongeologicalfeaturesorderivatives.Somewhatincrease.Canyon
treefrogsareassociatedwithrockycanyonbottomswheretheyperchonsolidrocksurfacesandat
nightretreattorockcrevices(Hammerson1999).
C4a)Dependenceonotherspeciestogeneratehabitat.Neutral.Canyontreefrogsdonotrelyon
otherspeciestogeneratehabitat.
C4b)Dietaryversatility(animals).Neutral.Canyontreefrogsfeedonawidevarietyof
invertebrates(Hammerson1999).
C4d)Dependenceonotherspeciesforpropaguledispersal.Neutral.Thecanyontreefrogisa
self‐disperser.
C4e)FormspartofaninterspecificinteractionnotcoveredbyC4a‐d.Neutral.Noother
interspecificinteractionsareimportanttothepersistenceofthecanyontreefrog.
C5a)Measuredgeneticvariation.Somewhatincrease.Barber(1999)foundlowgeneticvariation
fromdifferencesamongpopulationsinArizonaandNewMexico.
C5b)Occurrenceofbottlenecksinrecentevolutionaryhistory.Neutral.Thereisnoevidence
thatthetotalpopulationofcanyontreefrogswerereducedto<1000individualsortheoccupied
areawasreducedby>30%overthelast500years.
C6)Phenologicalresponsetochangingseasonaltemperatureandprecipitationdynamics.
Neutral.Theeffectsofchangesintemperatureandprecipitationmayhavealargeeffectonthe
timingofbreedingforamphibians(Blausteinetal.2001;Corn2005),buthasnotbeenreportedfor
canyontreefrogs.
Literature Cited
Barber,P.H.1999.Patternsofgeneflowandpopulationgeneticstructureinthecanyontreefrog,Hylaarenicolor.
MolecularEcology8:563‐576.
Blaustein,A.R.,L.K.Belden,D.H.Olson,D.M.Green,T.L.Root,andJ.M.Kiesecker.2001.Amphibianbreedingandclimate
change.ConservationBiology15:1804‐1809.
ColoradoNaturalHeritageProgram(CNHP).2014.BiodiversityTrackingandConservationSystem(BIOTICS).Colorado
NaturalHeritageProgram,ColoradoStateUniversity,FortCollins,CO.
Corn,P.S.2005.Climatechangeandamphibians.AnimalBiodiversityandConservation28(1):59‐67.
Hammerson,G.A.1999.AmphibiansandreptilesinColorado.Seconded.UniversityPressofColoradoandColorado
DivisionofWildlife.
NatureServe2012.ClimateChangeVulnerabilityAssessmentTool,version2.1.Availableonlineat
https://connect.natureserve.org/science/climate‐change/ccvi.
190ColoradoNaturalHeritageProgram©2015
NatureServe.2014.NatureServeExplorer:Anonlineencyclopediaoflife[webapplication].Version7.1.NatureServe,
Arlington,Virginia.Availablehttp://explorer.natureserve.org.Accessed2014.
Snyder,G.K.andG.A.Hammerson.1993.Interrelationshipsbetweenwatereconomyandthermoregulationinthecanyon
treefrogHylaarenicolor.JournalofAridEnvironments25:321‐329.
ClimateChangeVulnerabilityAssessmentforColoradoBLM191
Great Basin Spadefoot
Speaintermontana
G5/S3
Family:Scaphiopodidae
Climate Vulnerability Rank: Not Vulnerable/Presumed Stable
ThisColoradostate‐widerankisbasedon:Theonlymetricthatincreasedthevulnerabilityfor
GreatBasinspadefootswastheirdependenceonspecifichydrology(ephemeralandpermanent
watersources)forbreedingandthepotentialdisruptionofthetimingofbreedingandlarval
developmentbyclimatechange.Therestofthescoringfactorswereneutral.Thehabitatthis
speciesinhabitsisdiverseanddevoidofnaturalbarriers;withintherangeofthisspeciesin
Colorado,oilandgasdevelopmentcouldimpacthabitat,buttherehasnotbeenanyevidenceofthat
occurring.Irrigatedagriculturemaybebeneficialincreatingbreedinghabitat(Leonardetal.1996).
GreatBasinspadefootsoccurinprettyremoteareasofColoradoandareatalowriskofthreats
fromurbandevelopment.
Distribution:GreatBasinspadefootsoccurinnorthwesternColorado,northoftheUncompahgre
Plateau(Hammerson1999).Habitat:GreatBasinspadefootsarefoundinwidevarietyofhabitats
inColoradoatelevationsbelow7,000ft.(Hammerson1999).TypicalhabitattypesinColoradofor
GreatBasinspadefootsarepinyon‐juniperwoodlands,sagebrushandsemidesertshrublands
(Hammerson1999).Breedingoccursintemporarypoolsfromheavyrains(Hammerson1999)and
occasionallyinpermanentshallowponds(Hovinghetal.1995).
CCVI Scoring
Temperature:CalculatedusingClimateWizard:ensembleaverage,highemissionscenario(A2),
mid‐centurytimeframe,averageannualchange.InColoradobymid‐centurythisspeciesisexpected
tobeexposedtomeanannualtemperatureincreasesof5.0oFto5.5oFover100percentofitsrange
(NatureServe2012).
Photo:CopyrightbyLaurenJ.
LivoandSteveWilcox
192ColoradoNaturalHeritageProgram©2015
Moisture:CalculatedinGISusingNatureServeHamonAET:PETmoisturemetricdata(thisindex
integratesprojectedtemperatureandprecipitationchangestoindicatehowmuchdryingwilltake
place).Rangewidethisspeciesispredictedtobeexposedtonetdryingofgreaterthan11.9percent
on9.1percentofitsrange,9.7to11.9percentdryingon55.1percentofitsrangeand7.4to9.6
percentdryingon22.6percentofitsrangeand5.1–7.3on12.7percentofitsrange(NatureServe
2012).
B1)Exposuretosealevelrise.Neutral.
B2a)Distributionrelativetonaturalbarriers.Neutral.InColorado,thisspeciesinhabits
sagebrushflats,pinyon‐juniperwoodlandandsemi‐desertshrublands(Hammerson1999),areas
thataretypicallydevoidofnaturalbarriersforspadefoottoads.
B2b)Distributionrelativetoanthropogenicbarriers.Neutral.Intensiveresidentialor
commercialdevelopmentandhightrafficvolumehighwayscouldbeconsideredasanthropogenic
barriers(NatureServe2014),butformostoftheGreatBasinspadefootsrangeinColoradourban
developmentislow.Theremaybebreedinghabitatcreationfromirrigatedagriculture,butinsome
casesgrainfieldscouldeliminatebreedingponds(Leonardetal.1996).
B3)Impactoflandusechangesresultingfromhumanresponsestoclimatechange.Neutral.
Landalterationssuchas,timberharvest,grazing,recreationandwaterdevelopmentwouldlikely
notbebeneficialforGreatBasinspadefoots,buttheremotenessofoccurrencesmakesitunlikely
areasforfuturehumandisturbances.Landusechangesassociatedwithclimatechangemaybe
consideredathreatbutthescopeandtypeofchangeintherangeofthecanyontreefrogishardto
predict.
C1)Dispersalandmovements.Neutral.GreatBasinspadefootsaredependenton
sagebrush/semi‐desertshrublandhabitatwithtemporarypoolsforbreedingandforaging
(Hammerson1999).Specificdispersaldataforthisspeciesislackingbutingeneralspadefoottoads
exhibithighfidelitytobreedingsitewithmovementsuptoseveralhundredmetersfrombreeding
sites(NatureServe2014).Therehavebeenreportsofadultsmigratingupto100metersbetween
breedingpoolsandnon‐breedinghabitat(Busecketal.2005).
C2ai)Predictedsensitivitytotemperature:historicthermalniche.Neutral.Therangeoccupied
bytheborealtoadintheassessedareahasexperiencedaverage(57.1‐77°F/31.8‐43°C)mean
seasonaltemperaturevariationinthelast50years.
C2aii)Predictedsensitivitytotemperature:physiologicalthermalniche.Neutral.Thisspecies
isnotrestrictedtocoldenvironmentsthatarevulnerabletoclimatechange.
C2bi) Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime:
historicalhydrologicalniche.Neutral.Thisspecieshasundergoneaverage(21‐40inches/509‐
1,016mm)precipitationvariationoverthelast50years.
C2bii)Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime:
physiologicalhydrologicalniche.Increase.Thegreatbasinspadefootishighlydependenton
ClimateChangeVulnerabilityAssessmentforColoradoBLM193
specifichydrology(ephemeralandpermanentwatersources)forbreeding(Hovinghetal.1995;
Hammerson1999;Busecketal.2005).Timingofbreedingandtimeforlarvaldevelopmentin
amphibianscouldalsobeimpactedbychangesinhydrologicallevels(Corn2005).
C2c)Dependenceonaspecificdisturbanceregimelikelytobeimpactedbyclimatechange.
Neutral.Thegreatbasinspadefootisnotdependentuponspecificdisturbanceregimessuchas
fires,floods,severewinds,pathogenoutbreaks,orsimilarevents.
C2d)Dependenceonice,ice‐edge,orsnowcoverhabitats.Neutral.GreatBasinspadefootsdo
notdependoniceorsnow‐coverhabitats.
C3)Restrictiontouncommongeologicalfeaturesorderivatives.Neutral.GreatBasin
spadefootsarenotdependentonanyspecificgeologicfeature.
C4a)Dependenceonotherspeciestogeneratehabitat.Neutral.GreatBasinspadefootsdonot
relyonotherspeciestogeneratehabitat.
C4b)Dietaryversatility(animals).Neutral.GreatBasinspadefootsfeedonawidevarietyof
invertebrates(Hammerson1999).
C4d)Dependenceonotherspeciesforpropaguledispersal.Neutral.TheGreatBasinspadefoot
isaself‐disperser.
C4e)FormspartofaninterspecificinteractionnotcoveredbyC4a‐d.Neutral.Noother
interspecificinteractionsareimportanttothepersistenceoftheGreatBasinspadefoot.
C5a)Measuredgeneticvariation.Neutral.PhylogeneticanalysisontwopopulationsofGreat
Basinspadefootssuggestedpossiblegeographicvariationwithinthespecies(WiensandTitus
1991).
C5b)Occurrenceofbottlenecksinrecentevolutionaryhistory.Neutral.Thereisnoevidence
thatthetotalpopulationofGreatBasinspadefootswerereducedto<1000individualsorthe
occupiedareawasreducedby>30%overthelast500years.
C6)Phenologicalresponsetochangingseasonaltemperatureandprecipitationdynamics.
Neutral.Theeffectsofchangesintemperatureandprecipitationmayhavealargeeffectonthe
timingofbreedingforamphibians(Corn2005)andhasbeenobservedinsomespecies(Blaustein
etal.2001).
Literature Cited
Blaustein,A.R.,L.K.Belden,D.H.Olson,D.M.Green,T.L.Root,andJ.M.Kiesecker.2001.Amphibianbreedingandclimate
change.ConservationBiology15:1804‐1809.
Buseck,R.S.,D.A.Keinath,andM.Geraud.2005.SpeciesAssessmentforGreatBasinSpadefootToad(Speaintermontana)
inWyoming.TechnicalreportforBureauofLandManagement,Cheyenne,Wyoming.
Corn,P.S.2005.Climatechangeandamphibians.AnimalBiodiversityandConservation28(1):59‐67.
194ColoradoNaturalHeritageProgram©2015
Hammerson,G.A.1999.AmphibiansandreptilesinColorado.Seconded.UniversityPressofColoradoandColorado
DivisionofWildlife.
Hovingh,P.,B.Benton,andD.Bornholdt.1995.Aquaticparametersandlifehistoryobservationsofthegreatbasin
spadefoottoadinUtah.GreatBasinNaturalist45:22‐30.
Leonard,W.P,H.A.Brown,LL.C.Jones,K.R.McAllisterandR.M.Storm.1996.AmphibiansofWashingtonandOregon.
SeattleAudubonSociety,Seattle,Washington.
NatureServe2012.ClimateChangeVulnerabilityAssessmentTool,version2.1.Availableonlineat
https://connect.natureserve.org/science/climate‐change/ccvi.
NatureServe.2014.NatureServeExplorer:Anonlineencyclopediaoflife[webapplication].Version7.1.NatureServe,
Arlington,Virginia.Availablehttp://explorer.natureserve.org.Accessed2014.
Wiens,J.J.andT.A.Titus.1991.AphylogeneticanalysisofSpea(Anura:Pelobatidae).Herpetologica.47(1):21‐28.
ClimateChangeVulnerabilityAssessmentforColoradoBLM195
Northern Leopard Frog
Lithobatespipiens
G5/S3
Family:Ranidae
Climate Vulnerability Rank: Moderately Vulnerable
ThisColoradostate‐widerankisbasedon:thenorthernleopardfrog’sdependenceonspecific
hydrologyforbreedingandthepotentialdisruptionofthetimingofbreedingandlarval
developmentbyclimatechange.ThepredictedeffectsofclimatechangeintheWestincludea
reducedsnowpackandshorterperiodsofsnowcover,snowmeltthatoccursearlierintheseason,a
hydrologiccyclethatismoredynamicasextremerainfalleventsoccurwithgreaterfrequencyand
anoverallwarmer,drier,andmoredrought‐likeconditions(Melilloetal.2014).Climatechangehas
thepotentialtoalterthetimingofpondbreedingamphibians(Blausteinetal.2001).Additional
importantrankingfactorsincludethevulnerabilityofnorthernleopardfrogstodevelopmentand
habitatfragmentationfrombusypavedroads.
Distribution:NorthernleopardfrogsoccurthroughoutColorado,excludingmostofthe
southeasternandeasteast‐centralportionofthestate(Hammerson1999).Habitat:Northern
leopardfrogsarefoundinwidevarietyofhabitatsinColoradoatelevationsrangingfrom3,500ft.
to11,000ft.(Hammerson1999).TypicallyinColorado,northernleopardfrogsarefoundinwet
meadows,marshes,ponds,streams,lakesandreservoirs.Breedingoccursinmid‐sizedponds
(Merrell1997)andshallowareasofpermanentpondsandinseasonallyfloodedareasadjacentto
permanentpoolsorstreams(Hammerson1999).
CCVI Scoring
Temperature:CalculatedusingClimateWizard:ensembleaverage,mediumemissionscenario
(A1B),mid‐centurytimeframe,averageannualchange.InColoradobymid‐centurythisspeciesis
expectedtobeexposedtomeanannualtemperatureincreasesof5.0oFto5.5oFover100percentof
itsrange(NatureServe2012).
196ColoradoNaturalHeritageProgram©2015
Moisture:CalculatedinGISusingNatureServeHamonAET:PETmoisturemetricdata(thisindex
integratesprojectedtemperatureandprecipitationchangestoindicatehowmuchdryingwilltake
place).Rangewidethisspeciesispredictedtobeexposedtonetdryingofgreaterthan11.9percent
on12.6percentofitsrange,9.7to11.9percentdryingon52.8percentofitsrangeand7.4to9.6
percentdryingon29.1percentofitsrangeand5.1–7.3on5.4percentofitsrange(NatureServe
2012).
B1)Exposuretosealevelrise.Neutral.
B2a)Distributionrelativetonaturalbarriers.Neutral.Thenorthernleopardfrogoccupiesa
varietyofhabitattypesandiswidelydistributedinColorado(Hammerson1999).Whilepatchiness
occurs,therearefewnaturalbarrierstotheirdispersaltootherlandscapes.Riverscouldbea
barrierdependingonwidthandflowdynamics(NatureServe2014).
B2b)Distributionrelativetoanthropogenicbarriers.Somewhatincrease.Intensiveresidential
orcommercialdevelopmentandhightrafficvolumehighwayscouldbeconsideredas
anthropogenicbarriers(NatureServe2014).Disturbedareasdevoidofcoverdisruptedtheability
fornorthernleopardfrogstoreachhabitatpatchesinNewBrunswick(MazerolleandDesrochers
(2005).Bouchardetal.(2009)foundthatleopardfrogswerehighlyvulnerabletoroadmortality.
B3)Impactoflandusechangesresultingfromhumanresponsestoclimatechange.
Somewhatincreasetoneutral.ThenortheasternColoradohabitatofthisspeciesissusceptibleto
potentialdevelopmentofwindfarms/solarfarmsandbiofuelsproduction.Inthefaceofrising
climatechangeandcoststoextractfossilfuels,windenergydevelopmentisexpectedtoincrease
withintherangeofthenorthernleopardfroginColorado(NRDC2014).
C1)Dispersalandmovements.Somewhatdecreasetoneutral.Northernleopardfrogshavegood
movementanddispersalcapabilityastheyaredependentuponbreeding,foragingandhibernating
habitat,whichencompassesbothwetlandanduplandhabitat(Hammerson1999;NatureServe
2014).Theevidenceshowsseasonalvariabilityinleopardfrogmovementsandindividual
movementsupto4kmforadults(Seburnetal.1997)and5.2kmforjuveniles(Dole1971)in
AlbertaandMichiganrespectively.
C2ai)Predictedsensitivitytotemperature:historicthermalniche.Neutral.Therangeoccupied
bytheborealtoadintheassessedareahasexperiencedaverage(57.1‐77°F/31.8‐43°C)mean
seasonaltemperaturevariationinthelast50years.
C2aii)Predictedsensitivitytotemperature:physiologicalthermalniche.Increase.Somewhat
Increase.TherangeofthisspeciesinColoradoincludessomehigherelevationmontaneareas.
Reducedsnowfallandincreasedsummerevaporationcouldhavedramaticeffectsontheduration
oroccurrenceofseasonalwetlands(Corn2005).
C2bi) Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime:
historicalhydrologicalniche.Somewhatdecrease.Thisspecieshasundergonegreaterthan
average(>40inches/1,016mm)precipitationvariationoverthelast50years.
ClimateChangeVulnerabilityAssessmentforColoradoBLM197
C2bii)Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime:
physiologicalhydrologicalniche.Increase.Thenorthernleopardfrogishighlydependenton
specifichydrologyforbreeding.Reproductivesuccessistiedtoappropriatetemperaturein
breedingsites(shallowponds);timingofthiswouldchangewithearlysnowmeltandwarmer
temperatures(SmithandKeinath2007).Timingofbreedingandtimeforlarvaldevelopmentcould
alsobeimpactedbychangesinhydrologicallevels(Corn2005).Increaseddroughtcouldcause
reductionsinhabitatandpotentiallyincreasemortalityfromeggtoadult.Droughtwasresponsible
fortheextirpationofapopulationofleopardfrogsinLarimerCounty,Colorado(Cornand
Fogleman1984).
C2c)Dependenceonaspecificdisturbanceregimelikelytobeimpactedbyclimatechange.
Neutral.Thenorthernleopardfrogisnotdependentuponspecificdisturbanceregimessuchas
fires,floods,severewinds,pathogenoutbreaks,orsimilarevents.
C2d)Dependenceonice,ice‐edge,orsnowcoverhabitats.Neutral.Northernleopardfrogs
inhabitawiderangeofhabitats.
C3)Restrictiontouncommongeologicalfeaturesorderivatives.Neutral.Northernleopard
frogsarenotdependentonanyspecificgeologicfeature.
C4a)Dependenceonotherspeciestogeneratehabitat.Neutraltosomewhatincrease.Northern
leopardfrogssometimesusebeaverpondsforbreeding(Hammerson1999).
C4b)Dietaryversatility(animals).Neutral.Northernleopardfrogsfeedonawidevarietyof
invertebrates(Hammerson1999).
C4d)Dependenceonotherspeciesforpropaguledispersal.Neutral.Thenorthernleopardfrog
isaself‐disperser.
C4e)FormspartofaninterspecificinteractionnotcoveredbyC4a‐d.Neutral.Noother
interspecificinteractionsareimportanttothepersistenceofthenorthernleopardfrog.
C5a)Measuredgeneticvariation.Somewhatdecrease.Mushetetal.(2013)foundhighlevelsof
geneticdiversityinpopulationsofnorthernleopardfrogsinNorthDakota.
C5b)Occurrenceofbottlenecksinrecentevolutionaryhistory.Neutral.Thereisnoevidence
thatthetotalpopulationofnorthernleopardfrogswerereducedto<1000individualsorthe
occupiedareawasreducedby>30%overthelast500years.
C6)Phenologicalresponsetochangingseasonaltemperatureandprecipitationdynamics.
Neutral.Theeffectsofchangesintemperatureandprecipitationmayhavealargeeffectonthe
timingofbreedingforamphibians(Corn2005)andhasbeenobservedinsomespecies(Blaustein
etal.2001).
Literature Cited
Alford,RossA.2011.Bleakfutureforamphibians.Nature480:461‐462.
198ColoradoNaturalHeritageProgram©2015
Blaustein,A.R.,L.K.Belden,D.H.Olson,D.M.Green,T.L.Root,andJ.M.Kiesecker.2001.Amphibianbreedingandclimate
change.ConservationBiology15:1804‐1809.
Bouchard,J.,A.T.Ford,F.E.Eigenbrod,andL.Fahrig.2009.Behavioralresponsesofnorthernleopardfrogs(Ranapipiens)
toroadsandtraffic:Implicationsforpopulationpersistence.EcologyandSociety14(2):23.
Corn,P.S.andJ.C.Fogleman.1984.Extinctionofmontanepopulationsofthenorthernleopardfrog(Ranapipiens)in
Colorado.JournalofHerpetology18(2):147‐152.
Corn,P.S.2005.Climatechangeandamphibians.AnimalBiodiversityandConservation28(1):59‐67.
Dole,J.W.1971.Dispersalofrecentlymetamorphosedleopardfrogs,Ranapipiens.Copeia1971:221‐228.
Hammerson,G.A.1999.AmphibiansandreptilesinColorado.Seconded.UniversityPressofColoradoandColorado
DivisionofWildlife.
Mazerolle,M.J.andA.Desrochers.2005.Landscaperesistancetofrogmovements.CanadianJournalofZoology83:455‐
464.
Melillo,J.M.,T.C.Richmond,andG.W.Yohe,Eds.2014.ClimateChangeImpactsintheUnitedStates:TheThirdNational
ClimateAssessment.U.S.GlobalChangeResearchProgram,841pp.doi:10.7930/J0Z31WJ2.
Merrell,D.J.1977.Lifehistoryoftheleopardfrog,Ranapipiens,inMinnesota.BellMuseumofNaturalHistoryOccasional
PapersNo.15:1‐23.
Mushet,D.M.,N.H.Euliss,Y.ChenandC.A.Stockwell.2013.Complexspatialdynamicsmaintainnorthernleopardfrog
(Lithobatespipiens)geneticdiversityinatemporaryvaryinglandscape.HerpetologicalConservationandBiology
8(1):163‐175.
NaturalResourceDefenseCouncil[NRDC].2014.RenewableEnergyforAmerica,harvestingthebenefitsofhomegrown
renewableenergy[Online].http://www.nrdc.org/energy/renewables/technologies.asp
NatureServe2012.ClimateChangeVulnerabilityAssessmentTool,version2.1.Availableonlineat
https://connect.natureserve.org/science/climate‐change/ccvi.
NatureServe.2014.NatureServeExplorer:Anonlineencyclopediaoflife[webapplication].Version7.1.NatureServe,
Arlington,Virginia.Availablehttp://explorer.natureserve.org.Accessed2014.
Seburn,C.N.L.,D.C.SeburnandC.A.Paszkowski.1997.Northernleopardfrog(Ranapipiens)dispersalinrelationto
habitat.Pp.64‐72inGreen,D.M.,ed.AmphibiansinDecline:CanadianStudiesofaGlobalProblem.SocietyfortheStudy
ofAmphibiansandReptiles,HerpetologicalConservationNumberOne.St.Louis,Missouri.
Smith,B.E.andD.A.Keinath.2007.NorthernLeopardFrog(Ranapipiens):atechnicalconservationassessment.[Online].
USDAForestService,RockyMountainRegion.Available:http://www.fs.fed.us/r2/
projects/scp/assessments/northernleopardfrog.pdf
ClimateChangeVulnerabilityAssessmentforColoradoBLM199
American Peregrine Falcon
Falcoperegrinusanatum
G4T4/S2B
Family:Falconidae
Climate Vulnerability Rank: Not Vulnerable/Presumed Stable
ThisColoradostatewiderankisbasedon:theextensivedispersalandmigratoryabilitiesofthis
raptor,thelackofimpactsfromlandusechangesassociatedwithclimatechange,theaverage
geneticvariationmeasuredforthespeciesinNorthAmerica,andthepredicted68percent
expansionofthePeregrinefalconswinterrangeinresponsetoclimatechange.Climatemodels
projectincreasedwarminganddroughtacrosstheassessedareawithannualaveragetemperatures
risingby2.5°Fto5.5°Fby2041‐2070andby5.5°Fto9.5°Fby2070‐2099withcontinuedgrowth
inglobalemissions(A2emissionsscenario),withthegreatestincreasesinthesummerandfall
(Melilloetal.2014).Projectionsofprecipitationchangesarelesscertain,butunderacontinuation
ofcurrentrisingemissionstrends(A2),reducedwinterandspringprecipitationisconsistently
projectedforthesouthernpartoftheSouthwestby2100(Melilloetal.2014).Theseprojected
changesinclimatearenotexpectedtohaveimportantnegativeimpactstothePeregrinefalcon
withintheassessmentarea.
Distribution:PeregrineFalconsbreedalongthefoothillsofColorado'sFrontRangeand(inhigher
concentrations)intherivervalleysandcanyonsoftheWesternSlope(Kingery1998).Habitat:
PeregrineFalconsnestonledgesofhighcliffsinthefoothillsandmountainsfrom4,500toover
9,000feet(1,388to2,776m)inelevation(U.S.FishandWildlifeService1984).Thesteepestand
mostinaccessiblelocationsonthetallestcliffsarepreferred;especiallythosethatofferflat,
protectedledgesatleast18incheswide,withsheerrockaboveandbelow(Johnsgard2009).In
Colorado,pinyon/juniperwoodlandoccursinthevicinityofabouthalfofallPeregrineFalconnest
sites,andponderosapinewoodlandorforestisfoundataboutone‐quarterofthesites(Kingery
1998).
200ColoradoNaturalHeritageProgram©2015
CCVI Scoring
B1)Exposuretosealevelrise.Neutral.
B2a)Distributionrelativetonaturalbarriers.Neutral.Significantnaturalbarriersdonotexist
forthisspecies.ThePeregrinefalconisavolantlongdistantmigratorthatcantraversemountain
rangesandlargebodiesofwater.
B2b)Distributionrelativetoanthropogenicbarriers.Increase.Neutral.Significant
anthropogenicbarriersdonotexistforthisspecies.Thisraptorisavolantspeciesthatcanflyover
oraroundpotentialanthropogenicbarriers.
B3)Impactoflandusechangesresultingfromhumanresponsestoclimatechange.Neutral.
AlthoughraptorsandPeregrinefalconshavebeenreportedtobeatriskofcollisionwithwind
turbinesanddisturbedbytheirconstructionduringbrooding(NHFG2005)duringmigrationonly
about10%oftheirrangeintheassessedareaissuitableforwindenergydevelopment(NRDC
2014).Thisisalowconcernfortheraptorwithintheassessedarea.
C1)Dispersalandmovements.Decrease.Althoughmalestendnottodispersefarfromtheirnatal
sites,femalesareknowntodisperse100sofkmfromnatalsites(Whiteetal.2002).Additionally,
PeregrinefalconshavelargehomerangeswithestimatesinColoradorangingfrom358–1,508km2
(EndersonandCraig1997).Finally,thePeregrinefalconislongdistantmigratorandcantravel
over10,000kilometersduringmigration(Whiteetal.2002).
C2ai)Predictedsensitivitytotemperature:historicalthermalniche.Neutral.Therange
occupiedbythePeregrinefalconintheassessedareahasexperiencedanaverage(51.7‐77°F/31.8
‐43.0°C)zonalmeanseasonaltemperatureoverthelast50years.
C2aii)Predictedsensitivitytotemperature:physiologicalthermalniche.Neutral.Thereisno
directevidencethatPeregrinesrequirecoolmicroclimatesfornesting.Theygenerallymakea
scrapeonaledgewithshading,sheltering,oroverhangs,andtrendtosouth‐orwest‐facing
orientationinhighlatitudesbutmorerandomdirectionsinlowerlatitudes.Presumablyorientation
orothermicro‐featuresofeyrieprotectyoungfromtemperatureextremes(Whiteetal.2002)
C2bi)Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime:
historicalhydrologicalniche.Somewhatdecrease.TherangeoccupiedbythePeregrinefalconin
theassessedareahasexperiencedgreaterthanaverage(>40inches/1,016mm)precipitation
variationinthepast50years.
C2bii)Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime:
physiologicalhydrologicalniche.Neutral.ThePeregrinefalconhasnodependenceonastrongly
seasonalhydrologicregimeand/oraspecificaquatic/wetlandhabitatorlocalizedmoistureregime
thatishighlyvulnerabletolossorreductionwithclimatechange.
ClimateChangeVulnerabilityAssessmentforColoradoBLM201
C2c)Dependenceonaspecificdisturbanceregimelikelytobeimpactedbyclimatechange.
Neutral.ThePeregrinefalconisnotdependentuponspecificdisturbanceregimessuchasfires,
floods,severewinds,pathogenoutbreaks,orsimilarevents.
C2d)Dependenceonsnow‐coveredhabitats.Neutral.ThePeregrinefalconisnotdependenton
habitatswithice,snow,oronsnowpack.
C3)Restrictiontouncommongeologicalfeaturesorderivatives.Somewhatincreaseto
increase.Peregrinefalconshavepreferencefornestingoncliffs,althoughtheywilluseartificial
structuressuchassmokestacksandbuildings(Whiteetal.2002).
C4a)Dependenceonotherspeciestogeneratehabitat.Neutral.ThePeregrinefalconisnot
dependentonanyotherspeciestocreatesuitablehabitatforitsexistence
C4b)Dietaryversatility.Neutral.Withintheassessedareaperegrinefalconsmainlyfeedonbirds
includingcolumbids(e.g.,Zenaida),swifts,andpasserines,butmayoccasionallyfeedonmammals,
amphibians,fish,andinsects(Whiteetal.2002).
C4d)Dependenceonotherspeciesforpropaguledispersal.Neutral.ThePeregrinefalconisa
self‐disperser.
C4e)Formspartofaninterspecificinteractionnotcoveredby4a‐d.Neutral.Noother
interspecificinteractionsareimportanttothepersistenceofthePeregrinefalcon.
C5a)Measuredgeneticvariation.Neutral.Theperegrinefalconexhibitsaveragegeneticdiversity
acrosspopulationsinNorthAmericawithobservedandexpectedheterozygositiesbeingnearly
equivalent(Johnsonetal.2010).
C5b)Occurrenceofbottlenecksinrecentevolutionaryhistory.Unknown.
C6)Phenologicalresponsetochangingseasonaltemperatureandprecipitationdynamics.
Unknown.
D1)Responsetorecentclimatechange.Unknown.
D2)Modeledfuturechangeinpopulationorrangesize.Decrease.Itisprojectedthattherewill
beadecreaseinathreattothePeregrinefalconswinterrangeduetoclimatechange.Rangewide,
modelspredictedtoincreaseby69%by2080inthefalconswinterrange(NAS2014).Thisincludes
predictionsofanexpansionofthewinterrangeintheassessedarea.Modelsoftheimpactof
climatechangeonthefalcon’spopulationsizearenotavailablefortheassessedarea.
D3)Overlapofmodeledfuturerangewithcurrentrange.Unknown.
D4)Protectedareas.Unknown.
202ColoradoNaturalHeritageProgram©2015
Literature Cited
Enderson,J.H.andG.R.Craig.1997.WiderangingbynestingPeregrinefalcons(Falcoperegrinus)determinedby
radiotelemetry.JournalofRaptorResearch,31:333‐338.
Johnsgard,P.A.2009.BirdsoftheGreatPlains–BreedingSpeciesandtheirDistribution:NewExpandedEdition(2009).
546p.Univ.ofNebr.Press,LincolnandLondon.
Johnson,J.A.,S.L.Talbot,G.K.Sage,K.K.Burnham,J.W.Brown,T.L.Maechtle,W.S.Seeger,M.A.Yates,B.AndersonandD.P.
Mondell.2010.PLoSone,5:1‐15.Available:
http://www.plosone.org/article/fetchObject.action?uri=info:doi/10.1371/journal.pone.0014042&representation=PDF
[2/5/2015].
Kingery,H.E.(editor)1998.Coloradobreedingbirdatlas.ColoradoBreedingBirdAtlasPartnership,Denver.Colorado.
Melillo,J.M.,T.C.Richmond,andG.W.Yohe,Eds.,2014:ClimateChangeImpactsintheUnitedStates:TheThirdNational
ClimateAssessment.U.S.GlobalChangeResearchProgram,841pp.doi:10.7930/J0Z31WJ2.
NationalAudubonSociety(NAS).2014.Audubon’sBirdsandClimateChangeReport:APrimerforPractitioners.National
AudubonSociety,NewYork.Contributors:GaryLangham,JustinSchuetz,CandanSoykan,ChadWilsey,TomAuer,Geoff
LeBaron,ConnieSanchez,TrishDistler.Version1.2.Available:http://climate.audubon.org/birds/perfal/peregrine‐falcon
[1/29/2015].
NewHampshireFishandGame(NHFG).2005.NewHampshirewildlifeactionplan.NewHampshireFishandGame
Department,Concord,NewHampshire.
NaturalResourcesDefenseCouncil(NRDC).2014.RenewableenergyforAmerica.Available:
http://www.nrdc.org/energy/renewables/energymap.asp[2/6/2015].
U.S.FishandWildlifeService1984.AmericanPeregrineFalconRecoveryPlan(RockyMountainSouthwestPopulations).
White,C.M.,N.J.Clum,T.J.CadeandW.GraingerHunt.2002.PeregrineFalcon(Falcoperegrinus),TheBirdsofNorth
AmericaOnline(A.Poole,Ed.).Ithaca:CornellLabofOrnithology;RetrievedfromtheBirdsofNorthAmericaOnline:
http://bna.birds.cornell.edu/bna/species/660.
ClimateChangeVulnerabilityAssessmentforColoradoBLM203
Black Swift
Cypseloidesniger
G4/S3B
Family:Apodidae
Climate Vulnerability Rank: Not Vulnerable/Presumed Stable
ThisColoradostate‐widerankisbasedonthefollowingfactors:1)fewtonobarrierstomovement;
2)associationwithwaterfallsfornestingthatmaybevulnerabletodryingunderprojected
increasesintemperatureduetoclimatechange.
Distribution:InColorado,BlackSwiftsbreedprimarilyintheSanJuanMountainswithpopulations
concentratedinthesouthwestcornerofthestate.BreedinglocationsarealsofoundintheSangre
deCristo,FlatTops,Gore,andFrontrangesnorthtonorthernRouttCounty(ColoradoBirdAtlas
Partnership1998;Levadetal.2008).Habitat:InColorado,BlackSwiftsnestonclifffaceswith
waterfallsandinsomecases,wetcaves(ColoradoBirdAtlasPartnership1998;Levadetal.2008).
Elevation:Nestinglocationsrangefrom6,640to11,680feetinelevation,withameanof9,957feet
(Levadetal.2008).
EcologicalSystem:Cliffandcanyon
CCVI Scoring
B1)Exposuretosealevelrise.Neutral.
B2a)Distributionrelativetonaturalbarriers.Neutral.Volant–nobarriers
B2b)Distributionrelativetoanthropogenicbarriers.Neutral.Volant–nobarriers
204ColoradoNaturalHeritageProgram©2015
B3)Impactoflandusechangesresultingfromhumanresponsestoclimatechange.Neutral.It
isunlikelythatanymitigation‐relatedlandusechangeswilloccurwithinthisspecies’rangewithin
Colorado.
C1)Dispersalandmovements.Decrease.BlackSwiftsbreedinColoradoandundertakelong,
seasonalmigrations.Dispersalabilityisgreat.
C2)Sensitivitytotemperatureandmoisturechanges.Thisspecies'closeassociationwith
waterfallsfornestsites(LowtherandCollins2002)greatlyincreasesitsvulnerability;this
associationwithinColoradoaffectsitsscoreinboththehydrologicandgeologicsections.
C2ai)Predictedsensitivitytotemperature:historicalthermalniche.Neutral
C2aii)Predictedsensitivitytotemperature:physiologicalthermalniche.Neutral.BlackSwifts
prefercoolsitesnearwaterfallsfornesting,butthesemicroclimatesarenotlikelytobeaffected
directlybyclimatechange.
C2bi)Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime:
historicalhydrologicalniche.Neutral
C2bii)Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime:
physiologicalhydrologicalniche.Increase.Thedegreetowhichstreamsonwhichthese
waterfallsarefoundwillbeaffectedbyclimatechangeisuncertain;Knorr(1961)firstsuggested
thatthisspecieswillnotnestonintermittentstreamsandthatevenindroughtyearswherethe
streamwasreducedtoatrickle,birdsreturnedtotheirnestingsites(Knorr1961;Knorr1993).The
degreetowhichperennialstreamsthatfeedwaterfallswithnestingsitesbecomeintermittentdue
toclimatechangeseemstobetheprimaryfactorindetermininghowvulnerablenestingsitesmay
be.Levadetal.(2008)didfindthatincreasedstreamflowcontributedtoahigherprobabilitythata
waterfallwouldbeoccupied.
C2c)Dependenceonaspecificdisturbanceregimelikelytobeimpactedbyclimatechange.
Neutral.
C2d)Dependenceonsnow‐coveredhabitats.Neutral.
C3)Restrictiontouncommongeologicalfeaturesorderivatives.SomewhatIncrease.This
species'closeassociationwithwaterfallsfornestsites(LowtherandCollins2002)increasesits
vulnerability.
C4a)Dependenceonotherspeciestogeneratehabitat.Neutral.
C4b)Dietaryversatility.Neutral. Diet items are diverse, but primarily limited to flying insects
(Lowther and Collins 2002).
C4c)Pollinatorversatility(Plantsonly,notapplicable).
ClimateChangeVulnerabilityAssessmentforColoradoBLM205
C4d)Dependenceonotherspeciesforpropaguledispersal.Neutral.
C4e)Formspartofaninterspecificinteractionnotcoveredby4a‐d.Unknown.
C5a)Measuredgeneticvariation.Unknown.MoreinformationisneededonBlackSwiftgenetics.
C5b)Occurrenceofbottlenecksinrecentevolutionaryhistory.Unknown.
C6)Phenologicalresponsetochangingseasonaltemperatureandprecipitationdynamics.
Unknown.
D1)Responsetorecentclimatechange.Unknown.
D2)Modeledfuturechangeinpopulationorrangesize.Unknown.
D3)Overlapofmodeledfuturerangewithcurrentrange.Unknown.
D4)Protectedareas.Unknown.
Literature Cited
ColoradoBirdAtlasPartnership,RadeauxandColoradoDivisionofWildlife.1998.ColoradoBreedingBirdAtlas.Denver,
Colorado:ColoradoBirdAtlasPartnership.636pg.
Knorr,O.A.1961.ThegeographicalandecologicaldistributionoftheBlackSwiftinColorado.WilsonBulletin73:155‐170.
Knorr,O.A.1993.BreedingoftheBlackSwiftintheGreatBasin.WesternBirds24:197‐198.
Levad,R.G.,K.M.Potter,C.W.Schultz,C.Gunn,andJ.G.Doerr.2008.Distribution,abundance,andnest‐sitecharacteristics
ofBlackSwiftsintheSouthernRockyMountainsofColoradoandNewMexico.TheWilsonJournalofOrnithology
120:331‐338.
Lowther,P.E.,andC.T.Collins.2002.BlackSwift(Cypseloidesniger).InTheBirdsofNorthAmerica,No.676(A.Pooleand
F.Gill,eds.).TheBirdsofNorthAmerica,Inc.,Philadelphia,PA.
206ColoradoNaturalHeritageProgram©2015
Brewer’s Sparrow
Spizellabreweri
G5/S4B
Family:Emberizidae
Climate Vulnerability Rank: Not Vulnerable/Presumed Stable
ThisColoradostate‐widerankisbasedonthefollowingfactors:1)potentialincreasehabitat
degradationdueoilandgasdevelopmentinBrewer’ssparrowhabitat;2)relianceonsagebrush
habitats;and3)positivecorrelationbetweenwinterprecipitationandclutchsize.TheBrewer’s
Sparrowmaybelessvulnerablethanotherbirdspeciesassessedinthisreportduetothelackof
barrierstomovement,highgeneticvariation,highdietaryversatility,andlongdistancemovement
patterns.
Distribution:Brewer’sSparrowsareoccurthroughoutmostofColorado,butarenotablyabsent
fromtheSanJuanBasin(ColoradoBirdAtlasPartnership1998;BoyleandReeder2005).Breeding
Brewer’sSparrowsaremostcommoninthemesasandfoothillsofwesternColorado,withthe
highestabundanceestimatesoccurringinthenorthwesterncornerofthestate(Lambeth1998).
Habitat:InColorado,Brewer’sSparrowsaremostfrequentlydocumentedinmountainbig
sagebrushhabitats(ColoradoBirdAtlasPartnership1998).Theyalsooccurinthefollowing
vegetationtypesasdefinedbytheColoradoBreedingBirdAtlas(1998):lowlandsagebrush,tall
desertshrub,shortgrassortallgrass/sandsage,montanegrassland,mountainshrub,pinyon‐juniper
woodland.Elevation:Commonlynestingbetween5,000and7,500ft(AndrewsandRighter1992).
EcologicalSystem:Sagebrushshrubland,Sandsage,DesertShrublands,Pinyon‐Juniper
CCVI Scoring
B1)Exposuretosealevelrise.Neutral.
ClimateChangeVulnerabilityAssessmentforColoradoBLM207
B2a)Distributionrelativetonaturalbarriers.Neutral.Brewer'sSparrowsarefoundonboththe
EastandWestSlopeofColorado,fromlowelevationareasontheplains,tohighelevationsitesnear
timberline(11,400feet)(HansleyandBeauvais2004).
B2b)Distributionrelativetoanthropogenicbarriers.Neutral.Thisspeciesoccupiesabroad
geographicandelevationrangeinCO.Noanthropogenicbarriershavebeenreportedforthe
species(HansleyandBeauvais2004).
B3)Impactoflandusechangesresultingfromhumanresponsestoclimatechange.
SomewhatIncrease.Brewer'sSparrowsareconsideredsagebrushobligates.NWColorado,
includingRioBlancoCounty,containslargeexpansesofsagebrushshrublands.Atotalof2,915
activenaturalgaswellsarecurrentlyoperatinginRioBlancoCounty(COGCC2015).Aprojected
1,845newwellswillbedrilledinRioBlancoCountyin2035tomeetenergydemandsinColorado
(BBC2008).Increasedenergydevelopmentinthisareawillresultinfurtherhabitatfragmentation
forBrewer'sSparrow.
C1)Dispersalandmovements.Decrease.Brewer'sSparrowsmigratelongdistancesacrossthe
WesternUS,winteringinTexas,California,andNevada,andtravelingnorthtoCanada,Wyoming,
Colorado,andtheGreatPlainstobreed(ColoradoBirdAtlasPartnership2008).
C2ai)Predictedsensitivitytotemperature:historicalthermalniche.Neutral.Consideringthe
meanseasonaltemperaturevariationforoccupiedcells,thespecieshasexperiencedaverage(57.1‐
77°F/31.8‐43.0°C)temperaturevariationinthepast50years.
C2aii)Predictedsensitivitytotemperature:physiologicalthermalniche.Neutral.Lessthan
10%ofsagebrushecosystemsinColoradoareprojectedtobeoutsideofitscurrentclimatic
envelope(SeeEcosystemSectionofreport).
C2bi)Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime:
historicalhydrologicalniche.SomewhatDecrease.Consideringtherangeofmeanannual
precipitationacrossoccupiedcells,thespecieshasexperiencedgreaterthanaverage(>40
inches/1,016mm)precipitationvariationinthepast50years.
C2bii)Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime:
physiologicalhydrologicalniche.Neutral.Thisspeciesdoesnotrelyonastronglyseasonal
hydrologicregime.
C2c)Dependenceonaspecificdisturbanceregimelikelytobeimpactedbyclimatechange.
Neutral.Thisspeciesdoesnotrelyonaspecificdisturbanceregimethatwillbeimpactedbyclimate
change.
C2d)Dependenceonsnow‐coveredhabitats.SomewhatIncrease.Clutchsizeappearstobe
positivelycorrelatedwithwinterprecipitation(PetersonandBest1986;Lack1966).
C3)Restrictiontouncommongeologicalfeaturesorderivatives.Neutral.
208ColoradoNaturalHeritageProgram©2015
C4a)Dependenceonotherspeciestogeneratehabitat.GreatlyIncrease.Thisspeciesismost
frequentlyassociatedwithmountainbigsagebrushhabitatsinColorado.
C4b)Dietaryversatility.Neutral.Brewer'sSparrowseatawidevarietyofinsects(Petersonand
Best1986).Duringmigration,Brewer'sSparrowsrelymainlyonseedsandseedheadsforfood,
withinsectscomprisingonly10%oftheirdiet(Short1984).
C4c)Pollinatorversatility(Plantsonly,notapplicable).
C4d)Dependenceonotherspeciesforpropaguledispersal.Neutral.
C4e)Formspartofaninterspecificinteractionnotcoveredby4a‐d.Unknown.
C5a)Measuredgeneticvariation.Neutral.Geneticvariationorinbreedingdepressionhasnot
beenidentifiedasaconcernforBrewer'sSparrow(HansleyandBeauvais2004).
C5b)Occurrenceofbottlenecksinrecentevolutionaryhistory.Unknown
C6)Phenologicalresponsetochangingseasonaltemperatureandprecipitationdynamics.
Unknown.
D1)Responsetorecentclimatechange.Unknown.
D2)Modeledfuturechangeinpopulationorrangesize.Unknown.
D3)Overlapofmodeledfuturerangewithcurrentrange.Unknown.
D4)Protectedareas.Unknown.
Literature Cited
Andrews,R.andR.Righter.1992.Coloradobirds:areferencetotheirdistributionandhabitat.Denver:DenverMuseumof
NaturalHistory.
BBCResearchandConsulting.2008.NorthwestColoradoSocioeconomicAnalysisandForecasts.Reportpreparedfor
AssociatedGovernmentsofNorthwestColorado.179pg.Availableonlineat
http://www.colorado.gov/cs/Satellite?blobcol=urldata&blobheadername1=ContentDisposition&blobheadername2=Cont
entType&blobheadervalue1=inline%3B+filename%3D%22Full+Report.pdf%22&blobheadervalue2=application%2Fpdf&
blobkey=id&blobtable=MungoBlobs&blobwhere=1251731958720&ssbinary=true.
Boyle,S.A.andD.R.Reeder.2005.Coloradosagebrush:aconservationassessmentandstrategy.GrandJunction:Colorado
DivisionofWildlife.
ColoradoBirdAtlasPartnership,RadeauxandColoradoDivisionofWildlife.1998.ColoradoBreedingBirdAtlas.Denver,
Colorado:ColoradoBirdAtlasPartnership.636pg.
ColoradoOilandGasCommission(COGCC).2015.WeeklyOilandGasStatisticsforFeb2,2015.AccessedonlineFeb21,
2015atwww.colorado.gov/cogcc.
ClimateChangeVulnerabilityAssessmentforColoradoBLM209
Hansley,P.L.andG.P.Beauvais.2004.SpeciesAssessmentforBrewer'sSparrow(Spizellabreweri)inWyoming.Prepared
fortheBLM.49pages.
Lack,D.1966.Populationstudiesofbirds.ClarendonPress,Oxford,UK.
Lambeth,R.1998.Brewer'ssparrow(Spizellabreweri).InColoradoBreedingBirdAtlas,editedbyH.E.Kingery.Denver:
ColoradoBirdAtlasPartnership&ColoradoDiv.ofWildlife.
Petersen,K.L.andL.B.Best.1986.DietsofnestlingSageSparrowsandBrewer’sSparrowsinanIdahosagebrush
community.JournalofFieldOrnithology57:283‐294.
Short,H.L.1984.HabitatSuitabilityIndexmodels:Brewer’sSparrow.USDIFishandWildlifeServiceBiologicalReport
FWS/OBS‐82/10.83.
210ColoradoNaturalHeritageProgram©2015
Burrowing Owl
Athenecuniculariahypugaea
G4/S4B
Family:Strigidae
Climate Vulnerability Rank: Moderately Vulnerable
ThisColoradostate‐widerankisbasedonthefollowingfactors:1)dependenceonprairiedogsand
othermammalstocreatesuitablenestinghabitat;2)lowlevelsofgeneticdiversity;3)lackof
protectiononprivatelands;4)predictedlossof77%ofcurrentbreedingrangeduetoclimate
change(AudubonSociety2015).
Distribution:Breedingrecordscovermuchofthestate,althoughitismorecommonontheplains
ofeasternColorado(AndrewsandRighter1992,ColoradoBirdAtlasPartnership1998).Habitat:
Thisspeciesisfoundindryopentreelessareasandisassociatedwithburrowingmammals.
Burrowsareusuallysurroundedbybaregroundandprovideprotectionfromweatherextremes
(Haugetal.1993).Althoughcapableofdiggingtheirownburrowswhereburrowingmammalsare
absent,burrowingowlsusuallyuseexistingburrows,particularlythoseofprairiedogs.
EcologicalSystem:ShortgrassPrairie
CCVI Scoring
B1)Exposuretosealevelrise.Neutral.
B2a)Distributionrelativetonaturalbarriers.Neutral.
B2b)Distributionrelativetoanthropogenicbarriers.Neutral.
B3)Impactoflandusechangesresultingfromhumanresponsestoclimatechange.
SomewhatIncrease.AccordingtoDepartmentofEnergywindresourcemaps,theeasternquarterof
©DonBaccus
ClimateChangeVulnerabilityAssessmentforColoradoBLM211
ColoradoneartheNewMexicoandNebraskabordershasexcellentwindresources(DOE2004).
Windturbinescancausedirectimpactstobirdsviacollisionsthatresultininjuryormortality
(Kunzetal.2007;Kuvleskyetal.2007),aswellasindirectimpactsviahabitatlossandbarriersto
movement(DrewittandLangston2006;Kuvleskyetal.2007;Pruettetal.2009;Kieseckeretal.
2011).ResultsfromastudyatawindfarminCaliforniasuggestthatwindturbinesannuallykill
betweenone‐fifthandnearlytwicethenumberofestimatedowlsintheavailablehabitatarea
(Smallwoodetal.2010).
C1)Dispersalandmovements.Decrease.TheBurrowingOwliscapableoflongdistance
migration,andBurrowingOwlsbandedinAlberta,CanadahavebeenrecoveredinMexico(USFWS
2003).
C2ai)Predictedsensitivitytotemperature:historicalthermalniche.Neutral.Consideringthe
meanseasonaltemperaturevariationforoccupiedcells,thespecieshasexperiencedaverage(57.1‐
77°F/31.8‐43.0°C)temperaturevariationinthepast50years.
C2aii)Predictedsensitivitytotemperature:physiologicalthermalniche.Neutral.Thisspecies
isassociatedwithshortgrassprairieinColoradoandisnotlimitedtocoolorcoldhabitats
(ColoradoBirdAtlasPartnership1998).
C2bi)Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime:
historicalhydrologicalniche.SomewhatDecrease.Consideringtherangeofmeanannual
precipitationacrossoccupiedcells,thespecieshasexperiencedgreaterthanaverage(>40
inches/1,016mm)precipitationvariationinthepast50years.
C2bii)Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime:
physiologicalhydrologicalniche.Neutral.StudiesonthePawneeNationalGrasslandshowed
decreasedsurvivalinowletsduringwetsummers(Conrey2010).Preypopulationsmayrespond
positivelytoincreasedrainfall,butBurrowingOwlstypicallydonothuntinwetweather(Conrey
2010).
C2c)Dependenceonaspecificdisturbanceregimelikelytobeimpactedbyclimatechange.
Neutral.
C2d)Dependenceonsnow‐coveredhabitats.Neutral.
C3)Restrictiontouncommongeologicalfeaturesorderivatives.Neutral.Sandysoilsmay
permiteasierdiggingforprairiedogs,badgers,andBurrowingOwlsthatcreateburrowsinthe
shortgrassprairie.
C4a)Dependenceonotherspeciestogeneratehabitat.SomewhatIncrease.BurrowingOwls
nestinburrowsthatarecreatedbyprairiedogsandothermammals(ColoradoBirdAtlas
Partnership1998).
212ColoradoNaturalHeritageProgram©2015
C4b)Dietaryversatility.Neutral.BurrowingOwlsonthePawneeGrasslandatebeetles,
grasshoppers,ants,rodents,andsongbirds;insectscomprised95%oftheirdietbynumberand
only11%bybiomass(Conrey2010).
C4c)Pollinatorversatility(Plantsonly,notapplicable).
C4d)Dependenceonotherspeciesforpropaguledispersal.Neutral.
C4e)Formspartofaninterspecificinteractionnotcoveredby4a‐d.Neutral.
C5a)Measuredgeneticvariation.Increase.Lowlevelsofgeneticvariationhavebeendocumented
inBurrowingOwls,basedonmicrosatellitedatafrompopulationsdistributedthroughoutNorth
America(Macias‐Duarteetal.2010).
C5b)Occurrenceofbottlenecksinrecentevolutionaryhistory.Unknown.
C6)Phenologicalresponsetochangingseasonaltemperatureandprecipitationdynamics.
Unknown.
D1)Responsetorecentclimatechange.Neutral.
D2)Modeledfuturechangeinpopulationorrangesize.Increase.AudubonSociety’sclimate
modelspredictthatby2080,BurrowingOwlscouldlose77%oftheircurrentbreedingrange
(AudubonSociety2015).
D3)Overlapofmodeledfuturerangewithcurrentrange.Unknown.
D4)Protectedareas.Increase.InColorado,mostareasontheeasternplainsinBurrowingOwl
habitatareonprivatelands.
Literature Cited
Andrews,R.A.,andR.Righter.1992.Coloradobirds.DenverMuseumofNaturalHistory.Denver,Co.Pp363
AudubonSociety.2015.ClimateModelsforBurrowingOwl.Onlineat
http://climate.audubon.org/birds/burowl/burrowing‐owl.AccessedFeb21,2015.
ColoradoBirdAtlasPartnership,RadeauxandColoradoDivisionofWildlife.1998.ColoradoBreedingBirdAtlas.Denver,
Colorado:ColoradoBirdAtlasPartnership.636pg.
Conrey,R.Y.2010.Breedingsuccess,preyuse,andmark–resightestimationofburrowingowlsnestingonblack‐tailed
prairiedogtowns:Plagueaffectsanon‐susceptibleraptor.Ph.D.dissertation,ColoradoStateUniversity,FortCollins,CO.
DepartmentofEnergy(DOE).2004.WINDExchange.ColoradoWindResourceMap.Availableonlineat
http://apps2.eere.energy.gov/wind/windexchange/wind_resource_maps.asp?stateab=co.AccessedFeb2,2015
Drewitt,A.L.andR.H.W.Langston.2006.AssessingtheImpactsofWindFarmsonBirds.Ibis148:29‐42.
Haug,E.A.,B.AMillsap,andM.S.Martell.1993.BurrowingOwl(Speotytocunicularia),inTheBirdsofNorthAmerica(A.
PooleandF.Gill,eds.),no.61.Acad.Nat.Sci.,Philadelphia
ClimateChangeVulnerabilityAssessmentforColoradoBLM213
Kiesecker,J.M.,J.S.Evans,J.Fargione,K.Doherty,K.R.Foresman,T.H.Kunz,D.Naugle,N.P.Nibbelink,andN.D.Nieumuth.
2011.Win‐winforwindandwildlife:avisiontofacilitatesustainabledevelopment.PlosONE6:e17566.
Kunz,T.H.,E.B.Arnett,B.M.Cooper,W.P.Erickson,R.P.Larkin,T.Mabee,M.L.Morrison,M.D.Strickland,andJ.M.
Szewczak.2007.Assessingimpactsofwind‐energydevelopmentonnocturnallyactivebirdsandbats:aguidance
document.JournalofWildlifeManagement71:2449–4486.Available:http://www.wind‐watch.org/documents/wp‐
content/uploads/wild‐71‐08‐45.pdf.
Kuvlesky,W.P.Jr.,L.A.Brennan,M.L.Morrison,K.K.Boydston,B.M.BallardandF.C.Bryant.2007.WindEnergy
DevelopmentandWildlifeConservation:ChallengesandOpportunities.JournalofWildlifeManagement71(8):2487‐
2498.
Macias‐Duarte,A.,C.J.Conway,A.Munguia‐Vega,andM.Culver.2010.NovelmicrosatellitelocifortheBurrowingOwl,
Athenecunicularia.ConservationGeneticsResources2:67‐69.
Pruett,C.L.,M.A.Patten,andD.H.Wolfe.2009.AvoidanceBehaviorbyPrairieGrouse:ImplicationsforDevelopmentof
WindEnergy.ConservationBiology23(5)1253‐1259.
Smallwood,K.S.,C.G.Thelander,M.L.Morrison,L.M.Rugge.2010.BurrowingOwlMortalityintheAltamontPassWind
ResourceArea.TheJournalofWildlifeManagement71(5):1513‐1524).
U.S.FishandWildlifeService.2003.StatusAssessmentandConservationPlanfortheWesternBurrowingOwlinthe
UnitedStates.BiologicalTechnicalPublicationR6001‐2003.120pg.
214ColoradoNaturalHeritageProgram©2015
Golden Eagle
Aquilachrysaetos
G5/S3S4B,S4N
Family:Accipitridae
Climate Vulnerability Rank: Moderately Vulnerable
ThisColoradostatewiderankisbasedon:theprojectedincreasesintemperaturefortheassessed
area,increasedwindenergydevelopmentandthegreaterrisktomortalityfromwindturbinesthan
otherraptors,limitedprecipitationvariationtheeaglehashistoricallyexperienced,limitednumber
ofpreyspeciestheeagledependsupon,andapredicteddecreaseinbreedingrange.Climate
projectionssuggestthatsummertemperaturesacrosstherangeoftheGoldenEagleintheassessed
areawillincrease6°Fbytheendofthecenturyunderaloweremissionsscenario,withincreasesof
morethan10°Fbytheendofthecenturyunderahigheremissionsscenario(Karletal.2009).
Distribution:InColorado,goldeneaglesbreedprimarilyinmontanehabitatsinthewestand
canyonhabitatsinthesoutheast.ThereissomelimitedbreedinginnortheastColorado.Inwinter,
goldeneaglesrangemorewidelyandoccurcommonlythroughoutColorado.Habitat:Golden
eaglesuseaverywiderangeofhabitats.Fornestingtheymostfrequentlyusecliffsbutwillalso
nestintrees.Becauseoftheirlargesizeandpredatorynature,theyrequirelargeareasofforaging
habitat.Forforagingtheyusehigh‐andmid‐elevationpineforest,piñon‐juniperwoodlands,
sagebrushandothershrubhabitats,grassland,andagriculturalhabitatsareallusedbyGolden
eagles.
CCVI Scoring
B1)Exposuretosealevelrise.Neutral.
ClimateChangeVulnerabilityAssessmentforColoradoBLM215
B2a)Distributionrelativetonaturalbarriers.Neutral.Significantnaturalbarriersdonotexist
forthisspecies.Thisraptorisavolantspeciesthatcantraversemountainrangesandlargebodies
ofwater.
B2b)Distributionrelativetoanthropogenicbarriers.Neutral.Significantanthropogenic
barriersdonotexistforthisspecies.Thisraptorisavolantspeciesthatcanflyoveroraround
potentialanthropogenicbarriers.
B3)Impactoflandusechangesresultingfromhumanresponsestoclimatechange.
Somewhatincrease.GoldenEaglesareatgreaterrisktomortalityfromwindturbinesthanother
raptors(USFWS2011).Windenergydevelopmentisexpectedtoincreasewithintherangeofthe
GoldenEagleinColorado(NRDC2014).
C1)Dispersalandmovements.Decrease.GoldenEaglesreadilydispersemorethan10kilometers
fromhatchingsitetobreedingareas(Kochertetal.2002)
C2ai)Predictedsensitivitytotemperature:historicalthermalniche.Neutral.Therange
occupiedbytheGoldeneagleintheassessedareahasexperiencedanaverage(51.7‐77°F/31.8‐
43.0°C)zonalmeanseasonaltemperatureoverthelast50years.
C2aii)Predictedsensitivitytotemperature:physiologicalthermalniche.Somewhatincrease.
InNorthAmerica,GoldenEagle'sbreedingsuccessappearstobecompromisedbythenumberof
extremelyhotdaysduringthebroodrearingperiod(Steenhofetal.1997).Climateprojections
suggestthatsummertemperaturesacrosstherangeoftheGoldenEagleintheassessedareawill
increase6°Fbytheendofthecenturyunderaloweremissionsscenario,withincreasesofmore
than10°Fbytheendofthecenturyunderahigheremissionsscenario(Karletal.2009)
C2bi)Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime:
historicalhydrologicalniche.Somewhatincrease.WithintheassessedareatheGoldenEaglehas
experiencedslightlylowerthanaverage(20‐30inches/255‐508mm)precipitationvariationinthe
past50years.
C2bii)Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime:
physiologicalhydrologicalniche.Neutral.GoldenEaglereproductivesuccessappearstobe
independentofanyparticularprecipitationregime(Steenhofetal.1997andCrandall2005).
C2c)Dependenceonaspecificdisturbanceregimelikelytobeimpactedbyclimatechange.
Neutral.TheGoldenEagleisnotdependentonanydisturbanceregimesuchasfireorfloodingand
aremostdependentuponsuitablepreypopulationsinforagingareas(Steenhofetal.1997and
Crandall2005).
C2d)Dependenceonsnow‐coveredhabitats.Neutral.TheGoldenEagleisnotdependenton
habitatswithice,snow,oronsnowpack.
216ColoradoNaturalHeritageProgram©2015
C3)Restrictiontouncommongeologicalfeaturesorderivatives.Neutral.TheGoldenEagleis
notdependentuponanyuncommongeologicalelements.However,theyoftennestoncliffs,butalso
willnestintreesandontheground,riverbanksandhumanstructures(Kochertetal.2002).
Climatechangeshouldnotimpacttheavailabilityofsuitablecliffsitesfornesting.
C4a)Dependenceonotherspeciestogeneratehabitat.Neutral.TheGoldenEagleisnot
dependentonanyotherspeciestocreatesuitablehabitatforitsexistence.
C4b)Dietaryversatility.Somewhatincrease.TheGoldenEagledependsuponafewsmall
mammalaspreyincludinghares(Lepusspp.)andrabbits(Sylvilagusspp.);alsogroundsquirrels
(Spermophilusspp.),prairiedogs(Cynomysspp.)andmarmots(Marmotaspp.)(Kochertetal.
2002).
C4d)Dependenceonotherspeciesforpropaguledispersal.Neutral.TheGoldenEagleisaself‐
disperser.
C4e)Formspartofaninterspecificinteractionnotcoveredby4a‐d.Neutral.Noother
interspecificinteractions,otherthanthosediscussedabove,areimportanttothepersistenceofthe
GoldenEagle.
C5a)Measuredgeneticvariation.Neutral.Thegeneticdiversityofthegoldeneaglehasbeen
reportedtobeaverage(Doyleetal.2014).
C5b)Occurrenceofbottlenecksinrecentevolutionaryhistory.Unknown.
C6)Phenologicalresponsetochangingseasonaltemperatureandprecipitationdynamics.
Unknown.
D1)Responsetorecentclimatechange.Unknown.
D2)Modeledfuturechangeinpopulationorrangesize.Increase.Thepredictedbreedingrange
oftheGoldenEagleintheassessedareaispredictedtodeclineby79percent(NationalAudubon
Society2013).
D3)Overlapofmodeledfuturerangewithcurrentrange.Unknown.
D4)Protectedareas.Unknown.
Literature Cited
Crandall,R.H.2005.IdentifyingenvironmentalfactorsinfluencingGoldenEaglepresenceandreproductivesuccess.
Master'sthesis,UniversityofMontana.
DoyleJM,KatznerTE,BloomPH,JiY,WijayawardenaBK,etal.(2014)TheGenomeSequenceofaWidespreadApex
Predator,theGoldenEagle(Aquilachrysaetos).PLoSONE9(4):e95599.doi:10.1371/journal.pone.0095599
ClimateChangeVulnerabilityAssessmentforColoradoBLM217
Karl,T.R.,J.M.Melillo,andT.C.Peterson,(eds.).2009.GlobalClimateChangeImpactsintheUnitedStates.Cambridge
UniversityPress.
Kochert,M.N.,K.Steenhof,CL.McintyreandE.H.Craig.2002.GoldenEagle(Aquilachrysaetos),TheBirdsofNorth
AmericaOnline(A.Poole,Ed.).Ithaca:CornellLabofOrnithology;RetrievedfromtheBirdsofNorthAmericaOnline:
http://bna.birds.cornell.edu/bna/species/684doi:10.2173/bna.684"
NationalAudubonSociety.2013.DevelopingaManagementModeloftheEffectsofFutureClimateChangeonSpecies:A
ToolfortheLandscapeConservationCooperatives.UnpublishedreportpreparedfortheU.S.FishandWildlifeService.
NaturalResourcesDefenseCouncil(NRDC).2014.RenewableenergyforAmerica.
http://www.nrdc.org/energy/renewables/energymap.asp
Steenhof,K.,M.N.KochertandT.L.McDonald.1997.InteractiveEffectsofPreyandWeatheronGoldenEagle
Reproduction.JournalofAnimalEcology,66:350‐362.
U.S.FishandWildlifeService(USFWS).2011.DraftEagleConservationPlanGuidance.
218ColoradoNaturalHeritageProgram©2015
Greater Sage‐grouse
Centrocercusurophasianus
G3G4/S4
Family:Phasianidae
Climate Vulnerability Rank: Highly Vulnerable
ThisColoradostate‐widerankofHighlyVulnerableisbasedonthefollowingfactors:1)lessthan
10%ofsagebrushecosystemsinCOareprojectedtobeoutsideofcurrentclimaticenvelope(see
Ecosystemschapter);2)outsideoftheirrelianceonsagebrushforcoverandfood,thisspecieshas
fewrestrictionstouncommongeologicfeatures,norelianceonintraspecificrelationships;3)
GreaterSage‐grouse(GrSG)arecapableofmovingseveralkilometers;4)GrSGhaveexperienced
averagetemperaturevariationinthepast50years;5)geneticvariationinColoradoishigherthan
otherpartsoftheGrSGrange.
Distribution:Greatersage‐grouseoccurintheWesternUnitedStatesandCanada.Coloradoison
thesoutheasternedgeofthecurrentGrSGrange(ColoradoGreaterSage‐grouseSteering
Committee[CGSGSC]2008).WithinColorado,theoccupiedrangeofGrSGisinthenorthwestcorner
ofthestateinthefollowingcounties:Eagle,Garfield,Grand,Jackson,Larimer,Mesa,Moffat,Rio
Blanco,Routt,andSummit.Habitat:TheGrSGaredependentonsagebrushyeararoundforfood
andcover.Femalesandbroodsmayselectriparianhabitatsinthesagebrushtypethatcontainhigh
coverofforbsandabundantmoisture(seeCGSGSC2008fordiscussionofseasonalhabitatuse
withinsagebrushshrublands).Elevation:7,900‐9,500feet.
EcologicalSystem:Sagebrushshrubland
CCVI Scoring
B1)Exposuretosealevelrise.Neutral.
ClimateChangeVulnerabilityAssessmentforColoradoBLM219
B2a)Distributionrelativetonaturalbarriers.SomewhatIncrease.Severalpopulationsonthe
easternedgeofoccupiedhabitatinCOareseparatedbytheParkRange.Thesehighalpineareas
andruggedpeaksmayactasanaturalbarrierformovement.
B2b)Distributionrelativetoanthropogenicbarriers.SomewhatIncrease.Thismountainrange
isapotentialnaturalbarrierforGrSG.RivervalleysandlargeagriculturalareasinAlberta,
Saskatchewan,Montana,andWyomingweresignificantbarrierstoGrSGmovement(Bushetal.
2011).TheeasternandsouthernedgesofGrSGrangeinColoradocontainirrigatedanddryland
agriculturalfieldsthatmayserveasbarrierstoGrSGmovement(USGSNationalGapAnalysis
Program2004).
B3)Impactoflandusechangesresultingfromhumanresponsestoclimatechange.
SomewhatIncrease.GrSGareconsideredsagebrushobligates.NWColorado,includingRioBlanco
County,containslargeexpansesofsagebrushshrublands.Atotalof2,915activenaturalgaswells
arecurrentlyoperatinginRioBlancoCounty(COGCC2015).Aprojected1,845newwellswillbe
drilledinRioBlancoCountyin2035tomeetenergydemandsinColorado(BBC2008).Increased
energydevelopmentinthisareawillresultinfurtherhabitatfragmentationforGrSG.Lessthanone
percentoffederallandsinColoradocontainwindenergydevelopmentright‐of‐wayswithin
PriorityAreasforGrSGConservationinColorado(LeBeauetal.2014).
C1)Dispersalandmovements.Decrease.Averagenest‐to‐wintermovementsinGrSGinWyoming
averaged14.4kminarecentstudy(Fedyetal.2012).
C2ai)Predictedsensitivitytotemperature:historicalthermalniche.Neutral.Consideringthe
meanseasonaltemperaturevariationforoccupiedcells,GrSGhasexperiencedaverage(57.1‐77°
F/31.8‐43.0°C)temperaturevariationinthepast50years.
C2aii)Predictedsensitivitytotemperature:physiologicalthermalniche.Neutral.Lessthan
10%ofsagebrushecosystemsinColoradoareprojectedtobeoutsideofitscurrentclimatic
envelope(SeeEcosystemSectionofreport).
C2bi)Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime:
historicalhydrologicalniche.SomewhatDecrease.Consideringtherangeofmeanannual
precipitationacrossoccupiedcells,GrSGhasexperiencedgreaterthanaverage(>40inches/1,016
mm)precipitationvariationinthepast50years.
C2bii)Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime:
physiologicalhydrologicalniche.GreatlyIncrease.Highqualitybrood‐rearinghabitatsareoften
locatedinmesicareaslikestreambedsandwetmeadows(Connellyetal.2000).
C2c)Dependenceonaspecificdisturbanceregimelikelytobeimpactedbyclimatechange.
SomewhatIncrease.FireisconsideredoneofthetopthreatstoGrSG.Althoughhistoricallynatural
fireswereoftenlargeandsevere,theyweretypicallyinfrequentinGrSGhabitat(Brooksetal.
2015).However,duringrecentdecades,fireprobabilityandoccurrencehasincreasedacrossGrSG
220ColoradoNaturalHeritageProgram©2015
habitat,hinderingtherecoveryofsagebrush,andposingathreattoGrSGhabitat(Brooksetal
2015.)
C2d)Dependenceonsnow‐coveredhabitats.Neutral.Thisspeciesmakessnowroostsand
burrows(Backetal.1987),butisnotcompletelydependentonsnowcoverforsurvival.
C3)Restrictiontouncommongeologicalfeaturesorderivatives.SomewhatDecrease.This
speciesisnotrestrictedtouncommongeologicfeatures.
C4a)Dependenceonotherspeciestogeneratehabitat.GreatlyIncrease.TheGrSGrelyon
sagebrushyear‐roundforfoodandcover.
C4b)Dietaryversatility.SomewhatIncrease.Duringthespringandsummer,GrSGconsume
insectsandforbs;theirfallandwinterdietiscomprisedentirelyofsagebrush(CGSGSC2008).
C4c)Pollinatorversatility(Plantsonly,notapplicable).
C4d)Dependenceonotherspeciesforpropaguledispersal.Neutral.
C4e)Formspartofaninterspecificinteractionnotcoveredby4a‐d.Unknown.
C5a)Measuredgeneticvariation.Neutral.NorthPark,MiddlePark,andEaglepopulationsin
high‐elevationvalleyinColoradoaregeneticallydistinctfrompopulationsintheWyomingBasin
thataremorewide‐spread(Oyler‐McCanceetal.2005).NopopulationsinColoradohavebeen
identifiedashavinganextremelylownumberofhaplotypes,ascomparedtothoseintheColumbia
Basin(Oyler‐Mccanceetal.2005).
C5b)Occurrenceofbottlenecksinrecentevolutionaryhistory.Neutral.Geneticstestingacross
therangeofGrSGdidnotrevealanypopulationbottlenecksinColoradopopulations(Oyler‐
Mccanceetal.2005).C6)Phenologicalresponsetochangingseasonaltemperatureand
precipitationdynamics.Unknown.
D1)Responsetorecentclimatechange.Unknown.
D2)Modeledfuturechangeinpopulationorrangesize.Unknown.
D3)Overlapofmodeledfuturerangewithcurrentrange.Unknown.
D4)Protectedareas.Unknown.
Literature Cited
Back,G.N.,M.R.Barrington,andJ.K.McAdoo.1987.SageGrouseuseofsnowburrowsinnortheasternNevada.Wilson
Bulletin99:488‐490.
BBCResearchandConsulting.2008.NorthwestColoradoSocioeconomicAnalysisandForecasts.Reportpreparedfor
AssociatedGovernmentsofNorthwestColorado.179pg.Availableonlineat
http://www.colorado.gov/cs/Satellite?blobcol=urldata&blobheadername1=ContentDisposition&blobheadername2=Cont
ClimateChangeVulnerabilityAssessmentforColoradoBLM221
entType&blobheadervalue1=inline%3B+filename%3D%22Full+Report.pdf%22&blobheadervalue2=application%2Fpdf&
blobkey=id&blobtable=MungoBlobs&blobwhere=1251731958720&ssbinary=true.
Brooks,M.L.,J.R.Matchett,D.J.Shinneman,andP.S.Coates.2015.Firepatternsintherangeofgreatersage‐grouse,1984–
2013‐Implicationsforconservationandmanagement:U.S.GeologicalSurveyOpen‐FileReport2015‐1167,66p.
Bush,K.L.,C.K.Dyte,B.J.Moynahan,C.L.Aldridge,H.S.Sauls,A.M.Battazzo,B.L.Walker,K.E.Doherty,J.Tack,J.Carlson,D.
Eslinger,J.Nicholson,M.S.Boyce,D.E.Naugle,C.A.Paszkowski,andD.W.Coltman.2011.Populationstructureandgenetic
diversityofgreatersage‐grouse(Centrocercusurophasianus)infragmentedlandscapesatthenorthernedgeoftheir
range.ConservationGenetics12:527‐542
ColoradoGreaterSage‐grouseSteeringCommittee[CGSGSC].2008.Coloradogreatersage‐grouseconservationplan.
ColoradoDivisionofWildlife,Denver,Colorado,USA.
ColoradoOilandGasCommission(COGCC).2015.WeeklyOilandGasStatisticsforFeb2,2015.AccessedonlineFeb21,
2015atwww.colorado.gov/cogcc.
Connelly,J.W.,M.A.Schroeder,A.R.Sands,andC.E.Braun.2000.Guidelinestomanagesagegrousepopulationsandtheir
habitats.WildlifeSocietyBulletin28:967‐985.
Fedy,B.C.,C.L.Aldridge,K.E.Doherty,M.O’Donnell,J.L.Beck,B.Bedrosian,M.J.Holloran,G.D.Johnson,N.W.Kaczor,C.P.
Kirol,C.A.Mandich,D.Marshall,G.McKee,C.Olson,C.C.Swanson,andB.Walker.2012.Interseasonalmovementsof
greatersage‐grouse,migratorybehaviour,andanassessmentofthecoreregionsconceptinWyoming.JournalofWildlife
Management76(5):1062‐1071.
LeBeau,C.,J.Fruhwirth,J.R.Boehrs.2014.AnalysisoftheOverlapbetweenPriorityGreaterSage‐GrouseHabitatsand
ExistingandPotentialEnergyDevelopmentAcrosstheWest.FinalReportforWesternValuesProject.Preparedby
WesternEcoSystemsTechnology,Inc.36pg.Onlineat:http://westernvaluesproject.org/wp‐
content/uploads/2014/10/Greater‐Sage‐Grouse‐Priority‐Habitats‐and‐Energy‐Development.pdf.
Oyler‐McCance,S.J.,S.E.Taylor,andT.W.Quinn.2005.Amultilocusgeneticsurveyofgreatersage‐grouseacrosstheir
range.MolecularEcology14:1293‐1310.
USGSNationalGapAnalysisProgram.2004.ProvisionalDigitalLandCoverMapfortheSouthwesternUnitedStates.
Version1.0.RS/GISLaboratory,CollegeofNaturalResources,UtahStateUniversity.
222ColoradoNaturalHeritageProgram©2015
Gunnison Sage‐grouse
Centrocercusminimus
G1/S1
ListedThreatened
Family:Phasianidae
Climate Vulnerability Rank: Highly Vulnerable
ThisColoradostate‐widerankisbasedonthefollowingfactors:1)barrierstomovement;2)
potentialdecreaseingrowthofmountainbigsagebrushduetoclimatechange;3)relianceonmesic
habitattypesforbrood‐rearinghabitat;4)lackofgeneticdiversity;5)potentialincreaseinfire
frequencyinsagebrushhabitatsduetoprojectedtemperatureincreases.
Distribution:LimitedtosouthwestColoradoandsoutheastUtah.InColorado,Gunnison‐sage‐
grouseoccurinthefollowingcounties:Delta,Dolores,Gunnison,Hinsdale,Mesa,Montrose,San
Miguel,andSaguache(USFWS2014).Habitat:Gunnisonsage‐grouserelyonlargeexpansesof
sagebrushhabitatforfoodandcover;mesicareasalongripariancorridors,aswellaswetmeadows
providebrood‐rearinghabitat(USFWS2014).
EcologicalSystem:Sagebrushshrubland
CCVI Scoring
B1)Exposuretosealevelrise.Neutral.
B2a)Distributionrelativetonaturalbarriers.SomewhatIncrease.Gunnisonsage‐grouserely
onlarge,continuous,unfragmentedlandscapesforsurvival(GSGRSC2005).Theglobaldistribution
ofGunnisonsage‐grouseislimitedtosevenpopulations,sixofwhicharelocatedinColorado.The
remainingpopulationstraddlestheUtah/Coloradoborder.Gunnisonsage‐grouseoccurinareas
ClimateChangeVulnerabilityAssessmentforColoradoBLM223
withelevationsrangingfrom2,300to2,900m(7,500to9,5000ft)ofelevation.Areasbetween
manyoftheColoradopopulationsdonotcontainsuitablehabitatandhaveelevationsmuchhigher
thanthedocumentedrangepreferredbythespecies.TheGunnisonRiverandtheBlackCanyon
mayalsoposeanaturalbarriertomovement.
B2b)Distributionrelativetoanthropogenicbarriers.Increase/SomewhatIncrease.Asnoted
aboveinB2a,Gunnisonsage‐grouserelyonlarge,continuous,unfragmentedlandscapesfor
survival(GSGRSC2005).Humanpopulationsandassociateddevelopmentareprojectedtoincrease
nearmostGunnisonsage‐grousepopulations(USFWS2014).Habitatdeclinefromdisturbanceand
fragmentationcausedbyroadsandpowerlinesisacurrentandfuturethreattothesurvivalof
Gunnisonsage‐grouseinColorado(USFWS2014).
B3)Impactoflandusechangesresultingfromhumanresponsestoclimatechange.Neutral.
GeothermaldevelopmentpotentialishighintheGunnisonBasin,andifdevelopmentincreasedin
theBasin,itcouldaffectthelong‐termviabilityofGunnisonsage‐grousewithintheBasin(USFWS
2014).Noexisting,pending,orauthorizedwindenergysitesarewithintheColoradoportionof
occupiedGunnisonsage‐grousehabitat(USFWS2014).Noinformationregardingsolarenergy
developmentwasincludedinthefinalruleissuedbyUSFWSin2014,soitislikelynotathreatin
occupiedGunnisonsage‐grousehabitat.
C1)Dispersalandmovements.SomewhatDecrease.Gunnisonsage‐grousearegenerally
considerednonmigratory,butsomeseasonalmovementshavebeendocumented.IntheGunnison
Basin,individualsgenerallymovelessthan10km(GSGRSC2005),butmovementsasgreatas56
kmhavealsobeenreportedintheBasin(Phillips2013).
C2ai)Predictedsensitivitytotemperature:historicalthermalniche.Neutral.Consideringthe
meanseasonaltemperaturevariationforoccupiedcells,thespecieshasexperiencedaverage(57.1‐
77°F/31.8‐43.0°C)temperaturevariationinthepast50years.
C2aii)Predictedsensitivitytotemperature:physiologicalthermalniche.SomewhatIncrease.
PredictingtemperaturesinoccupiedhabitatforGunnisonsage‐grouseischallenging.Inone
scenario,averagesummertemperaturesarepredictedtoincreaseinwesternColoradoby2.8˚Cby
2050(UCAR2009),andaveragewintertemperaturescouldincreaseby2.2˚Cby2050(UCAR
2009).Overtime,increasedtemperaturescouldreducegrowthofmountainbigsagebrush,
resultinginareductionofsuitablehabitatforGunnisonsage‐grouse(USFWS2014).
C2bi)Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime:
historicalhydrologicalniche.Neutral.Consideringtherangeofmeanannualprecipitationacross
occupiedcells,thespecieshasexperiencedaverage(21‐40inches/509‐1,016mm)precipitation
variationinthepast50years.
C2bii)Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime:
physiologicalhydrologicalniche.GreatlyIncrease.Highqualitybrood‐rearinghabitatincludes
mesicmeadows,springs,seeps,andlowvegetationriparianareas,alldependentonadequate
224ColoradoNaturalHeritageProgram©2015
moisture(GSGRSC2005;USFWS2014).Thesehabitatstypesarehighlyvulnerabletoclimate
change.
C2c)Dependenceonaspecificdisturbanceregimelikelytobeimpactedbyclimatechange.
SomewhatIncrease.Inpreviousreports(TNCetal.2011),firehasbeencitedasanaturally
occurringeventthatbenefitsGunnisonsage‐grousebycreatingapatchworkoflowerandhigher
densitysagebrush,andthatclimatechangeislikelytoalterfireregimestherebyreducinghigh‐
qualityhabitatforthespecies.MorerecentreportsindicatethattheimpactsoffireonGunnison
sage‐grousehabitatarenotwellunderstood.However,itisgenerallyacceptedthatfirecancause
anincreaseinweedyplantspeciessuchascheatgrass,andcankillmountainbigsagebrush,
resultingindirectlossofhabitatduetoreducedcoverandforage(CallandMaser1985;USFWS
2014).FireisnotconsideredacurrentthreattoGunnisonsage‐grouse,butbestavailable
informationonclimatechangeindicatesthatfirefrequencyislikelyafuturethreattothespeciesif
firefrequencyincreasesaspredictedbyclimatechangemodels(Lukasetal.2014;USFWS2014).
C2d)Dependenceonsnow‐coveredhabitats.Neutral.Thisspeciesisnotdirectlydependenton
snoworiceforsurvival.
C3)Restrictiontouncommongeologicalfeaturesorderivatives.Neutral.
C4a)Dependenceonotherspeciestogeneratehabitat.GreatlyIncrease.Thisspeciesrelieson
sage‐brushasacriticalcomponentoftheirdiet,aswellasforcoverthroughallseasons(GSGRSC
2005).
C4b)Dietaryversatility.Increase.Gunnison’sSage‐grouserelyonsage‐brush(Artemisiaspp.)asa
criticalcomponentoftheirdietthroughoutallseasons;theyalsofeedonalargenumberofgrasses,
forbs,buds,andinsectswhenavailable(GSGRSC2005).Theyalsodependonherbsandforbsinthe
summeralongwiththeinsectsthatusethesamehabitat(importantforchickgrowth);factorsthat
couldbeimpactedbyclimatechangetothedegreethatitincludesdroughtsandhotspells(TNCet
al.2011).
C4c)Pollinatorversatility(Plantsonly,notapplicable).
C4d)Dependenceonotherspeciesforpropaguledispersal.GreatlyIncrease.Thisspeciesrelies
onsage‐brushasacriticalcomponentoftheirdiet,aswellasforcoverthroughallseasons(GSGRSC
2005).
C4e)Formspartofaninterspecificinteractionnotcoveredby4a‐d.Unknown.
C5a)Measuredgeneticvariation.Increase/SomewhatIncrease.GeneticdiversityinGunnison
sage‐grousehasbeeninvestigatedusingmitochondrialDNAandnuclearmicrosatellitedata(Oyler‐
McCanceetal.2005).Resultsindicatelowlevelsofdiversity,especiallyincomparisontodiversity
foundingreatersage‐grouse(Oyler‐McCanceetal.2005).
C5b)Occurrenceofbottlenecksinrecentevolutionaryhistory.Unknown.
ClimateChangeVulnerabilityAssessmentforColoradoBLM225
C6)Phenologicalresponsetochangingseasonaltemperatureandprecipitationdynamics.
Unknown.
D1)Responsetorecentclimatechange.Unknown.
D2)Modeledfuturechangeinpopulationorrangesize.Unknown.
D3)Overlapofmodeledfuturerangewithcurrentrange.Unknown.
D4)Protectedareas.Neutral.AcrosstheentirerangeofoccupiedhabitatforGunnisonsage‐
grouse,54percentoccursonFederallands,43percentonprivatelands,and3percentonstate
lands(USFWS2014).
Literature Cited
Call,M.W.andC.Maser1985.Call,M.W.andC.Maser.1985.Wildlifehabitatsinmanagedrangelands‐‐thegreatbasinof
southeasternOregon:Sagegrouse.Gen.Tech.Rep.PNW‐GTR‐187.Portland,OR:U.S.DepartmentofAgriculture,Forest
Service,PacificNorthwestResearchStation.
GunnisonSage‐grouseRangewideSteeringCommittee(GSGRSC).2005.Gunnisonsage‐grouserangewideconservation
plan.ColoradoDivisionofWildlife,Denver,Colorado.USA.
Lukas,J.,J.Barsugli,N.Doesken,I.Rangwala,andK.Wolter.2014.ClimateChangeinColorado:ASynthesistoSupport
WaterResourcesManagementandAdaptation.AReportfortheColoradoWaterConservationBoard.WesternWater
Assessment.
Oyler‐McCance,S.J.,J.St.John,S.E.Taylor,A.D.Apa,andT.W.Quinn.2005.PopulationgeneticsofGunnisonSage‐Grouse:
ImplicationsforManagement.JournalofWildlifeManagement69(2):630‐637.
Phillips,M.2013.PreliminarydataonGunnisonsage‐grousemovement,citedinUSFWS2014(seebelow).ColoradoParks
andWildlife.
TheNatureConservancy(TNC).2011.Gunnisonbasin:climatevulnerabilityassessmentreviewworkshop,Gunnison
climateworkinggroup,May12‐13,2011.130pp.
UniversityCorporationforAtmosphericResearch(UCAR).2009.RCPMdataandanalysisprovidedbytheInstituteforthe
StudyofSocietyandEnvironment(ISSE)attheNationalCenterforAtmosphericResearch(NCAR),basedonmodeldata
fromtheWorldClimateResearchProgramme'sCoupledModelIntercomparisonProjectphase3(WCRPCMIP3)multi‐
modeldataset.[http://rcpm.ucar.edu].
U.S.FishandWildlifeService(USFWS).2014.FinalRule,EndangeredandThreatenedWildlifeandPlants;Threatened
StatusforGunnisonSage‐Grouse.FederalRegisterVol79,No.224,Nov.20,2014.DepartmentoftheInterior.
226ColoradoNaturalHeritageProgram©2015
Long‐Billed Curlew
Numeniusamericanus
G5/S2B
Family:Scolopacidae
Climate Vulnerability Rank: Highly Vulnerable
ThisColoradostate‐widerankisbasedonthefollowingfactors:1)potentialincreaseinwind
energydevelopmentinLong‐BilledCurlewbreedinghabitatand2)relianceonwetlands,pondsand
playasthatmaybevulnerabletodryingunderprojectedincreasesintemperatureduetoclimate
change.
Distribution:InColorado,Long‐BilledCurlewbreedontheeasternplainswithpopulations
concentratedinthesoutheastcornerofthestate(ColoradoPartnersinFlight2000;ColoradoBird
AtlasPartnership1998).Habitat:InColorado,Long‐BilledCurlewsbreedinshortgrassandmixed‐
grassprairiehabitats,usuallyincloseproximitytowater(ColoradoBirdAtlasPartnership1998).
Elevation:Noinformationonspecificelevationrangesisavailable,butduetotheirpresenceonthe
easternplains,itislikelythattheLong‐BilledCurlewismostcommonlyfoundbetween4,000and
7,000ft.
EcologicalSystem:ShortgrassPrairie,Mixed‐GrassPrairie
CCVI Scoring
B1)Exposuretosealevelrise.Neutral.
B2a)Distributionrelativetonaturalbarriers.SomewhatIncrease.TheRockyMountainsmay
actasabarriertomigration(Pageetal.2014).
B2b)Distributionrelativetoanthropogenicbarriers.SomewhatIncrease.Largetractsof
Colorado’sshortgrassprairiehavebeenconvertedtocropland.Long‐BilledCurlewusecropland
ClimateChangeVulnerabilityAssessmentforColoradoBLM227
lessthanexpectedbasedonavailability(Dechantetal.1999).Whilethisspeciesishighlymobile
andcapableofflyingovertheseareas,theremaybeenergeticcostsassociatedwithcrossingthese
croplandsinordertoreachmoresuitablehabitatinshortgrassprairie.
B3)Impactoflandusechangesresultingfromhumanresponsestoclimatechange.
SomewhatIncrease.Long‐BilledCurlewnestprimarilyineasternColoradoinshortgrassprairies,
withasmallcontingentinMesaCountyontheWesternSlope(ColoradoBirdAtlasPartnership
1998).AccordingtoDepartmentofEnergywindresourcemaps,theeasternquarterofColorado
neartheNewMexicoandNebraskabordershasexcellentwindresources(DOE2004).Wind
turbinescancausedirectimpactstobirdsviacollisionsthatresultininjuryormortality(Kunzetal.
2007;Kuvleskyetal.2007),aswellasindirectimpactsviahabitatlossandbarrierstomovement
(DrewittandLangston2006;Kuvleskyetal.2007;Pruettetal.2009;Kieseckeretal.2011).
C1)Dispersalandmovements.Decrease.Long‐BilledCurlewbreedinColoradoandundertake
long,seasonalmigrations.
C2ai)Predictedsensitivitytotemperature:historicalthermalniche.Neutral.Consideringthe
meanseasonaltemperaturevariationforoccupiedcells,thespecieshasexperiencedaverage(57.1‐
77°F/31.8‐43.0°C)temperaturevariationinthepast50years.
C2aii)Predictedsensitivitytotemperature:physiologicalthermalniche.Neutral.Thisspecies
isassociatedwithshortgrassprairieinColoradoandisnotlimitedtocoolorcoldhabitats
(ColoradoBirdAtlasPartnership1998).
C2bi)Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime:
historicalhydrologicalniche.Neutral.Consideringtherangeofmeanannualprecipitationacross
occupiedcells,thespecieshasexperiencedaverage(21‐40inches/509‐1,016mm)precipitation
variationinthepast50years.
C2bii)Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime:
physiologicalhydrologicalniche.Increase.Thisspeciesreliesonbothdryandwetareasinthe
shortgrassprairie.GrassyfloodplainsalongcreeksinColoradoprovidenestinghabitatforLong‐
BilledCurlewinColorado;wetmeadowsareoftenusedasforagingareas(Davis1949;Johnsgard
1979and1980).
C2c)Dependenceonaspecificdisturbanceregimelikelytobeimpactedbyclimatechange.
SomewhatIncrease.Long‐BilledCurlewrelyonponds,playas,andlakesforfeeding,bathingand
drinking(ColoradoBirdAtlasPartnership1998).Ontheshortgrassprairie,manyofthesearetied
toseasonalprecipitationsuchasspringandsummerrainevents.
C2d)Dependenceonsnow‐coveredhabitats.Neutral.
C3)Restrictiontouncommongeologicalfeaturesorderivatives.SomewhatIncrease.Long‐
BilledCurlewusewetmeadowsandplayasineasternColorado,whichcanbeunusualfeaturesin
manycountieswhereshortgrassprairiehasbeenconvertedtocropland.
228ColoradoNaturalHeritageProgram©2015
C4a)Dependenceonotherspeciestogeneratehabitat.Neutral.
C4b)Dietaryversatility.Neutral.TheLong‐BilledCurlewispredominantlycarnivorous,and
consumessmallinvertebrates(grasshoppers,beetles,earthworms,spiders)aswellassomewild
fruits(DuggerandDugger2002;seeallauthorsinDark‐SmileyandKeinath2004).Largerprey
itemsincludetoadsandsnails,whichareconsumedduringmigration(RedmondandJenni1986).
C4c)Pollinatorversatility(Plantsonly,notapplicable).
C4d)Dependenceonotherspeciesforpropaguledispersal.Neutral.
C4e)Formspartofaninterspecificinteractionnotcoveredby4a‐d.Unknown.
C5a)Measuredgeneticvariation.Unknown.MoreinformationisneededonLong‐BilledCurlew
genetics.
C5b)Occurrenceofbottlenecksinrecentevolutionaryhistory.Unknown.
C6)Phenologicalresponsetochangingseasonaltemperatureandprecipitationdynamics.
Unknown.
D1)Responsetorecentclimatechange.Unknown.
D2)Modeledfuturechangeinpopulationorrangesize.Unknown.
D3)Overlapofmodeledfuturerangewithcurrentrange.Unknown.
D4)Protectedareas.Unknown.
Literature Cited
ColoradoBirdAtlasPartnership,RadeauxandColoradoDivisionofWildlife.1998.ColoradoBreedingBirdAtlas.Denver,
Colorado:ColoradoBirdAtlasPartnership.636pg.
ColoradoPartnersInFlight[CoPIF].2000.ColoradoLandbirdConservationPlan.Available:www.rmbo.org/pif/bcp/
Dark‐Smiley,D.N.andD.A.Keinath.2004.SpeciesAssessmentforLong‐BilledCurlew(Numeniusamericanus)inWyoming.
PreparedfortheBureauofLandManagement,Cheyenne,Wyoming.WyomingNaturalDiversityDatabaseReport,60
pages.
Davis,W.B.1949.Long‐billedCurlewbreedinginColorado.Auk66:202.
Dechant,J.A.,M.L.Sondreal,D.H.Johnson,L.D.Igl,C.M.Goldade,P.A.Rabie,andB.R.Euliss.1999(revised2003).Effectsof
managementpracticesongrasslandbirds:Long‐billedCurlew.NorthernPrairieWildlifeResearchCenter,Jamestown,ND.
19pages.
DepartmentofEnergy(DOE).2004.WINDExchange.ColoradoWindResourceMap.Availableonlineat
http://apps2.eere.energy.gov/wind/windexchange/wind_resource_maps.asp?stateab=co.AccessedFeb2,2015.
Drewitt,A.L.andR.H.W.Langston.2006.AssessingtheImpactsofWindFarmsonBirds.Ibis148:29‐42.
ClimateChangeVulnerabilityAssessmentforColoradoBLM229
Dugger.B.D.,andK.M.Dugger.2002.Long‐billedCurlew(Numeniusamericanus).InTheBirdsofNorthAmerica,No.628
(A.PooleandF.Gill,eds.).TheBirdsofNorthAmerica,Inc.,Philadelphia,PA.
Johnsgard,P.A.1979.BirdsoftheGreatPlains.UniversityofNebraskaPress,Lincoln,Nebraska.539pages.
Johnsgard,P.A.1980.ApreliminarylistofthebirdsofNebraskaandadjacentPlainsstates.UniversityofNebraska,
Lincoln,Nebraska.156pages.
Kiesecker,J.M.,J.S.Evans,J.Fargione,K.Doherty,K.R.Foresman,T.H.Kunz,D.Naugle,N..Nibbelink,andN.D.Nieumuth.
2011.Win‐winforwindandwildlife:avisiontofacilitatesustainabledevelopment.PlosONE6:e17566.
Kunz,T.H.,E.B.Arnett,B.M.Cooper,W.P.Erickson,R..Larkin,T.Mabee,M.L.Morrison,M.D.Strickland,andJ.M.Szewczak.
2007a.Assessingimpactsofwind‐energydevelopmentonnocturnallyactivebirdsandbats:aguidancedocument.
JournalofWildlifeManagement71:2449–4486.Available:http://www.wind‐watch.org/documents/wp‐
content/uploads/wild‐71‐08‐45.pdf.
Kuvlesky,W.P.Jr.,L.A.Brennan,M.L.Morrison,K.K.Boydston,B.M.BallardandF.C.Bryant.2007.WindEnergy
DevelopmentandWildlifeConservation:ChallengesandOpportunities.JournalofWildlifeManagement71(8):2487‐
2498.
Page,G.W.,N.Warnock,T.L.Tibbitts,D.Jorgensen,C.A.Hartman,andL.E.Stenzel.2014.Annualmigratorypatternsof
Long‐BilledCurlewsintheAmericanWest.TheCondor116(1):50‐61.
Pruett,C.L.,M.A.Patten,andD.H.Wolfe.2009.AvoidanceBehaviorbyPrairieGrouse:ImplicationsforDevelopmentof
WindEnergy.ConservationBiology23(5)1253‐1259.
Redmond,R.L.,andD.A.Jenni.1986.PopulationecologyoftheLong‐billedCurlew(Numeniusamericanus)inwestern
Idaho.Auk103:755‐767.
230ColoradoNaturalHeritageProgram©2015
Mountain Plover
Charadriusmontanus
G3/S2B
Family:Charadriidae
Climate Vulnerability Rank: Not Vulnerable/Presumed Stable
ThisColoradostatewiderankisbasedon:thelackofnaturaloranthropogenicbarriersforthis
highlyvagilebird,theircapabilitytoengageinlongdistancedispersalandmovementsallowingthe
plovertotrackshiftingclimateenvelopes,theirpreferenceforburnedsites(AugustineandDerner
2012)coupledwithincreasedfirefrequencyprojectedduetoclimatechange,highratesofadult
survivalandnestsuccessratesduringperiodsofdroughtthatisprojectedtoincreasedueto
climatechange,andthehighgeneticvariabilityexhibitedwithinMountainploverpopulationsthat
shouldincreasetheirabilitytoadapttoclimatechange.Climatemodelsprojectincreasedwarming
anddroughtacrosstheassessedareawithannualaveragetemperaturesrisingby2.5°Fto5.5°Fby
2041‐2070andby5.5°Fto9.5°Fby2070‐2099withcontinuedgrowthinglobalemissions(A2
emissionsscenario),withthegreatestincreasesinthesummerbreedingseasonandduringfall
(Melilloetal.2014).
Distribution:InColorado,thegreatestnumbersofbreedingMountainPloversoccurinWeld
County(GraulandWebster1976).Thebreedingrangeofthisspecieshasundergoneadramatic
long‐termcontraction,bothinColorado(AndrewsandRighter1992)andthroughoutthewestern
GreatPlains(GraulandWebster1976).Habitat:BreedingMountainPloversoccupyopenhabitats
withlow‐growingvegetation,especiallyshortgrassprairiecharacterizedbythepresenceofblue
gramagrassandbuffalograss(Graul1975,GraulandWebster1976,KnopfandMiller1994).In
grasslandswherevegetationgrowstallerthanapproximatelythreeinchesinheight,Mountain
Ploversuseintensivelygrazedareas(GraulandWebster1976,Knopf1996),prairiedogtowns
(Knowlesetal.1982;KnowlesandKnowles1984,OlsonandEdge1985,Shackford1991),and
falloworrecentlyplowedagriculturalfields(Shackford1991,Shackfordetal.1999).
ClimateChangeVulnerabilityAssessmentforColoradoBLM231
CCVI Scoring
B1)Exposuretosealevelrise.Neutral.
B2a)Distributionrelativetonaturalbarriers..Neutral.Significantnaturalbarriersdonotexist
forthisspecies.TheMountainPloverisaGreatPlainsinhabitantandishighlyvolant,capableof
traversingmountainrangesandlargebodiesofwater.Itisaseasonalmigrant,whosehomeranges
averageover50hectaresinsize(KnopfandRupert1996).
B2b)Distributionrelativetoanthropogenicbarriers.Increase.Neutral.Significant
anthropogenicbarriersdonotexistforthisspecies.Thisbirdisavolantspeciesthatcanflyoveror
aroundpotentialanthropogenicbarriers.
B3)Impactoflandusechangesresultingfromhumanresponsestoclimatechange.Increase.
ThehabitatofthisGreatPlainsspeciesishighlysusceptibletopotentialdevelopmentofwind
farms/solarfarmsandbiofuelsproduction(AndresandStone2010).Inthefaceofrisingclimate
changeandcoststoextractfossilfuels,windenergydevelopmentisexpectedtoincreasewithinthe
rangeoftheMountainPloverinColorado(NRDC2014).
C1)Dispersalandmovements.Decrease.MountainPloverareknowntodisperseupto50
kilometersfromtheirnatalregions(KnopfandWunder2006).
C2ai)Predictedsensitivitytotemperature:historicalthermalniche.Neutral.Therange
occupiedbytheMountainploverintheassessedareahasexperiencedanaverage(51.7‐77°
F/31.8‐43.0°C)zonalmeanseasonaltemperatureoverthelast50years.
C2aii)Predictedsensitivitytotemperature:physiologicalthermalniche.Somewhatincrease.
Adultsactivelyshadechicksonhotdays,andadultsandchicksoftenseekshade(Knopfand
Wunder2006).Increasedtemperaturesassociatedwithclimatechangeintheassessedarea
(Melilloetal.2014)couldleadtoincreasedbroodrearingstressforMountainPlover.
C2bi)Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime:
historicalhydrologicalniche.Somewhatdecrease.WithintheassessedareatheMountainPlover
hasexperiencedgreaterthanaverage(>40inches/1,016mm)precipitationvariationinthepast50
years.
C2bii)Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime:
physiologicalhydrologicalniche.Somewhatdecrease.Adultsurvivalandnestsuccessishighest
duringdroughtperiods,butnestsuccessisalsoenhancedbycoolertemperatures(Dinsmore2008,
Dreitzetal.2012).Inthefuture,climatechangeisprojectedtoincreasetemperatures,butitwill
alsoincreasedroughtfrequency(Melilloetal.2014),whichmayincreaseadultsurvivaland
recruitmentofyoungMountainPlover.However,theinterplayofclimatechangeinduceddrought
andwarmingwithinprairieecosystemswillbedynamic,makingitdifficulttoassesshowthiswill
impactMountainploverpopulationtrendsovertime.
232ColoradoNaturalHeritageProgram©2015
C2c)Dependenceonaspecificdisturbanceregimelikelytobeimpactedbyclimatechange.
Somewhatdecrease.MountainPloverreactfavorablytofire,andwiththepredictedincreasein
wildfireintheassessedareaduetoclimatechange(Melilloetal.2014),thisshouldleadto
somewhatofadecreaseintheirvulnerabilitytohowclimatechangewillimpactthisindexfactor.In
somepartsoftheirrange,MountainPloversareattractedtoburnedgrasslandsinbreedingareas
fornestingandinnonbreedingareasforforagingandnightroosting(WunderandKnopf2003,
Knopf2008).MountainPloverresponsetoburnsisoftenquick,withbirdsappearingonfields
wherefiresarestillsmoldering(KnopfandWunder2006).Increaseddroughtassociatedwith
climatechangeintheaccessedareaisexpectedtoincreasewildfirefrequency(Melilloetal.2014),
potentiallybenefittingMountainPlover.
C2d)Dependenceonsnow‐coveredhabitats.Neutral.TheMountainPloverisnotdependenton
habitatswithice,snow,oronsnowpack.
C3)Restrictiontouncommongeologicalfeaturesorderivatives.Neutral.TheMountainPlover
isnotdependentuponanyuncommongeologicalelements.
C4a)Dependenceonotherspeciestogeneratehabitat.SomewhatIncrease.TheMountain
Ploverusesareasofshortgrassesthathavebeengrazedbyprairiedogs,cattleandother
herbivores(Dinsmore2003).
C4b)Dietaryversatility.Neutral.MountainPloverareopportunisticforagersthatfeedonabroad
rangeofinsects(KnopfandWunder2006).
C4d)Dependenceonotherspeciesforpropaguledispersal.Neutral.TheMountainPloverisa
self‐disperser.
C4e)Formspartofaninterspecificinteractionnotcoveredby4a‐d.Neutral.Noother
interspecificinteractionsareimportanttothepersistenceoftheMountainPlover.
C5a)Measuredgeneticvariation.SomewhatDecrease.MountainPloverpopulationsexhibit
considerablegeneticmixing,whichresultsinhighgeneticvariabilitywithinpopulations(Oyler‐
McCanceetal.2005).
C5b)Occurrenceofbottlenecksinrecentevolutionaryhistory.Unknown.
C6)Phenologicalresponsetochangingseasonaltemperatureandprecipitationdynamics.
Unknown.
D1)Responsetorecentclimatechange.Unknown.
D2)Modeledfuturechangeinpopulationorrangesize.Unknown.
D3)Overlapofmodeledfuturerangewithcurrentrange.Unknown.
D4)Protectedareas.Unknown.
ClimateChangeVulnerabilityAssessmentforColoradoBLM233
Literature Cited
Andres,B.A.,andK.L.Stone.2010.ConservationPlanfortheMountainPlover(Charadriusmontanus),Version1.1.
ManometCenterforConservationSciences,Manomet,Massachusetts.
Andrews,R.,andR.Righter.1992.Coloradobirds:areferencetotheirdistributionandhabitat.DenverMus.Nat.Hist.,
Denver.442pp.
Augustine,D.J.,andJ.D.Derner.2012.DisturbanceRegimesandMountainPloverHabitatinShortgrassSteppe:Large
HerbivoreGrazingDoesNotSubstituteforPrairieDogGrazingorFire.ManagementandConservation76:721‐728.
Dinsmore,S.J.2003.MountainPlover(Charadriusmontanus):atechnicalconservationassessment.[Online].USDAForest
Service,RockyMountainRegion.Available:http://www.fs.fed.us/r2/projects/scp/assessments/mountainplover.pdf
[1/23/2015].
Dinsmore,S.T.2008.InfluenceofdroughtonannualsurvivaloftheMountainPlover.TheCondor,110:45–54.
Dreitz,V.J.,R.Y.Conrey,andS.K.Skagen.2012.Droughtandcoolertemperaturesareassociatedwithhighernestsurvival
inMountainPlovers.AvianConservationandEcology:[online]URL:http://www.ace‐eco.org/vol7/iss1/art6/.
Graul,W.D.1975.BreedingbiologyoftheMountainPlover.WilsonBull.87:6‐31
Graul,W.D.,andL.E.Webster.1976.BreedingstatusoftheMountainPlover.Condor78:265‐267.
Knopf,F.L.1996.MountainPlover(Charadriusmontanus).inTheBirdsofNorthAmerica,No.211(A.PooleandF.Gill,
eds.).TheAcademyofNaturalSciences,Philadelphia,PA,andTheAmericanOrnithologists’Union,Washington,D.C.
Knopf,F.L.2008.MountainPloverstudies,PawneeNationalGrassland,1985–2007.Unpublishedreport,Colorado
DivisionofWildlife,Denver,CO.
Knopf,F.L.,andB.J.Miller.1994.Charadriusmontanus‐montane,grassland,orbare‐groundplover?Auk111:504‐506.
Knopf,F.L.andJ.R.Rupert.1996.ReproductionandmovementsofMountainPloversbreedinginColorado.Wilson
Bulletin108:28‐35.
Knopf,F.L.andM.B.Wunder.2006.MountainPlover(Charadriusmontanus),TheBirdsofNorthAmericaOnline(A.Poole,
Ed.).Ithaca:CornellLabofOrnithology;RetrievedfromtheBirdsofNorthAmericaOnline:
http://bna.birds.cornell.edu/bna/species/211doi:10.2173/bna.211.
Knowles,C.J.,andP.R.Knowles.1984.AdditionalrecordsofMountainPloversusingprairiedogtownsinMontana.Prairie
Naturalist16:183‐186.
Knowles,C.J.,C.J.Stoner,andS.P.Gieb.1982.Selectiveuseofblack‐tailedprairiedogtownsbyMountainPlovers.Condor
84:71‐74.
Melillo,J.M.,T.C.Richmond,andG.W.Yohe,Eds.,2014:ClimateChangeImpactsintheUnitedStates:TheThirdNational
ClimateAssessment.U.S.GlobalChangeResearchProgram,841pp.doi:10.7930/J0Z31WJ2.
NaturalResourcesDefenseCouncil(NRDC).2014.RenewableenergyforAmerica.
http://www.nrdc.org/energy/renewables/energymap.asp
Olson,S.L.,andD.Edge.1985.NestsiteselectionbyMountainPloversinnorthcentralMontana.J.RangeManage.38:280‐
282.
Oyler‐McCance,S.J.,J.St.John,F.L.Knopf,andT.W.Quinn.2005.PopulationgeneticanalysisofMountainPloverusing
mitochondrialDNAsequencedata.Condor107:354–362.
234ColoradoNaturalHeritageProgram©2015
Shackford,J.S.1991.BreedingecologyoftheMountainPloverinOklahoma.Bull.OklahomaOrnithol.Soc.24:9‐13.
Shackford,J.S.,D.M.Leslie,Jr.,andW.D.Harden.1999.Range‐wideuseofcultivatedfieldsbyMountainPloversduring
thebreedingseason.J.FieldOrnithol.70:114‐120.
Wunder,M.B.,andF.L.Knopf.2003.TheImperialValleyofCaliforniaiscriticaltowinteringMountainPlovers.Journalof
FieldOrnithology74:74–80.
ClimateChangeVulnerabilityAssessmentforColoradoBLM235
Northern Goshawk
Accipitergentilis
G5/S3B
Family:Accipitridae
Climate Vulnerability Rank: Moderately Vulnerable
ThisColoradostatewiderankisbasedon:theprojectedincreaseintemperatureanddroughtfor
theassessedarea,selectionofcoolmicroclimatesfornestplacement,dependenceonold‐forest
structurethatmaybethreatenedbyincreasedfrequencyofwildfirecausedbydroughtand
warming,andlowlevelsofgeneticvariabilityquestioningthegoshawksadaptabilitytoachanging
environment.Regionalannualaveragetemperaturesareprojectedtoriseby2.5°Fto5.5°Fby
2041‐2070andby5.5°Fto9.5°Fby2070‐2099withcontinuedgrowthinglobalemissions(A2
emissionsscenario),withthegreatestincreasesinthesummerandfall(Melilloetal.2014).Under
acontinuationofcurrentrisingemissionstrends(A2),reducedwinterandspringprecipitationis
consistentlyprojectedforthesouthernpartoftheSouthwestby2100elevatingthepotentialfor
wildfire(Melilloetal.2014).
Distribution:TheNortherngoshawkisfoundthroughoutthestateofColoradoabove7500feetin
elevation(AndrewsandRighter1992).TheColoradoBreedingBirdAtlas(Kingery1998)shows
goshawkstobewelldistributedintheSanJuanMountainsandacrossthenorthernmountain
ranges.Habitat:InnorthwesternColorado,northerngoshawkstypicallynestinaspen,sometimes
inconiferstandslessthan100yearsold,andupto10,000feetinelevation(Kingery1998).
Goshawkstendtochoosenesttreesonshallowslopes,flatbenchesinsteepcountry,andfluvial
pansonsmallstreamjunctions(Kingery1998).
CCVI Scoring
B1)Exposuretosealevelrise.Neutral.
236ColoradoNaturalHeritageProgram©2015
B2a)Distributionrelativetonaturalbarriers..Neutral.Significantnaturalbarriersdonotexist
forthisspecies.Thisraptorisavolantspeciesthatcantraversemountainrangesandlargebodies
ofwater(NatureServe2014).
B2b)Distributionrelativetoanthropogenicbarriers..Neutral.Significantanthropogenic
barriersdonotexistforthisspecies.Thisraptorisavolantspeciesthatcanflyoveroraround
potentialanthropogenicbarriers(NatureServe2014).
B3)Impactoflandusechangesresultingfromhumanresponsestoclimatechange.Neutral.
AlthoughNorthernGoshawkhavebeenreportedtobeatriskofcollisionwithwindturbinesduring
migration(Brandes2005)onlyasmallportionoftheirrangeintheassessedareaissuitablefor
windenergydevelopmentandtherearenotimportantflywaysforthisraptorwithinthepotential
areasofwinddevelopment(NRDC2014).Thisisalowconcernfortheraptorwithintheassessed
area.
C1)Dispersalandmovements.Decrease.NorthernGoshawksreadilydispersemorethan10
kilometersfromhatchingsitetobreedingareasandhavehomerangesthatarefromthe100sto
1000sofhectaresinsize(SquiresandReynolds1997).
C2ai)Predictedsensitivitytotemperature:historicalthermalniche.Neutral.Therange
occupiedbytheNortherngoshawkintheassessedareahasexperiencedanaverage(51.7‐77°
F/31.8‐43.0°C)zonalmeanseasonaltemperatureoverthelast50years.
C2aii)Predictedsensitivitytotemperature:physiologicalthermalniche.Somewhatincrease.
InsouthernportionsoftheGoshawkrangeincludingtheassessedareagoshawknestareas
typicallyhavenortherlyaspectsindicatingaselectionforcoolermicroclimates(USFWS1998).
Climateprojectionssuggestthatsummertemperaturesintheassessedareawillincreasefrom6°F
morethan10°Fbytheendofthecenturyunderahigheremissionsscenario(Karletal.2009),
whichcouldmakethegoshawkmorevulnerabletoclimatechangeintheassessedarea.
C2bi)Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime:
historicalhydrologicalniche.Somewhatincrease.WithintheassessedareatheNorthern
Goshawkhasexperiencedslightlylowerthanaverage(20‐30inches/255‐508mm)precipitation
variationinthepast50years.
C2bii)Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime:
physiologicalhydrologicalniche.Somewhatdecrease.Reproductivesuccessseemstobe
negativelyimpactedbyincreasedspringprecipitationandpositivelyinfluencedbywarmer
temperatures(Kennedy2003,Patla2997)andwithincreasingtemperaturesanddroughtprojected
fortheassessedarea(Karletal.2009)thiscouldpositivelyimpactrecruitment.However,
populationgrowthratesaremostsensitivetochangesinadultsurvivalratesandchangesthat
influenceadultsurvivalwouldprobablyhaveagreaterinfluenceonpopulationpersistence
(Kennedy2003).
ClimateChangeVulnerabilityAssessmentforColoradoBLM237
C3)Restrictiontouncommongeologicalfeaturesorderivatives.Neutral.Thegoshawkisnot
dependentuponanyuncommongeologicalelements.
C2c)Dependenceonaspecificdisturbanceregimelikelytobeimpactedbyclimatechange.
Increase.Goshawksaredependentonold‐foreststructureanddecliningprecipitationcoupledwith
increasingtemperaturesanddroughtintheassessedareaisprojectedtoincreasetheareaburned
bywildfire(Karletal.2009).Thispotentialthreattooldgrowthforestisaconcernforgoshawks
(Boyceetal.2006).
C2d)Dependenceonsnow‐coveredhabitats.Neutral.Thegoshawkisnotdependentonhabitats
withice,snow,oronsnowpack.
C3)Restrictiontouncommongeologicalfeaturesorderivatives.Neutral.Thegoshawkisnot
dependentuponanyuncommongeologicalelements.
C4a)Dependenceonotherspeciestogeneratehabitat.Neutral.Thegoshawkisnotdependent
onanyotherspeciestocreatesuitablehabitatforitsexistence.
C4b)Dietaryversatility.Neutral.Thegoshawkcapturesawidevarietyofpreyandisclassifiedas
apreygeneralist(SquiresandReynolds1997),typicallypreyingonasuiteof8to15species
(Reynoldsetal.1992).
C4d)Dependenceonotherspeciesforpropaguledispersal.Neutral.Thegoshawkisaself‐
disperser.
C4e)Formspartofaninterspecificinteractionnotcoveredby4a‐d.Neutral.Noother
interspecificinteractionsareimportanttothepersistenceofthegoshawk.
C5a)Measuredgeneticvariation.SomewhatIncrease.Thegoshawkexhibitshighhaplotype
diversityacrosspopulationsinNorthAmerica,butlownucleotidediversitywithinpopulations
includingtheRockyMountainpopulation,whichisgeneticallydifferentiatedfromeasternand
otherwesternpopulationsoftheraptor(BayarddeVoloetal.2013).
C5b)Occurrenceofbottlenecksinrecentevolutionaryhistory.Unknown.
C6)Phenologicalresponsetochangingseasonaltemperatureandprecipitationdynamics.
Unknown.
D1)Responsetorecentclimatechange.Unknown.
D2)Modeledfuturechangeinpopulationorrangesize.Unknown.
D3)Overlapofmodeledfuturerangewithcurrentrange.Unknown.
D4)Protectedareas.Unknown.
238ColoradoNaturalHeritageProgram©2015
Literature Cited
Andrews,R.,andR.Righter.1992.Coloradobirds:areferencetotheirdistributionandhabitat.DenverMus.Nat.Hist.,
Denver.442pp.
BayarddeVolo,S.,R.T.Reynolds,S.A.Sonsthagen,S.L.TalbotandM.F.Antolin.2013.Phylogeny,postglacialgeneflow,and
populationhistoryofNorthAmericanNorthernGoshawk(Accipitergentilis).TheAuk130:342−354.
Boyce,D.A.,Jr.,R.T.ReynoldsandR.T.Graham.2006.Goshawkstatusandmanagement:Whatdoweknow,whathavewe
done,wherearewegoing?In:Morrison,Michael,ed.Thenortherngoshawk:atechnicalassessmentofitsstatusecology,
andmanagement.StudiesinAvianBiology.31:312‐325.
Brandes,D.2005.WindpowerdevelopmentandraptormigrationintheCentralAppalachians.HawkMigrationStudies
Spring2005:20‐25.
Karl,T.R.,J.M.Melillo,andT.C.Peterson,(eds.).2009.GlobalClimateChangeImpactsintheUnitedStates.Cambridge
UniversityPress.
Kennedy,P.L.2003.NorthernGoshawk(Accipitergentilesatricapillus):atechnicalconservationassessment.[Online].
USDAForestService,RockyMountainRegion.Available:
http://www.fs.fed.us/r2/projects/scp/assessments/northerngoshawk.pdf[1/22/2015].
Kingery,H.E.(editor)1998.Coloradobreedingbirdatlas.ColoradoBreedingBirdAtlasPartnership,Denver.Colorado.
Melillo,J.M.,T.C.Richmond,andG.W.Yohe,Eds.,2014:ClimateChangeImpactsintheUnitedStates:TheThirdNational
ClimateAssessment.U.S.GlobalChangeResearchProgram,841pp.doi:10.7930/J0Z31WJ2.
NatureServe.2014.NatureServeExplorer:Anonlineencyclopediaoflife[webapplication].Version7.1.NatureServe,
Arlington,Virginia.Availablehttp://explorer.natureserve.org.(Accessed:January21,2015).
NRDC(NaturalResourcesDefenseCouncil).2014.RenewableenergyforAmerica.
http://www.nrdc.org/energy/renewables/energymap.asp
Patla,S.M.1997.Nestingecologyandhabitatofthenortherngoshawkinundisturbedandtimberharvestareasonthe
TargheeNationalForest,GreaterYellowstoneecosystem.M.S.Thesis,IdahoStateUniversity,Pocatello,ID.
Reynolds,R.T.,R.T.Graham,M.H.Reiser,RL.Bassett,P.L.Kennedy,D.A.Boyce,G.Goodwin,R.Smith,andE.L.Fisher.1992.
ManagementrecommendationsforthenortherngoshawkinthesouthwesternUnitedStates.U.S.D.A.For.Serv.Gen.Tech.
Rep.RM‐217.RockyMt.For.andRangeExp.Stn.FortCollins,CO
Squires,J.R.andR.T.Reynolds.1997.NorthernGoshawk(Accipitergentilis),TheBirdsofNorthAmericaOnline(A.Poole,
Ed.).Ithaca:CornellLabofOrnithology;RetrievedfromtheBirdsofNorthAmericaOnline:
http://bna.birds.cornell.edu/bna/species/298doi:10.2173/bna.298
U.S.FishandWildlifeService(USFWS).1998.Statusreviewofthenortherngoshawkintheforestedwest.Unpublished
Report.OfficeofTechnicalSupport,ForestResources,PortlandOregon.Alsoavailableonlineat
http://pacific.fws.gov/news/pdf/gh_sr.pdf.
ClimateChangeVulnerabilityAssessmentforColoradoBLM239
Western Snowy Plover
Charadriusalexandrinusnivosus
G3T3/S1B
Family:Charadriidae
Climate Vulnerability Rank: Highly Vulnerable
ThisColoradostate‐widerankisbasedonthefollowingfactors:1)naturalbarrierstomovement;
2)potentialincreaseinwindenergydevelopmentinbreedinghabitat;3)relianceonalkali‐covered
playasandsandymarginsofreservoirsthatmaybevulnerabletodryingduetoprojectedwarmer
temperatures;4)potentialrelianceonseasonalwetlandscreatedbyspringrunoffthatmaybe
alteredduetoclimatechange;5)lowamountsofgeneticdifferentiation.
Distribution:TheWesternSnowyPlover(SnowyPloverhereafter)isasmallshorebirdthatbreeds
onthePacificcoastfromsouthernWashingtontosouthernBajaCalifornia,Mexico,andininterior
westernstatesincludingUtah,Idaho,NevadaandColorado(USFWS2012).InColorado,Snowy
Ploversnestonalkali‐coveredplayasintheSanLuisValley,aswellasalongsandyshoresof
constructedreservoirsinthesoutheasterncornerofthestateintheLowerArkansasRiverBasin
(AndrewsandRighter1992;ColoradoBirdAtlasPartnership1998).Theytypicallyarrivein
Coloradoinmid‐Aprilanddepartstartingfrommid‐JulyintoOctober(AndrewsandRighter1992).
Habitat:InColorado,SnowyPloversnestonalkali‐coveredplayasintheSanLuisValley,aswellas
alongsandyshoresofreservoirsintheLowerArkansasRiverBasin.Elevation:Noinformationis
availableontheelevationrangeofSnowyPloverinColorado,butbasedondistribution,thespecies
likelybreedsatelevationsrangingfrom4,000ftto8,000ft.
EcologicalSystem:ShortgrassPrairie,GreasewoodShrublands
240ColoradoNaturalHeritageProgram©2015
CCVI Scoring
B1)Exposuretosealevelrise.Neutral.Sandyoceanbeachesofferhabitatforsnowyplover,and
thesemaybelosttosealevelrise.However,theassessmentareaforthisCCVIislimitedto
Colorado,sosealevelriseisnotconsideredhere.
B2a)Distributionrelativetonaturalbarriers.Neutral.Thisspeciesishighlymobile.
B2b)Distributionrelativetoanthropogenicbarriers.Neutral.Thisspeciesishighlymobile.
B3)Impactoflandusechangesresultingfromhumanresponsestoclimatechange.
SomewhatIncrease.SnowyPloverareknowntonestintheSanLuisValleyandineasternColorado
alongtheArkansasRiver(ColoradoBirdAtlasPartnership1998).AccordingtoDepartmentof
Energywindresourcemaps,theeasternquarterofColoradoneartheNewMexicoandNebraska
bordershaveexcellentwindresources(DOE2004).Windturbinescancausedirectimpactstobirds
viacollisionsthatresultininjuryormortality(Kunzetal.2007;Kuvleskyetal.2007),aswellas
indirectimpactsviahabitatlossandbarrierstomovement(DrewittandLangston2006;Kuvlesky
etal.2007;Pruettetal.2009;Kieseckeretal.2011).
C1)Dispersalandmovements.Decrease.Thisspeciesishighlymobile.SnowyPloversthatbreed
intheGreatPlainswinterontheGulfofMexicocoast(Pageetal.2009).
C2ai)Predictedsensitivitytotemperature:historicalthermalniche.Neutral.Consideringthe
meanseasonaltemperaturevariationforoccupiedcells,thespecieshasexperiencedaverage(57.1‐
77°F/31.8‐43.0°C)temperaturevariationinthepast50years.
C2aii)Predictedsensitivitytotemperature:physiologicalthermalniche.Neutral.Thisspecies
isnotlimitedtocoolorcoldhabitats.
C2bi)Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime:
historicalhydrologicalniche.SomewhatDecrease.Consideringtherangeofmeanannual
precipitationacrossoccupiedcells,thespecieshasexperiencedgreaterthanaverage(>40
inches/1,016mm)precipitationvariationinthepast50years.
C2bii)Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime:
physiologicalhydrologicalniche.GreatlyIncrease.SnowyPloversnestonalkali‐coveredplayas
intheSanLuisValley,aswellasalongsandyshoresofreservoirsintheLowerArkansasRiver
Basin.TheSanLuisValleyislocatedintheRioGrandeRiverBasin.Manywetlandsinthisbasinare
dependentonsnow‐meltfromthesurroundingmountains,andthesewetlandsareexpectedtobe
moreacutelyaffectedthanotherecosystemsinthearea(USFWS2012).Climatemodelsprojecta
rangeof‐28%to+11%inannualrunofffortheRioGrandeBasin,andarangeof‐10%to+19%for
theArkansasRiverBasinformid‐century(Lukasetal.2014).Furthermore,changingdemandsfor
waterintheseriverbasinsmayresultingreaterfluctuationsinreservoirlevelsintheseareas,
whichinturncouldleadtothefloodingofreservoirshorelinesandresultinglossofSnowyPlover
nestinghabitat.Lastly,increasedgroundwaterpumpingforagriculturecouldleadtoareductionin
availablesurfacewaterandalossofSnowyPlovernestinghabitat(Busby2002).
ClimateChangeVulnerabilityAssessmentforColoradoBLM241
C2c)Dependenceonaspecificdisturbanceregimelikelytobeimpactedbyclimatechange.
SomewhatIncrease.SnowyPloversintheArkansasBasinhavebeendocumentednestingonthe
shorelinesofconstructedreservoirs,butintheSanLuisValley,thealkaliflatsthatprovidenesting
habitatarelikelytiedtomoreseasonalhydroperiodsassociatedwithspringrunoff.
C2d)Dependenceonsnow‐coveredhabitats.SomewhatIncrease.IntheSanLuisValley,runoff
fromsnowmeltprovidesflowstowetlandsthatprovidehabitatforSnowyPlover(Laubhanand
Gammonley2000).
C3)Restrictiontouncommongeologicalfeaturesorderivatives.SomewhatIncrease.The
SnowyPloveroccursonalkaliflatsaroundreservoirsduringthebreedingseason,whilemigrants
occuronmudflatsandsandyshorelines(AndrewsandRighter1992).Furthermore,SnowyPlovers
intheGreatPlainsfrequentlynestnearwaterbodiesthatcontainhighsalinitylevels,whichthey
mayuseforevaporativecoolingduringperiodsofhightemperatures(Purdue1976).
C4a)Dependenceonotherspeciestogeneratehabitat.Neutral.
C4b)Dietaryversatility.Neutral.IntheGreatPlains,SnowyPloverfeedonavarietyof
invertebratesincludingflies(Ephydrasp.),beetles(Blediussp.,Cicindelasp.),andmanyterrestrial
insectsblownfromsurroundingareasincludinggrasshoppers,lepidopterans,andbeetles(Busby
2002;Purdue1976,GroverandKnopf1982).
C4c)Pollinatorversatility(Plantsonly,notapplicable).
C4d)Dependenceonotherspeciesforpropaguledispersal.Neutral.
C4e)Formspartofaninterspecificinteractionnotcoveredby4a‐d.Unknown.
C5a)Measuredgeneticvariation.SomewhatIncrease.Geneticstudieshaverevealedlowamounts
ofgeneticdifferentiationamongpopulationsofSnowyPlovers,withalmostallvariabilityfound
withinpopulations(Funketal.2007).
C5b)Occurrenceofbottlenecksinrecentevolutionaryhistory.Neutral.Noevidencefora
populationbottleneckwasfoundinageneticstudyofGreatBasin,Midwest,GulfCoast,andPacific
CoastSnowyPloverpopulations(Funketal.2007).
C6)Phenologicalresponsetochangingseasonaltemperatureandprecipitationdynamics.
Unknown.
D1)Responsetorecentclimatechange.Unknown.
D2)Modeledfuturechangeinpopulationorrangesize.Unknown.
D3)Overlapofmodeledfuturerangewithcurrentrange.Unknown.
D4)Protectedareas.Unknown.
242ColoradoNaturalHeritageProgram©2015
Literature Cited
Andrews,R.A.,andR.Righter.1992.Coloradobirds.DenverMuseumofNaturalHistory.Denver,Co.Pp27.
Busby,W.H.2002.KansasRecoveryPlanfortheSnowyPlover(Charadriusalexandrinus).KansasBiologicalSurveyReport
toKansasDepartmentofWildlifeandParks.44pg.
ColoradoBirdAtlasPartnership,RadeauxandColoradoDivisionofWildlife.1998.ColoradoBreedingBirdAtlas.Denver,
Colorado:ColoradoBirdAtlasPartnership.636pg.
DepartmentofEnergy(DOE).2004.WINDExchange.ColoradoWindResourceMap.Availableonlineat
http://apps2.eere.energy.gov/wind/windexchange/wind_resource_maps.asp?stateab=co.AccessedFeb2,2015.
Drewitt,A.L.andR.H.W.Langston.2006.AssessingtheImpactsofWindFarmsonBirds.Ibis148:29‐42.
Funk,W.C.,T.D.Mullins,andS.M.Haig.2007.Conservationgeneticsofsnowyplovers(Charadriusalexandrinus)inthe
WesternHemisphere:populationgeneticstructureanddelineationofsubspecies.ConservationGenetics8:1287–1309.
Grover,P.B.,andF.L.Knopf.1982.HabitatrequirementsandbreedingsuccessofCharadriaformbirdsnestingatSalt
PlainsNationalWildlifeRefuge,Oklahoma.JournalofFieldOrnithology53:139‐148.
Kiesecker,J.M.,J.S.Evans,J.Fargione,K.Doherty,K.R.Foresman,T.H.Kunz,D.Naugle,N.P.Nibbelink,andN.D.Nieumuth.
2011.Win‐winforwindandwildlife:avisiontofacilitatesustainabledevelopment.PlosONE6:e17566.
Kunz,T.H.,E.B.Arnett,B.M.Cooper,W.P.Erickson,R.P.Larkin,T.Mabee,M.L.Morrison,M.D.Strickland,andJ.M.
Szewczak.2007.Assessingimpactsofwind‐energydevelopmentonnocturnallyactivebirdsandbats:aguidance
document.JournalofWildlifeManagement71:2449–4486.http://www.wind‐watch.org/documents/wp‐
content/uploads/wild‐71‐08‐45.pdf.
Kuvlesky,W.P.Jr.,L.A.Brennan,M.L.Morrison,K.K.Boydston,B.M.BallardandF.C.Bryant.2007.WindEnergy
DevelopmentandWildlifeConservation:ChallengesandOpportunities.JournalofWildlifeManagement71(8):2487‐
2498.
Laubhan,M.K.,andJ.H.Gammonley.2000.DensityandforaginghabitatselectionofwaterbirdsbreedingintheSanLuis
ValleyofColorado.JournalofWildlifeManagement64:808‐819.
Lukas,J.,J.Barsugli,N.Doesken,I.Rangwala,andK.Wolter.2014.ClimateChangeinColorado:ASynthesistoSupport
WaterResourcesManagementandAdaptation.AReportfortheColoradoWaterConservationBoard.WesternWater
Assessment.
Page,G.W.,L.E.Stenzel,G.W.Page,J.S.Warriner,J.C.WarrinerandP.W.Paton.2009.SnowyPlover(Charadrius
alexandrinus),TheBirdsofNorthAmericaOnline(A.Poole,Ed.).Ithaca:CornellLabofOrnithology;Retrievedfromthe
BirdsofNorthAmericaOnline:http://bna.birds.cornell.edu/bna/species/154.
Pruett,C.L.,M.A.Patten,andD.H.Wolfe.2009.AvoidanceBehaviorbyPrairieGrouse:ImplicationsforDevelopmentof
WindEnergy.ConservationBiology23(5)1253‐1259.
Purdue,J.R.1976.AdaptationsoftheSnowyPloverontheGreatSaltPlains,Oklahoma.SouthwesternNaturalist.21:347‐
357.
U.S.FishandWildlifeService.SanLuisValleyConservationArea,ColoradoandNewMexico.2012.DraftEnvironmental
AssessmentandLandProtectionPlan.MountainPrairieRegion.Availableonlineathttps://www.fws.gov/mountain‐
prairie/refuges/lpp_PDFs/slv_lppdraft_all.pdf
ClimateChangeVulnerabilityAssessmentforColoradoBLM243
Western Yellow‐billed Cuckoo
Coccyzusamericanusoccidentalis
G5T2T3/S1B
Family:Cuculidae
Climate Vulnerability Rank: Moderately Vulnerable
ThisColoradostatewiderankisbasedon:narrowhabitatrequirementsanddifficultiesindispersal
byjuvenilesandadultsbetweenpatchesofsuitableriparianhabitat,increaseddryinganddrought
projectedduetoclimatechangefortheassessedarea,dryingassociatedwithglobalclimatechange
causingincreasedwaterwithdrawalforhumanconsumptionresultinginadditionallossand
fragmentationofriparianbreedinghabitat,increasedwildfireduetoincreasedfrequencyof
droughtinhistoricallywildfirefreeriparianhabitat,andprojectedincreasesintamariskinvasion
intosuitableriparianhabitatduetoclimatechange.Climatemodelsprojectincreasedwarmingand
droughtacrosstheassessedareawithannualaveragetemperaturesrisingby2.5°Fto5.5°Fby
2041‐2070andby5.5°Fto9.5°Fby2070‐2099withcontinuedgrowthinglobalemissions(A2
emissionsscenario),withthegreatestincreasesinthesummerandfall(Melilloetal.2014).
Projectionsofprecipitationchangesarelesscertain,butunderacontinuationofcurrentrising
emissionstrends(A2),reducedwinterandspringprecipitationisconsistentlyprojectedforthe
southernpartoftheSouthwestby2100(Melilloetal.2014).Theseprojectedchangesinclimateare
predictedtohavedramaticeffectsonthedistribution,quantity,andqualityofsuitableriparian
habitatavailableforbreeding,negativelyimpactingpopulationsofthecuckoowithintheassessed
area.
Distribution:TheRockyMountainBirdObservatoryconductedsurveysforcuckoosinwestern
Coloradoduringthesummersof2008through2011andfoundthemalongtheNorthForkofthe
GunnisonRiver(DeltaCounty),theColoradoRiver(MesaCounty),nearNucla(MontroseCounty),
andtheYampaRiver(MoffatCounty)(Beason2012).Ahandfulofincidentaldetectionswerealso
recordedduringthistime,butitwasconcludedthatthespeciesisaveryrarebreederinwestern
Coloradoaftersurveyswerecompleted.Habitat:Ariparianspecies,thewesternyellow‐billed
244ColoradoNaturalHeritageProgram©2015
cuckoobreedsinlow‐tomoderate‐elevationnativeforestsliningtheriversandstreamsofthe
westernUnitedStates.Cottonwoodwillowforests(Populusspp.‐Salixspp.)aremostoftenused,
althoughotherripariantreespeciescanbeimportantcomponentsofbreedinghabitataswell,such
asalder(Alnusspp.),boxelder(Acernegundo),mesquite(Prosopisspp.),Arizonawalnut(Juglans
major),Arizonasycamore(Platanuswrightii),oak(Quercusspp.),netleafhackberry(Celtis
reticulata),velvetash(Fraxinusvelutina),Mexicanelderberry(Sambucusmexicanus),seepwillow
(Baccharisglutinosa),andoccasionally,tamarisk(Tamarixspp.).
CCVI Scoring
B1)Exposuretosealevelrise.Neutral.
B2a)Distributionrelativetonaturalbarriers..Neutral.Significantnaturalbarriersdonotexist
forthisspecies.Thecuckooisavolantlongdistantmigratorthatcantraversemountainrangesand
largebodiesofwater.
B2b)Distributionrelativetoanthropogenicbarriers.Increase.Somewhatincreasetoincrease.
Habitatdestruction,modification,anddegradationfromdamconstructionandoperations;water
diversions;riverflowmanagement;streamchannelizationandstabilization;conversionto
agriculturaluses,suchascropsandlivestockgrazingintheassessmentareaareconsidered
barrierstodispersalbyjuvenileandadultyellow‐billedcuckoos(USFWS2014).
B3)Impactoflandusechangesresultingfromhumanresponsestoclimatechange.Increase.
Modificationstohydrology(impoundments,channelization,andalterationofriverflows,and
surfaceandgroundwaterwithdrawal)resultincuckoohabitatlossandfragmentation(USFWS
2014).Thedryingtrendassociatedwithglobalclimatechangemayresultinmoredams,levees,
waterwithdrawalsorotheractivitiestoensurefreshwaterforhumanconsumption,whichmay
resultinadditionalhabitatlossandfragmentation(USFWS2014).
C1)Dispersalandmovements.Somewhatdecreasetodecrease.Limiteddataondispersal
suggestshighsitefidelitywithmatingbirdsreturningtotheirpastnestingsiteswhilenatalbirdsdo
disperseupto205metersformalesand33,315metersforfemales(McNeiletal.2013).
Additionallycuckoosarelong‐distancemigrants,althoughdetailsoftheirmigrationpatternsare
notwellknown(Hughes1999).Matedpairsalsohavelargehomerangesthatvaryinsizefrom6‐
55hectares(Halterman2009).
C2ai)Predictedsensitivitytotemperature:historicalthermalniche.Neutral.Therange
occupiedbytheWestern‐yellowbilledcuckoointheassessedareahasexperiencedanaverage
(51.7‐77°F/31.8‐43.0°C)zonalmeanseasonaltemperatureoverthelast50years.
C2aii)Predictedsensitivitytotemperature:physiologicalthermalniche.Somewhatincrease
toincrease.Thereisnodirectevidencethatcuckoosrequirecoolmicroclimatesfornesting,butin
thewesternU.S.theyarerestrictedtoriparianhabitatswiththickshadedoverstorythatareof
higherhumiditythanthesurroundingaridlandscape(Hughs1999,Wiggins2005).
ClimateChangeVulnerabilityAssessmentforColoradoBLM245
C2bi)Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime:
historicalhydrologicalniche.Somewhatdecrease.Therangeoccupiedbythecuckoointhe
assessedareahasexperiencedgreaterthanaverage(>40inches/1,016mm)precipitation
variationinthepast50years.
C2bii)Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime:
physiologicalhydrologicalniche.Greatlyincrease.inthewesternU.S.thecuckooisrestrictedto
riparianhabitatswiththickshadedoverstorythatareofhigherhumiditythanthesurroundingarid
landscape(Hughs1999,Wiggins2005).Thehighersummertemperatures,earlierspringsnowmelt,
andlowersummerflowscausedbyclimatechange(Melilloetal.2014),willresultinbothshort‐
termandlong‐termlossofrequiredriparianhabitatfromexcessivewinterscouring,summer
drying,andwildfire(USFWS2014).
C2c)Dependenceonaspecificdisturbanceregimelikelytobeimpactedbyclimatechange.
Somewhatincrease.Thedryingprojectedfortheassessmentareaduetoclimatechangeisexpected
toincreasethefrequencyofwildfire(Melilloetal.2014).Historically,wildfirewasuncommonin
nativeriparianwoodlands(BuschandSmith1993)andtheexpectedincreasedincidenceof
wildfireintocuckoohabitatwillfurtherdegrade,isolate,orfragmentcuckoohabitat(USFWS2014).
C2d)Dependenceonsnow‐coveredhabitats.Neutral.Thecuckooisnotdependentonhabitats
withice,snow,oronsnowpack.
C3)Restrictiontouncommongeologicalfeaturesorderivatives.Neutral.Thecuckooisnot
dependentuponanyuncommongeologicalelements.
C4a)Dependenceonotherspeciestogeneratehabitat.Neutral.Thecuckooisnotdependenton
anyotherspeciestocreatesuitablehabitatforitsexistence.
C4b)Dietaryversatility.Neutraltosomewhatincrease.Cuckoosfeedonabroadrangeofitems,
butprimarilyonslowmovinginsectsincludinggrasshoppers,butterfliesandmoths,hemipteraand
beetles.However,larvaeofthefamilySphingidae(sphinxmoths)havebeennotedasanimportant
foodsourceforyellow‐billedcuckoos,andthelackofsuchpreyhasbeenimplicatedinthedecline
ofthewesternsubspecies.(Wiggins2005).
C4d)Dependenceonotherspeciesforpropaguledispersal.Neutral.Thecuckooisaself‐
disperser.
C4e)Formspartofaninterspecificinteractionnotcoveredby4a‐d.Somewhatincrease.
Throughoutmostofitsrange,habitatfortheWesternyellow‐billedcuckooisthreatenedbythe
conversionofnativeriparianwoodlandstoriparianvegetationdominatedbytamariskandother
nonnativevegetation(USFWS2014).Modelsbasedonprojectedclimatechangepredictthatthis
invasivetamariskwillbecomemoredominantinthisregionoverthenext100years(Kernsetal.
2009).
C5a)Measuredgeneticvariation.Unknown.
246ColoradoNaturalHeritageProgram©2015
C5b)Occurrenceofbottlenecksinrecentevolutionaryhistory.Unknown.
C6)Phenologicalresponsetochangingseasonaltemperatureandprecipitationdynamics.
Unknown.
D1)Responsetorecentclimatechange.Unknown.
D2)Modeledfuturechangeinpopulationorrangesize.Decrease.Winterrangeispredictedto
increaseby69%by2080(NAS2014).
D3)Overlapofmodeledfuturerangewithcurrentrange.Unknown.
D4)Protectedareas.Unknown.
Literature Cited
Beason,J.P.2012.2011SurveysforYellow‐billedCuckoosinWesternColorado.TechRep.R‐YBCUUSFWS‐09‐3.Rocky
MountainBirdObservatory,Brighton,Colorado.30pp.
Busch,D.E.andS.D.Smith.1993.Effectsoffireonwatersalinityrelationsofriparianwoodytaxa.Oecologia94a:186‐194
Halterman,M.M.2009.SexualDimorphism,DetectionProbability,HomeRange,andParentalCareintheYellow‐billed
Cuckoo.UniversityofNevadaPhD.Dissertation.Accessedonline[2/4/2015]at
http://search.proquest.com/docview/304943422.
Hughes,J.M.1999.Yellow‐billedCuckoo(Coccyzusamericanus),TheBirdsofNorthAmericaOnline(A.Poole,Ed.).Ithaca:
CornellLabofOrnithology;RetrievedfromtheBirdsofNorthAmericaOnline:
http://bna.birds.cornell.edu/bna/species/418
Kerns,B.K.,B.J.Naylor,M.Buonopane,C.G.ParksandB.Rogers.2009.Modelingtamarisk(Tamarixspp.)habitatand
climatechangeeffectsintheNorthwesternUnitedStates.InvasivePlantScienceandManagement,2:200‐215.
McNeil,S.E.,D.Tracy,J.R.StanekandJ.E.Stanek.2013.Yellow‐billedcuckoodistribution,abundanceandhabitatuseon
theLowerColoradoRivertributaries:2008‐2012summaryreport.LowerColoradoRiverMulti‐SpeciesConservation
Program.BureauofReclamation,
Melillo,J.M.,T.C.Richmond,andG.W.Yohe,Eds.,2014:ClimateChangeImpactsintheUnitedStates:TheThirdNational
ClimateAssessment.U.S.GlobalChangeResearchProgram,841pp.doi:10.7930/J0Z31WJ2.
NationalAudubonSociety(NAS).2014.Audubon’sBirdsandClimateChangeReport:APrimerforPractitioners.National
AudubonSociety,NewYork.Contributors:GaryLangham,JustinSchuetz,CandanSoykan,ChadWilsey,TomAuer,Geoff
LeBaron,ConnieSanchez,TrishDistler.Version1.2.Available:http://climate.audubon.org/birds/goleag/golden‐eagle
[1/29/2015].
Wiggins,D.2005.Yellow‐billedCuckoo(Coccyzusamericanus):atechnicalconservationassessment.[Online].USDA
ForestService,RockyMountainRegion.Available:
http://www.fs.fed.us/r2/projects/scp/assessments/yellowbilledcuckoo.pdf[2/4/2015].
U.S.FishandWildlifeService(USFWS).2014.EndangeredandThreatenedWildlifeandPlants;ProposedThreatened
StatusfortheWesternDistinctPopulationSegmentoftheYellow‐billedCuckoo(Coccyzusamericanus);FinalRule.
FederalRegister79(192:59992‐60038).
ClimateChangeVulnerabilityAssessmentforColoradoBLM247
White‐faced Ibis
Plegadischihi
G5/S2B
Family:Threskiornithidae
Climate Vulnerability Rank: Moderately Vulnerable
ThisColoradostate‐widerankisbasedonthefollowingfactors:1)potentialwindfarm
developmentonColorado’seasternplainsand2)potentialdecreaseinrunoffandprecipitationthat
servesasawatersourceforwetlandsintheSanLuisValley.
Distribution:InColorado,individualsprimarilynestintheSanLuisValleyandonportionsofthe
easternplains,andaretypicallymigrantsintheeasternplainsandmountainparks(Andrewsand
Righter1992).Habitat:TheWhite‐FacedIbisisalarge,long‐leggedbirdthatinhabitsfreshwater
wetlandsandmarshes(FieldGuidetotheBirdsofNorthAmerica1999,Dark‐SmileyKeinath2003).
EcologicalSystem:ShortgrassPrairie;Wetlands
CCVI Scoring
B1)Exposuretosealevelrise.Neutral.
B2a)Distributionrelativetonaturalbarriers.Neutral.White‐facedIbisareahighlymobile
species,andindividualsthatsummerinColoradoundertakelongmigrationstowinterinsouthern
California,Louisiana,andMexico(Rosenbergetal.1991).
B2b)Distributionrelativetoanthropogenicbarriers.Neutral.SeeB2aabove.Thisspeciesis
highlymobile.
B3)Impactoflandusechangesresultingfromhumanresponsestoclimatechange.
SomewhatIncrease.White‐facedIbisareknowntonestintheSanLuisValleyandontheeastern
plainsofColorado(AndrewsandRighter1992).AccordingtoDepartmentofEnergywindresource
maps,theeasternquarterofColoradoneartheNewMexicoandNebraskabordershaveexcellent
©JohnBreltsch
248ColoradoNaturalHeritageProgram©2015
windresources(DOE2004).Windturbinescancausedirectimpactstobirdsviacollisionsthat
resultininjuryormortality(Kunzetal.2007;Kuvleskyetal.2007),aswellasindirectimpactsvia
habitatlossandbarrierstomovement(DrewittandLangston2006;Kuvleskyetal.2007;Pruettet
al.2009;Kieseckeretal.2011).
C1)Dispersalandmovements.Decrease.SeeB2a.Thisspeciesishighlymobile,andindividuals
thatsummerinColoradotravellongdistancestospendthewinterinthesouthernU.S.andMexico
(Rosenbergetal.1991).
C2ai)Predictedsensitivitytotemperature:historicalthermalniche.Neutral.Consideringthe
meanseasonaltemperaturevariationforoccupiedcells,White‐FacedIbisinColoradohas
experiencedaverage(57.1‐77°F/31.8‐43.0°C)temperaturevariationinthepast50years.
C2aii)Predictedsensitivitytotemperature:physiologicalthermalniche.Neutral.Thisspecies
isnotlimitedtocoolorcoldenvironments.Droughtcouldaffecttheavailabilityofwetlandhabitats,
butthisisvulnerabilityisscoredunderC2bii.
C2bi)Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime:
historicalhydrologicalniche.Increase.Consideringtherangeofmeanannualprecipitationacross
occupiedcells,White‐FacedIbishasexperiencedsmall(4‐10inches/100‐254mm)precipitation
variationinthepast50years.
C2bii)Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime:
physiologicalhydrologicalniche.Increase.Thisspeciesisawetlandobligatethatprefers(almost
exclusively)wetlandswithemergentvegetation(Dark‐SmileyandKeinath2003).Drought
conditionscancausedryingofemergentvegetationandsuitablenestinghabitats,causingbreeding
adultstorelocate.Furthermore,droughtcanmakeibiseggsandyoungmoresusceptibleto
predation(Dark‐SmileyandKeinath2003).InRioGrandeBasin,wetlandsdependentonsnow‐melt
fromthesurroundingmountains,areexpectedtobemoreacutelyaffectedthanotherecosystemsin
thearea(USFWS2012).Climatemodelsprojectarangeof‐28%to+11%inannualrunoffforthe
RioGrandeBasinformid‐century(Lukasetal.2014).
C2c)Dependenceonaspecificdisturbanceregimelikelytobeimpactedbyclimatechange.
SomewhatIncrease.Shallow,seasonallyfloodedwetlandscanprovideforaginghabitatforWhite‐
FaceIbis(LaubhanandGammonley2000).
C2d)Dependenceonsnow‐coveredhabitats.SomewhatIncrease.IntheSanLuisValley,runoff
fromsnowmeltprovidesflowstowetlandsthatprovidehabitatforWhite‐FacedIbis(Laubhanand
Gammonley2000).
C3)Restrictiontouncommongeologicalfeaturesorderivatives.Neutral.
C4a)Dependenceonotherspeciestogeneratehabitat.Neutral.
C4b)Dietaryversatility.Neutral.TheWhite‐FacedIbisfeedsprimarilyoncrustaceans,
earthworms,andaquaticinsects(SmileyandKeinath2003).
ClimateChangeVulnerabilityAssessmentforColoradoBLM249
C4c)Pollinatorversatility(Plantsonly,notapplicable).
C4d)Dependenceonotherspeciesforpropaguledispersal.Neutral.
C4e)Formspartofaninterspecificinteractionnotcoveredby4a‐d.Unknown.
C5a)Measuredgeneticvariation.Unknown.
C5b)Occurrenceofbottlenecksinrecentevolutionaryhistory.Unknown.
C6)Phenologicalresponsetochangingseasonaltemperatureandprecipitationdynamics.
Unknown.
D1)Responsetorecentclimatechange.Unknown.
D2)Modeledfuturechangeinpopulationorrangesize.Unknown.
D3)Overlapofmodeledfuturerangewithcurrentrange.Unknown.
D4)Protectedareas.Unknown.
Literature Cited
Andrews,R.A.,andR.Righter.1992.Coloradobirds.DenverMuseumofNaturalHistory.Denver,Co.Pp27.
Dark‐Smiley,D.D.andD.A.Keinath.2003.SpeciesAssessmentforWhite‐FacedIbis(PlegadisChihi)inWyoming.Prepared
forU.S.DepartmentoftheInterior.Cheyenne,Wyoming.59pp.
DepartmentofEnergy(DOE).2004.WINDExchange.ColoradoWindResourceMap.Availableonlineat
http://apps2.eere.energy.gov/wind/windexchange/wind_resource_maps.asp?stateab=co.AccessedFeb2,2015.
Drewitt,A.L.andR.H.W.Langston.2006.AssessingtheImpactsofWindFarmsonBirds.Ibis148:29‐42.
FieldGuidetotheBirdsofNorthAmerica,ThirdEdition.1999.NationalGeographicSociety,Washington,D.C.
Kiesecker,J.M.,J.S.Evans,J.Fargione,K.Doherty,K.R.Foresman,T.H.Kunz,D.Naugle,N.P.Nibbelink,andN.D.Nieumuth.
2011.Win‐winforwindandwildlife:avisiontofacilitatesustainabledevelopment.PlosONE6:e17566.
Kunz,T.H.,E.B.Arnett,B.M.Cooper,W.P.Erickson,R.P.Larkin,T.Mabee,M.L.Morrison,M.D.Strickland,andJ.M.
Szewczak.2007.Assessingimpactsofwind‐energydevelopmentonnocturnallyactivebirdsandbats:aguidance
document.JournalofWildlifeManagement71:2449–4486.http://www.wind‐watch.org/documents/wp‐
content/uploads/wild‐71‐08‐45.pdf.
Kuvlesky,W.P.Jr.,L.A.Brennan,M.L.Morrison,K.K.Boydston,B.M.BallardandF.C.Bryant.2007.WindEnergy
DevelopmentandWildlifeConservation:ChallengesandOpportunities.JournalofWildlifeManagement71(8):2487‐
2498.
Laubhan,M.K.,andJ.H.Gammonley.2000.DensityandforaginghabitatselectionofwaterbirdsbreedingintheSanLuis
ValleyofColorado.JournalofWildlifeManagement64:808‐819.
250ColoradoNaturalHeritageProgram©2015
Lukas,J.,J.Barsugli,N.Doesken,I.Rangwala,andK.Wolter.2014.ClimateChangeinColorado:ASynthesistoSupport
WaterResourcesManagementandAdaptation.AReportfortheColoradoWaterConservationBoard.WesternWater
Assessment.
Pruett,C.L.,M.A.Patten,andD.H.Wolfe.2009.AvoidanceBehaviorbyPrairieGrouse:ImplicationsforDevelopmentof
WindEnergy.ConservationBiology23(5)1253‐1259.
Rosenberg,K.V.,R.D.Ohmart,W.C.Hunter,andB.W.Anderson.1991.BirdsofthelowerColoradoRiverValley.University
U.S.FishandWildlifeService.SanLuisValleyConservationArea,ColoradoandNewMexico.2012.DraftEnvironmental
AssessmentandLandProtectionPlan.MountainPrairieRegion.Availableonlineathttps://www.fws.gov/mountain‐
prairie/refuges/lpp_PDFs/slv_lppdraft_all.pdf.
ClimateChangeVulnerabilityAssessmentforColoradoBLM251
Bluehead Sucker
Catostomusdiscobolus
G4/S4
Family:Catostomidae
Climate Vulnerability Rank: Highly Vulnerable
ThisColoradostate‐widerankisbasedonthefollowingfactors:1)barrierstomovement;2)
warmingstreamtemperaturesmayaffectblueheadsuckerthatgenerallyinhabitcoolstreams3)
potentialdeclineinrunoffandsubsequentdecreaseinflowsintheUpperColoradoRiverBasin;4)
relianceongravelbarsforspawning;5)lackofvariabilityinannualprecipitationinlast50years;
6)hybridizationwiththenonnativewhitesuckercouldaffectthegeneticintegrityofthespecies.
Distribution:InColorado,theblueheadsuckerisfoundthroughouttheUpperColoradoRiver
drainage.Habitat:InColorado,adultblueheadsuckermostoftenarefoundinswifter,higher
gradientstreams;larvalfishinhabitnear‐shore,lowvelocityhabitats(Childsetal.1998).Riffles
andpoolssupportalgaeandmacroinvertebratesthatareconsumedbyblueheadsuckers(Sigler
andSigler1996).Blueheadsuckeroccupywarmtocoolstreams(20˚C)withrockysubstrates
(SiglerandSigler1996;Bestgen2000).
EcologicalSystem:Streams
CCVI Scoring
B1)Exposuretosealevelrise.Neutral.
B2a)Distributionrelativetonaturalbarriers.Increase.Blueheadsuckerarefoundinthe
mainstemandtributariesoftheColoradoRiverwithinthestateofColorado(MillerandRees2000).
Thespeciescanoccurinhighgradientstreams.Waterfallscouldcreateupstreammovements
withinthesestreams.Althoughtheexactleapingabilitiesofblueheadsuckerarenotknown,many
252ColoradoNaturalHeritageProgram©2015
streamfishesarenotabletojumpaboveheightsof1.0‐1.5m(BjornnandReiser1991;Holtheetal.
2005).
B2b)Distributionrelativetoanthropogenicbarriers.Increase.Damsandimpoundmentsalong
theColoradoRiveranditstributariescreatebarriersforblueheadsuckermovement.Thisspecies
prefersswiftervelocity,highergradientstreamsanddoesnotdowellinimpoundments
(BezzeridesandBestgen2002).
B3)Impactoflandusechangesresultingfromhumanresponsestoclimatechange.Neutral.
C1)Dispersalandmovements.SomewhatDecrease.Morestudiesareneededtoinvestigate
movementpatternsofblueheadsucker.Someinvestigatorshavereportedthatthespecies
relativelysedentary,movingonlyafewkilometers(Vanicek1967,ReesandMiller2001),while
othersreportrecapturingindividuals19kmfromoriginalcapturelocations(HoldenandCrist
1981).
C2ai)Predictedsensitivitytotemperature:historicalthermalniche.Neutral.Consideringthe
meanseasonaltemperaturevariationforoccupiedcells,thespecieshasexperiencedaverage(57.1‐
77°F/31.8‐43.0°C)temperaturevariationinthepast50years.
C2aii)Predictedsensitivitytotemperature:physiologicalthermalniche.SomewhatIncrease.
Blueheadsuckerinhabitawidevarietyofriversystemsfromsmallcreekstolargerivers.Although
generallyinhabitingstreamswithcooltemperatures,theyhavebeenfoundinsmallcreekswith
highwatertemperatures(28degreesC)(Ptaceketal.2005,Smith1966).
C2bi)Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime:
historicalhydrologicalniche.SomewhatDecrease.Speciesshowsapreferenceforenvironments
towardthewarmerendofthespectrum
C2bii)Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime:
physiologicalhydrologicalniche.SomewhatIncrease.Highbaseflowsareimportantforthe
reproductionsuccessofblueheadsucker(AndersonandStewart2007).Mostpublishedresearch
indicatesadeclineinrunoffintheUpperColoradoRiverBasinbythemid‐to‐late21stcentury(Ray
etal.2008,Lukasetal.2014).
C2c)Dependenceonaspecificdisturbanceregimelikelytobeimpactedbyclimatechange.
SomewhatIncrease.Highbaseflowsareimportantforthereproductionsuccessofblueheadsucker
(AndersonandStewart2007).MostpublishedresearchindicatesadeclineinrunoffintheUpper
ColoradoRiverBasinbythemid‐to‐late21stcentury(Rayetal.2008,Lukasetal.2014).
C2d)Dependenceonsnow‐coveredhabitats.Neutral
C3)Restrictiontouncommongeologicalfeaturesorderivatives.Neutral.
C4a)Dependenceonotherspeciestogeneratehabitat.Neutral
ClimateChangeVulnerabilityAssessmentforColoradoBLM253
C4b)Dietaryversatility.Neutral.Blueheadsuckerlarvaefeedondiatoms,zooplankton,and
dipteranlarvae(Carteretal.1986;MuthandSnyder1995;Ptaceketal.2005).Adultsandjuveniles
feedonmacroinvertebrates,algae,andinsectlarvae(Vanicek1967,Childsetal.1998,Osmundson
1999).
C4c)Pollinatorversatility(Plantsonly,notapplicable).
C4d)Dependenceonotherspeciesforpropaguledispersal.Neutral
C4e)Formspartofaninterspecificinteractionnotcoveredby4a‐d.Unknown
C5a)Measuredgeneticvariation.Increase.Althoughstudieshaveshownhighgeneticdiversityin
blueheadsuckeracrossthespeciesrange(Douglasetal.2009),hybridizationwiththenonnative
whitesuckercouldaffectthegeneticintegrityofthespecies.Hybridizationbetweenthenon‐native
whitesucker(Catostomuscommersoni)andblueheadsuckerhasbeendocumented,aswellas
individualswithgeneticcontributionsfromthewhitesucker,blueheadsucker,andnative
flannelmouthsucker(Catostomuslatipinnus)(McDonaldetal.2008).Thenon‐nativewhitesucker
hasfacilitatedintrogressionbetweentwonativespecies,andthereforethreatensthegenetic
integrityoftheblueheadandflannelmouthsuckers.Ageneticstudyofthespeciesrevealedthree
distinctgeographicareasthatareevolutionarilysignificantformaintainingthegeneticintegrityof
theblueheadsucker(referredtoasevolutionarilysignificantunits):theBonnevilleBasin,the
UpperLittleColoradoRiver,andtheColoradoRiver(Hopkenetal.2013).Allblueheadsucker
populationsinthestateofColoradobelongtotheColoradoRiverunit(Hopkenetal.2013).
C5b)Occurrenceofbottlenecksinrecentevolutionaryhistory.Unknown
C6)Phenologicalresponsetochangingseasonaltemperatureandprecipitationdynamics.
Unknown.
D1)Responsetorecentclimatechange.Unknown.
D2)Modeledfuturechangeinpopulationorrangesize.Unknown.
D3)Overlapofmodeledfuturerangewithcurrentrange.Unknown.
D4)Protectedareas.Unknown.
Literature Cited
Anderson,R.M.andG.Stewart.2007.Fish‐FlowInvestigation:II.Impactsofstreamflowalterationsonthenativefish
assemblageandtheirhabitatavailabilityasdeterminedby2Dmodelingandtheuseoffishpopulationdatatosupport
instreamflowrecommendationsforthesectionsoftheYampa,Colorado,GunnisonandDoloresRiversinColorado.
ColoradoDivisionofWildlifeSpecialReportNo.80,DOW‐R‐S‐80‐07.FortCollins.
Beatty,R.J.,F.J.Rahel,andW.A.Hubert.2009.Complexinfluencesoflow‐headdamsandartificialwetlandsonfishesina
ColoradoRivertributarysystem.FisheriesManagementandEcology16:457‐467.
254ColoradoNaturalHeritageProgram©2015
Bestgen,K.R.2000.PersonalcommunicationwithDirectorofColoradoStateUniversity’sLarvalFishLabtoColorado
ParksandWildlife,FortCollins,Colorado.
Bezzerides,N.andK.Bestgen.2002.StatusreviewofroundtailchubGilarobusta,flannelmouthsuckerCatostomus
latipinnis,andblueheadsuckerCatostomusdiscobolusintheColoradoRiverbasin.2002.ColoradoStateUniversityLarval
FishLaboratory,FortCollins,CO.
BjornnT.C.&ReiserD.W.1991.Habitatrequirementsofsalmonidsinstreams.Bethesda,MD:AmericanFisheriesSociety
SpecialPublication19:83–138.
Carter,J.G.,V.A.Lamarra,andR.J.Ryel.1986.DriftoflarvalfishesintheupperColoradoRiver.JournalofFreshwater
Ecology3:567‐577.
Childs,M.R.,R.W.Clarkson,andA.T.Robinson.1998.ResourceusebylarvalandearlyjuvenilenativefishesintheLittle
ColoradoRiver,GrandCanyon,Arizona.TransactionsoftheAmericanFisheriesSociety127:620‐629.
Douglas,M.R.,M.E.Douglas,andM.W.Hopken.2009.PopulationGeneticAnalysisofBlueheadSucker[Catostomus
(Pantosteusdiscobolus]AcrosstheSpecies’Range.Onlineat
http://www.fws.gov/southwest/es/NewMexico/documents/ZBSESD/Douglas_et_al_2013.pdf
Holden,P.B.andL.W.Crist.1981.DocumentationofchangesinthemacroinvertebrateandfishpopulationsintheGreen
RiverduetoinletmodificationofFlamingGorgeDam.ContractNo.0‐07‐40‐S1357forWaterandPowerResources
Service.Bio/West,Inc.,Logan,UT.
HoltheE.,E.Lund,B.Finstad,E.B.Thorstad,andR.S.McKinley.2005.Afishselectiveobstacletopreventdispersionofan
unwantedfishspecies,basedonleapingcapabilities.FisheriesManagementandEcology12,143–147.
Hopken,M.W.,M.R.Douglas,andM.E.Douglas.2013.StreamhierarchydefinesriverscapegeneticsofaNorthAmerican
desertfish.MolecularEcology22:956–971.
Lukas,J.,J.Barsugli,N.Doesken,I.Rangwala,andK.Wolter.2014.ClimateChangeinColorado:ASynthesistoSupport
WaterResourcesManagementandAdaptation.AReportfortheColoradoWaterConservationBoard.WesternWater
Assessment.
McDonald,D.B.,T.L.Parchman,M.R.Bower,W.A.Hubert,andF.J.Rahel.2008.Anintroducedandanativevertebrate
hybridizetoformageneticbridgetoasecondnativespecies.Proc.Natl.Sci.USA.105:10842‐10847.
Miller,W.J.andD.E.Rees.2000.IchthyofaunalsurveysoftributariesoftheSanJuanRiver,NewMexico.MillerEcological
Consultants,Inc.,FortCollins,CO.
Muth,R.T.andD.E.Snyder.1995.DietsofyoungColoradosquawfishandothersmallfishinbackwatersoftheGreen
River,ColoradoandUtah.GreatBasinNaturalist55:95‐104.
Osmundson,D.B.1999.LongitudinalvariationinfishcommunitystructureandwatertemperatureintheupperColorado
River:implicationsforColoradopikeminnowhabitatsuitability.FinalReportforRecoveryImplementationProgram,
ProjectNo.48.U.S.FishandWildlifeService,GrandJunction,CO.
Ptacek,J.A.,D.E.Rees,andW.J.Miller.2005.Blueheadsucker(Catostomusdiscobolus):atechnicalconservation
assessment.USDAForestService,RockyMountainRegion,FortCollins,Colorado.
Ray,A.J.,J.Barsugli,andK.Avery.2008.ClimateChangeinColorado:ASynthesistoSupportWaterResources
ManagementandAdaptation.ReporttotheColoradoWaterConservationBoard.
Rees,D.E.andW.J.Miller.2001.HabitatselectionandmovementofnativefishintheColoradoRiver,Colorado.Miller
EcologicalConsultants,Inc.,FortCollins,CO.
ClimateChangeVulnerabilityAssessmentforColoradoBLM255
Sigler,W.F.andJ.W.Sigler.1996.FishesofUtah;anaturalhistory.UniversityofUtahPress,SaltLakeCity,UT.
Smith,G.R.1966.DistributionandevolutionoftheNorthAmericanCatostomidfishesofSubgenusPantosteus,Genus
Catostomus.MiscellaneousPublicationsoftheMuseumofZoology,UniversityofMichigan,No.129.Universityof
Michigan,AnnArbor,MI.
Vanicek,C.D.1967.EcologicalstudiesofnativeGreenRiverfishesbelowFlamingGorgeDam,1964‐1966.Ph.D.Thesis,
UtahStateUniversity,Logan,UT.
256ColoradoNaturalHeritageProgram©2015
Bonytail Chub
Gilaelegans
G1/SX
ListedEndangered
Family:Cyprinidae
Nophotoavailable
Climate Vulnerability Rank: Extremely Vulnerable
ThisColoradostate‐widerankisbasedonthefollowingfactors:1)barrierstomovement;2)
potentialdeclineinrunoffandsubsequentdecreaseinflowsintheUpperColoradoRiverBasin;3)
relianceonrockysubstratesandgravelbarsforspawning;4)lackofvariabilityinannual
precipitationinlast50years;5)lackofgeneticvariation.
Distribution:ThebonytailchubisconsideredfunctionallyextinctinColorado(CarlsonandMuth
1989).NoverifiableoccurrencesofwildbonytailchubhavebeendocumentedinColoradosince
1984whenoneindividualwascaughtintheBlackRocksareanearGrandJunction,Colorado
(Kaedingetal.1986).Acaptivebroodstockwasestablishedfromsomeofthelastwildbonytail
collected,andstockingofcaptive‐rearedindividualsisaprimaryrecoverystrategy(Nesleretal.
2003).ThedistributionmapaboverepresentscriticalhabitatasdesignatedbyUSFWS(2003).
Habitat:Bonytailchubpreferbackwaterswithrockyormuddybottomsandflowingpools,but
reportssuggesttheycanalsooccurinstreamreacheswithswiftcurrents(USFWS2012).
EcologicalSystem:Streams
CCVI Scoring
B1)Exposuretosealevelrise.Neutral.
B2a)Distributionrelativetonaturalbarriers.Neutral/SomewhatIncrease.Naturalphysical
barrierstomovementintheColoradoRiveranditstributariesarenaturalrapidsandswift
ClimateChangeVulnerabilityAssessmentforColoradoBLM257
turbulentflows,andthesearelikelytofluctuatedependingonflows(U.S.FishandWildlifeService
2002).
B2b)Distributionrelativetoanthropogenicbarriers.Increase.Damsandimpoundmentsalong
theColoradoRiveranditstributariescreatebarriersforbonytailchubmovement,andaffect
seasonalavailabilityofhabitat(U.S.FishandWildlifeService2002).
B3)Impactoflandusechangesresultingfromhumanresponsestoclimatechange.Neutral.
C1)Dispersalandmovements.Decrease.Littleinformationisknownregardingthelifehistory
andmovementsofbonytailchub,butfishreleasedinNevadatraveledasmuchas56km(Marsh
andMueller1999).
C2ai)Predictedsensitivitytotemperature:historicalthermalniche.Neutral.Consideringthe
meanseasonaltemperaturevariationforoccupiedcells,thespecieshasexperiencedaverage(57.1‐
77°F/31.8‐43.0°C)temperaturevariationinthepast50years.
C2aii)Predictedsensitivitytotemperature:physiologicalthermalniche.Neutral.Thebonytail
chubisadaptedtothelarge,warm‐waterriversandstreamsoftheColoradoRiverBasin.Changes
tothermalhabitatshaveoccurredduetothein‐riverhypolimneticdamreleasesandthelossof
warm,floodplainwetlands(Kappenmanetal.2012).
C2bi)Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime:
historicalhydrologicalniche.Increase.Consideringtherangeofmeanannualprecipitationacross
occupiedcells,thespecieshasexperiencedsmall(4‐10inches/100‐254mm)precipitation
variationinthepast50years.
C2bii)Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime:
physiologicalhydrologicalniche.SomewhatIncrease.Maintenanceofstreamflowisimportant
fortherecoveryandconservationofbonytailchub,aspeciesnowconsideredfunctionallyextinctin
theUpperColoradoRiverSub‐basin(USFWS2012).Mostpublishedresearchindicatesadeclinein
runoffintheUpperColoradoRiverBasinbythemid‐to‐late21stcentury(Rayetal.2008,Lukaset
al.2014).
C2c)Dependenceonaspecificdisturbanceregimelikelytobeimpactedbyclimatechange.
Increase.Littleisknownaboutspawningrequirementsforbonytailchub,butitislikelythatlike
othermembersofthegenusGila,theyspawninrockysubstrates(USFWS2002).Pulsesinspring
flowsareimportantforcreatingcobblebarsaswellasforfloodingbottomlandthatserveas
nurseryhabitatforyoung(USFWS2002).Adequatebaseflowsarenecessaryforthecreationand
maintenanceofbonytailchubhabitat.Mostpublishedresearchindicatesadeclineinrunoffinthe
UpperColoradoRiverBasinbythemid‐to‐late21stcentury(Rayetal.2008,Lukasetal.2014),
whichcouldleadtofurtherlossanddegradationofhabitatforrazorbacksuckers.Increase.(USFWS
2002).
C2d)Dependenceonsnow‐coveredhabitats.Neutral.
258ColoradoNaturalHeritageProgram©2015
C3)Restrictiontouncommongeologicalfeaturesorderivatives.Increase.Rockysubstrates
andgravelbarsmaybeimportantspawninghabitatforbonytailchub(USFWS2002).Thecreation
andmaintenanceofthesehabitatsarejeopardizedbydamsandimpoundmentsthatalternatural
hydrologicregimes.
C4a)Dependenceonotherspeciestogeneratehabitat.Unknown.
C4b)Dietaryversatility.Neutral.Bonytailchubareomnivorous,andconsumeorganicmaterial,
aquaticmacrophytes,invertebrates,bullfrogs,andfish(Marshetal.2013).
C4c)Pollinatorversatility(Plantsonly,notapplicable).
C4d)Dependenceonotherspeciesforpropaguledispersal.Neutral.
C4e)Formspartofaninterspecificinteractionnotcoveredby4a‐d.Unknown.
C5a)Measuredgeneticvariation.Increase.Historicgeneticdiversityofthebonytailchubis
unknown,andsofewwildindividualsareleftthattheerosionofgeneticvariabilitymayhave
alreadyoccurred(USFWS2002).
C5b)Occurrenceofbottlenecksinrecentevolutionaryhistory.Unknown.
C6)Phenologicalresponsetochangingseasonaltemperatureandprecipitationdynamics.
Unknown.
D1)Responsetorecentclimatechange.Unknown.
D2)Modeledfuturechangeinpopulationorrangesize.Unknown.
D3)Overlapofmodeledfuturerangewithcurrentrange.Unknown.
D4)Protectedareas.Unknown.
Literature Cited
Carlson,C.A.,andR.T.Muth.1989.TheColoradoRiver:lifelineoftheAmericanSouthwest.CanadianSpecialPublication,
FisheriesandAquaticSciences106:220–239.Keppenman,K.M.,E.S.Cureton,J.Ilgen,M.Toner,W.C.Fraser,andG.A.
Kaeding,L.R.,B.D.Burdick,P.A.Schrader,andW.R.Noonan.1986.Recentcaptureofabonytail(Gilaelegans)and
observationsonthisnearlyextinctcyprinidfromtheColoradoRiver.Copeia4:1021‐1023.
Kappenman,K.M.,E.S.Cureton,J.Ilgen,M.Toner,W.C.Fraser,andG.A.Kindschi.2012.ThermalRequirementsofthe
Bonytail(Gilaelegans):ApplicationtoPropagationandThermal‐RegimeManagementofRiversoftheColoradoRiver
Basin.TheSouthwesternNaturalist57(4):421‐429.
Lukas,J.,J.Barsugli,N.Doesken,I.Rangwala,andK.Wolter.2014.ClimateChangeinColorado:ASynthesistoSupport
WaterResourcesManagementandAdaptation.AReportfortheColoradoWaterConservationBoard.WesternWater
Assessment.
ClimateChangeVulnerabilityAssessmentforColoradoBLM259
Marsh,P.C.,G.A.Mueller,andJ.D.Schooley.2013.SpringtimeFoodsofBonytail(Cyprinidae:Gilaelegans)InALower
ColoradoRiverBackwater.TheSouthwesternNaturalist,58(4):512‐516.
Marsh,P.C.andG.Mueller.1999.Spring‐summermovementsofBonytailinaColoradoRiverreservoir,LakeMohave,
ArizonaandNevada.U.S.GeologicalSurvey.Open‐FileReport99‐103.FortCollins,CO:U.S.GeologicalSurvey.42p.
Nesler,T.P.,K.Christopherson,J.M.Hudson,C.W.McAda,F.Pfeifer,andT.E.Czapla.2003.Anintegratedstockingplanfor
RazorbackSucker,Bonytail,andColoradoPikeminnowfortheUpperColoradoRiverendangeredfishrecoveryprogram.
Ray,A.J.,J.Barsugli,andK.Avery.2008.ClimateChangeinColorado:ASynthesistoSupportWaterResources
ManagementandAdaptation.ReporttotheColoradoWaterConservationBoard.
U.S.FishandWildlifeService.2002.Bonytail(Gilaelegans)RecoveryGoals:amendmentandsupplementtotheBonytail
ChubRecoveryPlan.U.S.FishandWildlifeService,Mountain‐PrairieRegion(6),Denver,Colorado.
U.S.FishandWildlifeService.2003.Bonytail(Gilaelegans)CriticalHabitatshapefile.U.S.FishandWildlifeService,
Mountain‐PrairieRegion(6),Denver,Colorado.Availableonlineathttps://catalog.data.gov/dataset/final‐critical‐habitat‐
for‐the‐bonytail‐chub‐gila‐elegans.
U.S.FishandWildlifeService.2012.Bonytail(Gilaelegans)5‐YearReview:SummaryandEvaluation.U.S.Fishand
WildlifeService,UpperColoradoRiverEndangeredFishRecoveryProgram.Denver,Colorado.July2012,29pp.
260ColoradoNaturalHeritageProgram©2015
Colorado Pikeminnow
Ptychocheiluslucius
G1/S1
ListedEndangered
Family:Cyprinidae
Climate Vulnerability Rank: Extremely Vulnerable
ThisColoradostate‐widerankisbasedonthefollowingfactors:1)barrierstomovement;2)
potentialdeclineinrunoffandsubsequentdecreaseinflowsintheUpperColoradoRiverBasin;3)
relianceongravel‐cobblesubstratesinhighgradientstreamsforspawning;4)lackofvariabilityin
annualprecipitationinlast50years;5)lackofgeneticvariation.
Distribution:TheColoradopikeminnownowoccursinapproximately1,090milesofriverhabitat
intheupperColoradoRiverBasinaboveLakePowellintheGreenRiver,upperColoradoRiver,and
SanJuanRiversub‐basins(USFWS2011).Thedistributionmapprovidedaboveisbasedoncritical
habitatdesignatedbyUSFWS(2013).Habitat:Coloradopikeminnowadultsarelong‐distance
migratorsthatrequireuninterruptedreachesofmediumtolargeriverswithpools,deeprunsand
eddyhabitatsmaintainedbyhighspringflows(USFWS2011).Gravelandcobbledepositsareused
forspawninghabitat;watertemperaturesduringspawningaretypically18to23˚C(USFWS2011).
EcologicalSystem:Streams
CCVI Scoring
B1)Exposuretosealevelrise.Neutral.
B2a)Distributionrelativetonaturalbarriers.Neutral/SomewhatIncrease.Historically,
Coloradopikeminnowmigratedlongdistancestoandfromspawningsites(Tyus1991).Rapidsand
ClimateChangeVulnerabilityAssessmentforColoradoBLM261
swiftturbulentflowscancreatenaturalbarrierstomovementofColoradopikeminnowduringhigh
flows,butthesebarriersarelikelyseasonal(USFWS2002).
B2b)Distributionrelativetoanthropogenicbarriers.Increase.Extensivedambuildinginthe
1930sthroughthe1960shasbeencitedastheprimarycausefortheextirpationofColorado
pikeminnowinthelowerColoradoRiverbasin(MuellerandMarsh2002,Osmundson2011).
AlthoughthespeciesstillpersistsintheupperColoradoRiverbasin,damshaveblockedupstream
passage,convertedfree‐flowingriverinesegmentsintolenticreservoirhabitat,andcooled
downstreamreacheswithhypolimneticreleases(Osmundson2011).
B3)Impactoflandusechangesresultingfromhumanresponsestoclimatechange.Neutral.
C1)Dispersalandmovements.Decrease.ColoradopikeminnowintheSanJuanRiverregularly
travelanaverageof4to62km(DurstandFranssen2014).
C2ai)Predictedsensitivitytotemperature:historicalthermalniche.Neutral.Consideringthe
meanseasonaltemperaturevariationforoccupiedcells,thespecieshasexperiencedaverage(57.1‐
77°F/31.8‐43.0°C)temperaturevariationinthepast50years.
C2aii)Predictedsensitivitytotemperature:physiologicalthermalniche.Somewhat
Increase/Neutral.Coloradopikeminnowevolvedinwarm‐waterriversandtributariesinthe
ColoradoRiverBasin.Evidencefromrecentstudiessuggestthatwarmerstreamtemperaturesin
theSanJuanRiverSub‐basincontributetofastergrowthandmaturityinColoradopikeminnowas
comparedtocolderstreamtemperaturesintheUpperColoradoRiverSub‐basin(Durstand
Franssen2014).Warmerstreamtemperaturesasaresultofclimatechangecouldresultinhigher
ratesofrecruitmentforColoradopikeminnow.
C2bi)Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime:
historicalhydrologicalniche.SomewhatIncrease.Consideringtherangeofmeanannual
precipitationacrossoccupiedcells,thespecieshasexperiencedslightlylowerthanaverage(11‐20
inches/255‐508mm)precipitationvariationinthepast50years.
C2bii)Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime:
physiologicalhydrologicalniche.SomewhatIncrease/Neutral.Coloradopikeminnowadults
requirepools,deepruns,andeddyhabitatsthatarecreatedandmaintainedbyhighspringflows.
Theseasonalhighflowscreatedbyspringrunoff“maintainchannelandhabitatdiversity,flush
sedimentsfromspawningareas,rejuvenatefoodproduction,formgravelandcobbledepositsused
forspawning,andrejuvenatebackwaternurseryhabitats”(USFWS2002).Mostpublishedresearch
indicatesadeclineinrunoffintheUpperColoradoRiverBasinbythemid‐to‐late21stcentury(Ray
etal.2008,Lukasetal.2014).Lowerflowscouldresultinafurtherdeclineinthecreationand
maintenanceofColoradopikeminnowhabitat.
C2c)Dependenceonaspecificdisturbanceregimelikelytobeimpactedbyclimatechange.
Increase.AdultColoradopikeminnowarepiscivorous.Historically,thespeciesreliedonnativeprey
fishesasamajorfoodsource.ThesenativefishesspawninMayandJuneduringhighspringflows.
Coloradopikeminnowpreyonthesmallyoungoftheyeargeneratedfromthesespawningevents,
262ColoradoNaturalHeritageProgram©2015
andspawnoncetheyarelargeenough(approx.50mmtotallength)intheearlytomid‐summer
(Nesleretal.1988,TyusandHaines1991,Franssenetal.2007).Climatemodelsprojectearlier
peaksinstreamflow,andthismayaltertheavailabilityofpreyfishforColoradopikeminnow.
Dependenceonsnow‐coveredhabitats.Neutral.
C3)Restrictiontouncommongeologicalfeaturesorderivatives.Increase.Colorado
pikeminnowspawningravel‐cobblesubstratesinhigh‐gradientstreams(Haynesetal.1984;Tyus
andHaines1991);backwatersformedinsilt‐sandbarsareconsideredidealnurseryhabitat
(Osmundsonetal.2002).DamsanddiversionsintheColoradoRiveranditstributarieshavealtered
naturalflowregimes,andlesshigh‐qualityhabitatisavailablefortheColoradopikeminnow.
C4a)Dependenceonotherspeciestogeneratehabitat.Neutral.
C4b)Dietaryversatility.Neutral.Coloradopikeminnowadultsarepiscivorousandarethemain
nativepredatoroftheColoradoRiverBasinbecauseoftheirlargesizeandlargemouth(Vanicek
andKramer1969,Minckley1973,HoldenandWick1982,USFWS2002).YoungColorado
pikeminnowconsumeinsects,copepods,cladocerans,andmidgelarvae(Vanicek1967,Jacobiand
Jacobi1982,MuthandSnyder1995,USFWS2002).
C4c)Pollinatorversatility(Plantsonly,notapplicable).
C4d)Dependenceonotherspeciesforpropaguledispersal.Neutral.
C4e)Formspartofaninterspecificinteractionnotcoveredby4a‐d.Unknown.
C5a)Measuredgeneticvariation.Increase.GeneticdiversitystudiesofmitochondrialDNAin
hatcherystockandmuseumspecimenshasrevealedlowgeneticdiversityinColoradopikeminnow
(BorleyandWhite2006).
C5b)Occurrenceofbottlenecksinrecentevolutionaryhistory.SomewhatIncrease.Apost‐
Pleistocenegeneticbottleneckhasbeenproposedasthecauseoflowlevelsofgeneticvariationin
Coloradopikeminnow(BorleyandWhite2006).
C6)Phenologicalresponsetochangingseasonaltemperatureandprecipitationdynamics.
Unknown.
D1)Responsetorecentclimatechange.Unknown.
D2)Modeledfuturechangeinpopulationorrangesize.Unknown.
D3)Overlapofmodeledfuturerangewithcurrentrange.Unknown.
D4)Protectedareas.Unknown.
ClimateChangeVulnerabilityAssessmentforColoradoBLM263
Literature Cited
Borley,K.andM.White.2006:MitochondrialDNAvariationintheendangeredColoradopikeminnow:Acomparison
amonghatcherystocksandhistoricspecimens.NorthAmericanJournalofFisheriesManagement26(4):916‐920.
Durst,S.L.andN.R.Franssen.2014.MovementandgrowthofjuvenileColoradoPikeminnows(Ptychocheiluslucius)inthe
SanJuanRiver,NMandUT.TransactionsoftheAmericanFisheriesSociety143:519–527.
Franssen,N.R.,K.B.Gido,andD.L.Propst.2007.Flowregimeaffectsavailabilityofnativeandnonnativepreyofan
endangeredpredator.BiologicalConservation138:330–340.
Haynes,C.M.,T.A.Lytle,E.J.Wick,andR.T.Muth.1984.LarvalColoradosquawfish(Ptychocheiluslucius)intheUpper
ColoradoRiverbasin,Colorado,1979‐1981.TheSouthwesternNaturalist29:21‐33.
Holden,P.B.andE.J.Wick.1982.LifehistoryandprospectsforrecoveryofColoradosquawfish.In:W.H.Miller(ed.),
FishesoftheUpperColoradoRiverSystem:presentandfuture,pp.98‐108.AmericanFisheriesSociety.
Jacobi,G.Z.,andM.D.Jacobi.1982.Fishstomachcontentanalysis.Pages285‐324inColoradoRiverfisheryprojectfinal
report.Part3,Contractedstudies.U.S.FishandWildlifeServiceandBureauofReclamation,SaltLakeCity,UT.
Minckley,W.L1973.FishesofArizona.ArizonaGameandFishDepartment,Phoenix.pp.158‐159.
Mueller,G.A.andP.C.Marsh.2002.Lost,adesertriveranditsnativefishes:ahistoricalperspectiveoftheLowerColorado
River.InformationandTechnologyReportUSBS/BRD/ITR‐2002‐0010,U.S.GovernmentPrintingOffice,Denver,CO.69
pp.
Muth,R.T.andD.E.Snyder.1995.DietsofyoungColoradosquawfishandothersmallfishinbackwatersoftheGreen
River,ColoradoandUtah.TheGreatBasinNaturalist55:95–104.
NeslerT.P.,R.T.Muth,andA.F.Wasowicz1988.EvidenceforbaselineflowspikesasspawningcuesforColorado
SquawfishintheYampaRiver,Colorado.AmericanFisheriesSocietySymposium5:68‐79.
Osmundson,D.B.,R..Ryel,V.L.LamarraandJ.Pitlick.2002.Flowsediment‐biotarelations:implicationsforriver
regulationeffectsonnativefishabundance.EcologicalApplications12:1719‐1739.
Osmundson,D.B.2011.ThermalRegimeSuitability:AssessmentofUpstreamRangeRestorationPotentialforColorado
Pikeminnow,AWarmwaterEndangeredFish.RiverRestorationApplications27:706‐722.
Tyus,H.M.1991.EcologyandmanagementofColoradosquawfish.Pages379–402inW.L.MinckleyandJ.E.Deacon(eds.).
Battleagainstextinction:nativefishmanagementintheAmericanwest.TheUniversityofArizonaPress,Tucson.
Tyus,H.M.,andGB.Haines.1991.Distribution,habitatuse,andgrowthofage‐OColoradosquawfishintheGreenRiver
basin,ColoradoandUtah.TransactionsoftheAmericanFisheriesSociety120:79‐89.
U.S.FishandWildlifeService[USFWS].2002.Coloradopikeminnow(Ptychocheiluslucius)RecoveryGoals:amendment
andsupplementtotheColoradoSquawfishRecoveryPlan.U.S.FishandWildlifeService,Mountain‐PrairieRegion(6),
Denver,Colorado.
U.S.FishandWildlifeService[USFWS].2011.Coloradopikeminnow(Ptychocheiluslucius)5‐yearreview:summaryand
evaluation.USFWS,UpperColoradoRiverEndangeredFishRecoveryProgram,Denver,Colorado.
U.S.FishandWildlifeService[USFWS].2013.Coloradopikeminnow(Ptychocheiluslucius)CriticalHabitatshapefile.U.S.
FishandWildlifeService,Mountain‐PrairieRegion(6),Denver,Colorado.Availableonlineat
https://catalog.data.gov/dataset/final‐critical‐habitat‐for‐the‐colorado‐pikeminnow‐ptychocheilus‐lucius
264ColoradoNaturalHeritageProgram©2015
Vanicek,C.D.1967.EcologicalstudiesofnativeGreenRiverfishesbelowFlamingGorgeDam,1964–1966.Unpublished
Ph.D.dissertation,UtahStateUniversity,Logan.i0038‐4909‐49‐2‐203‐Vanicek1
Vanicek,C.D.,andR.Kramer.1969.LifehistoryoftheColoradosquawfish,Ptychocheiluslucius,andtheColoradochub,
Gilarobusta,intheGreenRiverinDinosaurNationalMonument1964–1966.TransactionsoftheAmericanFisheries
Society98:193–208.
ClimateChangeVulnerabilityAssessmentforColoradoBLM265
Colorado River Cutthroat Trout
Oncorhynchusclarkiipleuriticus
G4T3/S3
Family:Salmonidae
Climate Vulnerability Rank: Extremely Vulnerable
ThisColoradostate‐widerankisbasedonthefollowingfactors:1)barrierstomovement;2)
potentialcomplexeffectsofwarmingstreamtemperaturesthatmayincreaseColoradoRiver
cutthroattrout(CRCThereafter)recruitment,aswellasprovidemoresuitablehabitatfor
nonnativesalmonidsthathybridizeandcompetewithCRCT;3)relianceongravelbarsfor
spawning;4)lackofvariabilityinannualprecipitationinlast50years;5)rainbowtroutandother
subspeciesofcutthroattrouthybridizewithCRCTandcouldthreatenthegeneticintegrityofCRCT.
Distribution:ColoradoRivercutthroattroutarefoundinthefollowingriverbasinsofColorado:
Dolores,Gunnison,UpperGreen,UpperColorado,Yampa,White,andSanJuan(Hirschetal.2013).
Recentgeneticandmeristicstudieshaveidentifiedtwoextantcutthroatlineageswithinthisrange,
provisionallydesignatedtheBlueLineage,nativetotheYampa,GreenandWhiteRiverBasins,and
theGreenLineage,nativetotheUpperColorado,GunnisonandDoloresbasins(Metcalfetal.2012,
Bestgenetal.2013,USFWS2014).AthirdlineagenativetotheSanJuanbasinisevidentlyextinct,
thoughblueandgreenlineagepopulationshavebeenestablishedinthisbasinbystocking.In
keepingwithcurrently‐recognizedinlandcutthroattaxonomy,thisassessmentconsidersall
cutthroatsindigenoustotheWestSlopeasCRCT.Habitat:InColorado,CRCTrequirecool,clear
waterinstreamswithwell‐vegetated,stablebanks;deeppools,boulders,andlogsareimportant
forprovidingcoverforCRCT(Young1995,Youngetal.1998).CRCTalsooccurinlakes,butthese
arerelativelyrare(Hirshetal.2013).Elevation:CRCToccursfrom4,600fttonearly12,500ft
acrossitsrange(Hirshetal.2013).SpecificelevationrangesforColoradoarenotavailable.
EcologicalSystem:MontaneStreams
266ColoradoNaturalHeritageProgram©2015
CCVI Scoring
B1)Exposuretosealevelrise.Neutral.
B2a)Distributionrelativetonaturalbarriers.Neutral/SomewhatIncrease.Waterfalls,beaver
dams,bedrock,debrisandrapidsarenaturalfeaturesintheriverbasinsthatprovidehabitatfor
CRCT(Hirshetal.2013).Manyofthesefeaturesmayonlyappearduringhighflows.Nonetheless,
theymaycreateseasonalbarrierstomovementforCRCT.
B2b)Distributionrelativetoanthropogenicbarriers.Neutral/SomewhatIncrease.Theeffectof
barrierscanbecomplexforCRCT.Thepresenceofabarriercanblocktheupstreammovementof
nonnativesalmonidsthatnegativelyaffectpopulationsofCRCTthroughhybridization,foodand
spacecompetition,andpredation(AllendorfandLeary1988,ForbesandAllendorf1991,Hirshet
al.2013).DamsandimpoundmentsintheColoradoRiverBasinanditstributariescreatebarriers
toCRCTmovement(Young2008).
B3)Impactoflandusechangesresultingfromhumanresponsestoclimatechange.Neutral.
C1)Dispersalandmovements.SomewhatDecrease.EvidencefromYoung(1995)suggeststhat
summerhomerangesforCRCTrangefrom11to652meters.
C2ai)Predictedsensitivitytotemperature:historicalthermalniche.Neutral.Consideringthe
meanseasonaltemperaturevariationforoccupiedcells,thespecieshasexperiencedaverage(57.1‐
77°F/31.8‐43.0°C)temperaturevariationinthepast50years.
C2aii)Predictedsensitivitytotemperature:physiologicalthermalniche.Somewhat
Increase/Neutral.ClimatewarmingmayhavecomplexeffectsonCRCTpopulations.ManyCRCT
populationspersistinhigherelevationstreamsbecauseunlikenonnativesalmonids,theycan
toleratecolderwatertemperatures.However,thesecoldtemperaturesmaynotprovideconditions
thatCRCTcanthrivein,andgrowthandrecruitmentmaybehinderedbytheselowtemperatures.
HigherelevationstreamsthatarecurrentlytoocoldtosustainCRCTpopulationsmaywarmenough
inthefuturetoprovidesuitablehabitatforCRCT.Warmerstreamtempscouldresultinearly
spawningandhigheroverwintersurvivalforCRCT.Itisalsopossiblethatthesewarmerstream
temperatureswillprovidesuitablehabitatfornonnativefishaswell.
C2bi)Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime:
historicalhydrologicalniche.SomewhatIncrease.Consideringtherangeofmeanannual
precipitationacrossoccupiedcells,thespecieshasexperiencedslightlylowerthanaverage(11‐20
inches/255‐508mm)precipitationvariationinthepast50years.
C2bii)Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime:
physiologicalhydrologicalniche.Increase.Lackofinstreamflowsduetodroughtconditionsis
consideredthehighestclimatechangeriskfactorforCRCT(Haaketal.2010).
C2c)Dependenceonaspecificdisturbanceregimelikelytobeimpactedbyclimatechange.
Neutral/SomewhatIncrease.SpawningofCRCTbeginsafterrunoffhaspeakedinspringorearly
ClimateChangeVulnerabilityAssessmentforColoradoBLM267
summer(Young1995).Watertemperaturesmayalsoprovidespawningcues(Young1995).
Temperatureincreasesduetoclimatechangemayleadtoearlierpeakrunoffandwarmerwater
temperatures.ThesemayresultinearlierspawningandhigheroverwintersurvivalforCRCT.
FemaleCRCTdepositeggs10‐25cmdeepinspawninggravel.Naturalhydrologicregimesthathelp
creategravelbarshavebeenalteredbydam‐relatedchangesintimingandflowlevels.Most
publishedresearchindicatesadeclineinrunoffintheUpperColoradoRiverBasinbythemid‐to‐
late21stcentury(Rayetal.2008,Lukasetal.2014),whichcouldleadtofurtherlackofhydrologic
processesrequiredtocreateandmaintainhabitatforCRCT.
C2d)Dependenceonsnow‐coveredhabitats.Neutral.
C3)Restrictiontouncommongeologicalfeaturesorderivatives.Neutral/SomewhatIncrease.
Requiresgravelsforspawning,seeaboveexplanationinC2C.
C4)Relianceoninterspecificinteractions.Neutral.
C4a)Dependenceonotherspeciestogeneratehabitat.Neutral.
C4b)Dietaryversatility.Neutral.Amphipods,plankton,dipterans,andhymenopteransareall
importantcomponentsofCRCTdiet(Colburn1966,Bozeketal.1994).
C4c)Pollinatorversatility(Plantsonly,notapplicable).
C4d)Dependenceonotherspeciesforpropaguledispersal.Neutral.
C4e)Formspartofaninterspecificinteractionnotcoveredby4a‐d.Unknown.
C5a)Measuredgeneticvariation.Increase.Nonnativerainbowtrout(Oncorhynchusmykiss)and
othersubspeciesofcutthroattrout(Oncorhynchusclarkiispp.)havehybridizedwithCRCT,thus
reducingthegeneticintegrityofthesubspecies(AllendorfandLeary1988,ForbesandAllendorf
1991,CRCTConservationTeam2006;Hirschetal.2013).Naturalorconstructedbarriersexistto
limitgeneticmixingofrainbowandothersubspeciesofcutthroattroutandCRCT.However,these
barriersalsoposeathreattoCRCTasitrestrictsindividualstoshort,headwaterstreamsegments
(Young2008).Thisrestrictionrenderspopulationsmorevulnerabletoextirpationfromstochastic
events,andcouldresultinthelongtermlossofgeneticvariability(Young2008,Robertsetal.
2013).
C5b)Occurrenceofbottlenecksinrecentevolutionaryhistory.Unknown.
C6)Phenologicalresponsetochangingseasonaltemperatureandprecipitationdynamics.
Unknown.
D1)Responsetorecentclimatechange.Unknown.
D2)Modeledfuturechangeinpopulationorrangesize.Unknown.
D3)Overlapofmodeledfuturerangewithcurrentrange.Unknown.
268ColoradoNaturalHeritageProgram©2015
D4)Protectedareas.Unknown.
Literature Cited
Allendorf,F.W.andR.F.Leary.1988.Conservationanddistributionofgeneticvariationinapolytypicspecies,the
cutthroattrout.ConservationBiology2:170‐184.
Bestgen,K.R.,K.B.Rogers,andR.Granger.2013.Phenotypepredictsgenotypeforlineagesofnativecutthroattroutinthe
SouthernRockyMountains.FinalReporttoU.S.FishandWildlifeService,ColoradoFieldOffice,DenverFederalCenter
(MS65412),Denver,CO.LarvalFishLaboratoryContribution177.
Bozek,M.A.,L.D.DeBrey,andJ.A.Lockwood.1994.DietoverlapamongsizeclassesofColoradoRivercutthroattrout
(Oncorhynchusclarkipleuriticus)inahighelevationmountainstream.Hydrobiologia273:9‐17.
Colborn,L.G.1966.ThelimnologyandcutthroattroutfisheryofTrappersLake,Colorado.DepartmentofGame,Fish,and
Parks,Denver,Colorado.FisheriesResearchDivisionSpecialReport9
Coleman,M.A.andK.D.Fausch.2007.Coldsummertemperaturelimitsrecruitmentofage‐0cutthroattroutinhigh‐
elevationColoradostreams.TransactionsoftheAmericanFisheriesSociety136:1231‐1244.
CRCTConservationTeam.2006.ConservationagreementforColoradoRivercutthroattrout(Oncorhynchusclarkii
pleuriticus)intheStatesofColorado,Utah,andWyoming.ColoradoDivisionofWildlife,FortCollins.10p.
Forbes,S.H.andF.W.Allendorf.1991.Mitochondrialgenotypeshavenodetectableeffectsonmeristictraitsincutthroat
trouthybridswarms.Evolution45:1350‐1359.
Haak,A.L.,J.E.Williams,D.Isaak,A.Todd,C.Muhlfeld,J.L.Kershner,R.Gresswell,S.Hostetler,andH.M.Neville.2010.The
potentialinfluenceofchangingclimateonthepersistenceofsalmonidsoftheinlandwest.U.S.GeologicalSurvey,Open‐
FileReport2010‐1236,Reston,Virginia.AccessedNov13,2014.Onlineat:pubs.usgs.gov/of/2010/1236/.
Hirsch,C.L.,M.R.Dare,andS.E.Albeke.2013.Range‐widestatusofColoradoRivercutthroattrout(Oncorhynchusclarkii
pleuriticus):2010.ColoradoRiverCutthroatTroutConservationTeamReport.ColoradoParksandWildlife,FortCollins.
Lukas,J.,J.Barsugli,N.Doesken,I.Rangwala,andK.Wolter.2014.ClimateChangeinColorado:ASynthesistoSupport
WaterResourcesManagementandAdaptation.AReportfortheColoradoWaterConservationBoard.WesternWater
Assessment.
Metcalf,J.L.,S.S.Stowell,C.M.Kennedy,K.B.Rogers,D.McDonald,J.Epp,K.Keepers,A.Cooper,J.J.Austin,andA.P.Martin.
2012.Historicalstockingdataand19thcenturyDNArevealhuman‐inducedchangestonativediversityanddistribution
ofcutthroattrout.MolecularEcology21:5194‐5207.
Ray,A.J.,J.Barsugli,andK.Avery.2008.ClimateChangeinColorado:ASynthesistoSupportWaterResources
ManagementandAdaptation.ReporttotheColoradoWaterConservationBoard.
Roberts,J.J.,K.D.Fausch,D.P.Peterson,andM.B.Hooten.2013.Fragmentationandthermalrisksfromclimatechange
interacttoaffectpersistenceofnativetroutintheColoradoRiverbasin.GlobalChangeBiology19:1383‐1398.
U.S.FishandWildlifeService[USFWS].2014.FinalSummaryReport:GreenbackCutthroatTroutGeneticsandMeristics
StudiesFacilitatedExpertPanelWorkshop.USFWSRegion6,Lakewood,CO,OrderNo.F13PB00113.AccessedNov6,
2014.Available:
http://cpw.state.co.us/Documents/Research/Aquatic/CutthroatTrout/2014GreenbackCutthroatTroutWorkshopSummar
y.pdf.
ClimateChangeVulnerabilityAssessmentforColoradoBLM269
Young,M.K.1995.ColoradoRivercutthroattrout.M.K.Youngtechnicaleditor.Pages16‐23.In:AConservation
AssessmentforInlandCutthroatTrout.USDAForestService,RockyMountainForestandRangeExperimentStation,Fort
Collins,Colorado.GeneralTechnicalReport.RM‐GTR‐256.
Young,M.K.,K.A.Meyer,D.J.Isaak,andR.A.Wilkison.1998.Habitatselectionandmovementbyindividualcutthroattrout
intheabsenceofcompetitors.JournalofFreshwaterEcology13:371‐381.
Young,M.K.2008.ColoradoRiverCutthroatTrout:ATechnicalConservationAssessment.USDAForestService,Rocky
MountainStation,FortCollins,CO.
270ColoradoNaturalHeritageProgram©2015
Flannelmouth Sucker
Catostomuslatipinnis
G3G4/S3
Family:Catostomidae
Climate Vulnerability Rank: Highly Vulnerable
ThisColoradostate‐widerankisbasedonthefollowingfactors:1)barrierstomovement;2)
potentialdeclineinrunoffandsubsequentdecreaseinflowsintheUpperColoradoRiverBasin;3)
relianceongravelbarsforspawning;4)lackofgeneticvariation.
Distribution:InColorado,theflannelmouthsuckerisfoundthroughouttheUpperColoradoRiver
drainage.Habitat:InColorado,flannelmouthsuckerresideinmainstemandtributarystreamsin
theUpperColoradoRiverBasin.Theyareopportunisticbenthicfeeders.Adultsoccupydeepriffles
andrunsaswellasdeep,murkypoolswithsparsevegetation(McAda1977;SiglerandSigler1996;
BezzeridesandBestgen2002),whileyoungfisharetypicallyfoundinquiet,shallowrifflesand
near‐shoreeddies(Childsetal.1998).
EcologicalSystem:Streams
CCVI Scoring
B1)Exposuretosealevelrise.Neutral.
B2a)Distributionrelativetonaturalbarriers.Increase.Flannelmouthsuckeraremost
commonlyfoundinpoolsanddeeperrunsofthemainstemandtributariesoftheColoradoRiver
withinthestateofColorado(BezzeridesandBestgen2002;SiglerandMiller1963;Minckleyand
Holden1980).
ClimateChangeVulnerabilityAssessmentforColoradoBLM271
B2b)Distributionrelativetoanthropogenicbarriers.Increase.Damsandimpoundmentsalong
theColoradoRiveranditstributariescreatebarriersforflannelmouthsuckermovement.This
speciesdoesnotdowellinimpoundments(McAda1977,SiglerandSigler1996,Bezzeridesand
Bestgen2002).
B3)Impactoflandusechangesresultingfromhumanresponsestoclimatechange.Neutral.
C1)Dispersalandmovements.Decrease.Flannelmouthsuckerarecapableoflongdistance
movementsasfaras229kilometers(Weiss1993).
C2ai)Predictedsensitivitytotemperature:historicalthermalniche.Neutral.Consideringthe
meanseasonaltemperaturevariationforoccupiedcells,thespecieshasexperiencedaverage(57.1‐
77°F/31.8‐43.0°C)temperaturevariationinthepast50years.
C2aii)Predictedsensitivitytotemperature:physiologicalthermalniche.Neutral/Somewhat
Increase.Flannelmouthsuckeroccupywarmandcoolwaterreachesofmostmainstemriversand
largetributariesinalltheColoradoRiverBasinsystemsinColoradoincludingthoseintheSanJuan,
Dolores,Gunnison,Colorado,White,Yampa(includingtheLittleSnakeRiver),andGreenRiver
basins(BestgenandZelasko2004;ColoradoParksandWildlife2015).
C2bi)Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime:
historicalhydrologicalniche.SomewhatDecrease.Consideringtherangeofmeanannual
precipitationacrossoccupiedcells,thespecieshasexperiencedgreaterthanaverage(>40
inches/1,016mm)precipitationvariationinthepast50years.
C2bii)Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime:
physiologicalhydrologicalniche.SomewhatIncrease.Highbaseflowsareimportantforthe
reproductionsuccessofflannelmouthsucker,aswellasblueheadandrazorbacksuckers(Anderson
andStewart2007).MostpublishedresearchindicatesadeclineinrunoffintheUpperColorado
RiverBasinbythemid‐to‐late21stcentury(Lukasetal.2014;Rayetal.2008).Reducedbaseflows
maybeassociatedwithincreasesinthenon‐nativewhitesucker(C.commersonii)populations.
Hybridizationofflannelmouthsuckerandwhitesuckerisaveryseriousthreattoflannelmouth
suckerintheColoradoRiverBasin(AndersonandStewart2007).
C2c)Dependenceonaspecificdisturbanceregimelikelytobeimpactedbyclimatechange.
Neutral.ThisspeciesevolvedintheColoradoRiverBasinandisadaptedtohighspringrunoff(Rees
etal.2005).SpringflowsfortheColoradoRiverareprojectedtopeakearlierandbehigherin2035‐
2064(Lukasetal.2014).
C2d)Dependenceonsnow‐coveredhabitats.Neutral.
C3)Restrictiontouncommongeologicalfeaturesorderivatives.Neutral/SomewhatIncrease.
Femalesspawnovergravel(CPW2014).Hydrologicprocessesthathelpcreateandmaintaingravel
barsmaybealteredduettoprojecteddecreasesinflowsintheColoradoRiverBasin(Lukasetal.
2014;Rayetal.2008).
272ColoradoNaturalHeritageProgram©2015
C4a)Dependenceonotherspeciestogeneratehabitat.Unknown.
C4b)Dietaryversatility.Neutral.
C4c)Pollinatorversatility(Plantsonly,notapplicable).
C4d)Dependenceonotherspeciesforpropaguledispersal.Neutral.
C4e)Formspartofaninterspecificinteractionnotcoveredby4a‐d.Unknown.
C5a)Measuredgeneticvariation.Increase.Althoughthespeciesiswidespreadthroughoutthe
ColoradoRiverBasin,arecentstudyfoundverylowlevelsofgeneticdiversitybasin‐wide(Douglas
andDouglas2003).Furthermore,hybridsbetweennonnativewhitesucker(Catostomus
commersoni)andflannelmouthsuckerhavebeendocumentedintheColorado,Gunnison,and
Yamparivers(AndersonandStewart2007;DouglasandDouglas2003;Shiozawaetal.2003).
Hybridizationbetweenthenon‐nativewhitesuckerandthenativeblueheadsuckerhasalsobeen
documented,aswellasindividualswithgeneticcontributionsfromthewhitesucker,bluehead
sucker,andnativeflannelmouthsucker(Catostomuslatipinnus)(McDonaldetal.2008).Thenon‐
nativewhitesuckerhasfacilitatedintrogressionbetweentwonativespecies,andtherefore
threatensthegeneticintegrityoftheblueheadandflannelmouthsuckers.Whitesuckershave
becomepervasivethroughouttheColoradoRiverBasin,hybridizingreadilywithflannelmouth
suckers,thuscreatingaseriousextinctionrisktoflannelmouthsuckers(McDonaldetal.2008).
C5b)Occurrenceofbottlenecksinrecentevolutionaryhistory.Unknown.
C6)Phenologicalresponsetochangingseasonaltemperatureandprecipitationdynamics.
Unknown.
D1)Responsetorecentclimatechange.Unknown.
D2)Modeledfuturechangeinpopulationorrangesize.Unknown.
D3)Overlapofmodeledfuturerangewithcurrentrange.Unknown.
D4)Protectedareas.Unknown.
Literature Cited
Anderson,R.M.andG.Stewart.2007.Fish‐FlowInvestigation:II.Impactsofstreamflowalterationsonthenativefish
assemblageandtheirhabitatavailabilityasdeterminedby2Dmodelingandtheuseoffishpopulationdatatosupport
instreamflowrecommendationsforthesectionsoftheYampa,Colorado,GunnisonandDoloresRiversinColorado.
ColoradoDivisionofWildlifeSpecialReportNo.80,DOW‐R‐S‐80‐07.FortCollins.
Bestgen,K.R.,andK.A.Zelasko.2004.DistributionandstatusofnativefishesintheColoradoRiverBasin,Colorado.Final
ReporttoColoradoDivisionofWildlife.FortCollins,CO
Bezzerides,N.,andK.R.Bestgen.2002.StatusReviewofRoundtailChubGilarobusta,FlannelmouthSuckerCatostomus
latipinnis,andBlueheadSuckerCatostomusdiscobolusintheColoradoRiverBasin.Finalreport.SubmittedtoU.S.
ClimateChangeVulnerabilityAssessmentforColoradoBLM273
DepartmentoftheInterior,BureauofReclamation,SaltLakeCity,Utah.LarvalFishLaboratoryContribution118,
ColoradoStateUniversity,Ft.Collins.
Childs,M.R.,R.W.Clarkson,andA.T.Robinson.1998.ResourceusebylarvalandearlyjuvenilenativefishesintheLittle
ColoradoRiver,GrandCanyon,Arizona.TransactionsoftheAmericanFisheriesSociety127:620‐629.
ColoradoParksandWildlife.2015.StateofColoradoConservationandManagementPlanfortheRoundtailChub(Gilia
robusta),BlueheadSucker(Catostomusdiscobolus)andFlannelmouthSucker(Catostomuslatipinnis).UnpublishedDraft.
Douglas,M.R.andM.E.Douglas.2003.YampaRiverhybridsuckergeneticassessment.DepartmentofFisheryandWildlife
Biology,ColoradoStateUniversity,FortCollins,CO.
Lukas,J.,J.Barsugli,N.Doesken,I.Rangwala,andK.Wolter.2014.ClimateChangeinColorado:ASynthesistoSupport
WaterResourcesManagementandAdaptation.AReportfortheColoradoWaterConservationBoard.WesternWater
Assessment.
McAda,C.W.1977.AspectsofthelifehistoryofthreeCatostomidsnativetotheUpperColoradoRiverBasin.Master’s
thesis,UtahStateUniversity,Logan,Utah.
Minckley,W.L.andP.B.Holden.1980.BlueheadsuckerinD.S.Lee,C.R.Gilbert,C.H.Hocutt,R.E.Jenkins,D.E.MacAllister
andJ.R.Stauffer,Jr.,editors.AtlasofNorthAmericanfreshwaterfishes.NorthCarolinaStateMuseumofNaturalHistory,
Columbia.p.377.
Ray,A.J.,J.Barsugli,andK.Avery.2008.ClimateChangeinColorado:ASynthesistoSupportWaterResources
ManagementandAdaptation.ReporttotheColoradoWaterConservationBoard.
Rees,D.E.,J.A.Ptacek,R.J.Carr,andW.J.Miller.2005.FlannelmouthSucker(Catostomuslatipinnis):atechnical
conservationassessment.[Online].USDAForestService,RockyMountainRegion.Available:
http://www.fs.fed.us/r2/projects/scp/assessments/flannelmouthsucker.pdf[Jan8,2015].
Sigler,W.F.andR.R.Miller.1963.FishesofUtah.UtahDepartmentofGameandFish,SaltLakeCity,UT.
Sigler,W.F.andJ.W.Sigler.1996.FishesofUtah;anaturalhistory.UniversityofUtahPress,SaltLakeCity,UT.
Weiss,S.J.1993.Spawning,movementandpopulationstructureofflannelmouthsuckerinthePariaRiver.M.S.Thesis.
UniversityofArizona,Tucson,AZ.
274ColoradoNaturalHeritageProgram©2015
Humpback Chub
Gilacypha
G1/S1
ListedEndangered
Family:Cyprinidae
Nophotoavailable
Climate Vulnerability Rank: Extremely Vulnerable
ThisColoradostate‐widerankisbasedonthefollowingfactors:1)barrierstomovement;2)
potentialdeclineinrunoffandsubsequentdecreaseinflowsintheUpperColoradoRiverBasin;3)
relianceongravelbarsforspawning;4)lackofgeneticvariation.
Distribution:OnlytwohumpbackchubpopulationsstillexistinColorado:theYampaCanyon
populationontheYampaRiverandtheBlackRockspopulationontheColoradoRiver(U.S.Fishand
WildlifeService2002).Thedistributionmapaboveshowscriticalhabitatasdesignatedbythe
USFWS(2003).Habitat:InColorado,adulthumpbackchubresideinswift,turbulenthabitatsand
indeeppoolsincanyons(Kaedingetal.1990;Leeetal.1981).Theyarealsofoundinwhitewaterin
deepeddies(Minckley1991).Juvenilesaregenerallyfoundinmoreshallowareas;youngofthe
yearhavebeendocumentedinshallowareasnearshorewithslowcurrentsandfinecobblesand
boulders(GormanandSeales1995).
EcologicalSystem:Streams
CCVI Scoring
B1)Exposuretosealevelrise.Neutral.
B2a)Distributionrelativetonaturalbarriers.Neutral/SomewhatIncrease.Rapidsand
waterfallsmaycreatenaturalbarriersintheColorado,Yampa,andGreenrivers.
ClimateChangeVulnerabilityAssessmentforColoradoBLM275
B2b)Distributionrelativetoanthropogenicbarriers.Increase.Damsanddiversionsinthe
ColoradoRiveranditstributariescreatebarrierstohumpbackchubmovement,andcausechanges
inchannelgeomorphology,sedimentregimes,andstreamflows(U.S.FishandWildlifeService
2011).
B3)Impactoflandusechangesresultingfromhumanresponsestoclimatechange.Neutral.
C1)Dispersalandmovements.Neutral/SomewhatDecrease.Althoughmanybigriverfishfrom
theColoradoRiverBasintravellongdistances,thehumpbackchubhasbeenreportedtohave
relativelylimitedmovement(Paukertetal.2006).Theaveragespawningdistancesforhumpback
chubintheBlackRocksareaoftheColoradoRiverhasbeenreportedas6.4km(ValdezandRyel
1995).
C2ai)Predictedsensitivitytotemperature:historicalthermalniche.Neutral.Consideringthe
meanseasonaltemperaturevariationforoccupiedcells,thespecieshasexperiencedaverage(57.1‐
77°F/31.8‐43.0°C)temperaturevariationinthepast50years.
C2aii)Predictedsensitivitytotemperature:physiologicalthermalniche.Neutral/Somewhat
Increase.Thehumpbackchubisadaptedtothelarge,warm‐waterriversandstreamsofthe
ColoradoRiverBasin.Humpbackchubgrowrelativelyquicklyinwarmwatertemperatures,and
coldertemperaturessuchasthosecausedbyhypolimneticdamreleaseshavebeenshownto
significantlylowergrowthrates(ClarksonandChilds2000).Warmerwatertemperaturescaused
byprojectedincreasesintemperaturemayhelpincreaserecruitmentratesinhumpbackchub
populations.
C2bi)Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime:
historicalhydrologicalniche.Increase.Consideringtherangeofmeanannualprecipitationacross
occupiedcells,thespecieshasexperiencedsmall(4‐10inches/100‐254mm)precipitation
variationinthepast50years.
C2bii)Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime:
physiologicalhydrologicalniche.SomewhatIncrease.Maintenanceofstreamflowisimportant
fortherecoveryandconservationofbonytailchub(U.S.FishandWildlifeService2011).Flow
recommendationshavebeendevelopedforhumpbackchubintheGreenRiver(Muthetal.2000),
YampaRiver(Moddeetal.1999),andupperColoradoRiver(McAda2003).However,theremaybe
lesswateravailableinfuturetoprovidetheseflows.Mostpublishedresearchindicatesadeclinein
runoffintheUpperColoradoRiverBasinbythemid‐to‐late21stcentury(Lukasetal.2014;Jayet
al.2008).
C2c)Dependenceonaspecificdisturbanceregimelikelytobeimpactedbyclimatechange.
Increase.Highspringflowsthatcreateandcleangravelbars,aswellastemporarilyreducenon‐
nativefishpopulations,arepositivelyassociatedwithreproductionofhumpbackchubintheLower
ColoradoRiver(Gorman1994).
C2d)Dependenceonsnow‐coveredhabitats.Neutral.
276ColoradoNaturalHeritageProgram©2015
C3)Restrictiontouncommongeologicalfeaturesorderivatives.Increase.Humpbackchubare
associatedwithcleangravelbarsforspawning(Gorman1994;U.S.FishandWildlifeService2002).
C4a)Dependenceonotherspeciestogeneratehabitat.Neutral.
C4b)Dietaryversatility.Neutral.Humpbackchubfeedonsmallfishes,diatoms,planktonic
crustaceans,algae,andaquaticandterrestrialarthropods(U.S.FishandWildlifeService2002;
ValdezandRyel1995).
C4c)Pollinatorversatility(Plantsonly,notapplicable).
C4d)Dependenceonotherspeciesforpropaguledispersal.Neutral.
C4e)Formspartofaninterspecificinteractionnotcoveredby4a‐d.Unknown.
C5a)Measuredgeneticvariation.SomewhatIncrease.Geneticdiversityhasbeenidentifiedasan
issueforthehumpbackchub.Recentgeneticstudieshaveattemptedtounravelgeneticdifferences
betweenroundtailchubandhumpbackchub.Resultsindicatethatacrossitsrange,humpbackchub
androundtailchuboccupysixdistinctmanagementunits(DouglasandDouglas2007).
C5b)Occurrenceofbottlenecksinrecentevolutionaryhistory.Unknown.
C6)Phenologicalresponsetochangingseasonaltemperatureandprecipitationdynamics.
Unknown.
D1)Responsetorecentclimatechange.Unknown.
D2)Modeledfuturechangeinpopulationorrangesize.Unknown.
D3)Overlapofmodeledfuturerangewithcurrentrange.Unknown.
D4)Protectedareas.Unknown.
Literature Cited
Clarkson,R.W.,andM.R.Childs.2000.Temperatureeffectsofhypolimnial‐releasedamsonearlylifestagesofColorado
RiverBasinbig‐riverfishes.Copeia2000:402–412.
Douglas,M.R.andM.E.Douglas.2007.GeneticStructureofHumpbackChubGilacyphaandRoundtailChubG.robustain
theColoradoRiverEcosystem.Report.DepartmentofFish,WildlifeandConservationBiology,ColoradoStateUniversity.
99pp.
Gorman,O.T.andSeales,J.M.1995.Habitatusebytheendangeredhumpbackchub(Gilacypha)intheLittleColorado
River,ArizonanearGrandCanyon.ProceedingofDesertFishesCouncil1994annualsymposium.17‐20NovemberDeath
ValleyNationalPark,FurnaceCreek,CA.
Kaeding,L.R.,Burdick,B.D.,andSchraderP.A.1990.Temporalandspatialrelationsbetweenthespawningofhumpback
chubandroundtailchubintheupperColoradoRiver.TransactionsoftheAmericanFisheriesSociety119:135‐144.
ClimateChangeVulnerabilityAssessmentforColoradoBLM277
Lee,D.S.,GilbertC.R.,HocuttC.H.,JenkinsR.E.,CallisterD.E.,andStaufferJ.R.1981.AtlasofNorthAmericanFreshwater
Fishes:NorthCarolina,NorthCarolinaStateMuseumofNaturalHistory,1981,c1980.
Lukas,J.,J.Barsugli,N.Doesken,I.Rangwala,andK.Wolter.2014.ClimateChangeinColorado:ASynthesistoSupport
WaterResourcesManagementandAdaptation.AReportfortheColoradoWaterConservationBoard.WesternWater
Assessment.
McAda,C.W.2003b.FlowrecommendationstobenefitendangeredfishesintheColoradoandGunnisonRivers.U.S.Fish
andWildlifeService,GrandJunction,CO.
Minckley,W.L.1991.Nativefishesofaridlands:Adwindlingresourceofthedesertsouthwest.USDAForestService.
GeneralTechnicalReportRM‐GTR‐206.pp18.
Modde,T.,W.J.Miller,andR.Anderson.1999.Determinationofhabitatavailability,habitatuse,andflowneedsof
endangeredfishesintheYampaRiverbetweenAugustandOctober.FinalReportofU.S.FishandWildlifeService,Vernal,
UtahtoUpperColoradoRiverEndangeredFishRecoveryProgram,Denver,CO.Onlineathttp://www.fws.gov/mountain‐
prairie/crrip/habitat.htm.
Muth,R.T.,L.W.Crist,K.E.LaGory,J.W.Hayse,K.R.Bestgen,T.P.Ryan,J.K.Lyons,andR.A.Valdez.2000.Flowand
temperaturerecommendationsforendangeredfishesintheGreenRiverdownstreamofFlamingGorgeDam.FinalReport
totheUpperColoradoRiverEndangeredFishRecoveryProgram,Denver,CO.
Paukert,C.P.,L.G.JrCoggins,andC.E.Flaccus.2006.DistributionandmovementofhumpbackchubintheColorado
River,GrandCanyon,basedonrecaptures.Trans.Am.Fish.Soc.135:539–544.
Ray,A.J.,J.Barsugli,andK.Avery.2008.ClimateChangeinColorado:ASynthesistoSupportWaterResources
ManagementandAdaptation.ReporttotheColoradoWaterConservationBoard.
U.S.FishandWildlifeService.2002.Humpbackchub(Gilacypha)RecoveryGoals:amendmentandsupplementtothe
HumpbackChubRecoveryPlan.U.S.FishandWildlifeService,Mountain‐PrairieRegion(6),Denver,Colorado.Valdezand
Ryel.1995.
U.S.FishandWildlifeService.2003.Humpbackchub(Gilacypha)CriticalHabitatshapefile.U.S.FishandWildlifeService,
Mountain‐PrairieRegion(6),Denver,Colorado.Availableonlineathttps://data.doi.gov/dataset/final‐critical‐habitat‐for‐
the‐humpback‐chub‐gila‐cypha.
U.S.FishandWildlifeService.2011.Humpbackchub(Gilacypha)5‐YearReview:SummaryandEvaluation.U.S.Fishand
WildlifeService,UpperColoradoRiverEndangeredFishRecoveryProgram.Denver,CO.29pp.
Valdez,R.A.andR.J.Ryel.1995.LifeHistoryandEcologyoftheHumpbackChubintheColoradoRiverinGrandCanyon,
Arizona.InThecontrolledfloodofGrandCanyon,Editedby:Webb,R.H.,Schmidt,J.C.,Marzolf,G.R.andValdez,R.A.
297–307.Washington,D.C.:AmericanGeophysicalUnion.Monograph110.
278ColoradoNaturalHeritageProgram©2015
Razorback Sucker
Xyrauchentexanus
G1/S1
ListedEndangered
Family:Catostomidae
Photo: James E. Johnson, U.S. Fish & Wildlife Service
Climate Vulnerability Rank: Highly Vulnerable
ThisColoradostate‐widerankisbasedonthefollowingfactors:1)barrierstomovement;2)
potentialdeclineinrunoffandsubsequentdecreaseinflowsintheUpperColoradoRiverBasin;3)
lackofvariationinprecipitationacrossoccupiedhabitatinlast50years;4)requirescleancobble
barsforspawning.
Distribution:RazorbacksuckerarefoundonlyintheupperGreenRiverinUtah,andthelower
YampaRiverinColorado,andoccasionallyintheColoradoRivernearGrandJunction(U.S.Fishand
WildlifeService2002).Habitat:Adultrazorbacksuckeroccupydeepruns,eddies,andflooded
backwaterhabitatsinthesprings;summerhabitatistypicallylow‐velocityruns,pools,andeddies
(USFWS2002).Spawningoccursincobble,gravels,andsand(USFWS2002).Youngrazorback
suckersaretypicallyfoundinquiet,warm,shallowbackwaters(USFWS2002).
EcologicalSystem:Streams
CCVI Scoring
B1)Exposuretosealevelrise.Neutral.
B2)Distributionrelativetobarriers.RazorbacksuckeroccurinthemainstemoftheColorado
Riveraswellasitsmajortributaries(U.S.FishandWildlifeService1998).
B2a)Distributionrelativetonaturalbarriers.Neutral/SomewhatIncrease.Naturalphysical
barrierstomovementintheColoradoRiveranditstributariesarenaturalrapidsandswift
ClimateChangeVulnerabilityAssessmentforColoradoBLM279
turbulentflows,andthesearelikelytofluctuatedependingonflows(U.S.FishandWildlifeService
2002).
B2b)Distributionrelativetoanthropogenicbarriers.Increase.Thedeclineofthespecies
throughouttheColoradoRiverBasinisattributedlargelytoextensivehabitatloss,modification,
andfragmentation,andblockedfishpassagefromdamconstructionandoperations(U.S.Fishand
Wildlife2012).
B3)Impactoflandusechangesresultingfromhumanresponsestoclimatechange.Neutral.
C1)Dispersalandmovements.Decrease.Razorbacksuckerarecapableoftravelinglong
distances.Spawningmigrationsof30to106km(oneway)havebeenreportedintheYampaRiver
inDinosaurNationalMonument(Tyus1987;TyusandKarp1990).
C2ai)Predictedsensitivitytotemperature:historicalthermalniche.Neutral.Consideringthe
meanseasonaltemperaturevariationforoccupiedcells,thespecieshasexperiencedaverage(57.1‐
77°F/31.8‐43.0°C)temperaturevariationinthepast50years.
C2aii)Predictedsensitivitytotemperature:physiologicalthermalniche.Neutral.Razorback
suckerisawarm‐waterfish,andtheavailabilityofwarm,productivewetlandsmaypromotefaster
growthandhighersurvivaloflarvae(Bestgen2008).
C2bi)Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime:
historicalhydrologicalniche.SomewhatIncrease.Consideringtherangeofmeanannual
precipitationacrossoccupiedcells,thespecieshasexperiencedslightlylowerthanaverage(11‐20
inches/255‐508mm)precipitationvariationinthepast50years.
C2bii)Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime:
physiologicalhydrologicalniche.SomewhatIncrease.Highspringflowshavebeenreportedtobe
importanttoadultsforfeeding,temperatureregulation,andspawning(TyusandKarp1990).
Spawningmovementsandtheappearanceofripefishwereassociatedwithincreasingspringflows
andaveragewatertemperaturesof14°C(range9‐17°Cor48‐63°F)(TyusandKarp1990).There
maybelesswateravailableinfuturetoprovidetheseflows.Mostpublishedresearchindicatesa
declineinrunoffintheUpperColoradoRiverBasinbythemid‐to‐late21stcentury(Lukasetal.
2014;Rayetal.2008).
C2c)Dependenceonaspecificdisturbanceregimelikelytobeimpactedbyclimatechange.
Increase/SomewhatIncrease.Adultrazorbacksuckersspawnovercleancobblebarsduringspring
runoff,andtheirlarvaeflowintofloodplainhabitatsinundatedduringthespringfloods(McAdaand
Wydoski1980;U.S.FishandWildlifeService2002;Wicketal.1982).Thedam‐relatedchangesin
timingandflowlevelsontheColoradoRiveranditstributaries,alongwithchannelization,haveled
toalossoffloodplainnurseriesthatarenecessaryforthesurvivalandreproductionofthe
razorbacksucker(McAdaandWydoski1980).Mostpublishedresearchindicatesadeclineinrunoff
intheUpperColoradoRiverBasinbythemid‐to‐late21stcentury(Lukasetal.2014;Rayetal.
2008),whichcouldleadtofurtherlossanddegradationofhabitatforrazorbacksuckers.
280ColoradoNaturalHeritageProgram©2015
C2d)Dependenceonsnow‐coveredhabitats.Neutral.
C3)Restrictiontouncommongeologicalfeaturesorderivatives.SomewhatIncrease.SeeC2c.
Adultrazorbacksuckersspawnovercleancobblebarsduringspringrunoff,andtheirlarvaeflow
intofloodplainhabitatsinundatedduringthespringfloods(McAdaandWydoski1980;U.S.Fish
andWildlifeService2002;Wicketal.1982).
C4a)Dependenceonotherspeciestogeneratehabitat.Neutral.
C4b)Dietaryversatility.Neutral.Thedietoftherazorbacksuckervariesbylifestage,and
includesinsects,zooplankton,phytoplankton,algae,anddetritus(Bestgen1990;Muthetal.2000).
C4c)Pollinatorversatility(Plantsonly,notapplicable).
C4d)Dependenceonotherspeciesforpropaguledispersal.Neutral.
C4e)Formspartofaninterspecificinteractionnotcoveredby4a‐d.Unknown.
C5a)Measuredgeneticvariation.Neutral.Geneticdiversityhasbeenreportedashighforthe
razorbacksucker(Dowlingetal.1996;Dowlingetal.2005).
C5b)Occurrenceofbottlenecksinrecentevolutionaryhistory.Unknown.
C6)Phenologicalresponsetochangingseasonaltemperatureandprecipitationdynamics.
Unknown.
D1)Responsetorecentclimatechange.Unknown.
D2)Modeledfuturechangeinpopulationorrangesize.Unknown.
D3)Overlapofmodeledfuturerangewithcurrentrange.Unknown.
D4)Protectedareas.Unknown.
Literature Cited
Bestgen,K.R.1990.Statusreviewoftherazorbacksucker,Xyrauchentexanus.FinalReporttoU.S.BureauofReclamation,
SaltLakeCity,Utah.Contribution44,LarvalFishLaboratory,ColoradoStateUniversity,FortCollins.92pp.
Bestgen,K.2008.EffectsofWaterTemperatureonGrowthofRazorbackSuckerLarvae.WesternNorthAmericanNaturalist68
(1):15‐20.
DowlingT.,W.Minckley,andP.Marsh.1996.MitochondrialDNAdiversitywithinandamongpopulationsofrazorback
sucker(Xyrauchentaxanus)asdeterminedbyrestrictionendonucleaseanalysis.Copeia,1996,542–550.
Lukas,J.,J.Barsugli,N.Doesken,I.Rangwala,andK.Wolter.2014.ClimateChangeinColorado:ASynthesistoSupport
WaterResourcesManagementandAdaptation.AReportfortheColoradoWaterConservationBoard.WesternWater
Assessment.
ClimateChangeVulnerabilityAssessmentforColoradoBLM281
McAda,C.W.andR.W.Wydoski.1980.Therazorbacksucker(Xyrauchentexanus)intheUpperColoradoRiverBasin.974‐
976.U.S.FishandWildlifeServiceTechnicalPapers99.
Muth,R.T.,L.W.Crist,K.E.LaGory,J.W.Hayse,K.R.Bestgen,T.PRyan,J.K.Lyons,andR.A.Valdez.2000Flowand
temperaturerecommendationsforendangeredfishesintheGreenRiverdownstreamofFlamingGorgeDam.FinalReport
FG‐53totheUpperColoradoRiverEndangeredFishRecoveryProgram.U.S.FishandWildlifeService,Denver,CO.
Ray,A.J.,J.Barsugli,andK.Avery.2008.ClimateChangeinColorado:ASynthesistoSupportWaterResources
ManagementandAdaptation.ReporttotheColoradoWaterConservationBoard.
Tyus,H.M.,andC.A.Karp.1990.Spawningandmovementsofrazorbacksucker,Xyrauchentexanus,intheGreenRiver
BasinofColoradoandUtah.SouthwesternNaturalist35:427–433.
Tyus,H.M.1987.Distribution,reproduction,andhabitatuseoftherazorbacksuckerintheGreenRiver,Utah,1979–1986.
TransactionsoftheAmericanFisheriesSociety116:111–116.
U.S.FishandWildlifeService.1998.Razorbacksuckerrecoveryplan.U.S.FishandWildlifeService,Region6,Denver,
Colorado.
U.S.FishandWildlifeService.2002.RazorbacksuckerRecoveryGoals:AmendmentandsupplementtotheRazorback
SuckerRecoveryPlan.U.S.FishandWildlifeService,Region6,Denver,Colorado.
U.S.FishandWildlifeService.2012.FiveYearReview:SummaryandEvaluation.UpperColoradoRiverEndangeredFish
RecoveryProgram.Denver,Colorado,July2012.
Wick,E.J.,C.W.McAda,andR.V.Bulkley.1982.Lifehistoryandprospectsforrecoveryoftherazorbacksucker.Pages120‐
126in:W.H.Miller,H.M.Tyus,andC.A.Carlson(editors).FishesoftheupperColoradoRiversystem:presentandfuture.
AmericanFisheriesSociety,Bethesda,Maryland.
282ColoradoNaturalHeritageProgram©2015
Rio Grande Cutthroat Trout
Oncorhynchusclarkiivirginalis
G4T3/S3
Family:Salmonidae
Nophotoavailable
Climate Vulnerability Rank: Extremely Vulnerable
ThisColoradostate‐widerankisbasedonthefollowingfactors:1)barrierstomovement;2)
potentialdewateringofstreamsintheRioGrandeRiverBasin;3)lackofgeneticdiversity.
Distribution:InColorado,theRioGrandecutthroattroutoccursintheRioGrandeRiverBasin.
Habitat:RioGrandecutthroattroutoccurinclear,cold,highelevationstreams.Adultsusedeep
pools,whilefryusebackwatersandsidechannels(USFWS2014).
EcologicalSystem:Streams
CCVI Scoring
B1)Exposuretosealevelrise.Neutral.
B2a)Distributionrelativetonaturalbarriers.Increase.Insomeheadwaterstreams,waterfalls,
cascades,bedrockchutes,orsubterraneanreachesmaypresentnaturalbarriersthatblock
movementofRioGrandecutthroattrout(Pritchardetal.2008).
B2b)Distributionrelativetoanthropogenicbarriers.SomewhatIncrease.Damsanddiversions
inoccupiedRioGrandecutthroattrouthabitatcanblockdispersalofpopulations,increasingthe
riskofextinction(Zeigleretal.2012).However,theeffectsofconstructedbarriersarecomplex.
Theyalsoprovideabarriertothemovementofnon‐nativefishspeciesthatcompetewithandprey
onRioGrandecutthroattrout(PritchardandCowley2006).
B3)Impactoflandusechangesresultingfromhumanresponsestoclimatechange.Neutral.
ClimateChangeVulnerabilityAssessmentforColoradoBLM283
C1)Dispersalandmovements.SomewhatDecrease.Nodataexistsonaveragemovement
capabilitiesforRioGrandecutthroattrout(PritchardandCowley2006).Cutthroattrouton
Colorado’swestslopewerefoundtomoveamediandistanceof91m‐1.2kmduringthesummer
(SchmetterlingandAdams2004).
C2ai)Predictedsensitivitytotemperature:historicalthermalniche.Neutral.Consideringthe
meanseasonaltemperaturevariationforoccupiedcells,thespecieshasexperiencedaverage(57.1‐
77°F/31.8‐43.0°C)temperaturevariationinthepast50years.
C2aii)Predictedsensitivitytotemperature:physiologicalthermalniche.GreatlyIncrease.
DroughtandincreasedstreamtemperatureshavebeenidentifiedasamajorthreattoRioGrande
cutthroattrout(Haaketal.2010).DroughtsinthesouthwesternUnitedStatesareexpectedto
increaseinfrequencyandseverity(HoerlingandEischeid2007).Thiscouldresultinstream
dewateringandadecreaseinavailablehabitat(U.S.FishandWildlifeService2014;Zeigleretal.
2012).AverageannualairtemperaturehasincreasedacrosstherangeofRioGrandecutthroat
troutsincethemid‐20thcentury,andthistrendcouldresultinelevatedstreamtemperaturesthat
areunsuitableforRioGrandecutthroattroutthatrelyoncoldwaterhabitattocompletetheirlife
cycle(U.S.FishandWildlifeService2014;Williamsetal.2009;Ziegleretal.2012).
C2bi)Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime:
historicalhydrologicalniche.SomewhatDecrease.Consideringtherangeofmeanannual
precipitationacrossoccupiedcells,thespecieshasexperiencedgreaterthanaverage(>40
inches/1,016mm)precipitationvariationinthepast50years.
C2bii)Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime:
physiologicalhydrologicalniche.GreatlyIncrease.Reducedstreamflowhasalreadybeen
observedthroughouttherangeofRioGrandecutthroattrout(Zeigleretal.2012).Recentclimate
modelspredictdecreasesinannualstreamflowintheRioGrandeBasin(Lukasetal.2014).Stream
dryingreducesavailablehabitatforalllifestagesofRioGrandecutthroattrout(seematrixin
USFWS2014).
C2c)Dependenceonaspecificdisturbanceregimelikelytobeimpactedbyclimatechange.
Neutral.RioGrandecutthroattroutarelocatedinheadwaterstreams.Theyspawnfollowingpeak
runofflevelsfromsnowmelt(Behnke2002;PritchardandCowley2006).Climatechangehas
shiftedpeakrunofffromsnowmeltapproximately10daysearlierthan45yearsago(Zeigleretal.
2012).EarlierrunoffcouldposebenefitsandthreatstoRioGrandecutthroattrout.Young‐of‐year
wouldbenefitfromalongergrowingseason,butalongseasonoflowflowscouldleadtoincreased
streamtemperaturesandstreamintermittencyoutsideofthetolerancerangeforthespecies
(USFWS2014).
C2d)Dependenceonsnow‐coveredhabitats.Neutral.AsnotedaboveinC2c,RioGrande
cutthroattroutarelocatedinheadwaterstreams.Theyspawnfollowingpeakrunofflevelsfrom
snowmelt(Behnke2002;PritchardandCowley2006).
284ColoradoNaturalHeritageProgram©2015
C3)Restrictiontouncommongeologicalfeaturesorderivatives.Neutral/SomewhatIncrease.
Sediment‐freegravelsandcobblesarenecessaryforproducingaquaticinsectsforfoodandcreate
spawninghabitats(USFWS2014).
C4a)Dependenceonotherspeciestogeneratehabitat.Unknown.
C4b)Dietaryversatility.Neutral.StudiesofColoradoRiverandRioGrandecutthroattrout
indicatethatmidgelarvae,caddisflies,andmayflies,aswellasarangeofotherbenthicpreyitems
comprisethemaindietofthesenativetroutspecies(Bozeketal.1994;PritchardandCowley2006;
MooreandGregory1988;Youngetal.1997).
C4c)Pollinatorversatility(Plantsonly,notapplicable).
C4d)Dependenceonotherspeciesforpropaguledispersal.Neutral.
C4e)Formspartofaninterspecificinteractionnotcoveredby4a‐d.Neutral.
C5a)Measuredgeneticvariation.Increase.Geneticdiversityisaconservationconcernforthis
speciesthathasexperiencedprecipitousdeclinesinthelastcentury.Recentstudieshaveshown
thattherearetwo“evolutionarysignificantunits”ofRioGrandecutthroattrout:oneintheRio
GrandeBasin,andoneinthePecosandCanadianbasins(Pritchardetal.2009).
C5b)Occurrenceofbottlenecksinrecentevolutionaryhistory.Unknown.
C6)Phenologicalresponsetochangingseasonaltemperatureandprecipitationdynamics.
Unknown.
D1)Responsetorecentclimatechange.Unknown.
D2)Modeledfuturechangeinpopulationorrangesize.Unknown.
D3)Overlapofmodeledfuturerangewithcurrentrange.Unknown.
D4)Protectedareas.Unknown.
Literature Cited
Behnke,R.J.2002.TroutandsalmonofNorthAmerica.FreePress,NewYork.
Bozek,M.A.,L.D.Debrey,andJ.A.Lockwood.1994.DietoverlapamongsizeclassesofColoradoRivercutthroattrout
(Oncorhynchusclarkipleuriticus)inahigh‐elevationmountainstream.Hydrobiologia273:9‐17.
Haak,A.L.,J.E.Williams,D.Isaak,A.Todd,C.Muhlfeld,J.L.Kershner,R.Gresswell,S.Hostetler,andH.M.Neville.2010.
Thepotentialinfluenceofchangingclimateonthepersistenceofsalmonidsoftheinlandwest.U.S.GeologicalSurvey,
Open‐FileReport2010‐1236,Reston,Virginia.AccessedNov13,2014.Onlineat:pubs.usgs.gov/of/2010/1236/.
Hoerling,M.,andJ.Eischeid.2007.PastpeakwaterintheSouthwest.SouthwestHydrology6:18–19,35.
ClimateChangeVulnerabilityAssessmentforColoradoBLM285
Lukas,J.,J.Barsugli,N.Doesken,I.Rangwala,andK.Wolter.2014.ClimateChangeinColorado:ASynthesistoSupport
WaterResourcesManagementandAdaptation.AReportfortheColoradoWaterConservationBoard.WesternWater
Assessment.
Moore,K.M.S.andS.V.Gregory.1988.SummerhabitatutilizationandecologyofcutthroattroutfrySalmoclarkii.in
CascadeMountainUSAstreams.CanadianJournalofFisheriesandAquaticSciences45:921‐1930.
PritchardV.L.,J.L.Metcalf,K.Jones,A.P.Martin,D.E.Cowley.2008.PopulationstructureandgeneticmanagementofRio
Grandecutthroattrout(Oncorhynchusclarkiivirginalis).ConservationGenetics,10,1209–1221.
Pritchard,V.L.,andD.E.Cowley.2006.RioGrandecutthroattrout(Oncorhynchusclarkiivirginalis):atechnical
conservationassessment.U.S.DepartmentofAgricultureForestService,RockyMountainRegion,SpeciesConservation
Project,FortCollins,Colorado.Available:www.fs.fed.us/r2/projects/scp/assessments.(September2008).
Schmetterling,D.A.andS.B.Adams.2004.Summermovementswithinthefishcommunityofasmallmontanestream.
NorthAmericanJournalofFisheriesManagement24:1163–1172
U.S.FishandWildlifeService.2014.EndangeredandThreatenedWildlifeandPlants;12‐MonthFindingonaPetitionTo
ListRioGrandeCutthroatTroutasanEndangeredorThreatenedSpecies.DocketNo.FWS–R2–ES–2014–0042;
4500030113.
Young,M.K.,Rader,R.B.,andBelish,T.A.1997.“InfluenceofMacroinvertebrateDriftandLightontheActivityand
MovementofColoradoRiverCutthroatTrout.”TransactionsoftheAmericanFisheriesSociety,126,428‐437.
Williams,J.E.,A.L.Haak,H.M.Neville,andW.T.Colyer.2009.Potentialconsequencesofclimatechangetopersistenceof
cutthroattroutpopulations.NorthAmericanJournalofFisheriesManagement29:533–548.
Ziegler,M.P,A.S.Todd,C.A.Caldwell.2012.EvidenceofRecentClimateChangewithintheHistoricRangeofRioGrande
CutthroatTrout:ImplicationsforManagementandFuturePersistence,TransactionsoftheAmericanFisheriesSociety
141(4):1045‐1059.
286ColoradoNaturalHeritageProgram©2015
Roundtail Chub
Gilarobusta
G3/S2
Family:Cyprinidae
Climate Vulnerability Rank: Highly Vulnerable
ThisColoradostate‐widerankisbasedonthefollowingfactors:1)barrierstomovement;2)
potentialdeclineinrunoffandsubsequentdecreaseinflowsintheUpperColoradoRiverBasin;3)
potentialshiftintimingofspawningthatcouldleadtolowerrecruitment;4)lackofgenetic
diversity.
Distribution:InColorado,theroundtailchubisfoundontheWesternSlopeintheUpperColorado
RiverBasin.ThemapaboveisbasedoninformationprovidedintheColoradoParksandWildlife
(2015)conservationassessmentplandraft.Habitat:Roundtailchuboccupymainstemand
tributariesstreamsintheUpperColoradoRiverBasin.Adultsuseeddiesandpoolsnearareaswith
strongcurrentsandboulders(CPW2015);whilesjuvenilesaremostfrequentlyfoundinquiet,
shallowbackwaters(Brouderetal.2000).
EcologicalSystem:Streams
CCVI Scoring
B1)Exposuretosealevelrise.Neutral.
B2a)Distributionrelativetonaturalbarriers.SomewhatIncrease/Neutral.Adultroundtailchub
occupydeeppoolsandrunsinmainstemandsmallertributarysystemoftheColoradoRiverBasin
(Bestgenetal.2011).Larvaepreferlowvelocitybackwaters,young‐of‐the‐yearoccupyshallow,low
velocityhabitats,andjuvenilesoccupypools(Bestgenetal.2011).Rapids,swiftturbulentflows,
andwaterfallscouldcreatenaturalbarrierstomovementofroundtailchubduringhighflows,but
thesebarriersarelikelyseasonal.HighsalinitylevelsintheDoloresRiverfromParadoxValley
ClimateChangeVulnerabilityAssessmentforColoradoBLM287
downstreamtoSanMiguelcouldalsoposeasanaturalbarrierwhenconcentrationsarehighduring
lowflows(Bestgenetal.2011).
B2b)Distributionrelativetoanthropogenicbarriers.Increase.Theconstructionofdamsalong
themainstemoftheColoradoRiveranditstributarieshasfragmentedandinundatedriverine
habitat;releasedcold,clearwaters;alteredecologicalprocessesandsedimentregimes;affected
seasonalavailabilityofhabitat;andblockedfishpassage(MarshandDouglas1997;Minckleyand
Deacon1968;U.S.FishandWildlifeService2002;ValdezandRyel1995).Roundtailchubdeclines
arecommoninimpoundmentsafterreservoirconstruction(BezzeridesandBestgen2002).
WolfordMountainReservoirhoststheonlyreservoir‐dwellingpopulationofroundtailchubin
Colorado(Ewert2010).Fishpassagewayshavebeencreatedfortheroundtailchubandother
nativefishatdamsitesintheColoradoRivernearPalisadeandontheGunnisonRiver(Landers
2012).TheGreenRiverDaminUtahisslatedforrehabilitation,andthefinalplansforrenovation
includeafishpassagewaytoallowfortheupstreamanddownstreammovementofnativefishes,
includingroundtailchub(U.S.DepartmentofAgriculture2014).
B3)Impactoflandusechangesresultingfromhumanresponsestoclimatechange.Neutral.
C1)Dispersalandmovements.Neutral.Roundtailchubtravel5‐80kmduringspawning(Bestgen
etal.2011).
C2ai)Predictedsensitivitytotemperature:historicalthermalniche.Neutral.Consideringthe
meanseasonaltemperaturevariationforoccupiedcells,thespecieshasexperiencedaverage(57.1‐
77°F/31.8‐43.0°C)temperaturevariationinthepast50years.
C2aii)Predictedsensitivitytotemperature:physiologicalthermalniche.Neutral.The
roundtailchubisadaptedtothelarge,warm‐waterriversandstreamsoftheColoradoRiverBasin.
Roundtailchubpreferstreamtemperaturesthatrangefrom18‐20˚C(BezzeridesandBestgen
2002).DamreleaseshaveledtocolderwatertemperaturesintheBasin,andthesearesuggestedas
areasonfortheoveralldeclineinroundtailchubpopulations(Bestgenetal.2011).
C2bi)Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime:
historicalhydrologicalniche.SomewhatDecrease.Consideringtherangeofmeanannual
precipitationacrossoccupiedcells,thespecieshasexperiencedgreaterthanaverage(>40
inches/1,016mm)precipitationvariationinthepast50years.
C2bii)Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime:
physiologicalhydrologicalniche.SomewhatIncrease.Abundanceofroundtailchubwas
positivelycorrelatedwithmoderatetohighbaseflowsintheColoradoRiverBasin(Andersonand
Stewart2007).However,theremaybelesswateravailableinfuturetoprovidetheseflows.Most
publishedresearchindicatesadeclineinrunoffintheUpperColoradoRiverBasinbythemid‐to‐
late21stcentury(Lukasetal.2014;Jayetal.2008).
C2c)Dependenceonaspecificdisturbanceregimelikelytobeimpactedbyclimatechange.
Increase.RoundtailchubtypicallyspawninJunetoearlyJulywhenwatertemperaturesrangefrom
16‐22˚C(ColoradoParksandWildlife2015).Mostpublishedresearchindicatesadeclineinrunoff
288ColoradoNaturalHeritageProgram©2015
intheUpperColoradoRiverBasinbythemid‐to‐late21stcentury(Lukasetal.2014;Jayetal.
2008).ThiscouldcauselowflowsinAprilandMay,creatingwarmerwatertemperaturesthatcould
prematurelyinitiatespawningofroundtailchub,andsubsequentcoldhighflowscouldkilleggsand
larvae(Bestgenetal.2011).
C2d)Dependenceonsnow‐coveredhabitats.Neutral.
C3)Restrictiontouncommongeologicalfeaturesorderivatives.Neutral.Roundtailchub
spawnovergravelindeeppoolsandruns(BezzeridesandBestgen2002;Brouderetal.2000).
C4a)Dependenceonotherspeciestogeneratehabitat.Neutral.
C4b)Dietaryversatility.Neutral.Roundtailchubfeedonaquaticandterrestrialinsects,fish,
snails,algae,andoccasionallylizards(Bestgen2000;Brouder2001;ColoradoParksandWildlife
2015;Osmundson1999;SiglerandSigler1996).
C4c)Pollinatorversatility(Plantsonly,notapplicable).
C4d)Dependenceonotherspeciesforpropaguledispersal.Neutral.
C4e)Formspartofaninterspecificinteractionnotcoveredby4a‐d.Unknown.
C5a)Measuredgeneticvariation.SomewhatIncrease.Theroundtailchubisverycloselyrelated
tothehumpbackchub,andgeneticdiversityhasbeenidentifiedasaconservationissueforthese
twospecies(Clarksonetal.2012;DouglasandDouglas2007).
C5b)Occurrenceofbottlenecksinrecentevolutionaryhistory.Unknown.
C6)Phenologicalresponsetochangingseasonaltemperatureandprecipitationdynamics.
Unknown.
D1)Responsetorecentclimatechange.Unknown.
D2)Modeledfuturechangeinpopulationorrangesize.Unknown.
D3)Overlapofmodeledfuturerangewithcurrentrange.Unknown.
D4)Protectedareas.Unknown.
Literature Cited
Bestgen,K.R.2000.PersonalcommunicationwithDirectorofColoradoStateUniversity’sLarvalFishLabtoColorado
ParksandWildlife,FortCollins,Colorado.
Bestgen,K.R.,P.Budy,andW.J.Miller.2011.StatusandtrendsofflannelmouthsuckerCatostomuslapipinnis,bluehead
suckerCatostomusdiscobolus,androundtailchubGilarobusta,intheDoloresRiver,Colorado,andopportunitiesfor
populationimprovement:PhaseIIreport.PreparedforLowerDoloresPlanWorkingGroup.Onlineat
http://warnercnr.colostate.edu/docs/fwcb/lfl/PDF/LFL‐166‐Bestgen_et_al‐2011‐Rpt.pdf.
ClimateChangeVulnerabilityAssessmentforColoradoBLM289
Bezzerides,N.,andK.R.Bestgen.2002.StatusReviewofRoundtailChubGilarobusta,FlannelmouthSuckerCatostomus
latipinnis,andBlueheadSuckerCatostomusdiscobolusintheColoradoRiverBasin.Finalreport.SubmittedtoU.S.
DepartmentoftheInterior,BureauofReclamation,SaltLakeCity,Utah.LarvalFishLaboratoryContribution118,
ColoradoStateUniversity,Ft.Collins.
Brouder,M.J.,D.D.Rogers,andL.D.Avenetti.2000.Lifehistoryandecologyoftheroundtailchub(Gilarobusta)fromtwo
streamsintheVerdeRiverBasin.TechnicalGuidanceBulletinNo.3–July2000.ArizonaGameandFishDepartment
ResearchBranch,FederalAidinSportfishRestorationProjectF‐14‐R,Phoenix.
Brouder,M.J.2001.Effectsoffloodingonrecruitmentofroundtailchub,Gilarobusta,inasouthwesternriver.The
SouthwesternNaturalist46(3):302‐310.
Clarkson,R.W.,P.C.MarshandT.E.Dowling.2012.Populationprioritizationforconservationofimperiledwarmwater
fishesinanarid‐regiondrainage.AquaticConservation:MarineandFreshwaterEcosystems22(4):498‐510.
ColoradoParksandWildlife.2015.StateofColoradoConservationandManagementPlanfortheRoundtailChub(Gilia
robusta),BlueheadSucker(Catostomusdiscobolus)andFlannelmouthSucker(Catostomuslatipinnis).UnpublishedDraft.
Douglas,M.R.andM.E.Douglas.2007.GeneticStructureofHumpbackChubGilacyphaandRoundtailChubG.robustain
theColoradoRiverEcosystem.Report.DepartmentofFish,WildlifeandConservationBiology,ColoradoStateUniversity.
99pp.
Ewert,J.2010.WolfordMountainReservoir,fishsurveyandmanagementdata.ColoradoDivisionofWildlife.Available
from
http://cpw.state.co.us/documents/fishing/fisherywatersummaries/summaries/northwest/wolfordmountainreservoir.p
df
Landers,J.2012.ColoradoDamModifiedtoIncludeInnovativeFishwaysandBoatPassage.CivilEngineering82(11):24‐
28.
Lukas,J.,J.Barsugli,N.Doesken,I.Rangwala,andK.Wolter.2014.ClimateChangeinColorado:ASynthesistoSupport
WaterResourcesManagementandAdaptation.AReportfortheColoradoWaterConservationBoard.WesternWater
Assessment.
Marsh,P.C.,andM.E.Douglas.1997.Predationbyintroducedfishesonendangeredhumpbackchubandothernative
speciesintheLittleColoradoRiver,Arizona.TransactionsoftheAmericanFisheriesSociety126:343–346.
Minckley,W.L.,andJ.E.Deacon.1968.Southwesternfishesandtheenigmaof“EndangeredSpecies”:man’sinvasionof
desertscreatesproblemsfornativeanimals,especiallyforfreshwaterfishes.Science,159:1424‐1432.
Osmundson,D.B.1999.LongitudinalvariationinfishcommunitystructureandwatertemperatureintheUpperColorado
River:implicationsforColoradopikeminnowhabitatsuitability.FinalReportforRecoveryImplementationProgram,
ProjectNo.48.U.S.FishandWildlifeService,GrandJunction,Colorado.
Ray,A.J.,J.Barsugli,andK.Avery.2008.ClimateChangeinColorado:ASynthesistoSupportWaterResources
ManagementandAdaptation.ReporttotheColoradoWaterConservationBoard.
Sigler,W.F.andJ.W.Sigler.1996.FishesofUtah:ANaturalHistory.UniversityofUtahPress,SaltLakeCity.
U.S.DepartmentofAgriculture.2014.FinalEnvironmentalImpactStatement.GreenRiverDiversionRehabilitation
Project.AccessedOctober14,2014onlineat
http://www.nrcs.usda.gov/wps/portal/nrcs/detail/ut/programs/planning/ewpp/?cid=nrcs141p2_034037.
290ColoradoNaturalHeritageProgram©2015
Great Basin Silverspot
Speyerianokomisnokomis
G3T1/S1
Family:Nymphalidae
Climate Vulnerability Rank: Highly Vulnerable
ThisColoradostatewiderankisbasedon:theprojectedincreaseintemperatureanddroughtinthe
assessedarea,theinabilityofthesilverspottodisperseacrossdrylandscapes,itsdependenceon
wetlandhabitatwithinanaridlandscape,thedryingofitswetlandhabitatduetoprojected
frequenciesofdrought,modificationstohydrology(e.g.,waterdiversionprojects,cappingsprings,
anddrainingwetlands)tosupporttheagricultureandlivestockindustriesastheavailabilityof
waterresourcesdeclines,limitedprecipitationvariationthesilverspothashistoricallyexperienced,
theincreasedthreattosuitablehabitatfromwildfirecausedbydroughtandwarming,dependence
onalarvalhostplantthatisrestrictedtowetlands,andlowlevelsofgeneticvariabilityquestioning
thesilverspotsadaptabilitytoachangingenvironment.Regionalannualaveragetemperaturesare
projectedtoriseby2.5°Fto5.5°Fby2041‐2070andby5.5°Fto9.5°Fby2070‐2099with
continuedgrowthinglobalemissions(A2emissionsscenario),withthegreatestincreasesinthe
summerandfall(Melilloetal.2014).Underacontinuationofcurrentrisingemissionstrends(A2),
reducedwinterandspringprecipitationisconsistentlyprojectedforthesouthernpartofthe
Southwestby2100elevatingthepotentialforwildfire(Melilloetal.2014).
Distribution:InColorado,coloniesoccuratonlyfourpreviouslyknownlocationsinLaPlata,Mesa,
Montrose,andOuraycounties(CNHP2004).Habitat:TheNokomisfritillaryisassociatedwiththe
UpperSonoran(pinyon‐juniper,variousshrubs)andCanadian(fir‐spruce‐tamarack,somepine,
aspen‐maple‐birch‐alder‐hemlock)LifeZonesofthesouthwesternUnitedStatesandnorthern
Mexico(Hammond1974,Scott1986,Selby2007).Habitatsaregenerallydescribedaspermanent
spring‐fedmeadows,seeps,marshes,andboggystreamsidemeadowsassociatedwithflowing
waterinaridcountry(Hammond1974,Scott1986,TildenandSmith1986,OplerandWright1999,
BrockandKaufman2003,Selby2007).
ClimateChangeVulnerabilityAssessmentforColoradoBLM291
CCVI Scoring
B1)Exposuretosealevelrise.Neutral.
B2a)Distributionrelativetonaturalbarriers.Increase.Aridlandscapesseparatingdesert
streamsandwetlandsareaseverebarriertothisspecies.GreatBasinsilverspotbutterfliesdonot
migratewithdocumentedroutinedispersaldistancesofonlyupto4km(Fleischmanetal.2002).
Theyrequirestreamsidemeadowsandseepageareasduringtheiradultflightperiodandfortheir
larvalstage.InthearidSouthwest,wherethisbutterflylives,thesehabitatconditionsarewidely
separatedandisolated(Selby2007)andpopulationsatonelocalewillnotcrossaridlandscapesto
distantcoloniesexistingatotherdesertstreams/wetlands.
B2b)Distributionrelativetoanthropogenicbarriers.Neutral.Anthropogenicbarriersarenot
thoughttobeaconcernforthisspeciesbecauseoftheundevelopeddesertlandscapesthisspecies
inhabits.
B3)Impactoflandusechangesresultingfromhumanresponsestoclimatechange.Increase.
Modificationstohydrology(e.g.,waterdiversionprojects,cappingsprings,anddrainingwetlands)
tosupporttheagricultureandlivestockindustriesarethegreatesthistoric,current,andfuture
threattothelong‐termsurvivaloftheGreatBasinsilverspotbutterflyintheassessedarea.
Increasedwaterdemand,combinedwithreducedavailabilityduetoclimatechange(Karletal.
2009),willnegativelyimpactthisspecies.
C1)Dispersalandmovements.Neutral.TheGreatbasinsilverspothasbeendocumentedto
routinelydisperseupto4km(2.5miles),andinonestudy26percentoftherecapturedbutterflies
hademigratedfromtheirinitialcapturepatch(Fleischmanetal.2002).
C2ai)Predictedsensitivitytotemperature:historicalthermalniche.Neutral.Therange
occupiedbytheGreatBasinsilverspotintheassessedareahasexperiencedanaverage(51.7‐77°
F/31.8‐43.0°C)zonalmeanseasonaltemperatureoverthelast50years
C2aii)Predictedsensitivitytotemperature:physiologicalthermalniche.Somewhatdecrease.
TheGreatBasinSilverspothasapreferenceforwarmerenvironmentsandisassociatedwitharid
desertlandscapesoftheUpperSonoranLifeZone(Selby2007).
C2bi)Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime:
historicalhydrologicalniche.Somewhatdecrease.WithintheassessedareatheGreatBasin
silverspothasexperiencedgreaterthanaverage(>40inches/1,016mm)precipitationvariationin
thepast50years.
C2bii)Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime:
physiologicalhydrologicalniche.Greatlyincrease.TheGreatbasinsilverspotiscompletely
dependentuponwidelyseparatedisolatedspotswheretherearepermanentspring‐fedmeadows,
seeps,marshes,andboggystreamsidemeadowsassociatedwithflowingwaterinthemidstof
otherwisearidcountry(Hovanitz1970,BrockandKaufman2003).Inthefuture,climatechangeis
292ColoradoNaturalHeritageProgram©2015
projectedtoincreasedroughtfrequency(Melilloetal.2014,whichmayreducethesehabitats
withintheassessedarea.
C2c)Dependenceonaspecificdisturbanceregimelikelytobeimpactedbyclimatechange.
Increase.Climatechangeisprojectedtoincreasewildfirefrequencyintheassessedarea(Melillo
2014).Firecancausedirectmortalityoflarvaeandeliminaterequiredhostplants.Giventhese
factors,itshouldbeassumedthatextensive(e.g.,burningallormostofthehabitatinanareaatone
time)orfrequent(e.g.,everyonetotwoyears)firesarelikelytonegativelyaffectbutterfly
populations(Selby2007).Alternatively,lowseverityandinfrequent(every5years)firecan
maintainthecomplexofwetmeadows,willows,andotherwoodywetlandspeciesthatprovides
optimalmicroclimatesforthelarvalfoodplant(bogviolet)andadultnectarplantstheGreatBasin
silverspotbutterflyneeds.
C2d)Dependenceonsnow‐coveredhabitats.Neutral.TheGreatBasinsilverspotisnot
dependentonhabitatswithice,snow,oronsnowpack.
C3)Restrictiontouncommongeologicalfeaturesorderivatives.Neutral.TheGreatBasin
silverspotisnotdependentuponanyuncommongeologicalelements.
C4a)Dependenceonotherspeciestogeneratehabitat.Increase.TheGreatBasinsilverspotis
dependentonthepresenceofanadequatesupplyofthelarvalfoodplant(i.e.,bogviolet[Viola
nephrophylla])(NatureServe2014).Microhabitatconditionsforthebogvioletincludesoggysoil
andshade,oftenundershrubssuchaswillows(Baird1942).Willowsareusuallypresent
(Hammond1974)andprobablyhelptocreatethemicroclimatethatthevioletsneed.Climate
changeisprojectedtoincreasedroughtfrequencywithintheassessedarea(Melilloetal.2014),
reducingthewateravailableforsustainingtheplantcommunitiesthebogvioletdependsupon.
C4b)Dietaryversatility.Bogviolet(Violanephrophylla)istheexclusivelarvalfoodplant.Adults
feedonnectarfromawiderangeoffloweringalpineplants(OplerandWright1999).
C4d)Dependenceonotherspeciesforpropaguledispersal.Neutral.TheGreatBasinfritillaryis
aself‐disperser.
C4e)Formspartofaninterspecificinteractionnotcoveredby4a‐d.Neutral.Noother
interspecificinteractionsareimportanttothepersistenceoftheGreatBasinfritillary.
C5a)Measuredgeneticvariation.Increase.ColoniesofNokomisfritillarysubspeciestendtobe
small,local,restrictedtoarelativelynarrowelevationrange,andsusceptibletooccasionalsevere
populationdeclines;consequently,lowlevelsofheterozygosityarenotunexpected.Genetic
researchontheGreatBasinsilverspotindicatesthatthereisverylittlegeneticvariationinthese
populations(Selby2007).
C5b)Occurrenceofbottlenecksinrecentevolutionaryhistory.Unknown.
ClimateChangeVulnerabilityAssessmentforColoradoBLM293
C6)Phenologicalresponsetochangingseasonaltemperatureandprecipitationdynamics.
Unknown.
D1)Responsetorecentclimatechange.Unknown.
D2)Modeledfuturechangeinpopulationorrangesize.Unknown.
D3)Overlapofmodeledfuturerangewithcurrentrange.Unknown.
D4)Protectedareas.Unknown.
Literature Cited
Baird,V.B.1942.WildvioletsofNorthAmerica.UniversityofCaliforniaPress,Berkeley,CA.
Brock,J.P.andK.Kaufman.2003.ButterfliesofNorthAmerica.HoughtonMifflin,NewYork,NY.383pp.
ColoradoNaturalHeritageProgram(CNHP).2004.Nokomisfritillaryelementglobalrank(EGR)report.ColoradoNatural
HeritageProgram,FortCollins,CO.
Fleishman,E.,C.Ray,P.Sjögren‐Gulve,C.L.Boggs,andD.D.Murphy.2002.Assessingtherelativerolesofpatchquality,
area,andisolationinpredictingmetapopulationdynamics.ConservationBiology16:706‐716.
Hammond,P.C.1974.AnecologicalsurveyofthenymphalidbutterflygenusSpeyeria.M.S.Thesis,UniversityofNebraska,
Lincoln,NE.
Hovanitz,W.1969(1970).Habitat:Argynnisnokomis.JournalofResearchontheLepidoptera8(1):20.
Karl,T.R.,J.M.Melillo,andT.C.Peterson,(eds.).2009.GlobalClimateChangeImpactsintheUnitedStates.Cambridge
UniversityPress.
Melillo,J.M.,T.C.Richmond,andG.W.Yohe,Eds.,2014:ClimateChangeImpactsintheUnitedStates:TheThirdNational
ClimateAssessment.U.S.GlobalChangeResearchProgram,841pp.doi:10.7930/J0Z31WJ2.
NatureServe.2014.NatureServeExplorer:Anonlineencyclopediaoflife[webapplication].Version7.1.NatureServe,
Arlington,Virginia.Availablehttp://explorer.natureserve.org[2/6/2015].
Opler,P.A.andA.BWright.1999.Petersonfieldguidetowesternbutterflies.Revisededition.HoughtonMifflinCo.,
Boston,MA.540pp.
Scott,J.A.1986.ThebutterfliesofNorthAmerica.StanfordUniversityPress,Stanford,CA.583pp.
Selby,G.2007.GreatBasinSilverspotButterfly(Speyerianokomisnokomis[W.H.Edwards]):atechnicalconservation
assessment.[Online].USDAForestService,RockyMountainRegion.Available:
http://www.fs.fed.us/r2/projects/scp/assessments/greatbasinsilverspotbutterfly.pdf[1/23/2015].
Tilden,J.W.andA.C.Smith.1986.Afieldguidetowesternbutterflies.Houghton‐MifflinCo.,Boston,MA.370pp.23color
plates.
294ColoradoNaturalHeritageProgram©2015
American Beaver
Castorcanadensis
G5/S4
Family:Castoridae
Climate Vulnerability Rank: Moderately Vulnerable
ThisColoradostate‐widerankisbasedon:thelimitedthermalnicheforC.canadensis;C.
canadensis’relianceonaquaticenvironments;andC.canadensis’susceptibilitytovaryingwater
availability.
Distribution:C.canadensisisfoundinnearlyallwaterwaysinColorado.Habitat:C.canadensis
livesandfeedsinandaroundwaterwaysofColorado,butaremostabundantinareaswithaspen,
cottonwood,orwillowespeciallyinbroadglacialvalleyswithlowstreamgradients(Armstronget
al.2011).Elevation:3,300–11,000feet
.
EcologicalSystem:Waterwaysandadjacentriparianforests
CCVI Scoring
B1)Exposuretosealevelrise.Neutral.
B2a)Distributionrelativetonaturalbarriers.Neutral.Therearefewnaturalbarriersfor
beavers.
B2b)Distributionrelativetoanthropogenicbarriers.Neutral.Becausebeaversareadeptat
colonizingwaterbodiesandareubiquitousinNorthAmerica,therearefewanthropogenicbarriers.
B3)Impactoflandusechangesresultingfromhumanresponsestoclimatechange.Neutral.
Thereisnotclimate‐changemitigatingenergydevelopmentthatwilllimitbeaversuccess.
ClimateChangeVulnerabilityAssessmentforColoradoBLM295
C1)Dispersalandmovements.SomewhatDecrease.Femalestypicallydispersefurtherthan
males(10kmvs.3km)(Sunetal.2000).Juvenilesindifferentsystemsmaydispersalless(2–5
km)(McNewandWoolf2005).Dispersaldistancesfortransplantedbeavercanbemuchhigher
(BoyleandOwens2007),butnaturaldispersalistypicallylessthan10km(VanDeelenand
Pletscher1986,Sunetal.2000).
C2ai)Predictedsensitivitytotemperature:historicalthermalniche.Neutral.Muchofthe
beaverrangeinColoradofallswithinthe55‐77°Frange.
C2aii)Predictedsensitivitytotemperature:physiologicalthermalniche.Increase
Vulnerability.Thermoneutralzoneforbeaversisbetween32‐82°F(MacArthur1989)andthe
speciesspendsmostofitstimeinwaterwherethermoregulationincoolaquaticenvironmentscan
bephysiologicallychallenging(MacArthurandDyck1990).However,beaversaretiedtoaquatic
environmentsthatmaybecomemorescarceandwarminganddryingcontinue.
C2bi)Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime:
historicalhydrologicalniche.SomewhatIncreaseVulnerability.BasedontheClimateWizard
mapofhistorichydrologicvariation,muchoftherangeinColoradovariesfromthelowestvariation
tomid‐levelsofvariability.
C2bii)Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime:
physiologicalhydrologicalniche.GreatlyIncreasevulnerability.Beaversare100%relianton
aquaticenvironmentsforsubsistence,anditislikelyasclimatedriesandwarmsthedistribution
(andbeaverabundance)willbereduced.
C2c)Dependenceonaspecificdisturbanceregimelikelytobeimpactedbyclimatechange.
SomewhatIncreaseVulnerability.Beaversdonotrelyonaparticulardisturbanceregimeanddo
notneedanabsenceofdisturbance.Themostregularnon‐essentialdisturbanceiswater
availability.Populationsofbeaveronlow‐flowstreamswilllikelybethemostdisturbedby
alternationsinhydrology(BoyleandOwens2007).Beaversandtheirhabitatcanbechallengedby
theabsenceofwater(drought)oranabundanceofwater(flooding),butcanmodifytheir
environmenttolimittheimpactofthesestressors.Climatechangeislikelytoincreasethe
frequencyofdroughtandthismaylimitbeaverdistributionandnumbers.
C2d)Dependenceonsnow‐coveredhabitats.Neutral.Thereisnoknownrelationshipofthis
speciestosnoworice‐coveredhabitats.
C3)Restrictiontouncommongeologicalfeaturesorderivatives.Neutral.Thisspeciesisnot
knowntospecializeonuncommongeologicalfeatures.
C4a)Dependenceonotherspeciestogeneratehabitat.Neutral.Beaversgeneratetheirown
habitatviadambuilding.
C4b)Dietaryversatility.Neutral.Beaversaregeneralistherbivoresfeedingoninnerbark,twigs,
leaves,andbudsofdeciduouswoodyplants,andherbaceousandaquaticplants(BoyleandOwens
2007).
296ColoradoNaturalHeritageProgram©2015
C5a)Measuredgeneticvariation.Unknown.Nodataareavailableforgeneticvariabilitywithin
NorthAmericanbeavers.
C5b)Occurrenceofbottlenecksinrecentevolutionaryhistory.onlyif5Aisunknown.
C6)Phenologicalresponsetochangingseasonaltemperatureandprecipitationdynamics.
Unknown.Nodataavailable.
D1)Responsetorecentclimatechange.Unknown.Nodataavailable.
D2)Modeledfuturechangeinpopulationorrangesize.Unknown.
D3)Overlapofmodeledfuturerangewithcurrentrange.Unknown.
D4)Protectedareas.Neutral.Veryfewrivermilesareconsideredprotected,butwetlandsand
waterwaysreceivelegalprotectionthroughCleanWaterActandotherlegislation.
Literature Cited
Armstrong,D.M.,J.P.Fitzgeraldand,C.A.Meaney.2011.MammalsofColorado,2ndEdition.UniversityPressofColorado.
704pp.
Boyle,S.,andS.Owens.2007.NorthAmericanBeaver(CastorCanadensis):atechnicalconservationassessment.[Online].
USDAForestService,RockyMountainRegion.Available::
http://www.fs.fed.us/r2/projects/scp/assessments/northamericanbeaver.pdf[5January2015].
MacArthur,R.A.1989.Energymetabolismandthermoregulationofbeaver(Castorcanadensis).CanadianJournalof
Zoology67:651‐657.
MacArthur,R.A.,andA.P.Dyck.1990.Aquaticthermoregulationofcaptiveandfree‐rangingbeavers(Castorcanadensis).
CanadianJournalofZoology68:2409‐2416.
McNew,L.B.,Jr.,andA.Woolf.2008.Dispersalandsurvivalofjuvenilebeavers(Castorcanadensis)insouthernIllinois.
AmericanMidlandNaturalist154:217‐228.
Sun,L.,D.Müeller‐Schwarze,B.A.Schulte.2000.Dispersalpatternsandeffectivepopulationsizeofthebeaver.Canadian
JournalofZoology78:393‐398.
VanDeelen,T.R.,andD.H.Pletscher.1996.Dispersalcharacteristicsoftwo‐year‐oldbeavers,Castorcanadensis,inwestern
Montana.CanadianField‐Naturalist110:318‐321.
ClimateChangeVulnerabilityAssessmentforColoradoBLM297
Desert Bighorn Sheep
Oviscanadensisnelsoni
G4/S4
Family:Bovidae
Nophotoavailable
Climate Vulnerability Rank: Moderately Vulnerable
ThisColoradostate‐widerankisbasedon:transportationcorridorsthatcanlimitO.canadensis
nelsonidispersal;likelyincreaseindroughtconditionsthroughitsrange;geneticbottlenecks;and
modeledimpactsfromclimatechange.Despitethesethreats,O.canadensisnelsoniarewelladapted
todroughtconditions,havebroadrangesthatmayallowsomepopulationstomigrateawayfrom
inhospitablehabitatsandconditions,andhaveshownflexibilityintimingofparturitionthatmay
bettermatchperiodsofheightenedresourceavailability.
Distribution:O.canadensisnelsoniarefoundinwesternColoradoinafewspecificpopulations
neartheUtahborder.Habitat:canbefoundinavarietyofhabitats,butpreferareaswithhigh‐
visibilitywithgrass,lowshrubs,muchrockcoverandtopographicrelief,andwithabundantopen
areasforescape.Elevation:Varies,buttypicallylessthan10,000feet.
EcologicalSystem:Cliffs,grasslands
CCVI Scoring
B1)Exposuretosealevelrise.Neutral.
B2a)Distributionrelativetonaturalbarriers.Neutral.Thereissomedesertbighornsheep
habitatnorthofcurrentreintroductionsites(BlackRidge,Uncompahgre,andDoloresRiver
populations),butitisseparatedbylowerelevationvalleys.Givenbighornsheepabilitytoutilize
lowerelevationhabitats(KrausmanandBowyer2003),populationshavethepotentialtomigrate
northasclimateschange.
298ColoradoNaturalHeritageProgram©2015
B2b)Distributionrelativetoanthropogenicbarriers.IncreaseVulnerability.Urban,suburban,
andtransportationdevelopmentborderbighornsheeppopulationstothenorth.Thesemaybe
minimallyrestrictiveinsomeareas,butmajortransportationcorridorscanprohibitmovementand
restrictgeneflow(Eppsetal.2005).Additionally,becausehuntedbighornsheepshowagreater
responsetohumandisturbance(Geist1971,KingandWorkman1986)thisdevelopmentpressure
andthehumanpopulationsinproximitytoitmayfurtherprohibitmigration.Becauseitisunclearif
thepotentialisolationandsheepbehaviorareidenticaltothosedocumentedinCalifornia
populations,thisisconsidered“increasevulnerability”insteadof“greatlyincreasevulnerability”.
B3)Impactoflandusechangesresultingfromhumanresponsestoclimatechange.Neutral.
Neithersolar,wind,orbiomassenergyproductionappeartobehigh‐rewardtargetsforthisregion
ofwesternColoradobasedonNationalRenewalEnergymaps
(apps1.eere.energy.gov/states/maps.cfm/state=CO).
C1)Dispersalandmovements.DecreaseVulnerability.Bighornsheepcanmoveupto70km
betweenseasonalranges(Beechametal.2007).
C2ai)Predictedsensitivitytotemperature:historicalthermalniche.Neutral.Muchofthe
desertbighornrangeinColoradofallswithinthe55‐77°Frange.
C2aii)Predictedsensitivitytotemperature:physiologicalthermalniche.SomewhatDecrease
Vulnerability.Hottertemperaturesdonotappeartochallengebighornphysiology(Turner1973).
C2bi)Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime:
historicalhydrologicalniche.SomewhatIncreaseVulnerability.BasedontheClimateWizardmap
ofhistorichydrologicvariation,muchofthedesertbighornsheeprangeinColoradovariesfromthe
lowestvariationtomid‐levelsofvariability.
C2bii)Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime:
physiologicalhydrologicalniche.NeutraltoSomewhatDecrease.Desertbighornsheeparewell
adaptedtoheatanddroughtstress,evenabletoconcentrateurinebetterthancamels(Turner
1973).
C2c)Dependenceonaspecificdisturbanceregimelikelytobeimpactedbyclimatechange.
SomewhatIncrease.Desertbighornsheepareoccasionallyexposedtoandadaptedtodrought
conditions.However,therecenttrendsinwarminganddroughtmaybeimpactingviability.
Prolongeddroughtcancauseincreasedsheepmortality(Monson1960),impactrecruitment
(Wehausenetal.1987),andcontributetodecreasedpopulationviability(WeaverandMensch
1971).Climatedatasuggestthatdroughtwillpossiblyincreaseinfrequency,intensityandduration.
Diseaseisacommonfactorcausingperiodicdesertbighorndecline(Singeretal.2001).
C2d)Dependenceonsnow‐coveredhabitats.Neutral.Thereisnoknownrelationshipofthis
speciestosnoworice‐coveredhabitats.
ClimateChangeVulnerabilityAssessmentforColoradoBLM299
C3)Restrictiontouncommongeologicalfeaturesorderivatives.Neutral.Thisspeciesisnot
knowntospecializeonuncommongeologicalfeatures.
C4a)Dependenceonotherspeciestogeneratehabitat.Neutral.Norelianceonotherspeciesfor
habitatgeneration.
C4b)Dietaryversatility.Neutral.Desertbighornsheepareherbivorous,feedinglargelyon
grassesandforbs,supplementingthisdietwithsomeshrubs(Armstrongetal.2011).
C5a)Measuredgeneticvariation.Neutral.Geneticdiversityofdesertbighornpopulationsis
relativelyhighinsomepopulations(Gutierrez‐Espeletaetal.2000)whilelowinothers(Hedrick
andWehausen2014).
C5b)Occurrenceofbottlenecksinrecentevolutionaryhistory.SomewhatIncrease
VulnerabilitytoNeutral.Populationisolationandreintroductioneffortswithsmallpopulations
havecreatedgeneticbottlenecksinsomeregions(Rameyetal.2001,Hedricketal.2001).
C6)Phenologicalresponsetochangingseasonaltemperatureandprecipitationdynamics.
SomewhatDecreaseVulnerabilitytoNeutral.Desertbighornsheephaveshownsite‐specific
variabilityinparturitionthatallowsflexibilitytocapitalizingonavailableresources,butthismay
comewithfitnessconsequencesfornewlyreintroducedpopulations(Whitingetal.2011)
D1)Responsetorecentclimatechange.Neutral.Nothingreported.
D2)Modeledfuturechangeinpopulationorrangesize.SomewhatIncreaseVulnerability.Epps
etal.(2004)modeledthepotentialoffuturepopulationdeclineoverthenext60years.With
minimumtemperaturechangescenariosaverageextinctionprobabilityofpopulationswas20%.
Whencombinedwiththeprojecteddeclineinprecipitationtheprobabilityincreasedto30%.
D3)Overlapofmodeledfuturerangewithcurrentrange.Unknown.Nothingdocumented.
D4)Protectedareas.SomewhatIncreaseVulnerability.Withinthecurrentrangetherearefew
protectedareasthatwouldprotectpopulations.
Literature Cited
Armstrong,D.M.,J.P.Fitzgeraldand,C.A.Meaney.2011.MammalsofColorado,2ndEdition.UniversityPressofColorado.
704pp.
BeechamJr,J.J.,C.P.Collins,andT.D.Reynolds.2007.RockyMountainBighornSheep(OvisCanadensis):atechnical
conservationassessment.[Online].USDAForestService,RockyMountainRegion.Available:
http://www.fs.fed.us/r2/projects/scp/assessments/rockymountainbighornsheep.pdf[6January2015].
Epps,C.W.,D.R.McCullough,J.D.Wehausen,V.C.Bleich,andJ.L.Rechel.2004.Effectsofclimatechangeonpopulation
persistenceofdesert‐dwellingmountainsheepinCalifornia.ConservationBiology18:102‐113.
Epps,C.W.,P.J.Palsbell,J.D.Wehausen,G.K.Roderick,R.R.Ramey,andD.R.McCullough.2005.Highwaysblockgeneflow
andcausearapiddeclineingeneticdiversityofdesertbighornsheep.EcologyLetters8:1029‐1038.
300ColoradoNaturalHeritageProgram©2015
Geist,V.1971.Mountainsheep:astudyinbehaviorandevolution.UniversityofChicagoPress,Chicago,383pp.
Gutierrez‐Espeleta,G.A.,S.T.Kalinowski,W.M.Boyce,andP.W.Hedrick.2000.Geneticvariationandpopulationstructure
indesertbighornsheep:implicationsforconservation.ConservationGenetics1:3‐15.
Hedrick,P.W.,G.A.Gutierrez‐Espeleta,andR.N.Lee.2001.Foundereffectsinanislandpopulationofbighornsheep.
MolecularEcology10:851‐857.
Hedrick,P.W.,andJ.D.Wehausen.2014.Desertbighornsheep:changesingeneticvariationovertimeandtheimpactof
mergingpopulations.JournalofFishandWildlifeBiology5:3‐13.
King,M.M.,andG.W.Workman.1986.Responseofdesertbighornsheeptohumanharassment:managementimplications.
TransactionsoftheNorthAmericanWildlifeandNaturalResourcesConference51:74‐85.
Krausman,P.R.,andR.T.Bowyer.2003.Mountainsheep,OviscanadensisandO.dalli.Pp.1095‐1115inWildmammalsof
NorthAmerica:biology,management,andeconomics.2nded.(G.A.Feldhamer,B.C.Thompson,andJ.A.Chapman,eds.).
JohnHopkinsUniversityPress,Baltimore,MD.1216pp.
Monson,G.1960.Effectsofclimateondesertbighornnumbers.DesertBighornCouncilTransactions4:12‐14.
Ramey,R.R.,G.Luikart,andF.J.Singer.2001.Geneticbottlenecksresultingfromrestorationefforts:thecaseofthedesert
bighornsheepinBadlandsNationalPark.RestorationEcology8:85‐90.
Singer,F.J.,L.C.Zeigenfuss,andL.Spicer.2001.Roleofpatchsize,disease,andmovementinrapidextinctionofbighorn
sheep.ConservationBiology15:1347‐1354.
Turner,J.C.1973.Water,energyandelectrolytebalanceinthedesertbighornsheep,Oviscanadensis.PhDThesis.
UniversityofCalifornia,Riverside.138pp.
Weaver,R.A.,andJ.L.Mensch.1971.BighornsheepinnortheasternRiversideCounty.Wildlifemanagement
administrativereport71‐1.CaliforniaDepartmentofFishandGame,Sacramento,California.
Wehausen,J.D.,V.C.Bleich,B.Blong,andT.L.Russi.1987.RecruitmentdynamicsinasouthernCaliforniamountain
sheeppopulation.JournalofWildlifeManagement51:86‐98.
Whiting,J.C.,R.T.Bowden,J.T.Flinders,andD.L.Eggert.2011.Reintroductionbighornsheep:fitnessconsequencesof
adjustingparturitiontolocalenvironments.JournalofMammalogy92:213‐220.
ClimateChangeVulnerabilityAssessmentforColoradoBLM301
Fringed Myotis
Myotisthysanodes
G4/S3
Family:Vespertilionidae
Climate Vulnerability Rank: Not Vulnerable/Presumed Stable
ThisColoradostate‐widerankisbasedonthefollowingfactors:1)fewtonobarrierstomovement;
2)associationwithcavesandminesasgeologicfeaturesmaybeincreasevulnerabilityunder
projectedincreasesintemperatureduetoclimatechange,howeverthisspeciesisnotfound
exclusivelyincavesandmines.
Distribution:InColorado,Thefringedmyotisthisspecieshasbeenfoundsparinglyonboththe
easternandwesternsidesoftheContinentalDivide(Armstrongetal.2011).Habitat:InColorado,
thefringedmyotisisfoundinconiferouswoodlandsandshrublandssuchasponderosapine,
greasewood,oakbrush,andsaltbrush(Armstrongetal.2011).Elevation:Thisspecieshasbeen
recordedupto7,500feetinColorado(Armstrongetal.2011).
CCVI Scoring
B1)Exposuretosealevelrise.Neutral.
B2a)Distributionrelativetonaturalbarriers.Neutral.Volant–nobarriers
B2b)Distributionrelativetoanthropogenicbarriers.Neutral.Volant–nobarriers
B3)Impactoflandusechangesresultingfromhumanresponsestoclimatechange.Neutral.It
isunlikelythatanyclimatemitigation‐relatedlandusechangeswilloccurwithinthisspecies’range
withinColorado.
C1)Dispersalandmovements.Decrease.Long‐distancedispersalabilities.
302ColoradoNaturalHeritageProgram©2015
C2ai)Predictedsensitivitytotemperature:historicalthermalniche.Neutral.
C2aii)Predictedsensitivitytotemperature:physiologicalthermalniche.Neutral.
C2bi) Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime:
historicalhydrologicalniche.Neutral.
C2bii)Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime:
physiologicalhydrologicalniche.Somewhatincrease.AdamsandHayes(2008)postulatedthat
theimpactofreducedwaterstoragecapacityasaresultofclimatechangeinthearidwestern
UnitedStateswouldnegativelyimpactlactatingfemalesofthisspecies,especiallyatalocalscale.
C2c)Dependenceonaspecificdisturbanceregimelikelytobeimpactedbyclimatechange.
Neutral.
C2d)Dependenceonsnow‐coveredhabitats.Neutral.
C3)Restrictiontouncommongeologicalfeaturesorderivatives.SomewhatIncrease.Thisbat
isfoundincavesandmines,butinColoradoisnotrestrictedtothesefeatures.
C4a)Dependenceonotherspeciestogeneratehabitat.Neutral.
C4b)Dietaryversatility.Neutral. This species feeds broadly on moths, beetles, and other flying insects
(Keinath 2004; Armstrong et al. 2011).
C4c)Pollinatorversatility(Plantsonly,notapplicable).
C4d)Dependenceonotherspeciesforpropaguledispersal.Neutral.
C4e)Formspartofaninterspecificinteractionnotcoveredby4a‐d.Unknown.
C5a)Measuredgeneticvariation.Unknown.
C5b)Occurrenceofbottlenecksinrecentevolutionaryhistory.Unknown.
C6)Phenologicalresponsetochangingseasonaltemperatureandprecipitationdynamics.
Unknown.
D1)Responsetorecentclimatechange.Unknown.
D2)Modeledfuturechangeinpopulationorrangesize.Unknown.
D3)Overlapofmodeledfuturerangewithcurrentrange.Unknown.
D4)Protectedareas.Unknown.
ClimateChangeVulnerabilityAssessmentforColoradoBLM303
Literature Cited
Adams,R.A.andM.A.Hayes.2008.Wateravailabilityandsuccessfullactationbybatsasrelatedtoclimatechangeinarid
regionsofwesternNorthAmerica.JournalofAnimalEcology77:1115‐1121.
Armstrong,D.M.,J.P.Fitzgerald,andC.A.Meaney.2011.MammalsofColorado,2ndedition.DenverMuseumofNatureand
ScienceandUniversityPressofColorado,Boulder,CO.
Keinath,D.A.2004.Fringedmyotis(Myotisthysanodes):atechnicalconservationassessment.[Online].USDAForest
Service,RockyMountainRegion.Available:
http://www.fs.fed.us/r2/projects/scp/assessments/townsendsbigearedbat.pdf
304ColoradoNaturalHeritageProgram©2015
Gunnison Prairie Dog
Cynomysgunnisoni
G5/S5
Family:Sciuridae
Climate Vulnerability Rank: Not Vulnerable/Presumed Stable
DespiteC.gunnisonibeingrankedasStable,thefactorsthatwouldleadittobemorevulnerableare:
predicteddecreasesinprecipitation;habitatloss;prairiedogsusceptibilitytoplague:andlimited
geneticvariability.Currently,noneoftherankingfactorsconsiderthethreatshighenoughthatC.
gunnisoniwouldbeinimminentthreatfromon‐goingclimatechange.Thespeciesabilityto
disperseanditslackofrelianceofmesichabitatsbufferitfromclimatechangethreats.
Distribution:C.gunnisoniisfoundinsouthwesternandsouth‐centralColoradoingrasslands,and
semi‐desertandmontaneshrublands(Armstrongetal.2011).Habitat:C.gunnisoniarehabitat
architects,modifyingthesoilandvegetativecharacteristicsaroundcolonies.Theyinhabit
shortgrassandmid‐grassprairies,shrublandsinlowvalleys,andwetter,high‐elevationprairies.
Elevation:6000‐12000feet.
EcologicalSystem:Grasslands,Shrublands
CCVI Scoring
B1)Exposuretosealevelrise‐Neutral.
B2a)Distributionrelativetonaturalbarriers.NeutraltoSomewhatIncreaseVulnerability.
TherearevariouslowpassesinandoutofprairiedograngeinColoradothatwillnotpreventthe
GunnisonPrairiedogfromemigrating,butmaylimitdispersalifsubjectedtoclimate‐causedshifts.
Populationsareknowntohaveoccurredashighas~12,000’elevationinColorado(Armstronget
ClimateChangeVulnerabilityAssessmentforColoradoBLM305
al.2011).However,theUSFWS(2010)pointedoutthatnumerouspartsoftherangeareseparated
bymountainrangesthatalmostcompletelylimitprairiedogmovementbetweenthem.
B2b)Distributionrelativetoanthropogenicbarriers.Neutral.Muchoftheprairiedograngein
Coloradoisonpublicland.FutureplanningscenariosforSouthParksuggestincreasedsuburban
andinfrastructuredevelopmentthatmaylimitdispersalcapacityforpopulationsinthisregion.
Muchoftherangeisnothinderedbyanthropogenicdisturbancetogreatlylimitrangewideclimate‐
causeddispersal.
B3)Impactoflandusechangesresultingfromhumanresponsestoclimatechange.Neutralto
SomewhatIncreaseVulnerability.Wind‐energydevelopmentisincreasinginColorado.Alongthe
easternedgesoftheGunnisonandSanLuisvalleyswindspeedsareattractiveandmaytargetwind‐
energydevelopmentinthisareaoftheprairiedogsrange.Similarly,solarenergymaybetargeted
fortheSanLuisValleywheresolarexposureispromising(NaturalResourcesEnergyLaboratory,
ConcentratingSolarPowerEnergymapforColorado,2007andGlobalSolarRadiationatLatitude
TiltmapforColorado,2007).Itisunclearhowthisspeciesrespondstoenergydevelopment,butit
islikelysuchdevelopmentwouldfurthersegmentpopulations.
C1)Dispersalandmovements.SomewhatDecrease.Themovementsanddispersalarepoorly
studiedinthisspecies.However,inotherspeciesofprairiedogsmovementsareknowntobe
around2‐8km(GarrettandFranklin1988;Knowles1985).SeglundandSchnurr(2010)reported
dispersaldistancesaslongas7.7km.
C2ai)Predictedsensitivitytotemperature:historicalthermalniche.Neutral.Basedon
ClimateWizard.orgPastExposureTemperatureVariation,muchofGunnison’sprairiedograngein
Coloradoisfrom55‐77°F.
C2aii)Predictedsensitivitytotemperature:physiologicalthermalniche.NeutraltoSomewhat
IncreaseVulnerability.Becausethisspeciesofprairiedogisanobligatehibernator(Shalawayand
Slobodchikoff1988)itsoverwintersurvivalcanbechallengedifoverwinterthermalconditionsdo
notmaintainlong,stableperiodsofcoldtemperatures(Arnoldetal.1991,Schorretal.2009).Thus,
ifthermalconditionsarenotappropriateforhibernation,survivalmaybedepressed.
C2bi)Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime:
historicalhydrologicalniche.SomewhatIncrease.BasedonClimateWizard.orgAverageAnnual
Precipitation1951‐2006,muchofGunnison’sprairiedograngeinColoradoismiddle‐to‐low
precipitationvariation.
C2bii)Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime:
physiologicalhydrologicalniche.NeutraltoSomewhatDecrease.Gunnison’sprairiedogsinhabit
grasslandsandsemidesertandmontaneshrublands(Armstrongetal.2011).Vegetationconditions
ofmanylandswithintherangeofGunnison’sprairiedoghavebeenalteredthroughgrazing
(Fleischner1994).Theprairiedogsarepossiblymoresusceptibletostressfromdroughtwhere
nativevegetationhasbeenseverelyaltered(SeglundandSchnurr2010).Mostvegetationwithin
306ColoradoNaturalHeritageProgram©2015
usedhabitathassomeleveloftolerancetoaridconditionsandmaynotbedramaticallyimpacted
byincreaseddryingpredictedbyclimatemodeling.
C2c)Dependenceonaspecificdisturbanceregimelikelytobeimpactedbyclimatechange.
SomewhatIncreasetoIncrease.Themostdramaticandrecurringdisturbancethatcanimpact
Gunnison’sprairiedogsisplague(Cullyetal.1997).Gunnison’sprairiedogsareoccasionally
exposedtodroughtconditions.Theseconditionscausestressandevenpopulationreduction/local
extirpationintheblack‐tailedprairiedog(Fackaetal.2010).Climatedatasuggestthatdroughtwill
possiblyincreaseinfrequency,intensityandduration.
C2d)Dependenceonsnow‐coveredhabitats.Neutral.Thereisnoknownrelationshipofthis
speciestosnoworice‐coveredhabitats.
C3)Restrictiontouncommongeologicalfeaturesorderivatives.Neutral.Thisspeciesisnot
knowntospecializeonuncommongeologicalfeatures.
C4a)Dependenceonotherspeciestogeneratehabitat.Neutral.Generatesandmodifiesitsown
habitatbyburrowingandgrazing.
C4b)Dietaryversatility.Neutral.Gunnison’sprairiedogisanherbivore,feedinglargelyon
grassesandforbs,supplementingthisdietwithsomeshrubs(FitzgeraldandLechleitner1974;
Longhurst1944).
C5a)Measuredgeneticvariation.NeutraltoSomewhatIncreaseVulnerability.Geneticdiversity
inthisspecieswasdeterminedtobelow(Travisetal.1997).
C5b)Occurrenceofbottlenecksinrecentevolutionaryhistory.onlyif5Aisunknown.
C6)Phenologicalresponsetochangingseasonaltemperatureandprecipitationdynamics.
Neutral.Noobservationsmade.
D1)Responsetorecentclimatechange.Neutral.Nothingreported.
D2)Modeledfuturechangeinpopulationorrangesize.Unknown.
D3)Overlapofmodeledfuturerangewithcurrentrange.Unknown.
D4)Protectedareas.Neutral.
Literature Cited
Armstrong,D.M.,J.P.Fitzgeraldand,C.A.Meaney.2011.MammalsofColorado,2ndEdition.UniversityPressofColorado.
704pp.
Arnold,W.,G.Heldmaier,S.Ortmann,H.Pohl,T.Ruff,andS.Stenlechner.1991.Ambienttemperaturesinhibernaculaand
theirenergeticconsequencesforalpinemarmots(Marmotamarmota).JournalofThermalBiology16:223‐226.
ClimateChangeVulnerabilityAssessmentforColoradoBLM307
Cully,Jr.,J.F.,A.M.Barnes,T.J.Quan,andG.Maupin.1997.DynamicsofplagueinaGunnison’sprairiedogcolonycomplex
fromNewMexico.JournalofWildlifeDiseases33:706‐719.
Facka,A.N.,etal.2010.Droughtleadstocollapseofblack‐tailedprairiedogpopulationsreintroducedtotheChihuahuan
Desert.JournalofWildlifeManagement74:1252‐1762.
Fitzgerald,J.P.andR.R.Lechleitner.1974.ObservationsonthebiologyofGunnison’sprairiedogincentralColorado.J.
Colorado‐WyomingAcad.Sci.21:22.
Fleischner,T.L.1994.EcologicalcostsoflivestockgrazinginwesternNorthAmerica.ConservationBiology8:629‐644.
Garrett,M.G.,andW.L.Franklin.1988.Behavioralecologyofdispersalintheblack‐tailedprairiedog.Journalof
Mammalogy69:236‐250.
Knowles,C.J.1985.ObservationonprairiedogdispersalinMontana.PrairieNaturalist17:33‐40.
Longhurst,W.1944.ObservationsontheecologyoftheGunnisonprairiedoginColorado.JournalofMammalogy25:24‐
36.
Schorr,R.A.,P.M.Lukacs,andG.L.Florant.2009.Bodymassandwinterseverityaspredictorsofoverwintersurvivalin
Preble’smeadowjumpingmouse.JournalofMammalogy90:17‐24.
Seglund,A.E.andP.M.Schnurr.2010.ColoradoGunnison’sandwhite‐tailedprairiedogconservationstrategy.Colorado
DivisionofWildlife,Denver,Colorado,USA.
Shalaway,S.,andC.N.Slobodchikoff.1988.SeasonalchangesinthedietofGunnison’sprairiedog.JournalofMammalogy
69:835‐841.
Travis,S.E.,C.N.Slobodchikoff,andP.Keim.1997.DNAfingerprintingrevealslowgeneticdiversityinGunnison’sprairie
dog(Cynomysgunnisoni).JournalofMammalogy78:725‐732.
U.S.FishandWildlifeService.2010.SpeciesassessmentandlistingpriorityassignmentforCynomysgunnisoni(central
andsouth‐centralColorado,north‐centralNewMexico).Available:
http://ecos.fws.gov/docs/candidate/assessments/2010/r6/A0IB_V01.pdf
308ColoradoNaturalHeritageProgram©2015
Townsend’s Big‐eared Bat
Corynorhinustownsendiipallescens
G3G4T3T4/S2
Family:Vespertilionidae
Climate Vulnerability Rank: Not Vulnerable/Presumed Stable
ThisColoradostate‐widerankisbasedonthefollowingfactors:1)fewtonobarrierstomovement;
2)associationwithcavesandminesasgeologicfeaturesmaybeincreasevulnerabilityunder
projectedincreasesintemperatureduetoclimatechange.
Distribution:InColorado,Townsend’sbig‐earedbatoccursthroughoutthewesterntwo‐thirdsof
thestate,includingthesoutheasterncanyonlands(Armstrongetal.2011).Habitat:InColorado,
Townsend’sbig‐earedbatsoccurinawiderangeofhabitatsincludingsemi‐desertshrublands,
pinyon‐juniperwoodlands,anddryconiferousforests(Armstrongetal.2011).Itismostoften
foundroostingincavesandmines,butusesbuildings,crevices,andclifffacesduringthesummer
(Armstrongetal.2011).Elevation:Thisspecieshasbeenrecordedupto9,500feetinColorado
(Armstrongetal.2011).
CCVI Scoring
B1)Exposuretosealevelrise.Neutral.
B2a)Distributionrelativetonaturalbarriers.Neutral.Volant–nobarriers
B2b)Distributionrelativetoanthropogenicbarriers.Neutral.Volant–nobarriers
B3)Impactoflandusechangesresultingfromhumanresponsestoclimatechange.Neutral.It
isunlikelythatanyclimatemitigation‐relatedlandusechangeswilloccurwithinthisspecies’range
withinColorado.
ClimateChangeVulnerabilityAssessmentforColoradoBLM309
C1)Dispersalandmovements.Decrease.Long‐distancedispersalabilities.
C2ai)Predictedsensitivitytotemperature:historicalthermalniche.Neutral.
C2aii)Predictedsensitivitytotemperature:physiologicalthermalniche.Neutral.
C2bi)Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime:
historicalhydrologicalniche.Neutral.
C2bii)Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime:
physiologicalhydrologicalniche.Neutral/Somewhatincrease.AdamsandHayes(2008)
postulatedthattheimpactofreducedwaterstoragecapacityasaresultofclimatechangeinthe
aridwesternUnitedStateswouldnegativelyimpactlactatingfemalesofMyotisthysanodes,
especiallyatalocalscale.ThisproposedimpactcouldaffectotherspeciessuchasCorynorhinus
townsendiiaswell.
C2c)Dependenceonaspecificdisturbanceregimelikelytobeimpactedbyclimatechange.
Neutral.
C2d)Dependenceonsnow‐coveredhabitats.Neutral.
C3)Restrictiontouncommongeologicalfeaturesorderivatives.SomewhatIncrease.Thisbat
isacaveandmineobligate,butinColoradoisfoundinminesmorefrequentlythancaves.
C4a)Dependenceonotherspeciestogeneratehabitat.Neutral.
C4b)Dietaryversatility.Neutral.Thisspeciesisamothspecialist,butwillfeedopportunistically
onotherflyinginsects(GruverandKeinath2006).
C4c)Pollinatorversatility(Plantsonly,notapplicable).
C4d)Dependenceonotherspeciesforpropaguledispersal.Neutral.
C4e)Formspartofaninterspecificinteractionnotcoveredby4a‐d.Unknown.
C5a)Measuredgeneticvariation.NeutraltoSomewhatDecrease.Inananalysisofgenetic
diversityamongsubspeciesofC.townsendii,Piaggioetal.(2009)foundthatC.t.pallescenshada
levelofdiversitysimilartoC.t.townsendiiandbothofthesesubspecieshadagreaterlevelof
diversitythantheendangeredC.t.virginianusasmeasuredbytheaveragenumberofallelesper
locusandaverageallelicrichnessperpopulation.
C5b)Occurrenceofbottlenecksinrecentevolutionaryhistory.Unknown.
C6)Phenologicalresponsetochangingseasonaltemperatureandprecipitationdynamics.
Unknown.
D1)Responsetorecentclimatechange.Unknown.
310ColoradoNaturalHeritageProgram©2015
D2)Modeledfuturechangeinpopulationorrangesize.Unknown.
D3)Overlapofmodeledfuturerangewithcurrentrange.Unknown.
D4)Protectedareas.Unknown.
Literature Cited
Adams,R.A.andM.A.Hayes.2008.Wateravailabilityandsuccessfullactationbybatsasrelatedtoclimatechangeinarid
regionsofwesternNorthAmerica.JournalofAnimalEcology77:1115‐1121.
Armstrong,D.M.,J.P.Fitzgerald,andC.A.Meaney.2011.MammalsofColorado,2ndedition.DenverMuseumofNatureand
ScienceandUniversityPressofColorado,Boulder,CO.
Gruver,J.C.,andD.A.Keinath.2006.Townsend’sBig‐earedBat(Corynorhinustownsendii):atechnicalconservation
assessment.[Online].USDAForestService,RockyMountainRegion.Available:
http://www.fs.fed.us/r2/projects/scp/assessments/townsendsbigearedbat.pdf
Piaggio,A.J.,K.W.Navo,andC.W.Stihler.2009.Intraspecificcomparisonofpopulationstructure,geneticdiversity,and
dispersalamongthreesubspeciesofTownsend'sbig‐earedbats,Corynorhinustownsendiitownsendii,C.t.pallescens,and
theendangeredC.t.virginianus.ConservationGenetics10:143‐159.
ClimateChangeVulnerabilityAssessmentforColoradoBLM311
White‐tailed Prairie Dog
Cynomysleucurus
G4/S4
Family:Sciuridae
Climate Vulnerability Rank: Not Vulnerable/Presumed Stable
SimilartoC.gunnisoni,C.leucurusisconsideredStable,butthefactorsthatwouldleadittobemore
vulnerableare:predicteddecreasesinprecipitation;necessityforcoldenvironsforhibernation;
habitatloss;prairiedogsusceptibilitytoplague:andlimitedgeneticvariability.Currently,noneof
therankingfactorsconsiderthethreatshighenoughthatC.leucuruswouldbeinimminentthreat
fromon‐goingclimatechange.Thespeciesabilitytodisperseanditslackofrelianceofmesic
habitatsbufferitfromclimatechangethreats.
Distribution:C.leucurusisfoundinnorthwestandwest‐centralColoradoinsemi‐aridgrasslands
andshrublands,andmountainvalleys(Armstrongetal.2011).Habitat:C.leucurusaremoreoften
foundinsemidesertshrublands,butoccasionallyinvadingpasturesandagriculturallandsatlower
elevations(Armstrongetal.2011).Elevation:typicallybelow8,500ft.
EcologicalSystem:Grasslands,Shrublands
CCVI Scoring
B1)Exposuretosealevelrise.Neutral.
B2a)Distributionrelativetonaturalbarriers.Neutral.Therearenoobviousnaturalbarriersto
white‐tailedprairiedogmovementinColorado.Populationsareknowntohaveoccurredashighas
~10,000’elevationinColorado(Armstrongetal.2011).
312ColoradoNaturalHeritageProgram©2015
B2b)Distributionrelativetoanthropogenicbarriers.Neutral.Muchoftheprairiedograngein
Coloradoisonpubliclandandmuchoftherangeisnothinderedbyanthropogenicdisturbanceto
greatlylimitrangewideclimate‐causeddispersal.
B3)Impactoflandusechangesresultingfromhumanresponsestoclimatechange.Neutral.
Wind‐energydevelopmentisincreasinginColorado.InnorthwesternColoradowindspeedsmaybe
attractiveforwind‐energydevelopmentinthisareaoftheprairiedogsrange.However,itis
unlikelythatdevelopmentwillsignificantlyimpactbymitigation‐relatedlandusechanges.
C1)Dispersalandmovements.SomewhatDecrease.Maximummovementdistancesdocumented
forwhite‐tailedprairiedogsis8km(Cooke1993,citedinSeglundetal.2006),butmost
documentedmovementsarelessthanthis.
C2ai)Predictedsensitivitytotemperature:historicalthermalniche.Neutral.Basedon
ClimateWizard.orgPastExposureTemperatureVariation,muchofwhite‐tailedprairiedograngein
Coloradoisfrom55‐77°F.
C2aii)Predictedsensitivitytotemperature:physiologicalthermalniche.NeutraltoSomewhat
IncreaseVulnerability.Becausethisspeciesofprairiedogisanobligatehibernator(Harlow1995)
itsoverwintersurvivalcanbechallengedifoverwinterthermalconditionsdonotmaintainlong,
stableperiodsofcoldtemperatures(Arnoldetal.1991,Schorretal.2009).Thus,ifthermal
conditionsarenotappropriateforhibernation,survivalmaybedepressed.
C2bi)Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime:
historicalhydrologicalniche.SomewhatIncrease.BasedonClimateWizard.orgAverageAnnual
Precipitation1951‐2006,muchofwhite‐tailedprairiedograngeinColoradoismiddle‐to‐low
precipitationvariation.
C2bii)Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime:
physiologicalhydrologicalniche..NeutraltoSomewhatDecrease.White‐tailedprairiedogs
inhabitaridgrasslandsandshrublandsinColorado(Armstrongetal.2011).Mostvegetationwithin
usedhabitathassomeleveloftolerancetoaridconditionsandmaynotbedramaticallyimpacted
byincreaseddryingpredictedbyclimatemodeling.
C2c)Dependenceonaspecificdisturbanceregimelikelytobeimpactedbyclimatechange.
SomewhatIncreasetoIncrease.Themostdramaticandrecurringdisturbancethatcanimpact
white‐tailedprairiedogsisplague(MenkensandAnderson1991).White‐tailedprairiedogsare
occasionallyexposedtodroughtconditions.Theseconditionscausestressandevenpopulation
reduction/localextirpationintheblack‐tailedprairiedog(Fackaetal.2010).Climatedatasuggest
thatdroughtwillpossiblyincreaseinfrequency,intensityandduration.
C2d)Dependenceonsnow‐coveredhabitats.Neutral.Thereisnoknownrelationshipofthis
speciestosnoworice‐coveredhabitats.
C3)Restrictiontouncommongeologicalfeaturesorderivatives.Neutral.Thisspeciesisnot
knowntospecializeonuncommongeologicalfeatures.
ClimateChangeVulnerabilityAssessmentforColoradoBLM313
C4a)Dependenceonotherspeciestogeneratehabitat.Neutral.Generatesandmodifiesitsown
habitatbyburrowingandgrazing.
C4b)Dietaryversatility.Neutral.White‐tailedprairiedogslargelyfeedongrassesandforbs,
supplementingthisdietwithsomeshrubs(Armstrongetal.2011).
C5a)Measuredgeneticvariation.NeutraltoSomewhatIncreaseVulnerability.Geneticdiversity
inthisspecieswasdeterminedtobelowcomparetoblack‐tailedprairiedogs(Cooke1993,citedin
Seglundetal.2006).
C5b)Occurrenceofbottlenecksinrecentevolutionaryhistory.Onlyif5Aisunknown.
C6)Phenologicalresponsetochangingseasonaltemperatureandprecipitationdynamics.
Unknown.Noobservationsmade.
D1)Responsetorecentclimatechange.Unknown.Nothingreported.
D2)Modeledfuturechangeinpopulationorrangesize.Unknown.
D3)Overlapofmodeledfuturerangewithcurrentrange.Unknown.
D4)Protectedareas.Neutral.
Literature Cited
Armstrong,D.M.,J.P.Fitzgeraldand,C.A.Meaney.2011.MammalsofColorado,2ndEdition.UniversityPressofColorado.
704pp.
Arnold,W.,G.Heldmaier,S.Ortmann,H.Pohl,T.Ruff,andS.Stenlechner.1991.Ambienttemperaturesinhibernaculaand
theirenergeticconsequencesforalpinemarmots(Marmotamarmota).JournalofThermalBiology16:223‐226.
Cooke,L.1993.TheroleoflifehistorytraitsintheevolutionofsocialityintheWTPD(Cynomysleucurus).Finalreportto
ArapahoNationalWildlifeRefuge,Walden,CO.CollegeoftheHolyCross,Worchester,MA.
Facka,A.N.,etal.2010.Droughtleadstocollapseofblack‐tailedprairiedogpopulationsreintroducedtotheChihuahuan
Desert.JournalofWildlifeManagement74:1252‐1762.
Harlow,H.J.1995.Fastingbiochemistryofrepresentativespontaneousandfacultativehibernators:thewhite‐tailed
prairiedogandtheblack‐tailedprairiedog.PhysiologicalZoology68:915‐934.
Menkens,Jr.,G.E.,andS.H.Anderson.1991.Populationdynamicsofwhite‐tailedprairiedogsduringanepizooticof
sylvaticplague.JournalofMammalogy72:328‐331.
Schorr,R.A.,P.M.Lukacs,andG.L.Florant.2009.Bodymassandwinterseverityaspredictorsofoverwintersurvivalin
Preble’smeadowjumpingmouse.JournalofMammalogy90:17‐24.
Seglund,A.E.,A.E.Ernst,M.Grenier,B.Luce,A.Puchniak,andP.Schnurr.2006.White‐tailedprairiedogconservation
assessment.WesternAssociationofFishandWildlifeAgencies,Laramie,WY.136pp.
314ColoradoNaturalHeritageProgram©2015
Desert Spiny Lizard
Sceloporusmagister
G5/S2
Family:Phrynosomatidae
Climate Vulnerability Rank: Not Vulnerable/Presumed Stable
ThisColoradostatewiderankisbasedon:theDesertspinylizardspreferenceforwarm
temperaturescoupledwiththeincreasingtemperaturesprojectedunderclimatechange,a
thermoregulatoryrangeof27⁰to37⁰C(Brattstrom1965)whichshouldallowthelizardtocope
withrisingtemperatures,thelizard’spreferenceforaridandhotlandscapesthatareactually
expectedtoincreaseinsizewithintheassessedareaduetoincreaseddroughtandtemperatures
projectedunderclimatechange,anda20percentexpansionintherangeofthelizardinthe
assessedareaasaresultofclimatechange(Buckley2010).Climatemodelsprojectincreased
warminganddroughtacrosstheassessedareawithannualaveragetemperaturesrisingby2.5°Fto
5.5°Fby2041‐2070andby5.5°Fto9.5°Fby2070‐2099withcontinuedgrowthinglobalemissions
(A2emissionsscenario),withthegreatestincreasesinthesummerandfall(Melilloetal.2014).
Distribution:InColorado,thislizardoccursintheextremesouthwesterncorneroftheStateat
elevationsbelow5,100feet(Hammerson1999).Habitat:ThehabitatinColoradoincludesshrub‐
covereddirtbanksandsparselyvegetatedrockyareasnearflowingstreamsandarroyos.They
prefersoftsoilsbeneathgreasewood,rabbitbrush,saltcedar,andothershrubsandfrequently
perchonlargerocksorinshrubsandtrees(Hammerson1999).
CCVI Scoring
B1)Exposuretosealevelrise.Neutral.
B2a)Distributionrelativetonaturalbarriers.Neutral.Largeriversandlakesactaseffective
barriersforthisspeciesasdootherwaterobstructionssuchaspondsandmarshes(NatureServe
ClimateChangeVulnerabilityAssessmentforColoradoBLM315
2014),butsmallerwaterobstacleswouldnotimpedelargescalemigratorymovementslikeshifts
indistributionduetoachangingclimate.However,therearenolargeriversorwaterbodieswithin
theassessmentareathatwouldpreventlargescalemovementsoftheDesertspinylizard.
B2b)Distributionrelativetoanthropogenicbarriers.Neutral.Busyhighways,highwayswith
obstructions,andurbanareascanactasbarrierstodispersal(NatureServe2014),butinthe
assessmentareatherearenolarge,busyhighwaysorlargeurbancenters,rathertherearefew
roadsandsmallhumanpopulations.
B3)Impactoflandusechangesresultingfromhumanresponsestoclimatechange.Neutral.
Changesinlanduseassociatedwithclimatechangearenotconsideredathreat.
C1)Dispersalandmovements.Neutral.Desertspinylizardjuvenileswilldisperseseveral100
metersfromtheirnatalareabeforeestablishingaterritoryoftheirown(TannerandKrogh1973)
C2ai)Predictedsensitivitytotemperature:historicalthermalniche.Neutral.Therange
occupiedbytheDesertspinylizardintheassessedareahasexperiencedanaverage(51.7‐77°
F/31.8‐43.0°C)zonalmeanseasonaltemperatureoverthelast50years.
C2aii)Predictedsensitivitytotemperature:physiologicalthermalniche.Somewhatdecrease.
TheDesertspinylizardprefersratherwarmtemperatures,attemptingtothermoregulatesuchthat
ithasameanbodytemperatureofabout35⁰C(range27⁰to37⁰C)(Brattstrom1965).
C2bi)Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime:
historicalhydrologicalniche.Increase.TherangeoccupiedbytheDesertspinylizardinthe
assessedareahasexperiencedaverage(4‐10inches/100‐254mm)precipitationvariationinthe
past50years.
C2bii)Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime:
physiologicalhydrologicalniche.Neutraltosomewhatdecrease.TheDesertspinylizardis
adaptedtoaridlandscapesinhabitingareasreceivinglessthan30centimetersofrainperyear(Vitt
andOhmart1974)andwiththeincreasedprojectionsfordroughtduetoclimatechangeinthe
assessmentarea(Melilloetal.2014),changingclimatecouldevenbenefitthespecies.
C2c)Dependenceonaspecificdisturbanceregimelikelytobeimpactedbyclimatechange.
Neutral.TheDesertspinylizardisnotdependentuponspecificdisturbanceregimessuchasfires,
floods,severewinds,pathogenoutbreaks,orsimilarevents.
C2d)Dependenceonsnow‐coveredhabitats.Neutral.TheDesertspinylizardisnotdependent
onhabitatswithice,snow,oronsnowpack.
C3)Restrictiontouncommongeologicalfeaturesorderivatives.Somewhatincrease.Desert
spinylizardsarerestrictedtosparselyvegetatedrockyareasnearflowingstreamsorarroyos
withintheassessmentarea(Hammerson1999).Suchareas,althoughnothighlyuncommonwithin
theassessmentarea,arecertainlynotadominantlandscapetype
316ColoradoNaturalHeritageProgram©2015
C4a)Dependenceonotherspeciestogeneratehabitat.Neutral.TheDesertspinylizardisnot
dependentonanyotherspeciestocreatesuitablehabitatforitsexistence.
C4b)Dietaryversatility.Neutral.Desertspinylizardsareopportunisticpredatorswithaflexible
diet,feedingmainlyonavarietyofinsectswithsomesmalllizardsandplantmaterialalsotaken
(Hammerson1999).
C4d)Dependenceonotherspeciesforpropaguledispersal.Neutral.TheDesertspinylizardisa
self‐disperser.
C4e)Formspartofaninterspecificinteractionnotcoveredby4a‐d.Neutral.Noother
interspecificinteractionsareimportanttothepersistenceoftheDesertspinylizard.
C5a)Measuredgeneticvariation.Neutral.ThegeneticvariationoftheDesertspinylizardis
aboutaverage,whencomparedtorelatedtaxa(Woodetal.2013).
C5b)Occurrenceofbottlenecksinrecentevolutionaryhistory.Unknown.
C6)Phenologicalresponsetochangingseasonaltemperatureandprecipitationdynamics.
Unknown.
D1)Responsetorecentclimatechange.Unknown.
D2)Modeledfuturechangeinpopulationorrangesize.Somewhatdecrease.Thepredicted
futurerangeoftheDesertspinylizardisexpectedtoincreasewithintheassessmentareabymore
than20percent(Buckley2010).
D3)Overlapofmodeledfuturerangewithcurrentrange.Unknown.
D4)Protectedareas.Unknown.
Literature Cited
Brattstrom,B.H.1965.BodyTemperaturesofReptiles.AmericanMidlandNaturalist73:376‐422.
Buckley,L.B.2010.Therangeimplicationsoflizardtraitsinchangingenvironments.GlobalEcologyandBiogeography,
19:452‐464.
Hammerson,G.A.1999.AmphibiansandreptilesinColorado.2nded.UniversityPressofColorado,Boulder,Colorado.364
pp.
Melillo,J.M.,T.C.Richmond,andG.W.Yohe,Eds.,2014:ClimateChangeImpactsintheUnitedStates:TheThirdNational
ClimateAssessment.U.S.GlobalChangeResearchProgram,841pp.doi:10.7930/J0Z31WJ2.
NatureServe.2014.NatureServeExplorer:Anonlineencyclopediaoflife[webapplication].Version7.1.NatureServe,
Arlington,Virginia.Availablehttp://explorer.natureserve.org.(Accessed:February17,2015).
Tanner,W.W.andJ.E.Krogh.1973.EcologyofSceloporusmagisterataNevadatestsite,NyeCounty,Nebraska.Great
BasinNaturalist,33:133‐146.
ClimateChangeVulnerabilityAssessmentforColoradoBLM317
Vitt,L.J.andR.D.Ohmart.1974.ReproductionandEcologyofaColoradoRiverPopulationofSceloporusmagister(Sauria:
Iguanidae).Herpetologica,30:410‐417.
Wood,D.A.,A.G.Vandergast,K.R.Barr,R.D.Inman,T.C.Esque,K.E.NussearandR.N.Fisher.2013.Comparative
phylogeographyrevealsdeeplineagesandregionalevolutionaryhotspotsintheMojaveandSonoranDeserts.Diversity
andDistributions,19:722–737
318ColoradoNaturalHeritageProgram©2015
Longnose Leopard Lizard
Gambeliawislizenii
G5/S1
Family:Crotaphytidae
Climate Vulnerability Rank: Not Vulnerable/Presumed Stable
ThisColoradostate‐widerankisbasedon:G.wislizeniirestrictedtoanareaofColoradothathas
seenlittletemperatureandhydrologicvariabilityandtheirsusceptibilitytohabitatlossfrom
encroachingweedygrasses.However,G.wislizeniiiswell‐adaptedtodroughtstress.
Distribution:G.wislizeniiisattheeasternlimitofitsrangeinwesternandsouthwesternColorado.
Habitat:G.wislizeniicanbefoundinflat,aridandsemiaridplainsandcanyonlandswithvarious
desertshrubs,includingsagebrush,greasewood,saltbush,andjunipers.Elevation:below6,000
feet.
EcologicalSystem:Xericshrublandswithmuchbareground.
CCVI Scoring
B1)Exposuretosealevelrise.Neutral.
B2a)Distributionrelativetonaturalbarriers.SomewhatIncreaseVulnerabilitytoNeutral.
Areasofexcessivegrasscovercanprohibitlizarduse(Schorretal.2011),butitisuncleartowhat
degreesuchexpansesofgrassexistaroundhabitatsinColorado.However,somepopulationsin
westernColoradoareborderedtothenorthbylargeriversthatmaybeunpassable.
B2b)Distributionrelativetoanthropogenicbarriers.Neutral.Therearefewknownhuman
barrierstodispersalwherelizardsarefound.
ClimateChangeVulnerabilityAssessmentforColoradoBLM319
B3)Impactoflandusechangesresultingfromhumanresponsestoclimatechange.Neutral.
Neithersolar,wind,orbiomassenergyproductionappeartobehigh‐rewardtargetsforthisregion
ofwesternColoradobasedonNationalRenewalEnergymaps
(apps1.eere.energy.gov/states/maps.cfm/state=CO).
C1)Dispersalandmovements.Neutral.Individualscanmoveupto1.5km(ParkerandPianka
1976,SchorrandLambert2010).
C2ai)Predictedsensitivitytotemperature:historicalthermalniche.Neutral.Muchofthe
desertbighornrangeinColoradofallswithinthe55‐77°Frange.
C2aii)Predictedsensitivitytotemperature:physiologicalthermalniche.SomewhatDecrease
Vulnerability.Hottertemperaturesdonotappeartochallengelizardphysiology.InColorado,mean
soilsurfacetemperatureswherelizardswerefoundwas100°F(SchorrandLambert2010).
C2bi)Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime:
historicalhydrologicalniche.IncreaseVulnerability.BasedontheClimateWizardmapofhistoric
hydrologicvariation,muchoftheleopardlizardrangeinColoradoininthelowervariabilityrange.
C2bii)Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime:
physiologicalhydrologicalniche.NeutraltoSomewhatDecrease.Leopardlizardsareadaptedto
heatanddroughtstress.
C2c)Dependenceonaspecificdisturbanceregimelikelytobeimpactedbyclimatechange.
NeutraltoSomewhatIncreaseVulnerability.Leopardlizardsarenotdependentonparticular
disturbanceregimes.However,undisturbedhabitatswithintheirrangeappeartopreventexpanse
ofinvasivegrasses(Westobyetal.1989,Hammerson1999).
C2d)Dependenceonsnow‐coveredhabitats.Neutral.Thereisnoknownrelationshipofthis
speciestosnoworice‐coveredhabitats.
C3)Restrictiontouncommongeologicalfeaturesorderivatives.Neutral.Thisspeciesisnot
knowntospecializeonuncommongeologicalfeatures.
C4a)Dependenceonotherspeciestogeneratehabitat.Neutral.Thisspeciesdoesnotrelyon
otherspeciesofhabitatdevelopment.
C4b)Dietaryversatility.Neutral.Leopardlizardsfeedonavarietyofinsectsandsome
vertebrates(Hammerson1999).
C5a)Measuredgeneticvariation.Neutral.Therearenodataonthegeneticvariabilityofthis
species.
C5b)Occurrenceofbottlenecksinrecentevolutionaryhistory.onlyif5Aisunknown.
C6)Phenologicalresponsetochangingseasonaltemperatureandprecipitationdynamics.
Neutral.Therearenodataonseasonaldynamics.
320ColoradoNaturalHeritageProgram©2015
D1)Responsetorecentclimatechange.Neutral.Nothingreported.
D2)Modeledfuturechangeinpopulationorrangesize.Unknown.
D3)Overlapofmodeledfuturerangewithcurrentrange.Unknown.
D4)Protectedareas.Neutral.ThesouthwesternColoradopopulationsexistwithinanational
monument,whilethecentral‐westernColoradopopulationsarewithinunprotectedfederallands.
Literature Cited
Hammerson,G.A.1999.AmphibiansandreptilesinColorado.2nded.UniversityPressofColorado,Boulder,Colorado.364
pp.
Parker,W.S.,andE.R.Pianka.1976.Ecologicalobservationsontheleopardlizard(Crotaphytuswislizenii)indifferent
partsofitsrange.Herpetologica32:95‐114.
Schorr,R.A.,andB.Lambert.2010.Longnoseleopardlizard(Gambeliawislizenii)homerangeandhabitatuseon
CannonballMesa,Colorado.ColoradoNaturalProgramReport.17pp.
Schorr,R.A.,B.A.Lambert,andE.Freels.2011.Habitatuseandhomerangeoflong‐nosedleopardlizards(Gambelia
wislizenii)inCanyonsoftheAncientsNationalMonument,Colorado.HerpetologicalConservationandBiology6:312‐323.
Westoby,M.,B.Walker,andI.Noy‐Meir.1989.Opportunisticmanagementforrangelandsnotatequilibrium.Journalof
RangeManagement42:266‐274.
ClimateChangeVulnerabilityAssessmentforColoradoBLM321
Midget Faded Rattlesnake
Crotalusoreganusconcolor
G5T4/S3?
Family:Viperidae
Climate Vulnerability Rank: Highly Vulnerable
ThisColoradostatewiderankisbasedon:theMidgetfadedrattlesnakesrelianceonrockoutcrops
suitablefordenningandthenarrowtemperaturerangessuitableforhibernatingrattlesnakesat
thosedens,barrierstomovementcreatedbylargeriverswithintheassessedarea,fragmentationof
theassessedareabybothpavedandunpavedroadsthatsignificantlyimpairmovement,thelowto
moderategeneticvariabilityofthesnakelesseningtheadaptabilityofthesnaketoclimatechange,
andtheincreaseintemperaturesprojectedfortheassessedareaduetoclimatechange.Climate
modelsprojectincreasedwarminganddroughtacrosstheassessedareawithannualaverage
temperaturesrisingby2.5°Fto5.5°Fby2041‐2070andby5.5°Fto9.5°Fby2070‐2099with
continuedgrowthinglobalemissions(A2emissionsscenario),withthegreatestincreasesinthe
summerandfall(Melilloetal.2014).
Distribution:Coloradoisattheeasternmarginofthesubspecies'range.InColorado,itoccursin
westcentralColoradoinMesa,Delta,Garfield,Montrose,andSanMiguelcounties(CNHP1998).
Habitat:Midgetfadedrattlesnakesoccurininawidevarietyofterrestrialhabitatsincluding
pinyon‐juniperwoodlands,plainsgrasslands,anddesertandmountainshrublands.Theytendto
preferaridtosemi‐aridsitesandtypicallyavoidwetsites.Theywilloccupysiteswithawiderange
ofsoiltypesfromsandytorocky(Hammerson1999).
CCVI Scoring
B1)Exposuretosealevelrise.Neutral.
B2a)Distributionrelativetonaturalbarriers.SomewhatIncreasetoneutral.Large,fastflowing
riversareabarriertothisrattlesnake,riversliketheYampa,Colorado,andothersthatoccurwithin
322ColoradoNaturalHeritageProgram©2015
theassessedareashouldbeconsideredbarriers(ReedandDouglas2002).Theseriverswillimpede
distributionalshiftsintheassessmentarea,butwillnotgreatlyorcompletelyimpairdistributional
shiftscausedbyclimatechange.Busyhighways,likeInterstate70thatbisectsthedistributionof
therattlesnakeintheassessedarea,alsoimpedemovements,butdonotcompletelyrestrict
movements(NatureServe2014).
B2b)Distributionrelativetoanthropogenicbarriers.Increase.Somewhatincreasetoneutral.
Roads(bothpavedandunpaved)restrictfine‐scalemovementpatternsoftheMidgetfaded
rattlesnakebutnotbroadscalemovements(Spearetal.2011)anddenselyurbanizedareas
dominatedbybuildingsandpavementaresufficientbarrierstomovementfortherattlesnake
(NatureServe2014).TheonlylargecityintheassessmentareaisGrandJunctionandthissingle
urbancentershouldnotsignificantlyimpedetherattlesnake’sabilitytoshiftitsdistributionwithin
theareainresponsetoclimatechange.
B3)Impactoflandusechangesresultingfromhumanresponsestoclimatechange.Increase.
Neutral.Changesinlanduseassociatedwithclimatechangearenotconsideredathreat.
C1)Dispersalandmovements.Somewhatdecreasetoneutral.Midgetfadedrattlesnakesare
dependentuponwinterdensandmigratetoandfromthosedensonanannualbasis.Althoughthey
havesomeofthelargestactivityrangesreportedinrattlesnakes,annualmovementsstillonly
movementsaveragearound2000metersperyear,only300metersforgravidfemales(Parkerand
Anderson2007).
C2ai)Predictedsensitivitytotemperature:historicalthermalniche.Neutral.Therange
occupiedbytheMidgetfadedrattlesnakeintheassessedareahasexperiencedanaverage(51.7‐
77°F/31.8‐43.0°C)zonalmeanseasonaltemperatureoverthelast50years.
C2aii)Predictedsensitivitytotemperature:physiologicalthermalniche.Increase.TheMidget
fadedrattlesnakeisrestrictedtorockoutcropswheretheirhibernaculaarelocated.Modelingof
denninghabitatindicatesaverynarrowtemperaturerangethatrepresentssuitabilityfor
rattlesnakedenning(Spearetal.2011)suggestingthatincreasingtemperaturesprojectedforthe
assessmentarea(Melilloetal.2014)couldnegativelyimpactcurrentlysuitabledenninghabitat,
influencingthefuturedistributionoftheMidgetfadedrattlesnake.
C2bi)Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime:
historicalhydrologicalniche.Neutral.TherangeoccupiedbytheMidgetfadedrattlesnakeinthe
assessedareahasexperiencedaverage(21‐40inches/509‐1,016mm)precipitationvariationin
thepast50years.
C2bii)Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime:
physiologicalhydrologicalniche.Somewhatincreasetoneutral.Thereissomeevidenceto
suggestthatreproductivesuccessispositivelyinfluencedbyprecipitation,butlong‐term
continuousmonitoringisneededtounderstandwhetherprecipitationconsistentlyexplains
reproductiveoutputandtopredictthepotentialeffectsoffutureclimatechangeonrattlesnake
recruitment.(Spearetal.2011).
ClimateChangeVulnerabilityAssessmentforColoradoBLM323
C2c)Dependenceonaspecificdisturbanceregimelikelytobeimpactedbyclimatechange.
Neutral.TheMidgetfadedrattlesnakeisnotdependentuponspecificdisturbanceregimessuchas
fires,floods,severewinds,pathogenoutbreaks,orsimilarevents.
C2d)Dependenceonsnow‐coveredhabitats.Neutral.TheMidgetfadedrattlesnakeisnot
dependentonhabitatswithice,snow,oronsnowpack.
C3)Restrictiontouncommongeologicalfeaturesorderivatives.Increase.Midgetfaded
rattlesnakesrequirerockoutcropsforhibernacula/denning(ParkerandAnderson2007andSpear
etal.2011).
C4a)Dependenceonotherspeciestogeneratehabitat.Neutral.TheMidgetfadedrattlesnakeis
notdependentonanyotherspeciestocreatesuitablehabitatforitsexistence.
C4b)Dietaryversatility.Neutral.Midgetfadedrattlesnakesmainlypreyonlizards,buteatabroad
rangeofpreyincludingsmallmammalsandbirds(ParkerandAnderson2007).
C4d)Dependenceonotherspeciesforpropaguledispersal.Neutral.TheMidgetfaded
rattlesnakeisaself‐disperser.
C4e)Formspartofaninterspecificinteractionnotcoveredby4a‐d.Neutral.Noother
interspecificinteractionsareimportanttothepersistenceoftheMidgetfadedrattlesnake.
C5a)Measuredgeneticvariation.Somewhatincreasetoneutral.Overall,geneticdiversityislow
tointermediateacrossmidgetfadedrattlesnake(Spearetal.2011).
C5b)Occurrenceofbottlenecksinrecentevolutionaryhistory.Unknown.
C6)Phenologicalresponsetochangingseasonaltemperatureandprecipitationdynamics.
Unknown.
D1)Responsetorecentclimatechange.Unknown.
D2)Modeledfuturechangeinpopulationorrangesize.Decrease.Winterrangeispredictedto
increaseby69%by2080(NAS2014).
D3)Overlapofmodeledfuturerangewithcurrentrange.Unknown.
D4)Protectedareas.Unknown.
Literature Cited
ColoradoNaturalHeritageProgram(CNHP).1998.Midgetfadedrattlesnakeelementglobalrank(EGR)report.Colorado
NaturalHeritageProgram,FortCollins,CO.
Hammerson,G.A.1999.AmphibiansandreptilesinColorado.2nded.UniversityPressofColorado,Boulder,Colorado.364
pp.
324ColoradoNaturalHeritageProgram©2015
Melillo,J.M.,T.C.Richmond,andG.W.Yohe,Eds.,2014:ClimateChangeImpactsintheUnitedStates:TheThirdNational
ClimateAssessment.U.S.GlobalChangeResearchProgram,841pp.doi:10.7930/J0Z31WJ2.
NatureServe.2014.NatureServeExplorer:Anonlineencyclopediaoflife[webapplication].Version7.1.NatureServe,
Arlington,Virginia.Availablehttp://explorer.natureserve.org[2/6/2015].
Parker,J.M.andS.H.Anderson.2007.Ecologyandbehaviorofthemidgetfadedrattlesnake(Crotalusoreganusconcolor)
inWyoming.JournalofHerpetology,41:41‐51.
Reed,R.N.,andM.E.Douglas.2002.EcologyoftheGrandCanyonrattlesnake(Crotalusviridisabyssus)intheLittle
ColoradoRivercanyon,Arizona.SouthwesternNaturalist47:30‐39.
Spear,S.F.,J.M.Parker,C.R.PetersonandC.L.Jenkins.2011.Conservationandmanagementofmidgetfadedrattlesnakes:
statewildlifegrantfinalreport.TheOrianneSociety,Clayton,GA.
ClimateChangeVulnerabilityAssessmentforColoradoBLM325
4 PLANTS
Authors:
JillHandwerk
BernadetteKuhn
DeliaMalone
Recommendedchaptercitation:
Handwerk,J.,B.Kuhn,andD.Malone.2015.Plants.Chapter4InColoradoNaturalHeritageProgram2015.ClimateChange
VulnerabilityAssessmentforColoradoBureauofLandManagement.K.Decker,L.Grunau,J.Handwerk,andJ.Siemers,editors.
ColoradoNaturalHeritageProgram,ColoradoStateUniversity,FortCollins,Colorado.
326ColoradoNaturalHeritageProgram©2015
TableofContents–4Plants
Methods....................................................................................................................................................329
Results.......................................................................................................................................................333
PlantSpeciesCCVASummaries.................................................................................................................336
Aleteslatilobus(Lomatiumlatilobum)......................................................................................................337
Aleteslithophilus(Neoparryalithophila)..................................................................................................340
Amsoniajonesii.........................................................................................................................................344
Aquilegiachrysanthavar.rydbergii..........................................................................................................348
Asclepiasuncialisssp.uncialis..................................................................................................................351
Astragalusanisus.......................................................................................................................................354
Astragalusdebequaeus.............................................................................................................................357
Astragalusequisolensis(Astragalusdesperatusvar.neeseae)................................................................361
Astragalusmicrocymbus...........................................................................................................................364
Astragalusnaturitensis.............................................................................................................................367
Astragalusosterhoutii...............................................................................................................................370
Astragaluspiscator....................................................................................................................................373
Astragalusrafaelensis...............................................................................................................................376
Astragalusripleyi.......................................................................................................................................379
Astragalustortipes....................................................................................................................................383
Bolophytaligulata(Partheniumligulatum)...............................................................................................386
Camissoniaeastwoodiae...........................................................................................................................390
Cleome(Peristome)multicaulis................................................................................................................393
Corispermumnavicula..............................................................................................................................396
Cryptogrammastelleri..............................................................................................................................399
Erigeronkachinensis.................................................................................................................................402
Eriogonumbrandegeei..............................................................................................................................405
Eriogonumclavellatum.............................................................................................................................408
Eriogonumcoloradense............................................................................................................................411
Eriogonumcontortum...............................................................................................................................414
Eriogonumephedroides............................................................................................................................419
Eriogonumpelinophilum..........................................................................................................................424
Eutremapenlandii.....................................................................................................................................427
Gentianellatortuosa.................................................................................................................................430
ClimateChangeVulnerabilityAssessmentforColoradoBLM327
Gilia(Aliciella)stenothyrsa.......................................................................................................................435
Gutierreziaelegans...................................................................................................................................440
Ipomopsispolyantha.................................................................................................................................443
Lomatiumconcinnum...............................................................................................................................446
Lupinuscrassus.........................................................................................................................................449
Mimuluseastwoodiae...............................................................................................................................452
Nuttallia(Mentzelia)chrysantha..............................................................................................................455
Nuttallia(Mentzelia)densa.......................................................................................................................458
Nuttallia(Mentzelia)rhizomata................................................................................................................461
Oenotheraacutissima............................................................................................................................... 465
Oreocarya(Cryptantha)caespitosa..........................................................................................................468
Oreocarya(Cryptantha)osterhoutii.........................................................................................................473
Oreocaryarevealii(Cryptanthagypsophila).............................................................................................476
Oreocarya(Cryptantha)rollinsii................................................................................................................479
Pediomelumaromaticum.........................................................................................................................484
Penstemondebilis.....................................................................................................................................487
Penstemondegeneri.................................................................................................................................490
Penstemongibbensii.................................................................................................................................493
Penstemongrahamii.................................................................................................................................496
Penstemonharringtonii............................................................................................................................499
Penstemonpenlandii................................................................................................................................503
Penstemonscariosusvar.albifluvis..........................................................................................................506
Phaceliaformosula....................................................................................................................................509
Phaceliasubmutica...................................................................................................................................512
Physaria(Lesquerella)congesta................................................................................................................515
Physariaobcordata...................................................................................................................................518
Physaria(Lesquerella)parviflora..............................................................................................................521
Physaria(Lesquerella)pruinosa................................................................................................................ 524
Physariapulvinata.....................................................................................................................................527
Physaria(Lesquerella)vicina.....................................................................................................................530
Sclerocactusglaucus.................................................................................................................................533
Sisyrinchiumpallidum...............................................................................................................................536
Thalictrumheliophilum
.............................................................................................................................539
328ColoradoNaturalHeritageProgram©2015
ListofFiguresandTables
Figure 4.1.Summaryofclimatechangevulnerabilityscoresforplantspecies.EV=ExtremelyVulnerable;
HV=HighlyVulnerable;MV=ModeratelyVulnerable;PS=PresumedStable;IL=IncreaseLikely.......335
Table 4.1.ClimateChangeVulnerabilityScoresforPlantSpecies.EV=ExtremelyVulnerable;HV=Highly
Vulnerable;MV=ModeratelyVulnerable;PS=PresumedStable;IL=IncreaseLikely...........................333
ClimateChangeVulnerabilityAssessmentforColoradoBLM329
METHODS
NatureServe Climate Change Vulnerability Index
Overview
Thisoverviewhasbeensynthesizedandreprinted,withpermission,fromYoungetal.(2011).The
ClimateChangeVulnerabilityIndex(CCVI),developedbyNatureServe,isaMicrosoftExcel‐based
toolthatfacilitatesrapidassessmentofthevulnerabilityofplantandanimalspeciestoclimate
changewithinadefinedgeographicarea.Inaccordancewithwell‐establishedpractices(Schneider
etal.2007,Williamsetal.2008),theCCVIdividesvulnerabilityintotwocomponents:
exposuretoclimatechangewithintheassessmentarea(e.g.,ahighlysensitivespecieswill
notsufferiftheclimatewhereitoccursremainsstable).
sensitivityofthespeciestoclimatechange(e.g.,anadaptablespecieswillnotdeclineeven
inthefaceofsignificantchangesintemperatureand/orprecipitation).
Exposuretoclimatechangeismeasuredbyexaminingthemagnitudeofpredictedtemperatureand
moisturechangeacrossthespecies’distributionwithinthestudyarea.CCVIguidelinessuggest
usingthedownscaleddatafromClimateWizard(http://climatewizard.org)forpredictedchangein
temperature.ProjectionsforchangesinprecipitationareavailableinClimateWizard,but
precipitationestimatesaloneareoftenanunreliableindicatorofmoistureavailabilitybecause
increasingtemperaturespromotehigherratesofevaporationandevapotranspiration.Moisture
availability,ratherthanprecipitationperse,isacriticalresourceforplantsandanimalsand
thereforeformstheotherpartoftheexposuremeasurewithintheCCVI,togetherwith
temperature.Topredictchangesinmoistureavailability,NatureServeandpartnersdevelopedthe
HamonAET:PETmoisturemetricaspartoftheCCVI.Themetricrepresentstheratioofactual
evapotranspiration(i.e.,theamountofwaterlostfromasurfacethroughevaporationand
transpirationbyplants)topotentialevapotranspiration(i.e.,thetotalamountofwaterthatcould
beevaporatedundercurrentenvironmentalconditions,ifunlimitedwaterwasavailable).Negative
valuesrepresentdryingconditions.
Sensitivityisassessedusing20factorsdividedintotwocategories:1)indirectexposuretoclimate
change;and2)speciesspecificfactors(includingdispersalability,temperatureandprecipitation
sensitivity,physicalhabitatspecificity,interspecificinteractions,andgeneticfactors).Foreach
factor,speciesarescoredonaslidingscalefromgreatlyincreasing,tohavingnoeffecton,to
decreasingvulnerability.TheCCVIaccommodatesmorethanoneanswerperfactorinorderto
addresspoordataorahighlevelofuncertaintyforthatfactor.Thescoringsystemintegratesall
exposureandsensitivitymeasuresintoanoverallvulnerabilityscorethatindicatesrelative
vulnerabilitycomparedtootherspeciesandtherelativeimportanceofthefactorscontributingto
vulnerability.
330ColoradoNaturalHeritageProgram©2015
TheIndextreatsexposuretoclimatechangeasamodifierofsensitivity.Iftheclimateinagiven
assessmentareawillnotchangemuch,noneofthesensitivityfactorswillweighheavily,anda
speciesislikelytoscoreattheNotVulnerableendoftherange.Alargechangeintemperatureor
moistureavailabilitywillamplifytheeffectofanyrelatedsensitivity,andwillcontributetoascore
reflectinghighervulnerabilitytoclimatechange.Inmostcases,changesintemperatureand
moistureavailabilitywillcombinetomodifysensitivityfactors.However,forfactorssuchas
sensitivitytotemperaturechange(factor2a)orprecipitation/moistureregime(2b),onlythe
specifiedclimatedriverwillhaveamodifyingeffect.
Thesixpossiblescoresare:
ExtremelyVulnerable:Abundanceand/orrangeextentwithingeographicalareaassessed
extremelylikelytosubstantiallydecreaseordisappearby2050.
HighlyVulnerable:Abundanceand/orrangeextentwithingeographicalareaassessedlikelyto
decreasesignificantlyby2050.
ModeratelyVulnerable:Abundanceand/orrangeextentwithingeographicalareaassessedlikely
todecreaseby2050.
NotVulnerable/PresumedStable:Availableevidencedoesnotsuggestthatabundanceand/or
rangeextentwithinthegeographicalareaassessedwillchange(increase/decrease)substantially
by2050.Actualrangeboundariesmaychange.
NotVulnerable/IncreaseLikely:Availableevidencesuggeststhatabundanceand/orrangeextent
withingeographicalareaassessedislikelytoincreaseby2050.
InsufficientEvidence:Availableinformationaboutaspecies'vulnerabilityisinadequateto
calculateanIndexscore.
Scoring Factors in the CCVI
ThefactorsusedtogeneratetheCCVIscorearelistedinthefollowingsection.Detaileddefinitions
ofscoringcategoriesarelistedinAppendixB.
A.ExposuretoLocalClimateChange
1. Temperature
2. Moisture
B.IndirectExposuretoClimateChange
1. Exposuretosealevelrise.(NotapplicabletoColorado)
2. Distributionrelativetonaturalandanthropogenicbarriers.
ClimateChangeVulnerabilityAssessmentforColoradoBLM331
3. Predictedimpactoflandusechangesresultingfromhumanresponsestoclimate
change.
C.Sensitivity
1. Dispersalandmovements.
2. Predictedsensitivitytotemperatureandmoisturechanges.
a.Predictedsensitivitytochangesintemperature.
b.Predictedsensitivitytochangesinprecipitation,hydrology,ormoisture
regime.
c.Dependenceonaspecificdisturbanceregimelikelytobeimpactedby
climatechange.
d.Dependenceonice,ice‐edge,orsnow‐coverhabitats.
3. Restrictiontouncommongeologicalfeaturesorderivatives.
4. Relianceoninterspecificinteractions.
a.Dependenceonotherspeciestogeneratehabitat.
b.Dietaryversatility(animalsonly).
c.Pollinatorversatility(plantsonly).
d.Dependenceonotherspeciesforpropaguledispersal.
e.FormspartofaninterspecificinteractionnotcoveredbyC4a‐d.
5. Geneticfactors.
a.Measuredgeneticvariation.
b.Occurrenceofbottlenecksinrecentevolutionaryhistory.
6. Phenologicalresponsetochangingseasonaltemperatureandprecipitation
dynamics.
D.DocumentedorModeledResponsetoClimateChange
1. Documentedresponsetorecentclimatechange.
2. Modeledfuturechangeinrangeorpopulationsize.
3. Overlapofmodeledfuturerangewithcurrentrange.
4. Occurrenceofprotectedareasinmodeledfuturedistribution.
Factorsnotconsidered—TheIndexdevelopmentteamdidnotincludefactorsthatarealready
consideredinconservationstatusassessments.Thesefactorsincludepopulationsize,rangesize,
anddemographicfactors.ThegoalisfortheNatureServeClimateChangeVulnerabilityIndexto
complementNatureServeConservationStatusRanksandnottopartiallyduplicatefactors.Ideally,
Indexvaluesandstatusranksshouldbeusedinconcerttodetermineconservationpriorities.
Application of Climate Data
Scoringfactorsrelatedtohistoricandpredictedfutureclimate(temperature,precipitation,and
moistureavailability,FactorsA1,A2,C2ai,andC2biintheCCVI)werecalculatedinGISusingthe
methodsdescribedbelow.Refertothespeciesprofilesinthefollowingsectionofthisreportfor
detailsonscoringrationaleandreferencesforallotherfactors.
332ColoradoNaturalHeritageProgram©2015
Exposuretopredictedtemperatureincreasewascalculatedusingspeciesdistributiondataandan
ensembleaverageof16CMIP3climatepredictionmodels(seeAppendixA)averagedoverthe
summerseason(June–August)usingthehigh(A2)CO2emissionsscenario.Thehighemissions
scenariowasusedbecauseitismostsimilartocurrentemissions.DatawasobtainedfromClimate
Wizard,andtheanalysisperiodwastotheyear2050(whichisactuallyanaverageofprojections
foryears2040–2069).Thesummerseason–growingseasonforplants,breedingseasonfor
animals–wasusedbecauseitwasconsideredthemostcriticaltimeperiodformostspecies.
Exposuretoprojecteddrying(integrationofprojectedtemperatureandprecipitationchange,i.e.,
theHamonAET:PETmoisturemetric)wascalculatedusingthedatasetcreatedbyNatureServeas
partoftheCCVI.NotethatNatureServebasedtheirmoisturemetriccalculationsonthesame
ClimateWizarddatasetasabove,exceptthattheyusedtheA1Bcarbondioxideemissionsscenario.
BecausethemodelingmethodsusedbyNatureServewerenotavailable,wewereunableto
recalculateusingtheA2scenario.Thus,weusedthedataasprovided,whichweconsidereda
reasonablealternativesincetheA1BandA2scenariospredictsimilarchangesthroughthemid‐21st
Century,theperiodusedinthisanalysis.Wecalculatedthepercentofeachspecies’
range/distributionthatfallswithineachratingcategory.Allcalculationsusedthe“summer”(June–
August)datasubset.
Thehistoricalthermalnichefactormeasureslarge‐scaletemperaturevariationthataspecieshas
experiencedinrecenthistoricaltimes(i.e.,thepast50years),asapproximatedbymeanseasonal
temperaturevariation(differencebetweenhighestmeanmonthlymaximumtemperatureand
lowestmeanmonthlyminimumtemperature).Itisaproxyforspecies'temperaturetoleranceata
broadscale.ThisfactorwascalculatedinGISbyassessingtherelationshipbetweenspecies’
distributionsandhistoricaltemperaturevariationdatadownloadedfromNatureServe.Historical
temperaturevariationwasmeasuredasthemeanJulyhighminusthemeanJanuarylow,using
PRISMdatafrom1951‐2006,expressedasasingleaveragedvaluefortheentirespeciesrange.
Thehistoricalhydrologicalnichefactormeasureslarge‐scaleprecipitationvariationthataspecies
hasexperiencedinrecenthistoricaltimes(i.e.,thepast50years),asapproximatedbymeanannual
precipitationvariationacrossoccupiedcellswithintheassessmentarea.Ratingsforthisfactor
werecalculatedinGISbyoverlayingthespecies’distributionsonmeanannualprecipitationdata
(PRISM4kmannualaverageprecipitation,ininches,1951‐2006)downloadedfromClimateWizard,
andsubtractingthelowestpixelvaluefromthehighestvalue.
Representing Species’ Distributions
Forplantspecies,weusedelementoccurrencesfromCNHP’sBIOTICSdatabasetogenerate
distributionmapsandperformtheGIScalculationsreferencedabove.
Theplantspeciesincludedinthisclimatechangevulnerabilityassessmentincludeallthefederally
listed(threatened,endangeredandcandidate)speciesknowntooccuronBLMlands.Alsoincluded
arealltheplantspeciesfromtheBLMSensitiveSpecieslist,withtheexceptionof13speciesfor
whichtherewasnotsufficientinformationavailabletoevaluatetheeffectsofclimatechange.The
omittedspecieswere:Arabiscrandallii(Boecheracrandallii),Astragalusmusiniensis,Astragalus
ClimateChangeVulnerabilityAssessmentforColoradoBLM333
sesquiflorus,Cymopterusduchesnensis,Eriogonumacaule,Eriogonumtumulosum,Eriogonum
viridulum,Fraserapaniculata,Lygodesmiadoloresensis,Packerapauciflora,Sphaeromeriacapitata,
Townsendiastrigosa,Trichophorumpumilum(Scirpusrollandii).
RESULTS
CCVIresultsaresummarizedinTable4.1,andpresentedinfullinAppendixC.Plantspeciesresults
aresortedalphabeticallybyscientificname.Therationaleforscoringandliteraturecitationsare
includedinthefollowingspeciesprofiles.
Table 4.10.ClimateChangeVulnerabilityScoresforPlantSpecies.EV=ExtremelyVulnerable;HV=Highly
Vulnerable;MV=ModeratelyVulnerable;PS=PresumedStable;IL=IncreaseLikely.
Species English name Score
Aleteslatilobus(Lomatiumlatilobum)CanyonlandsaletesEV
Aleteslithophilus(Neoparryalithophila)Rock‐lovingneoparryaEV
AmsoniajonesiiJones'bluestarMV
Aquilegiachrysanthavar.rydbergiiGoldencolumbineEV
Asclepiasuncialisssp.uncialisDwarfmilkweedEV
AstragalusanisusGunnisonmilkvetchEV
AstragalusdebequaeusDeBequemilkvetchEV
AstragalusequisolensisHorseshoemilkvetchEV
AstragalusmicrocymbusSkiffmilkvetchEV
AstragalusnaturitensisNaturitamilkvetchEV
AstragalusosterhoutiiKremmlingmilkvetchEV
AstragaluspiscatorFisherTowersmilkvetchEV
AstragalusrafaelensisSanRafaelmilkvetchEV
AstragalusripleyiRipleymilkvetchEV
AstragalustortipesSleepingUtemilkvetchEV
Bolophytaligulata(Partheniumligulatum)LigulatefeverfewEV
CamissoniaeastwoodiaeEastwoodeveningprimroseHV
CleomemulticaulisSlenderspiderflowerEV
CorispermumnaviculaBoat‐shapedbugseedEV
CryptogrammastelleriSlenderrock‐brakeEV
ErigeronkachinensisKachinadaisyEV
EriogonumbrandegeeiBrandegeewildbuckwheatEV
EriogonumclavellatumCombWashbuckwheatEV
EriogonumcoloradenseColoradowildbuckwheatEV
EriogonumcontortumTwistedBuckwheatEV
EriogonumpelinophilumClay‐lovingwildbuckwheatEV
334ColoradoNaturalHeritageProgram©2015
Species English name Score
EriogonumephedroidesEphedrabuckwheatEV
EutremapenlandiiPenlandalpinefenmustardEV
GentianellatortuosaUtahgentianEV
Gilia(Aliciella)stenothyrsaNarrow‐stemGiliaEV
GutierreziaelegansLoneMesasnakeweedEV
IpomopsispolyanthaPagosaskyrocketEV
LomatiumconcinnumColoradodesert‐parsleyEV
LupinuscrassusPaysonlupineEV
MimuluseastwoodiaeEastwood'smonkeyflowerEV
Nuttallia(Mentzelia)chrysanthaGoldenblazingstarEV
Nuttallia(Mentzelia)densaArkansasCanyonstickleafEV
Nuttallia(Mentzelia)rhizomataRoanCliffsBlazingstarEV
OenotheraacutissimaNarrow‐leafeveningprimroseHV
Oreocarya(Cryptantha)caespitosaTuftedCryptanthEV
Oreocarya(Cryptantha)rollinsiiRollins'Cats‐eyeEV
Oreocaryaosterhoutii(Cryptanthaosterhoutii)Osterhout'scat's‐eyeEV
Oreocaryarevealii(Cryptanthagypsophila)GypsumValleycat's‐eyeEV
PediomelumaromaticumParadoxbreadrootEV
PenstemondebilisParachutepenstemonEV
PenstemondegeneriDegenerbeardtongueEV
PenstemongibbensiiGibben'sbeardtongueEV
PenstemongrahamiiGrahambeardtongueEV
PenstemonharringtoniiHarrington'sbeardtongueEV
PenstemonpenlandiiPenlandpenstemonEV
Penstemonscariosusvar.albifluvisWhiteRiverpenstemonEV
PhaceliaformosulaNorthParkphaceliaEV
PhaceliasubmuticaDeBequephaceliaEV
Physaria(Lesquerella)congestaDudleyBluffsbladderpodEV
Physaria(Lesquerella)parvifloraPiceancebladderpodEV
Physaria(Lesquerella)pruinosaPagosabladderpodEV
Physaria(Lesquerella)vicinaGood‐neighborbladderpodEV
PhysariaobcordataPiceancetwinpodEV
PhysariapulvinataCushionbladderpodEV
SclerocactusglaucusColoradohooklesscactusEV
SisyrinchiumpallidumPaleblue‐eyedgrassEV
ThalictrumheliophilumSun‐lovingmeadowrueEV
ClimateChangeVulnerabilityAssessmentforColoradoBLM335
Nearlyallofthe62plantspeciesanalyzedscoredasextremelyvulnerabletopredictedclimate
changeinColorado.Onlythreespecies(Amsoniajonesii,CamissoniaeastwoodiaeandOenothera
acutissima)werehighlytomoderatelyvulnerable.Noneoftheplantspeciesscoredaspresumed
stableorlikelytoincreaseundertheclimatechangescenariousedinthisanalysis.(Table4.1).
Factorsthatweremostlikelytocontributetothevulnerabilityofplantsinclude:naturalbarriersto
movementandpoordispersalability,physiologicalhydrologicalniche,restrictiontouncommon
geologicfeaturesorsubstrates,andpollinatorspecificity.Ofthe62plantspeciesevaluatedfor
Coloradotheconfidenceratingswereveryhighforallspecies.
Despitethedevelopmentofnumerousclimatechangemodels,thereremainssomeuncertainty
aboutwhatclimaticchangeswillactuallyoccurandhowspeciesfitnessandpopulationstability
willbeaffected.Whenevaluatedataregional(i.e.,smallerthanstatewide)scale,somespecies
scoredaslessvulnerabletoclimatechange.Forexample,intheSanJuanregionofColorado,
Amsoniajonesiiispresumedstablewheretherearefewnaturaloranthropogenicbarriersto
movementandithasbeenexposedtogreaterhistoricaltemperaturevariation,whereasitscoresas
moderatelyvulnerableonastatewidescalewherethepresenceofnaturalandanthropogenic
barriersincreasesandthereislessexposuretohistorictemperatureextremes.Mimulus
eastwoodiaescoredashighlyvulnerableintheSanJuanregionbutisconsideredextremely
vulnerableonastatewidescaleforthesamereasons,increasedbarrierstomovementandless
exposuretohistorictemperaturevariation.ThesamewastrueforPediomelumaromaticumwhich
ismoderatelyvulnerableintheSanJuan’sandextremelyvulnerablestatewide.Thus,itisimportant
toconsiderthespeciesrangeinrelationtotheassessmentareawhendevelopingadaption
strategies,andtoconsiderhowsuchfactors,suchasprecipitationandtemperatureaveragescan
affectthescoreswhenspeciesareevaluatedatdifferentscales.
Figure 4.1.Summaryofclimatechangevulnerabilityscoresforplantspecies.EV=ExtremelyVulnerable;HV=
HighlyVulnerable;MV=ModeratelyVulnerable;PS=PresumedStable;IL=IncreaseLikely.
336ColoradoNaturalHeritageProgram©2015
PLANT SPECIES CCVI SUMMARIES
ClimateChangeVulnerabilityAssessmentforColoradoBLM337
Aleteslatilobus(Lomatiumlatilobum)
Canyonlandsaletes
G1G2/S1
Family:Apiaceae
Photo:GinaGlenne
Climate Vulnerability Rank: Extremely Vulnerable
ThisColoradostate‐widerankisbasedonthefollowingfactors:1)1)Aleteslatilobushabitatis
surroundedbyanthropogenicandnaturalbarriersthatmayinhibitrangeshift2)potentialincrease
inenergydevelopmentinA.latilobushabitat;3)A.latilobushasexperiencedasmallrangeinmean
annualprecipitationoverthelast50years;4)seeddispersaldistancesareprobablyfairlylimited;
5)potentialdecreaseinsoilmoistureavailabilityunderprojectedwarmertemperatures;6)
restrictiontosandstoneEntradaandNavajoFormations.
Distribution:ColoradoPlateau,NavajoBasin;GrandandSanJuanCounties,Utah,andMesa
County,Colorado.Habitat:OnEntradaSandstoneandNavajoSandstone,betweenfinsandinslot
canyons,insandysoilandincrevices.Surroundingplantcommunitiesaredesertshrub,pinyon‐
juniper,orponderosapine‐mountainbrush.Foundincanyonlandsinpinyon‐juniperanddesert
shrubcommunities;onsandstoneledgesandinsandysoilsderivedfromtheEntradaFormationor
thecontactpointoftheWingateandChinleFormations(Spackmanetal.1997,Ackerfield2012,
WeberandWittmann2012).Elevation:4541‐5807feet.
EcologicalSystem:CliffandCanyon,DesertShrub
CCVI Scoring
B1)Exposuretosealevelrise.Neutral.
338ColoradoNaturalHeritageProgram©2015
B2a)Distributionrelativetonaturalbarriers.Increase.Rangeshiftinresponsetoclimate
changeisinhibitedbyunsuitablegeologyandtheColoradoRiverValley(tothenorth)thatdonot
containsuitablehabitatforthisspecies(USGS2004).
B2b)Distributionrelativetoanthropogenicbarriers.Increase.Extensivehabitatalterationdue
tooilandgasextractioninandaroundhabitatoccupiedbythisspecies(FracFocusWells2013)
inhibitsrangeshift.Additionally,muchofthelandscapesurroundingoccurrencesofA.latilobushas
beenalteredbylivestockgrazing(CNHP2014).
B3)Impactoflandusechangesresultingfromhumanresponsestoclimatechange.Increase.
Desertshrublandshavehighpotentialfornaturalgasextraction,andsolarandwindenergy
development(Grunauetal.2011;NRDC2011).
C1)Dispersalandmovements.Increase.Seedslikelyfallclosetoparentplant.
C2ai)Predictedsensitivitytotemperature:historicthermalniche.Neutral.Consideringthe
meanseasonaltemperaturevariationforoccupiedcells,thespecieshasexperiencedaverage(57.1‐
77°F/31.8‐43.0°C)temperaturevariationinthepast50years.
C2aii)Predictedsensitivitytotemperature:physiologicalthermalniche.Increase.Cliffand
canyonspecieswererated‘Increase’basedontheassumptionthatthesehabitatsarelikelytobe
alteredasColoradobecomeswarmer.
C2bi) Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime:
historicalhydrologicalniche.GreatlyIncrease.Consideringtherangeofmeanannual
precipitationacrossoccupiedcells,thespecieshasexperiencedverysmall(<4inches/100mm)
precipitationvariationinthepast50years.
C2bii)Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime:
physiologicalhydrologicalniche.Increase.Climatemodelsprojecthottertemperaturesfor
Colorado,withtrendstowardmoreseveresoil‐moisturedroughtconditionsinColorado(Lukaset
al.2014).Warmertemperatureswillresultinhigherevapotranspirationratesforplants.A.
latilobusoccursinasemi‐aridclimatewithanaverageof11.33inchesofprecipitationperyear
(WesternRegionalClimateCenter2015).Althoughtolerancelimitsforlackofmoistureare
unknownforthisspecies,ahotterclimatecombinedwithhigherevapotranspirationmayresultin
stressfulconditionsforA.latilobus.
C2c)Dependenceonaspecificdisturbanceregimelikelytobeimpactedbyclimatechange.
Neutral.
C2d)Dependenceonice,ice‐edge,orsnowcoverhabitats.Neutral.Thisspeciesisnotrestricted
toordependentoniceorsnowcoverhabitats.
C3)Restrictiontouncommongeologicalfeaturesorderivatives.SomewhatIncrease.
RestrictedtosandstonesoftheEntradaandNavajoFormations(CNHP2014).
ClimateChangeVulnerabilityAssessmentforColoradoBLM339
C4a)Dependenceonotherspeciestogeneratehabitat.Neutral.Thereisnoevidencethatthis
speciesisdependentonotherspeciestogeneratehabitat.
C4c)PollinatorVersatility.Unknown.
C4d)Dependenceonotherspeciesforpropaguledispersal.Unknown.
C4e)FormspartofaninterspecificinteractionnotcoveredbyC4a‐d.Unknown.
C5a)Measuredgeneticvariation.Unknown.
C5b)Occurrenceofbottlenecksinrecentevolutionaryhistory.Unknown.
C6)Phenologicalresponsetochangingseasonaltemperatureandprecipitationdynamics.
Unknown.
Literature Cited
Ackerfield,J.2012.TheFloraofColorado.ColoradoStateUniversityHerbarium.433pp.
ColoradoNaturalHeritageProgram.1997+.ColoradoRarePlantGuide.www.cnhp.colostate.edu.Latestupdate:June30,
2014.
ColoradoNaturalHeritageProgram(CNHP).2014.BiodiversityTrackingandConservationSystem(BIOTICS).Colorado
NaturalHeritageProgram,ColoradoStateUniversity,FortCollins.
FracFocusWells.2013.MapProvidedbyFracTrackerAllianceonFracTracker.org.Availableat:
http://www.fractracker.org/map/national/
Grunau,L.,J.Handwerk,andS.Spackman‐Panjabi,eds.2011.ColoradoWildlifeActionPlan:proposedrareplant
addendum.ColoradoNaturalHeritageProgram,ColoradoStateUniversity,FortCollins,CO.
Lukas,J.,J.Barsugli,N.Doesken,I.Rangwala,andK.Wolter2014.ClimateChangeinColorado,ASynthesistoSupport
WaterResourcesManagementandAdaptation,SecondEdition.Availableat:
http://wwa.colorado.edu/climate/co2014report/.Accessed:2014.
NaturalResourcesDefenseCouncil[NRDC].2011.RenewableenergyforAmerica:harvestingthebenefitsofhomegrown,
renewableenergy.Online.Available:http://www.nrdc.org/energy/renewables/energymap.asp(accessed2014).
Spackman,S.,B.Jennings,J.Coles,C.Dawson,M.Minton,A.Kratz,andC.Spurrier.1997.Coloradorareplantfieldguide.
PreparedforBureauofLandManagement,U.S.ForestServiceandU.S.FishandWildlifeServicebyColoradoNatural
HeritageProgram.
USGSNationalGapAnalysisProgram.2004.ProvisionalDigitalLandCoverMapfortheSouthwesternUnitedStates.
Version1.0.RS/GISLaboratory,CollegeofNaturalResources,UtahStateUniversity.
Weber,W.A.andR.C.Wittmann.2012.ColoradoFlora,WesternSlope,AFieldGuidetotheVascularPlants,FourthEdition.
Boulder,Colorado.532pp.
WesternRegionalClimateCenter.2015.AverageannualprecipitationforGrandJunction,Colorado.
http://www.wrcc.dri.edu/cgi‐bin/cliMAIN.pl?co3488.AccessedFeb24,2015.PeriodofRecord:1900to2015.
340ColoradoNaturalHeritageProgram©2015
Aleteslithophilus(Neoparryalithophila)
Rock‐lovingneoparrya
G3/S3
Family:Apiaceae
Photo:JimMcCain
Climate Vulnerability Rank: Highly Vulnerable
ThisColoradostate‐widerankisbasedon:predicteddecreasesinprecipitation;thediscontinuityof
suitablehabitatthatisolatespopulationsandcreatesnaturalbarriersandhabitatalterationthat
resultsfromlivestockgrazingwhichactsasananthropogenicbarriers;possiblewindpower
developmentthatmayoccurincurrentandpotentialfuturerange;limitedsuccessfulseed
dispersal;andalterationofthenaturalfiredisturbanceregime.Suitablehabitatislikelytobe
reducedasthisspecies’rangebecomesdrier.Climatemodelsprojectannualnetdryingacrossthe
rangeofthisspecies(NatureServe2012)withresultingtrendstowardmoreseveresoil‐moisture
droughtconditionsinColorado(Lukasetal.2014)
Distribution:AleteslithophilusisendemictothesouthernRockyMountainswherethisspeciesis
knownfromsevencountiesinsouth‐centralColorado:Chaffee,Conejos,Fremont,Huerfano,
Mineral,RioGrande,andSaguache;andhasalsobeenreportedfromonesiteinnorth‐centralRio
BravoCountyinNewMexico(Anderson2004,SEINet2014).Mostoccurrencesareknownfromthe
westernrimoftheSanLuisValley,butimportantoutlyingoccurrencesarealsofoundinthe
ArkansasValleyintheSalidaareaandatFarisitaDikeinHuerfanoCounty(Anderson2004).
EcologicalSystem/Habitat:AleteslithophilusisfoundintheSouthernRockyMountainSteppe‐
OpenWoodland‐ConiferousForest‐AlpineMeadowProvince(Anderson2004).InthisecosystemN.
lithophilatypicallyoccupiesvolcanicsubstrates,inthecracksorshelvesofmoderatetosteeprock
outcrops,oroutcropsofvolcanicsoils,usuallywithminimaltalusbutisalsoknowntooccuron
sedimentaryrockderivedfromextrusivevolcanics.Habitatsurroundingtherockoutcropsis
typicallygrasslandsorpinon‐juniperwoodlandswithassociatedtaxaoftenincludingFestuca,
Artemisia,Muhlenbergia,Hymenoxys,andRibes(NatureServe2014).Elevation:Reportsdocument
ClimateChangeVulnerabilityAssessmentforColoradoBLM341
thatAleteslithophilusrangesfrom6,700to10,000feet,butismostcommonlyfoundbetween7,280
to9,800feetinelevation(Anderson2004).
CCVI Scoring
B1)Exposuretosealevelrise.Neutral.
B2a)Distributionrelativetonaturalbarriers.Increase.OccurrencesofAleteslithophilusare
naturallyisolatedbythediscontinuityofsuitablehabitat(Anderson2004).Thisspeciesoccupies
rockoutcrops,dikesandcliffsthataredistributedonthelandscapeasislandssurroundedbyasea
ofgrasslandandwoodlandhabitatswheretheinterveningenvironmentisapparentlyunsuitable
fortheestablishmentofA.lithophilusandactsasbarrierstorangeshift.
B2b)Distributionrelativetoanthropogenicbarriers.Somewhatincrease.Habitatalterationas
aconsequenceoflivestockgrazingbothindirectlyanddirectlyimpairsrangeshiftdrivenbyclimate
change.Aleteslithophilusishighlyvulnerabletohabitatalterationasindicatedbya“coefficientof
conservatism”value(Cvalue)of“9”(Rocchio2007).ThemajorityofA.lithophilusoccurrencesare
eitheronoradjacenttolandthatismanagedforlivestockgrazing(BLM2014,CNHP2014)andthe
majorityofthosegrazingallotmentsarecategorizedas“improve”(BLM2014).
B3)Impactoflandusechangesresultingfromhumanresponsestoclimatechange.
Somewhatincrease.NaturalhistoryrequirementsofAleteslithophilusareincompatiblewiththe
landusechangesthatmaypossiblyoccurinitscurrentandfuturerangeasaresultofwindenergy
development.Potentialforwindpowerdevelopmentishighthroughoutthewesternperimeterof
theSanLuisvalley(NRDC2011)wherethemajorityofthedocumentedoccurrencesofN.lithophila
arelocated(CNHP2014).
C1)Dispersalandmovements.Somewhatincrease.Successfulseeddispersalislimitedby
unsuitablehabitat.AlthoughAleteslithophilusseedsmaybedispersedbyavarietyofmechanisms,
includingwindandanimals,withpotentialmaximumdispersaldistancesofupto15and1,500
metersrespectively(JongejansandTelenius2001,VittozandEngler2007),theprobabilityof
dispersaldecreasesrapidlywithincreasingdistancefromthesource(Barbouretal.1987).Flat
areassurroundingtherockoutcropsinhabitedbyN.lithophilapresentunsuitablehabitatthat
undoubtedlyactassinkswhenseedsareblownorwashedontotheseareas(Anderson2004).
C2ai)Predictedsensitivitytotemperature:historicthermalniche.Neutral. Consideringthe
meanseasonaltemperaturevariationforoccupiedcells,thespecieshasexperiencedaverage
temperaturevariation(57.1‐77oF)inthepast50years.
C2aii)Predictedsensitivitytotemperature:physiologicalthermalniche.Neutral.Aletes
lithophilusisnotrestrictedtocoolorcoldenvironments.Additionally,habitatpreferences
(Anderson2004)suggestthatA.lithophilusistolerantofwarmertemperatures.
C2bi) Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime:
historicalhydrologicalniche.Neutral.Consideringtherangeofmeanannualprecipitationacross
342ColoradoNaturalHeritageProgram©2015
occupiedcells,thespecieshasexperiencedaverageprecipitationvariation(36.5inches)inthepast
50years.
C2bii)Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime:
physiologicalhydrologicalniche.Somewhatincrease.Aleteslithophilusissomewhatdependent
onaseasonalhydrologicregimethatisvulnerabletoalterationwithclimatechangeandassociated
predictedincreasedseverityandfrequencyofdrought(USGCRP2009).AlthoughA.lithophilus
occupiesxericsites,populationmaintenanceviarecruitmentisdependentonseedlingsuccess
whichappearstobedependentonperiodsofoneorseveralwetyearsduringwhichplantscan
becomeestablished(Anderson2004).
C2c)Dependenceonaspecificdisturbanceregimelikelytobeimpactedbyclimatechange.
Increase.WhileseveredroughtsarealreadypartoftheSouthwestclimate,human‐inducedclimate
changewilllikelyresultinmorefrequentandmoreseveredroughtswithassociatedincreasesin
wildfires(USGCRP2009).Additionally,thepresenceofcheatgrass(Bromustectorum)inmany
occurrencesmayfurtherexacerbateclimatechange‐inducedalterationtonaturalfireregimes.
Increasedfirefrequencywillfavorfire‐dependentorfire‐tolerantspecies,whichthisspeciesisnot
(Anderson2004),leadingtowardchangesinspeciescomposition(Noss2001).
C2d)Dependenceonice,ice‐edge,orsnowcoverhabitats.Neutral.Thisspeciesisnotrestricted
toordependentoniceorsnowcoverhabitats.
C3)Restrictiontouncommongeologicalfeaturesorderivatives.Somewhatincrease.Aletes
lithophilusisprimarilyrestrictedtoTertiaryvolcanicsubstrateswiththespeciesprimarily
distributedalongtheeasternmarginoftheSanJuanVolcanicArea(Anderson2004).Tertiary
volcanicsubstratesarewidelydistributedinsouthcentralandsouthwesternColoradowith
Tertiaryashflowtuffandpre‐ashflowvolcanicsunderlyingmuchoftheeasternSanJuan
Mountains(Tweto1979,ChronicandWilliams2002).
C4a)Dependenceonotherspeciestogeneratehabitat.Neutral.Aleteslithophilusisnotknown
tobedependentonotherspeciestogeneratehabitat.
C4c)PollinatorVersatility.Neutral.SpeciesinthefamilyApiaceaehaveahighdegreeoffloral
uniformitywithverylittlefloralspecializationandthusutilizeabroadsuiteofpollinatorsfor
pollenvectors(Anderson2004).
C4d)Dependenceonotherspeciesforpropaguledispersal.Neutral.Aleteslithophilusisnot
knowntobedependentonotherspeciesfordispersal.
C4e)FormspartofaninterspecificinteractionnotcoveredbyC4a‐d.Unknown.
C5a)Measuredgeneticvariation.Unknown.
C5b)Occurrenceofbottlenecksinrecentevolutionaryhistory.Unknown.
C6)Phenologicalresponsetochangingseasonaltemperatureandprecipitationdynamics.
Unknown.
ClimateChangeVulnerabilityAssessmentforColoradoBLM343
Literature Cited
Anderson,D.G.2004.NeoparryalithophilaMathias(Bill’sneoparrya):atechnicalconservationassessment.[Online].USDA
ForestService,RockyMountainRegion.Available:
http://www.fs.fed.us/r2/projects/scp/assessments/neoparryalithophila.pdf
Barbour,M.G.,J.H.Burk,andW.D.Pitts.1987.TerrestrialPlantEcology.Benjamin/CummingsPublishingCompany,Inc.,
MenloPark,CA.
Chronic,H.andF.Williams.2002.RoadsideGeologyofColorado,2nded.MountainPressPublishingCO.,Missoula,
Montana.
ColoradoNaturalHeritageProgram(CNHP).2014.BiodiversityTrackingandConservationSystem(BIOTICS).Colorado
NaturalHeritageProgram,ColoradoStateUniversity,FortCollins.
Jongejans,E.andA.Telenius.2001.Fieldexperimentsonseeddispersalbywindintenumbelliferousspecies(Apiaceae).
PlantEcology152:67–78.
Lukas,J.,J.Barsugli,N.Doesken,I.Rangwala,andK.Wolter2014.ClimateChangeinColorado,ASynthesistoSupport
WaterResourcesManagementandAdaptation,SecondEdition.Availableat:
http://wwa.colorado.edu/climate/co2014report/.Accessed:2014.
NatureServe2012.ClimateChangeVulnerabilityAssessmentTool,version2.1.Availableonlineat
https://connect.natureserve.org/science/climate‐change/ccvi.
NatureServe.2014.NatureServeExplorer:Anonlineencyclopediaoflife[webapplication].Version7.1.NatureServe,
Arlington,Virginia.Availablehttp://explorer.natureserve.org.(Accessed:November14,2014)
Noss,R.(2001).BeyondKyoto:Forestmanagementinatimeofrapidclimatechange.ConservationBiology15(3):578‐
590.
NRDCRenewableEnergyMapNaturalResourcesDefenseCounsel.2011.RenewableenergyforAmerica:harvestingthe
benefitsofhomegrown,renewableenergy.Online.Available:http://www.nrdc.org/energy/renewables/energymap.asp
(accessed2014).
Rocchio,J.2007.FloristicQualityAssessmentIndicesforColoradoPlantCommunities.ColoradoNaturalHeritage
Program,ColoradoStateUniversity,FortCollins,CO.
SouthwestEnvironmentalInformationNetwork(SEINet).2014.Cryptanthacaespitosa.Availableat:
http://swbiodiversity.org/.Accessed2014.
Tweto,O.1979.GeologicMapofColorado.CompiledbytheU.S.GeologicalSurveywithtechnicalassistancebythe
ColoradoGeologicalSurvey.
U.S.DepartmentoftheInterior,BureauofLandManagement(BLM).2014.Geocommunicator.Availableat:
http://www.geocommunicator.gov/GeoComm/.Accessed:2014.
VittozP.andEnglerR.2007.Seeddispersaldistances:atypologybasedondispersalmodesandplanttraits.Bot.Helv.
117:109–124.
344ColoradoNaturalHeritageProgram©2015
Amsoniajonesii
Jones’bluestar
G4/S2
Family:Apocynaceae
Photo:JoeLeahy
Climate Vulnerability Rank: Moderately Vulnerable
ThisColoradostatewiderankisbasedon:predictedincreasedtemperatureanddecreased
precipitationduringperiodoffloweringandfruiting;thepresenceofhighescarpmentsthatactas
naturalbarriersaswellashabitatalterationthatresultsfromenergyextraction,agricultural
developmentandlivestockgrazingthatactasanthropogenicbarrierstorangeshift;possiblewind
powerdevelopmentwhichmayimpactpotentialfuturerange;alterationtothenaturalfire
disturbanceregime;pollinatorlimitation;predicteddecreaseinmodeledfuturerangewithlittle
habitatincludedinprotectedareas.Suitablehabitatislikelytobelosttothisspeciesand
reproductivesuccessdiminished.Climatemodelsprojectannualnetdryingthroughouttherangeof
thisspecies(NatureServe2012)whichmayimpactrecruitmentandpopulationsurvivability.
Distribution:A.jonesiiisknownfromNEArizona,Utah,NWNewMexico,andSWColoradointhe
UnitedStates(NatureServe2014).InColorado,itisknownfromMesaandMontezumacounties
(USDANRCS2013,CNHP2014).Habitat:Dry,openareaswithclay,sandy,orgravellysoils,in
desert‐steppe,rockydrainagesanddraws(CNHP2014).Elevation:4400‐5800feet.
EcologicalSystem:DesertShrublands,Pinyon‐JuniperWoodlands
CCVI Scoring
B1)Exposuretosealevelrise.Neutral.
B2a)Distributionrelativetonaturalbarriers.SomewhatIncrease.Withachangingclimate
Amsoniajonesiiispredictedtomovenorthward,trackingclimatemoresuitabletoitsevolved
environmentaltolerancesandecologicalniche(UVUH2014).Coloradopopulationswillencounter
ClimateChangeVulnerabilityAssessmentforColoradoBLM345
theRoanPlateau,aneast‐westtrendingescarpment,whichpresentsanaturalelevational,
environmentalandhabitatbarrierthatrestrictstheabilityofthisspeciestoshiftrange.
B2b)Distributionrelativetoanthropogenicbarriers.SomewhatIncrease.SomeColorado
populationsinwillbeinhibitedfromrangeshiftbyoilandgasdevelopment(FracFocusWells
2013),habitatconversiontohayagricultureandhabitatalterationbylivestock(USDA2012).
B3)Predictedimpactoflandusechangesresultingfromhumanresponsestoclimatechange.
Neutral.AlthoughportionsofwesternColoradohavehighpotentialforwindandsolarenergy
development,thespeciesisunlikelytobesignificantlyaffectedbymitigation‐relatedlanduse
changesthatmayoccurwithinitscurrentand/orpotentialfuturerange(NRDC2011).
C1)Dispersalandmovements.Somewhatincrease.Similartorelatedspecies,thecylindricaland
corkyseedsofAmsoniajonesiimaybedispersedbywater.Dispersalbywaterishighly
unpredictableandundocumented(VittozandEngler2007)butingeneralmostplantseedsdonot
dispersefartherthan100m(Cainetal.2000).
C2ai)Predictedsensitivitytotemperature:historicthermalniche.Neutral.Consideringthe
meanseasonaltemperaturevariationovertherangeofthisspecies,Amsoniajonesiihas
experiencedaveragetemperaturevariation(57.1‐77°F)overthepast50years(NatureServe2012).
C2aii)Predictedsensitivitytotemperature:physiologicalthermalniche.Somewhatdecrease.
Thisspeciesisnotrestrictedtocoolorcoldenvironmentsandshowsapreferencefor
environmentstowardthewarmerendofthespectrum.
C2bi) Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime:
historicalhydrologicalniche.Neutral.Consideringtherangeofmeanannualprecipitationacross
occupiedcells,A.jonesiihasexperiencedaverage(21‐40inches/509‐1,016mm)precipitation
variationinthepast50years(NatureServe2012).
C2bii)Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime:
physiologicalhydrologicalniche.SomewhatIncrease.Speciesisfoundincoarse,sandysoilsoften
inthebottomsofdrawsanddrainages.Predictedclimatedryingduringthespringgrowingseason
willreducethisspeciesrecruitment,abundanceandhabitatsuitability.Longtermsurvivabilitymay
consequentlybediminishedeventhoughincreasedautumnmoisturemayenhancedispersaland
germinationpotential.Duringlatesummerandearlyautumn,A.jonesiiispredictedtobeexposed
toprecipitationdecreasesofupto3percentoverapproximately30percentofitsrangeand
increasesofupto6percentover70percentofitsrange.
C2c)Dependenceonaspecificdisturbanceregimelikelytobeimpactedbyclimatechange.
Increase.FirefrequenciesinthePinyon‐Juniperwoodlandsandsageanddesertshrublands
occupiedbythisspeciesareexpectedtoincreaseinthefuture,followingtrendsthatalreadyshow
increasedfirefrequencies,areaburnedandfireseverity(Littleetal.2009,Stephens2005,
Westerlingetal.2006,USFSnodate).
346ColoradoNaturalHeritageProgram©2015
C2d)Dependenceonice,ice‐edge,orsnowcoverhabitats.Neutral.Thisspeciesisnotrestricted
toordependentoniceorsnowcoverhabitats.
C3)Restrictiontouncommongeologicalfeaturesorderivatives.Somewhatdecrease.Speciesis
reportedtobewidelyadaptableinthenurserytrade,andisreportedtogrowonvarioussubstrates.
C4a)Dependenceonotherspeciestogeneratehabitat.Neutral.Thereisnoevidencethatthis
speciesdependsonotherspeciestogenerateitshabitat.
C4c)PollinatorVersatility.Neutral.InferredfromarelatedspeciesAmsoniakearneyanawhich
hasawidevarietyofpollinators(USFWS2013).
C4d)Dependenceonotherspeciesforpropaguledispersal.Neutral.Similartootherrelated
species,seedmorphologysuggeststhatthisspeciesmaydispersebywaterandisthusnotlikely
reliantonotherspeciesfordispersal.
C4e)FormspartofaninterspecificinteractionnotcoveredbyC4a‐d.Unknown.
C5a)Measuredgeneticvariation.Unknown.
C5b)Occurrenceofbottlenecksinrecentevolutionaryhistory.Unknown.
C6)Phenologicalresponsetochangingseasonaltemperatureandprecipitationdynamics.
Unknown.
D1)DocumentedResponsetoRecentClimateChange(e.g.,rangecontractionorphenology
mismatchwithcriticalresources).Unknown.
D2)ModeledFuture(2050)ChangeinRangeorPopulationSize.Increase.Rangewide
predictedfuturerangerepresentsa20percentto50percentdeclinerelativetocurrentrange
(UVUH2014).
D3)OverlapofModeledFuture(2050)RangewithCurrentRange.Neutral.Predictedfuture
rangeoverlapsthecurrentrangebygreaterthan60percentwithintheassessmentarea(UVUH
2014).
D4)OccurrenceofProtectedAreasinModeledFuture(2050)Distribution.Somewhat
Increase.Fivetothirtypercentofthemodeledfuturedistributionwithintheassessmentareais
encompassedbyoneormoreprotectedareas(USDI2014).
Literature Cited
Cain,M.L.,B.G.Milligan,andA.E.Strand.2000.Long‐distanceSeedDispersalinPlantPopulations.AmericanJournalof
Botany87(9):1217–1227.
ColoradoNaturalHeritageProgram.1997+.ColoradoRarePlantGuide.www.cnhp.colostate.edu.Latestupdate:June30,
2014.
ClimateChangeVulnerabilityAssessmentforColoradoBLM347
ColoradoNaturalHeritageProgram(CNHP).2014.BiodiversityTrackingandConservationSystem(BIOTICS).Colorado
NaturalHeritageProgram,ColoradoStateUniversity,FortCollins.
Littell,J.,D.McKenzie,D.Peterson,andA.Westerling.2009.ClimateandwildfireareaburnedinwesternU.S.
ecoprovinces,1916‐2003.EcologicalApplications19:1003‐1021
NatureServe2012.ClimateChangeVulnerabilityAssessmentTool,version2.1.Availableonlineat
https://connect.natureserve.org/science/climate‐change/ccvi.
NatureServe.2014.NatureServeExplorer:Anonlineencyclopediaoflife[webapplication].Version7.1.NatureServe,
Arlington,Virginia.Availablehttp://explorer.natureserve.org.
NRDCRenewableEnergyMapNaturalResourcesDefenseCounsel.2011.RenewableenergyforAmerica:harvestingthe
benefitsofhomegrown,renewableenergy.Online.Available:http://www.nrdc.org/energy/renewables/energymap.asp
(accessed2014).
Stephens,S.L.2005.ForestfirecausesandextentonUnitedStatesForestServicelands.InternationalJournalofWildland
Fire14:213‐222.
U.S.DepartmentofAgriculture(USDA).2012.2012CensusofAgriculture.Availableat:
http://www.agcensus.usda.gov/index.php
U.S.D.A.ForestService(USFS).NoDate.Pinyon‐JuniperNaturalRangeofVariation.Availableat:
http://www.fs.usda.gov/Internet/FSE_DOCUMENTS/stelprdb5434337.pdf.
U.S.DepartmentoftheInterior(USDI),U.S.GeologicalSurvey.2014.NationalGapAnalysisProgram,ProtectedAreasData
Viewer.Availableat:http://gapanalysis.usgs.gov/padus/viewer/
U.S.FishandWildlifeService(USFWS).2013.AmsoniakearneyanaKearneyblue‐star5‐YearReview:Summaryand
Evaluation.ArizonaEcologicalServicesTucsonSub‐office,Tucson,Arizona.
UtahValleyUniversityHerbarium(UVUH).2014.Availableat:http://herbarium.uvu.edu/herbInfo.shtml
VittozP.andEnglerR.2007.Seeddispersaldistances:atypologybasedondispersalmodesandplanttraits.Botanica
Helvetica,117(2),109–124.DOI:10.1007/s00035‐007‐0797‐8
Westerling,A.L.,B.P.Bryant,H.K.Preisler,T.P.Holmes,H.G.Hidalgo,T.Das,andS.R.Shrestha.2011.Climatechangeand
growthscenariosforCaliforniawildfire.ClimaticChange109:445‐463.
348ColoradoNaturalHeritageProgram©2015
Aquilegiachrysanthavar.rydbergii
Goldencolumbine
G4T1Q/S1
Family:Ranunculaceae
Photo:SteveOlson
Climate Vulnerability Rank: Extremely Vulnerable
ThisColoradostate‐widevulnerabilityrankisbasedonthefollowing:1)restrictiontomoistmicro‐
habitatsincliffs,canyons,andseeps2)relianceonhawkmothsasamajorpollinator3)shortseed
dispersaldistances.
Distribution:KnownfromFremont,ElPaso,Jefferson,andLasAnimascounties.ThePlants
Database(USDANRCS2015)showsA.chrysanthavar.rydbergiiinArizona,Colorado,andNew
Mexico.TheFloraofNorthAmerica(Vol.3,1997)statesthatColoradopopulationshavebeencalled
A.chrysanthavar.rydbergiianddoesnotmentionNewMexicoorArizona.ReportsfromNew
MexicoandArizona(USDANRCS2015)areprobablyerroneous,possiblyoriginatingbecauseNM
andAZarelistedintherangeofvar.rydbergiiinthe1985NoticeofReviewforListingas
EndangeredorThreatenedSpecies.Thesereportshavenototherwisebeensubstantiated.Habitat:
Incanyonsandfoothillsalongstreamsorinrockyravines(Spackmanetal.1997,Weberand
Wittmann2012).Aquilegiachrysanthavar.rydbergiigrowsinorganicsoilsandhasalsobeen
observedingravelderivedfromgraniteparentmaterial.Oftenfoundnearthebaseofboulderson
thecanyonsidesandfloor,itmayalsogrowonseep‐fedrockyledges.Itgrowsinshadyandmoist
areasonslopesaboveacreek,alongthesidedrainages,andwithintheriparianareaofaperennial
stream.Elevation:5,000‐8,240feet.
EcologicalSystem:MountainStreams,SeepsandSprings,DouglasFir
ClimateChangeVulnerabilityAssessmentforColoradoBLM349
CCVI Scoring
B1)Exposuretosealevelrise.Neutral.
B2a)Distributionrelativetonaturalbarriers.Neutral.
B2b)Distributionrelativetoanthropogenicbarriers.Neutral.
B3)Impactoflandusechangesresultingfromhumanresponsestoclimatechange.Neutral.
C1)Dispersalandmovements.Increase.Seedslikelyfallclosetotheparentplant,anddonot
containspecializedstructuresfordispersal.
C2ai)Predictedsensitivitytotemperature:historicthermalniche.SomewhatIncrease.
Consideringthemeanseasonaltemperaturevariationovertherangeofthisspecies,Aquilegia
chrysanthavar.rydbergiihasexperiencedslightlylowerthanaveragetemperaturevariation(47.1‐
57°F)overthepast50years(NatureServe2012).
C2aii)Predictedsensitivitytotemperature:physiologicalthermalniche.Increase.This
speciesoccursincool,shaded,moisthabitatsthatmaybereducedifColoradobecomeswarmerand
drier,asprojectedinmanyclimatemodels.
C2bi) Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime:
historicalhydrologicalniche.Increase.Consideringtherangeofmeanannualprecipitationacross
occupiedcellsinColorado,A.chrysanthavar.rydbergiihasexperiencedslightlylowerthanaverage
(15.56inches)precipitationvariationinthepast50years(NatureServe2012).
C2bii)Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime:
physiologicalhydrologicalniche.GreatlyIncrease.Thisspeciesoccursincool,shadedareasin
cliffsandcanyons.Thesemicro‐habitatsoftencontainmoistsoilsandseasonalseepsthatmaybe
vulnerabletoclimatechange.
C2c)Dependenceonaspecificdisturbanceregimelikelytobeimpactedbyclimatechange.
Neutral.
C2d)Dependenceonice,ice‐edge,orsnowcoverhabitats.Neutral.Thisspeciesisnotrestricted
toordependentoniceorsnowcoverhabitats.
C3)Restrictiontouncommongeologicalfeaturesorderivatives.Somewhatdecrease.This
speciesoccursinseveralhabitattypes.
C4a)Dependenceonotherspeciestogeneratehabitat.Neutral.
C4c)PollinatorVersatility.SomewhatIncrease.Crepuscularhawkmothsserveasamajor
pollinatorforA.chrysanthavar.rydbergiiinthesouthwestU.S.andnorthernMexico(Miller1985).
C4d)Dependenceonotherspeciesforpropaguledispersal.Neutral.
350ColoradoNaturalHeritageProgram©2015
C4e)FormspartofaninterspecificinteractionnotcoveredbyC4a‐d.Neutral.
C5a)Measuredgeneticvariation.Unknown.
C5b)Occurrenceofbottlenecksinrecentevolutionaryhistory.Unknown.
C6)Phenologicalresponsetochangingseasonaltemperatureandprecipitationdynamics.
Unknown.
Literature Cited
ColoradoNaturalHeritageProgram.1997+.ColoradoRarePlantGuide.www.cnhp.colostate.edu.Latestupdate:June30,
2014.
ColoradoNaturalHeritageProgram(CNHP).2014.BiodiversityTrackingandConservationSystem(BIOTICS).Colorado
NaturalHeritageProgram,ColoradoStateUniversity,FortCollins.
Miller,R.B.HawkmothPollinationofAquilegiachrysantha(Ranunculaceae)inSouthernArizona.TheSouthwestern
Naturalist30(1):69‐76.
NatureServe2012.ClimateChangeVulnerabilityAssessmentTool,version2.1.Availableonlineat
https://connect.natureserve.org/science/climate‐change/ccvi.
NatureServe.2014.NatureServeExplorer:Anonlineencyclopediaoflife[webapplication].Version7.1.NatureServe,
Arlington,Virginia.Availablehttp://explorer.natureserve.org.Accessed2014.
Spackman,S.,B.Jennings,J.Coles,C.Dawson,M.Minton,A.Kratz,andC.Spurrier.1997.Coloradorareplantfieldguide.
PreparedforBureauofLandManagement,U.S.ForestServiceandU.S.FishandWildlifeServicebyColoradoNatural
HeritageProgram.
USDA,NRCS.2015.ThePLANTSDatabase(http://plants.usda.gov).NationalPlantDataTeam,Greensboro,NC27401‐
4901USA.
Weber,W.A.andR.C.Wittmann.2012.ColoradoFlora,EasternSlope,AFieldGuidetotheVascularPlants,FourthEdition.
Boulder,Colorado.532pp.
ClimateChangeVulnerabilityAssessmentforColoradoBLM351
Asclepiasuncialisssp.uncialis
Dwarfmilkweed
G3G4T2T3/S2
Family:Asclepiadaceae
Photo:SteveOlson
Climate Vulnerability Rank: Extremely Vulnerable
ThisColoradostate‐widerankisbasedonthefollowingfactors:1)lackofvariabilityinmean
annualprecipitationinthepast50years;2)shortseeddispersaldistances;3)croplandandurban
developmentmayactasabarriertoseeddispersal;and4)potentialforwindenergydevelopment
onColorado’seasternplains.
Distribution:Estimatedrangeis71,964squarekilometers(27,785squaremiles),calculatedinGIS
bydrawingaminimumconvexpolygonaroundtheknownoccurrences.Thereispotentiallyabout
40,000squaremilesofhabitatineasternColorado(althoughperhapsasmuchas50%ofthisarea
isnolongersuitablehabitat),roughly45%ofthetotalpotentialrangeofthespecies.Thecurrent
knowndistributionofAsclepiasuncialisssp.uncialisformsanarcalongtheflankoftheSouthern
RockyMountainsfromnortheasternColoradotosouthwesternNewMexicoandadjacent
southeasternArizona.CurrentlyknownfromnineColoradocounties(LasAnimas,Weld,KitCarson,
Huerfano,Pueblo,Otero,Prowers,Fremont,andElPaso),andhistoricallyknownfromatleasteight
additionalcounties(Arapaho,Adams,Baca,Bent,Cheyenne,Larimer,DenverandWashington).
OccurrencesareprimarilyinsoutheasternColorado.Habitat:Asclepiasuncialisssp.uncialisis
primarilyassociatedwithspeciestypicalofshortgrassprairie.Associatedvegetationiscomprised
mostlyofgrasses,withforbs,shrubs,andtreestypicallycomprisinglessthan15%ofthetotal
vegetationcover.Althoughplantsareoftenfoundatthebaseofescarpmentsormesas,thespecies
doesnotoccuronrockledgesoroutcroppings,andisabsentfromhighlydisturbedhabitatssuchas
sanddunes,erosionchannels,washslopes,andbadlands.Occurrencesareknownfromsoils
derivedfromavarietyofsubstrates,includingsandstone,limestone,andshale,butaremostoften
foundinsandyloamsoils.Itdoesnotoccurinpuresand.
Elevation:3890‐7730feet.
352ColoradoNaturalHeritageProgram©2015
EcologicalSystem:ShortgrassPrairie,Pinyon‐Juniper
CCVI Scoring
B1)Exposuretosealevelrise.Neutral.
B2a)Distributionrelativetonaturalbarriers.Neutral.
B2b)Distributionrelativetoanthropogenicbarriers.SomewhatIncrease.Croplandand
urban/ex‐urbandevelopmentintheshortgrassprairiemayactasbarriersforseeddispersal.
B3)Impactoflandusechangesresultingfromhumanresponsestoclimatechange.Increase.
AccordingtoDepartmentofEnergywindresourcemaps,theeasternquarterofColoradonearthe
NewMexicoandNebraskabordershasexcellentwindresources(DOE2004).Winddevelopment
couldresultinthelossofA.uncialisvar.uncialishabitat.
C1)Dispersalandmovements.SomewhatIncrease.Seedscontainatuftofsilkyhairstoaidin
winddispersal(Decker2006).
C2ai)Predictedsensitivitytotemperature:historicthermalniche.SomewhatDecrease.
Consideringthemeanseasonaltemperaturevariationforoccupiedcells,thespecieshas
experiencedgreaterthanaverage(>77°F/43.0°C)temperaturevariationinthepast50years.
C2aii)Predictedsensitivitytotemperature:physiologicalthermalniche.Neutral.Not
restrictedtocoolorcoldclimatesthatareprojectedtobelostduetoclimatechange.
C2bi) Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime:
historicalhydrologicalniche.Increase.Consideringtherangeofmeanannualprecipitationacross
occupiedA.uncialisvar.uncialishabitat,thespecieshasexperiencedsmall(4‐10inches/100‐254
mm)precipitationvariationinthepast50years.
C2bii)Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime:
physiologicalhydrologicalniche.Increase.
C2c)Dependenceonaspecificdisturbanceregimelikelytobeimpactedbyclimatechange.
Neutral.
C2d)Dependenceonice,ice‐edge,orsnowcoverhabitats.Neutral.Thisspeciesisnotrestricted
toordependentoniceorsnowcoverhabitats.
C3)Restrictiontouncommongeologicalfeaturesorderivatives.Neutral.Occurrencesare
knownfromsoilsderivedfromavarietyofsubstrates,includingsandstone,limestone,andshale,
butaremostoftenfoundinsandyloamsoils(CNHP2014;Decker2006).Itdoesnotoccurinpure
sand.
C4a)Dependenceonotherspeciestogeneratehabitat.Neutral.Thereisnoevidencethatthis
speciesisdependentonotherspeciestogeneratehabitat.
ClimateChangeVulnerabilityAssessmentforColoradoBLM353
C4c)PollinatorVersatility.Neutral.Likelytobepollinatedbygeneralistspecies(Decker2006).
C4d)Dependenceonotherspeciesforpropaguledispersal.Neutral.
C4e)FormspartofaninterspecificinteractionnotcoveredbyC4a‐d.Neutral.
C5a)Measuredgeneticvariation.Unknown.
C5b)Occurrenceofbottlenecksinrecentevolutionaryhistory.Unknown.
C6)Phenologicalresponsetochangingseasonaltemperatureandprecipitationdynamics.
Unknown.
Literature Cited
ColoradoNaturalHeritageProgram.1997+.ColoradoRarePlantGuide.www.cnhp.colostate.edu.Latestupdate:June30,
2014.
ColoradoNaturalHeritageProgram(CNHP).2014.BiodiversityTrackingandConservationSystem(BIOTICS).Colorado
NaturalHeritageProgram,ColoradoStateUniversity,FortCollins.
Decker,K.2006.AsclepiasuncialisGreene(wheelmilkweed):atechnicalconservationassessment.[Online].USDAForest
Service,RockyMountainRegion.Available:http://www.fs.fed.us/r2/projects/scp/assessments/asclepiasuncialis.pdf
DepartmentofEnergy(DOE).2004.WINDExchange.ColoradoWindResourceMap.Availableonlineat
http://apps2.eere.energy.gov/wind/windexchange/wind_resource_maps.asp?stateab=co.AccessedFeb2,2015.
NatureServe2012.ClimateChangeVulnerabilityAssessmentTool,version2.1.Availableonlineat
https://connect.natureserve.org/science/climate‐change/ccvi.
NatureServe.2014.NatureServeExplorer:Anonlineencyclopediaoflife[webapplication].Version7.1.NatureServe,
Arlington,Virginia.Availablehttp://explorer.natureserve.org.Accessed2014.
354ColoradoNaturalHeritageProgram©2015
Astragalusanisus
Gunnisonmilkvetch
G2G3/S2S3
Family:Fabaceae
Photo:LoriBrummer
Climate Vulnerability Rank: Extremely Vulnerable
ThisColoradostate‐widerankisbasedonthefollowingfactors:1)highmountainranges
surroundingA.anisuspopulationscreatenaturalbarrierstodispersal;2)probablelimitedseed
dispersaldistances;3)potentialgeothermalenergydevelopmentintheGunnisonBasin;4)species
hasexperiencedasmallrangeofprecipitationinthelast50yearsand5)possiblyrelianceon
nodulization.
Distribution:ThespeciesentireglobalrangeiscontainedwithintheupperGunnisonBasin,in
GunnisonandSaguachecounties,Colorado.Estimatedrangeis1,962squarekilometers(757
squaremiles),calculatedinGISin2008bytheColoradoNaturalHeritageProgrambydrawinga
minimumconvexpolygonaroundtheknownoccurrences.Habitat:Drygravellyflatsandhillsides,
insandyclaysoilsoverlyinggraniticbedrock,usuallyamongorunderlowsagebrush.Elevation:
7500‐8500feet.
EcologicalSystem:Sagebrush
CCVI Scoring
B1)Exposuretosealevelrise.Neutral.
B2a)Distributionrelativetonaturalbarriers.SomewhatIncrease.Rangeshiftinresponseto
climatechangeisinhibitedbyhighmountainrangesthatsurroundtheGunnisonBasin.
ClimateChangeVulnerabilityAssessmentforColoradoBLM355
B2b)Distributionrelativetoanthropogenicbarriers.SomewhatIncreaseUrbanandexurban
developmentintheGunnisonBasinactascurrentandpotentialfuturebarrierstoA.anisus
movement.
B3)Impactoflandusechangesresultingfromhumanresponsestoclimatechange.Increase.
GeothermaldevelopmentpotentialishighintheGunnisonBasin,andifdevelopmentincreasedin
theBasin,itcouldfragmenthabitatintheBasin(USFWS2014).
C1)Dispersalandmovements.Increase.Seedslikelyfallclosetoparentplant,anddonotcontain
specializedstructurestoaidindispersal.
C2ai)Predictedsensitivitytotemperature:historicthermalniche.SomewhatDecrease.
Consideringthemeanseasonaltemperaturevariationforoccupiedcells,A.anisushasexperienced
greaterthanaverage(>77°F/43.0°C)temperaturevariationinthepast50years(NatureServe
2012).
C2aii)Predictedsensitivitytotemperature:physiologicalthermalniche.Neutral.Basedon
fieldobservations,thisplantiswelladaptedtodroughtandtemperatureextremes(Johnston,pers.
comm.2011).
C2bi)Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime:
historicalhydrologicalniche.Increase.Thespecieshasexperiencedsmall(4‐10inches/100‐254
mm)precipitationvariationinthepast50years.
C2bii)Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime:
physiologicalhydrologicalniche.SomewhatIncrease.Speciesissomewhatdependentona
stronglyseasonalhydrologicregimeorlocalizedmoistureregimethatishighlyvulnerabletoloss
orreductionwithclimatechange.Precipitationamountsarefairlyevenlydistributedthroughout
theseasons,withsomewhatmoremoistureoccurringduringthe“monsoon”seasonofJulyand
August(DeckerandAnderson2004).
C2c)Dependenceonaspecificdisturbanceregimelikelytobeimpactedbyclimatechange.
SomewhatIncrease.Astragalusanisusrequiresahighqualitymatrixcommunityofsagebrush
shrublandorpinyon‐juniperwoodlandswhichdependonanaturalfireregimetomaintain
appropriatevegetationstructure(NatureServe2014)Further,modeledfuturechangesinfire
probabilityandofvegetationpatternsshowincreasedprobabilityoffirethroughouttheregion
occupiedbythisspecies(Krawchuketal.2009).
C2d)Dependenceonice,ice‐edge,orsnowcoverhabitats.Neutral.Thisspeciesisnotrestricted
toordependentoniceorsnowcoverhabitats.
C3)Restrictiontouncommongeologicalfeaturesorderivatives.Neutral.
C4a)Dependenceonotherspeciestogeneratehabitat.Neutral.Thereisnoevidencethatthis
speciesisdependentonotherspeciestogeneratehabitat.
C4c)PollinatorVersatility.Neutral.Nodata,forcedscore.
356ColoradoNaturalHeritageProgram©2015
C4d)Dependenceonotherspeciesforpropaguledispersal.Neutral.Nodata,forcedscore.
C4e)FormspartofaninterspecificinteractionnotcoveredbyC4a‐d.SomewhatIncrease.
AlthoughAstragalusanisushasnotbeeninvestigatedfornodulization,noduleshavebeenreported
forseveralotherspeciesinthesubgroupArgophylii(A.crassicarpus,A.missouriensis,A.mollissimus,
andA.purshii),soitispossiblethatA.anisusalsopossessesthisability(DeckerandAnderson
2004).
C5a)Measuredgeneticvariation.Unknown.
C5b)Occurrenceofbottlenecksinrecentevolutionaryhistory.Unknown.
C6)Phenologicalresponsetochangingseasonaltemperatureandprecipitationdynamics.
Unknown.
Literature Cited
ColoradoNaturalHeritageProgram.1997+.ColoradoRarePlantGuide.www.cnhp.colostate.edu.Latestupdate:June30,
2014.
ColoradoNaturalHeritageProgram(CNHP).2014.BiodiversityTrackingandConservationSystem(BIOTICS).Colorado
NaturalHeritageProgram,ColoradoStateUniversity,FortCollins.
Decker,K.andD.G.Anderson.2004.AstragalusanisusM.E.Jones(Gunnisonmilkvetch):atechnicalconservation
assessment.[Online].USDAForestService,RockyMountainRegion.Available:
http://www.fs.fed.us/r2/projects/scp/assessments/astragalusanisus.pdf.[May5,2011].
Johnston,B.2011.PersonalcommunicationatGunnisonClimateChangeWorkshop,May13,2011.Gunnison,Colorado.
KrawchukM.A,M.A.Moritz,M‐A.Parisien,J.VanDorn,K.Hayhoe.2009.GlobalPyrogeography:theCurrentandFuture
DistributionofWildfire.PLoSONE4(4):e5102doi:10.1371/journal.pone.0005102.Availableat:
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0005102#pone‐0005102‐g002
NatureServe2012.ClimateChangeVulnerabilityAssessmentTool,version2.1.Availableonlineat
https://connect.natureserve.org/science/climate‐change/ccvi.
NatureServe.2014.NatureServeExplorer:Anonlineencyclopediaoflife[webapplication].Version7.1.NatureServe,
Arlington,Virginia.Availablehttp://explorer.natureserve.org.Accessed2014.
U.S.FishandWildlifeService(USFWS).2014.FinalRule,EndangeredandThreatenedWildlifeandPlants;Threatened
StatusforGunnisonSage‐Grouse.FederalRegisterVol79,No.224,Nov.20,2014.DepartmentoftheInterior.
ClimateChangeVulnerabilityAssessmentforColoradoBLM357
Astragalusdebequaeus
DeBequemilkvetch
G2/S2
Family:Fabaceae
Photo:PeggyLyon
Climate Vulnerability Rank: Extremely Vulnerable
ThisColoradostate‐widerankisbasedonthefollowingfactors:1)Astragalusdebequaeushabitatis
surroundedbyanthropogenicandnaturalbarriersthatmayinhibitrangeshift2)potentialincrease
innaturalgasdevelopmentinA.debequaeushabitat;3)A.debequaeushasexperiencedasmall
rangeinmeanannualprecipitationoverthelast50years;4)seeddispersaldistancesareprobably
fairlylimited;5)potentialsymbioticrelationshipwithroot‐nodulatingbacteria.
Distribution:KnownfromDelta,GarfieldandMesacounties,intheColoradoRiverValleynear
DeBeque.Theplant'srangeevidentlycorrespondstotheextentoftheAtwellGulchMemberofthe
WasatchFormation.Estimatedrangeis1,736squarekilometers(670squaremiles),calculatedin
2008bytheColoradoNaturalHeritagePrograminGISbydrawingaminimumconvexpolygon
aroundtheknownoccurrences.Habitat:Astragalusdebequaeusoccursinvari‐colored,fine
textured,seleniferous,andapparentlysalinesoilsoftheWasatchFormation‐AtwellGulchMember
(Welsh1985).Itisfoundinareassurroundedbypinyon‐juniperwoodlandsanddesertshrub
(Scheck1994).Astragalusdebequaeusisfoundonbarrenoutcropsofdarkclayinterspersedwith
lensesofsandstone.Theplantsoccuronsandyspots.Plantsaremostlyclusteredontoeslopesand
alongdrainages,butmanyoccuronsteepsideslopes.Soilsareclayeybutlitteredwithsandstone
fragments.Elevation:4950‐6680feet.
EcologicalSystem:Barrens,Pinyon‐Juniper,DesertShrub,Sagebrush
CCVI Scoring
B1)Exposuretosealevelrise.Neutral.
358ColoradoNaturalHeritageProgram©2015
B2a)Distributionrelativetonaturalbarriers.Increase.Rangeshiftinresponsetoclimate
changeisinhibitedbyunsuitablegeologyandhighmountainhabitatsthatwouldnotcontain
suitablehabitatforthisspecies(USGS2004).
B2b)Distributionrelativetoanthropogenicbarriers.SomewhatIncrease.Extensivehabitat
alterationduetooilandgasextractioninandaroundhabitatoccupiedbythisspecies(FracFocus
Wells2013)inhibitsrangeshift.Additionally,muchofthelandscapesurroundingoccurrencesofA.
debequaeushasbeenalteredbylivestockgrazing(CNHP2014).
B3)Impactoflandusechangesresultingfromhumanresponsestoclimatechange.Increase.
ThehabitatofA.debequaeushasahighpotentialfornaturalgasextraction,andmoderatepotential
forsolarandwindenergydevelopment(Grunauetal.2011;NRDC2011).
C1)Dispersalandmovements.Increase.Seeddispersalislikelyfairlylimited,consideringthatA.
debequaeusseedsdonotcontainanyspecializedstructurestoaidindispersal.
C2ai)Predictedsensitivitytotemperature:historicthermalniche.SomewhatDecrease.
Consideringthemeanseasonaltemperaturevariationforoccupiedcells,A.debequaeushas
experiencedgreaterthanaverage(>77°F/43.0°C)temperaturevariationinthepast50years.
C2aii)Predictedsensitivitytotemperature:physiologicalthermalniche.Neutral.A.
debequaeusoccupiesopensitesoverawiderangeofelevations(CNHP2014)withtemperatures
thatvaryadiabaticallywithelevation,suggestingthatthisspeciesisnotlimitedtocool
environments.
C2bi) Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime:
historicalhydrologicalniche.Increase.Consideringtherangeofmeanannualprecipitationacross
occupiedcells,A.debequaeushasexperiencedsmall(4‐10inches/100‐254mm)precipitation
variationinthepast50years.
C2bii)Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime:
physiologicalhydrologicalniche.Increase.Climatemodelsprojecthottertemperaturesfor
Colorado,withtrendstowardmoreseveresoil‐moisturedroughtconditionsinColorado(Lukaset
al.2014).Warmertemperatureswillresultinhigherevapotranspirationratesforplants.A.
debequaeusoccursinasemi‐aridclimatewithanaverageof11.33inchesofprecipitationperyear
(WesternRegionalClimateCenter2015).Althoughtolerancelimitsforlackofmoistureare
unknownforthisspecies,ahotterclimatecombinedwithhigherevapotranspirationmayresultin
stressfulconditionsforA.debequaeus.
C2c)Dependenceonaspecificdisturbanceregimelikelytobeimpactedbyclimatechange.
Neutral.
C2d)Dependenceonice,ice‐edge,orsnowcoverhabitats.Neutral.Thisspeciesisnotrestricted
toordependentoniceorsnowcoverhabitats.
C3)Restrictiontouncommongeologicalfeaturesorderivatives.SomewhatIncrease.Although
thisspeciesoccursinseveralhabitattypesincludingbarrens,pinyon‐juniper,desertshrub,and
ClimateChangeVulnerabilityAssessmentforColoradoBLM359
sagebrush,ithasapreferenceforbarrenoutcropsofdarkclaysoilsoftheAtwellGulchMemberof
the.WasatchFormation‐.
C4a)Dependenceonotherspeciestogeneratehabitat.Neutral.Thereisnoevidencethatthis
speciesisdependentonotherspeciestogeneratehabitat.
C4c)PollinatorVersatility.Neutral.AllAstragalusspeciesareranked‘Neutral’basedonUSFS
speciesassessmentsthatindicateseveralwesternAstragalusspeciesarevisitedbyover20species
ofbees(DeckerandAnderson2004).
C4d)Dependenceonotherspeciesforpropaguledispersal.Neutral.
C4e)FormspartofaninterspecificinteractionnotcoveredbyC4a‐d.SomewhatIncrease.
Astragalus.debequaeushasnotbeeninvestigatedfornodulization.However,noduleshavebeen
reportedforseveralotherspeciesinthesubgroupArgophylii(A.crassicarpus,A.missouriensis,A.
mollissimus,andA.purshii),soitispossiblethatA.equisolensisalsopossessesthisability(Decker
andAnderson2004).
C5a)Measuredgeneticvariation.Unknown.
C5b)Occurrenceofbottlenecksinrecentevolutionaryhistory.Unknown.
C6)Phenologicalresponsetochangingseasonaltemperatureandprecipitationdynamics.
Unknown.
Literature Cited
ColoradoNaturalHeritageProgram.1997+.ColoradoRarePlantGuide.www.cnhp.colostate.edu.Latestupdate:June30,
2014.
ColoradoNaturalHeritageProgram(CNHP).2014.BiodiversityTrackingandConservationSystem(BIOTICS).Colorado
NaturalHeritageProgram,ColoradoStateUniversity,FortCollins.
Decker,K.andD.G.Anderson.(2004,April21).AstragalusanisusM.E.Jones(Gunnisonmilkvetch):atechnical
conservationassessment.[Online].USDAForestService,RockyMountainRegion.Available:
http://www.fs.fed.us/r2/projects/scp/assessments/astragalusanisus.pdf.[May5,2011].
FracFocusWells.2013.MapProvidedbyFracTrackerAllianceonFracTracker.org.Availableat:
http://www.fractracker.org/map/national/
Lukas,J.,J.Barsugli,N.Doesken,I.Rangwala,andK.Wolter2014.ClimateChangeinColorado,ASynthesistoSupport
WaterResourcesManagementandAdaptation,SecondEdition.Availableat:
http://wwa.colorado.edu/climate/co2014report/.Accessed:2014.
NatureServe2012.ClimateChangeVulnerabilityAssessmentTool,version2.1.Availableonlineat
https://connect.natureserve.org/science/climate‐change/ccvi.
NatureServe.2014.NatureServeExplorer:Anonlineencyclopediaoflife[webapplication].Version7.1.NatureServe,
Arlington,Virginia.Availablehttp://explorer.natureserve.org.Accessed2014.
360ColoradoNaturalHeritageProgram©2015
NRDCRenewableEnergyMapNaturalResourcesDefenseCounsel.2011.RenewableenergyforAmerica:harvestingthe
benefitsofhomegrown,renewableenergy.Online.Available:http://www.nrdc.org/energy/renewables/energymap.asp
(accessed2014).
Scheck,C.1994.SpecialStatusPlantsHandbookGlenwoodSpringsResourceArea.Unpublishedreportpreparedforthe
BureauofLandManagement,GlenwoodSprings,CO.
USGSNationalGapAnalysisProgram.2004.ProvisionalDigitalLandCoverMapfortheSouthwesternUnitedStates.
Version1.0.RS/GISLaboratory,CollegeofNaturalResources,UtahStateUniversity.
Welsh,S.L.1985.NewspeciesofAstragalus(Leguminosae)fromMesaCounty,Colorado.GreatBasinNaturalist45(1):31‐
33.
WesternRegionalClimateCenter.2015.AverageannualprecipitationforGrandJunction,Colorado.
http://www.wrcc.dri.edu/cgi‐bin/cliMAIN.pl?co3488.AccessedFeb24,2015.PeriodofRecord:1900to2015.
ClimateChangeVulnerabilityAssessmentforColoradoBLM361
Astragalusequisolensis(Astragalusdesperatusvar.neeseae)
Horseshoemilkvetch
G5T1/S1
Family:Fabaceae
Photo:PeggyLyon
Climate Vulnerability Rank: Extremely Vulnerable
ThisColoradostate‐widerankisbasedon:1)A.equisolensishasexperiencedasmallrangeinmean
annualprecipitationoverthelast50years;2)seeddispersaldistancesareprobablyfairlylimited;
3)pinyon‐juniperhabitatsoccupiedbyA.equisolensismaybesubjecttoincreasedwildfiresand
decreasesinsoilmoistureundertheclimatechangeprojectionsofhottertemperatures;4)
potentialsymbioticrelationshipwithroot‐nodulatingbacteria.
Distribution:KnownfromonecountyinUtah(USDANRCS2015)andonecountyinColorado
(CNHP2014).Habitat:A.equisolensisisassociatedwithmixeddesertandsaltdesertshrub
vegetationcommunitiesthataregenerallydominatedbysagebrush,shadscaleandhorsebrush.The
populationsinMesaCountyareinanopenjuniper/blackbrushcommunityonrockyconvexslopes
withredsoils.Elevation:4520‐6030feet.
EcologicalSystem:Pinyon‐JuniperWoodlands
CCVI Scoring
B1)Exposuretosealevelrise.Neutral.
B2a)Distributionrelativetonaturalbarriers.SomewhatIncrease/Neutral.Rangeshiftin
responsetoclimatechangeisinhibitedbyunsuitablegeologyandhighmountainhabitatsthat
wouldnotcontainsuitablehabitatforthisspecies(USGS2004).
B2b)Distributionrelativetoanthropogenicbarriers.Neutral.
362ColoradoNaturalHeritageProgram©2015
B3)Impactoflandusechangesresultingfromhumanresponsestoclimatechange.
SomewhatIncrease.Habitatdisturbanceandalterationmayoccurwithincreaseddevelopmentof
uraniumminesinthearea.
C1)Dispersalandmovements.Increase.SeeddispersaldistancesarelikelyshortsinceAstragalus
seedsgenerallydonotcontainspecializedstructurestoaidindispersal.
C2ai)Predictedsensitivitytotemperature:historicthermalniche.Neutral.Consideringthe
meanseasonaltemperaturevariationforoccupiedcells,thisspecieshasexperiencedaverage(57.1
‐77°F/31.8‐43.0°C)temperaturevariationinthepast50years.
C2aii)Predictedsensitivitytotemperature:physiologicalthermalniche.Neutral.A.
equisolensisoccupiesopensitesoverawiderangeofelevations(CNHP2014)withtemperatures
thatvaryadiabaticallywithelevation,suggestingthatthisspeciesisnotlimitedtocool
environments.
C2bi) Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime:
historicalhydrologicalniche.Increase.Consideringtherangeofmeanannualprecipitationacross
occupiedcells,thespecieshasexperiencedsmall(4‐10inches/100‐254mm)precipitation
variationinthepast50years.
C2bii)Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime:
physiologicalhydrologicalniche.Increase.Climatemodelsprojecthottertemperaturesfor
Colorado,withtrendstowardmoreseveresoil‐moisturedroughtconditionsinColorado(Lukaset
al.2014).Warmertemperatureswillresultinhigherevapotranspirationratesforplants.A.
equisolensisoccursinasemi‐aridclimatewithanaverageof8.7inchesofprecipitationperyear
(WesternRegionalClimateCenter2015).Althoughtolerancelimitsforlackofmoistureare
unknownforthisspecies,ahotterclimatecombinedwithhigherevapotranspirationmayresultin
stressfulconditionsforA.equisolensis.
C2c)Dependenceonaspecificdisturbanceregimelikelytobeimpactedbyclimatechange.
SomewhatIncrease.A.equisolensisoccursinpinyon‐juniperhabitats.Thesehabitatsaremorelikely
toburnwithincreasedtemperaturesandanincreaseinweedyspeciesthatcomprisethe
understory,suchascheatgrass.
C2d)Dependenceonice,ice‐edge,orsnowcoverhabitats.Neutral.Thisspeciesisnotrestricted
toordependentoniceorsnowcoverhabitats.
C3)Restrictiontouncommongeologicalfeaturesorderivatives.Neutral.
C4a)Dependenceonotherspeciestogeneratehabitat.Neutral.Thereisnoevidencethatthis
speciesisdependentonotherspeciestogeneratehabitat.
C4c)PollinatorVersatility.Neutral.AllAstragalusspeciesareranked‘Neutral’basedonUSFS
speciesassessmentsthatindicateseveralwesternAstragalusspeciesarevisitedbyover20species
ofbees(DeckerandAnderson2004).
ClimateChangeVulnerabilityAssessmentforColoradoBLM363
C4d)Dependenceonotherspeciesforpropaguledispersal.Neutral.
C4e)FormspartofaninterspecificinteractionnotcoveredbyC4a‐d.SomewhatIncrease.
Astragalusequisolensishasnotbeeninvestigatedfornodulization.However,noduleshavebeen
reportedforseveralotherspeciesinthesubgroupArgophylii(A.crassicarpus,A.missouriensis,A.
mollissimus,andA.purshii),soitispossiblethatA.equisolensisalsopossessesthisability(Decker
andAnderson2004).
C5a)Measuredgeneticvariation.Unknown.
C5b)Occurrenceofbottlenecksinrecentevolutionaryhistory.Unknown.
C6)Phenologicalresponsetochangingseasonaltemperatureandprecipitationdynamics.
Unknown.
Literature Cited
ColoradoNaturalHeritageProgram.1997+.ColoradoRarePlantGuide.www.cnhp.colostate.edu.Latestupdate:June30,
2014.
ColoradoNaturalHeritageProgram(CNHP).2014.BiodiversityTrackingandConservationSystem(BIOTICS).Colorado
NaturalHeritageProgram,ColoradoStateUniversity,FortCollins.
Decker,K.andD.G.Anderson.2004.AstragalusanisusM.E.Jones(Gunnisonmilkvetch):atechnicalconservation
assessment.[Online].USDAForestService,RockyMountainRegion.Available:
http://www.fs.fed.us/r2/projects/scp/assessments/astragalusanisus.pdf.[May5,2011].
Lukas,J.,J.Barsugli,N.Doesken,I.Rangwala,andK.Wolter2014.ClimateChangeinColorado,ASynthesistoSupport
WaterResourcesManagementandAdaptation,SecondEdition.Availableat:
http://wwa.colorado.edu/climate/co2014report/.Accessed:2014.
NatureServe2012.ClimateChangeVulnerabilityAssessmentTool,version2.1.Availableonlineat
https://connect.natureserve.org/science/climate‐change/ccvi.
NatureServe.2014.NatureServeExplorer:Anonlineencyclopediaoflife[webapplication].Version7.1.NatureServe,
Arlington,Virginia.Availablehttp://explorer.natureserve.org.Accessed2014.
USDA,NRCS.2015.ThePLANTSDatabase(http://plants.usda.gov).NationalPlantDataTeam,Greensboro,NC27401‐
4901USA.
USGSNationalGapAnalysisProgram.2004.ProvisionalDigitalLandCoverMapfortheSouthwesternUnitedStates.
Version1.0.RS/GISLaboratory,CollegeofNaturalResources,UtahStateUniversity.
WesternRegionalClimateCenter.2015.AverageannualprecipitationforGateway,Colorado.
http://www.wrcc.dri.edu/cgi‐bin/cliMAIN.pl?co3246.AccessedFeb24,2015.PeriodofRecord:1947to2015.
364ColoradoNaturalHeritageProgram©2015
Astragalusmicrocymbus
Skiffmilkvetch
G1/S1
Family:Fabaceae
Photo:MichelleDePrenger‐Levin
Climate Vulnerability Rank: Extremely Vulnerable
ThisColoradostate‐widerankisbasedonthefollowingfactors:1)movementbarriers;2)poor
dispersalcapacity;3)restrictiontospecificgeologicfeatures;4)potentialfuturethreatsfrom
livestockgrazingandgeothermalenergydevelopment;5)potentialincreaseinfirefrequencyin
occupiedhabitat;6)potentialrelianceonseasonalmoistureregimesforfruitproduction.
Distribution:GunnisonCounty,andextendingintotheedgeofSaguacheCounty.Estimatedrange
is168squarekilometers,calculatedinGISbydrawingaminimumconvexpolygonaroundthe
knownoccurrences.Habitat:Opensagebrushorjuniper‐sagebrushcommunitiesonmoderately
steeptosteepslopes.Oftenfoundinrockyareaswithavarietyofsoilconditionsfromclayto
cobbles,graytoreddishincolor.Elevation:7600‐8400feet.
EcologicalSystem:Sagebrush,Pinyon‐Juniper
CCVI Scoring
B1)Exposuretosealevelrise.Neutral.
B2a)Distributionrelativetonaturalbarriers.SomewhatIncrease/Neutral.Rangeshiftin
responsetoclimatechangeisinhibitedbyunsuitablegeologyandhighmountainhabitatsthat
wouldnotcontainsuitablehabitatforthisspecies(USGS2004).
B2b)Distributionrelativetoanthropogenicbarriers.SomewhatIncrease/Neutral.The
followingpotentialfactorsthatmayaffectthehabitatorrangeofAstragalusmicrocymbusare(1)
Residentialandurbandevelopment;(2)recreation,roads,andtrails;(3)utilitycorridors;(4)
nonnativeinvasiveplants;(5)wildfire;(6)contourplowingandnonnativeseedings;(7)livestock,
ClimateChangeVulnerabilityAssessmentforColoradoBLM365
deerandelkuseofhabitat;(8)mining,oilandgasleasing;(9)climatechange;and(10)habitat
fragmentationanddegradation(USFWS2010).
B3)Impactoflandusechangesresultingfromhumanresponsestoclimatechange.Increase.
GeothermaldevelopmentpotentialishighintheGunnisonBasin,andifdevelopmentincreasedin
theBasin,itcouldaffectthelong‐termviabilityofA.microcymbuswithintheBasin(USFWS2014).
C1)Dispersalandmovements.Increase.Seeddispersalislikelyfairlylimited,consideringthatA.
microcymbusseedsdonotcontainanyspecializedstructurestoaidindispersal.
C2ai)Predictedsensitivitytotemperature:historicthermalniche.SomewhatDecrease.A.
microcymbushasexperiencedagreaterthanaveragetemperature(>70°F/43.0°C)variationinthe
past50years.
C2aii)Predictedsensitivitytotemperature:physiologicalthermalniche.SomewhatIncrease.
Speciesissomewhatrestrictedtocoolorcoldenvironmentsthatmaybelostasaresultofclimate
change.TemperaturesintheAstragalusmicrocymbusoccupiedhabitatcandipbelowfreezingany
monthoftheyear.Climatemodelspredictearlier,fastersnowmeltalongwithdecreasedsummer
precipitationandincreasedsummertemperatures(Barsugli2010).Thiswouldresultin
significantlyloweramountsofwaterstoredinthesoilsduringthesummer.
C2bi) Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime:
historicalhydrologicalniche.Increase.Thespecieshasexperiencedsmall(4‐10inches/100‐254
mm)precipitationvariationinthepast50years.
C2bii)Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime:
physiologicalhydrologicalniche.SomewhatIncrease.Precipitationinfluencesfruitproductionin
A.microcymbuswithadditionalfruitproducedinyearswithhigherthanaveragewinterprecipitation
(DePrenger‐Levinetal.2013).
C2c)Dependenceonaspecificdisturbanceregimelikelytobeimpactedbyclimatechange.
SomewhatIncrease.Sagebrushshrublandsandpinyon‐juniperhabitatsmayexperienceincreased
firefrequenciesduetoincreasedtemperatures.
C2d)Dependenceonice,ice‐edge,orsnowcoverhabitats.Neutral.Thisspeciesisnotrestricted
toordependentoniceorsnowcoverhabitats.
C3)Restrictiontouncommongeologicalfeaturesorderivatives.Neutral.
C4a)Dependenceonotherspeciestogeneratehabitat.Neutral.Thereisnoevidencethatthis
speciesisdependentonotherspeciestogeneratehabitat.
C4c)PollinatorVersatility.Neutral.AllAstragalusspeciesareranked‘Neutral’basedonUSFS
speciesassessmentsthatindicateseveralwesternAstragalusspeciesarevisitedbyover20species
ofbees(DeckerandAnderson2004).
C4d)Dependenceonotherspeciesforpropaguledispersal.Neutral.
366ColoradoNaturalHeritageProgram©2015
C4e)FormspartofaninterspecificinteractionnotcoveredbyC4a‐d.SomewhatIncrease.
AlthoughA.microcymbushasnotbeenstudiedfornodulization,manyspeciesofAstragalusform
mycorrhizalassociations.
C5a)Measuredgeneticvariation.Unknown.
C5b)Occurrenceofbottlenecksinrecentevolutionaryhistory.Unknown.
C6)Phenologicalresponsetochangingseasonaltemperatureandprecipitationdynamics.
Unknown.
Literature Cited
Barsugli,J.2010.HydrologicProjectionsfortheGunnisonBasin.PresentationatFollow‐upmeetingfortheClimate
ChangeAdaptationWorkshop.Gunnison,Colorado.
ColoradoNaturalHeritageProgram.1997+.ColoradoRarePlantGuide.www.cnhp.colostate.edu.Latestupdate:June30,
2014.
ColoradoNaturalHeritageProgram(CNHP).2014.BiodiversityTrackingandConservationSystem(BIOTICS).Colorado
NaturalHeritageProgram,ColoradoStateUniversity,FortCollins.
Decker,K.andD.G.Anderson.2004.AstragalusanisusM.E.Jones(Gunnisonmilkvetch):atechnicalconservation
assessment.[Online].USDAForestService,RockyMountainRegion.Available:
http://www.fs.fed.us/r2/projects/scp/assessments/astragalusanisus.pdf.[May5,2011].
DePrenger‐Levin,M.,J.M.RampNeale,T.A.GrantIII,C.DawsonandY.E.Baytok.2013.LifeHistoryandDemographyof
AstragalusmicrocymbusBarneby(Fabaceae).2013.NaturalAreasJournal,33(3):264‐275.
U.S.FishandWildlifeService(USFWS).2010.EndangeredandThreatenedWildlifeandPlants;TwelveMonthFindingon
aPetitiontoListAstragalusmicrocymbusandAstragalusschmolliaeasEndangeredorThreatened.FederalRegister:Vol.
75,No.240,December10,2010.
U.S.FishandWildlifeService(USFWS).2014.FinalRule,EndangeredandThreatenedWildlifeandPlants;Threatened
StatusforGunnisonSage‐Grouse.FederalRegisterVol79,No.224,Nov.20,2014.DepartmentoftheInterior.
USGSNationalGapAnalysisProgram.2004.ProvisionalDigitalLandCoverMapfortheSouthwesternUnitedStates.
Version1.0.RS/GISLaboratory,CollegeofNaturalResources,UtahStateUniversity.
ClimateChangeVulnerabilityAssessmentforColoradoBLM367
Astragalusnaturitensis
Naturitamilkvetch
G2G3/S2S3
Family:Fabaceae
Photo:B.Kuhn
Climate Vulnerability Rank: Extremely Vulnerable
ThisColoradostate‐widerankisbasedonthefollowingfactors1)barrierstomovement;2)limited
seeddispersalcapabilities;3)lackoftemperatureandprecipitationvariabilityinlast50years;4)
potentialdecreaseinsoilmoistureavailabilitywithincreasedtemperatures;5)restrictionto
specificgeologicfeaturesandsoiltypes;6)potentialforincreasedfirefrequencyinoccupiedA.
naturitensishabitat.
Distribution:KnownfromNewMexico,Utah,theNavajoNationandColorado(Garfield,Mesa,
Montezuma,Montrose,andSanMiguelcounties).Habitat:Astragalusnaturitensisoccurson
sandstoneledges,crevicesofsandstonebedrock,dryrockmesas,ledges,anddetritalslopesat
5000‐7000feet.Pinyon‐juniperwoodlandsinareaswithshallowsoilsoverexposedbedrock.
Usuallyitisinsmallsoilpocketsorrockcrevicesinsandstonepavementalongcanyonrims.
Sometimesitisfoundnearbyindeepersandysoilswithorwithoutsoil.Elevation:4830‐7030feet.
EcologicalSystem:CliffandCanyon,Pinyon‐Juniper,Sagebrush
CCVI Scoring
B1)Exposuretosealevelrise.Neutral.
B2a)Distributionrelativetonaturalbarriers.Increase/SomewhatIncrease.Highmountains,
unsuitablehabitat,andlargerivervalleys(Gunnison,Colorado,andSanMiguelrivers)mayactas
naturalbarriersthatinhibitrangeshiftsassociatedwithclimatechange.
368ColoradoNaturalHeritageProgram©2015
B2b)Distributionrelativetoanthropogenicbarriers.SomewhatIncrease/Neutral.Extensive
habitatalterationduetooilandgasextractioninWesternColorado(FracFocusWells2013)
inhibitsrangeshift.
B3)Impactoflandusechangesresultingfromhumanresponsestoclimatechange.Neutral.
C1)Dispersalandmovements.Increase.Seeddispersalislikelyfairlylimited,consideringthatA.
naturitensisseedsdonotcontainanyspecializedstructurestoaidindispersal.
C2ai)Predictedsensitivitytotemperature:historicthermalniche.SomewhatDecrease.
Consideringthemeanseasonaltemperaturevariationforoccupiedcells,A.naturitensishas
experiencedgreaterthanaverage(>77°F/43.0°C)temperaturevariationinthepast50years.
C2aii)Predictedsensitivitytotemperature:physiologicalthermalniche.Increase.
Consideringthemeanseasonaltemperaturevariationforoccupiedcells,A.naturitensishas
experiencedsmall(37‐47°F/20.8‐26.3°C)temperaturevariationinthepast50years.
C2bi) Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime:
historicalhydrologicalniche.Increase.Consideringtherangeofmeanannualprecipitationacross
occupiedcells,thespecieshasexperiencedsmall(4‐10inches/100‐254mm)precipitation
variationinthepast50years.
C2bii)Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime:
physiologicalhydrologicalniche.Increase.Climatemodelsprojecthottertemperaturesfor
Colorado,withtrendstowardmoreseveresoil‐moisturedroughtconditionsinColorado(Lukaset
al.2014).Warmertemperatureswillresultinhigherevapotranspirationratesforplants.A.
naturitensisoccursinasemi‐aridclimatewithanaverageof11.33inchesofprecipitationperyear
innearbyGrandJunction,CO(WesternRegionalClimateCenter2015).Althoughtolerancelimits
forlackofmoistureareunknownforthisspecies,ahotterclimatecombinedwithhigher
evapotranspirationmayresultinstressfulconditionsforA.naturitensis.
C2c)Dependenceonaspecificdisturbanceregimelikelytobeimpactedbyclimatechange.
SomewhatIncrease.Sagebrushshrublandsandpinyon‐juniperhabitatsmayexperienceincreased
firefrequenciesduetoincreasedtemperatures.
C2d)Dependenceonice,ice‐edge,orsnowcoverhabitats.Neutral.Thisspeciesisnotrestricted
toordependentoniceorsnowcoverhabitats.
C3)Restrictiontouncommongeologicalfeaturesorderivatives.SomewhatIncrease.
Astragalusnaturitensisoccursonsandstoneledges,crevicesofsandstonebedrock,dryrockmesas,
ledges,anddetritalslopesat5000‐7000feet(CNHP2014).Itisoftenfoundgrowinginshallowsoils
ontopofsandstoneledgesandslickrock,butoccasionalisfoundindeeper,sandysoils.
C4a)Dependenceonotherspeciestogeneratehabitat.Neutral.Thereisnoevidencethatthis
speciesisdependentonotherspeciestogeneratehabitat.
ClimateChangeVulnerabilityAssessmentforColoradoBLM369
C4c)PollinatorVersatility.Neutral.AllAstragalusspeciesareranked‘Neutral’basedonUSFS
speciesassessmentsthatindicateseveralwesternAstragalusspeciesarevisitedbyover20species
ofbees(DeckerandAnderson2004).
C4d)Dependenceonotherspeciesforpropaguledispersal.Neutral.
C4e)FormspartofaninterspecificinteractionnotcoveredbyC4a‐d.SomewhatIncrease.A.
naturitensishasnotbeeninvestigatedfornodulization.However,noduleshavebeenreportedfor
severalotherspeciesinthesubgroupArgophylii(A.crassicarpus,A.missouriensis,A.mollissimus,
andA.purshii),soitispossiblethatA.naturitensisalsopossessesthisability(DeckerandAnderson
2004).
C5a)Measuredgeneticvariation.Unknown.
C5b)Occurrenceofbottlenecksinrecentevolutionaryhistory.Unknown.
C6)Phenologicalresponsetochangingseasonaltemperatureandprecipitationdynamics.
Unknown.
Literature Cited
ColoradoNaturalHeritageProgram.1997+.ColoradoRarePlantGuide.www.cnhp.colostate.edu.Latestupdate:June30,
2014.
ColoradoNaturalHeritageProgram(CNHP).2014.BiodiversityTrackingandConservationSystem(BIOTICS).Colorado
NaturalHeritageProgram,ColoradoStateUniversity,FortCollins.
Decker,K.andD.G.Anderson.2004.AstragalusanisusM.E.Jones(Gunnisonmilkvetch):atechnicalconservation
assessment.[Online].USDAForestService,RockyMountainRegion.Available:
http://www.fs.fed.us/r2/projects/scp/assessments/astragalusanisus.pdf.[May5,2011].
FracFocusWells.2013.MapProvidedbyFracTrackerAllianceonFracTracker.org.Availableat:
http://www.fractracker.org/map/national/
Lukas,J.,J.Barsugli,N.Doesken,I.Rangwala,andK.Wolter2014.ClimateChangeinColorado,ASynthesistoSupport
WaterResourcesManagementandAdaptation,SecondEdition.Availableat:
http://wwa.colorado.edu/climate/co2014report/.Accessed:2014.
370ColoradoNaturalHeritageProgram©2015
Astragalusosterhoutii
Kremmlingmilkvetch
G1/S1
ListedEndangered
Family:Fabaceae
Photo:DeniseCulver
Climate Vulnerability Rank: Extremely Vulnerable
ThisColoradostate‐widerankisbasedonthefollowingfactors:1)barrierstomovement;2)limited
seeddispersaldistance;3)lackofvariationinannualprecipitationinthelast50years;4)potential
lackofsoilmoistureduetoprojectionsofhottertemperatures;5)potentialincreaseinfire
frequencyinsagebrushecosystems;6)restrictiontohighlyseleniferoussoilsanduniquegeologic
substrates6)potentialsymbioticrelationshipwithroot‐nodulatingbacteria.
Distribution:EndemictoGrandCounty,Colorado.Estimatedrangeis120squarekilometers,
calculatedinGISbydrawingaminimumconvexpolygonaroundtheknownoccurrences.
Impreciselyreportedoccurrencesarenotincluded.Habitat:Highlyseleniferoussoils(grayish‐
brownclay)derivedfromNiobraraShale;sometimesgrowingupthroughsagebrush.Elevation:
7370‐8000feet.
EcologicalSystem:Sagebrush
CCVI Scoring
B1)Exposuretosealevelrise.Neutral.
B2a)Distributionrelativetonaturalbarriers.SomewhatIncrease.AccordingtoSWReGAP
vegetationlayers,unsuitablehabitatandgeologysurroundingknownlocationsofA.osterhoutiimay
restrictrangeshiftsduetoclimatechange(USGS2004).
ClimateChangeVulnerabilityAssessmentforColoradoBLM371
B2b)Distributionrelativetoanthropogenicbarriers.Neutral.Housingdevelopment,motorized
recreationareas,oilandgasdrilling,androadsallcreatebarrierstomovementforA.osterhoutii.
B3)Impactoflandusechangesresultingfromhumanresponsestoclimatechange.
SomewhatIncrease.IncreasedoilandgasdrillingcouldleadtolossofindividualA.osterhoutii
plants,andincreasedhabitatfragmentationanddegradation.
C1)Dispersalandmovements.Increase.Seeddispersaldistancesarelikelysomewhatlimiteddue
tothelackofspecializedstructurestoaidindispersal.
C2ai)Predictedsensitivitytotemperature:historicthermalniche.SomewhatDecrease.
Consideringthemeanseasonaltemperaturevariationforoccupiedcells,thespecieshas
experiencedgreaterthanaverage(>77°F/43.0°C)temperaturevariationinthepast50years.
C2aii)Predictedsensitivitytotemperature:physiologicalthermalniche.Neutral.A.
osterhoutiiisnotlimitedtocoolorcoldhabitatsthatmaybelosttoclimatechange.Lessthan10%
ofsagebrushecosystemsinColoradoareprojectedtobeoutsideofitscurrentclimaticenvelope
(SeeEcosystemSectionofreport).
C2bi) Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime:
historicalhydrologicalniche.Increase.Consideringtherangeofmeanannualprecipitationacross
occupiedcells,thespecieshasexperiencedsmall(4‐10inches/100‐254mm)precipitation
variationinthepast50years.
C2bii)Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime:
physiologicalhydrologicalniche.SomewhatIncrease.Climatemodelsprojecthotter
temperaturesforColorado,withtrendstowardmoreseveresoil‐moisturedroughtconditionsin
Colorado(Lukasetal.2014).Warmertemperatureswillresultinhigherevapotranspirationrates
forplants.A.osterhoutiioccursinasemi‐aridclimatewithanaverageof11.88inchesof
precipitationperyear(WesternRegionalClimateCenter2015).Althoughtolerancelimitsforlack
ofmoistureareunknownforthisspecies,ahotterclimatecombinedwithhigher
evapotranspirationmayresultinstressfulconditionsforA.osterhoutii.
C2c)Dependenceonaspecificdisturbanceregimelikelytobeimpactedbyclimatechange.
SomewhatIncrease.ClimatemodelsprojecthottertemperaturesforColorado(Lukasetal.2014),
andthiscouldresultinincreasedfirefrequencyinsagebrushecosystems.
C2d)Dependenceonice,ice‐edge,orsnowcoverhabitats.Neutral.Thisspeciesisnotrestricted
toordependentoniceorsnowcoverhabitats.
C3)Restrictiontouncommongeologicalfeaturesorderivatives.SomewhatIncrease.Speciesis
restrictedtowhiteshaleoutcropsofNiobrara,Pierre,andTroublesomeFormationsinGrand
County(CNHP2014).Itismostoftenfoundgrowinginhighlyseleniferoussoils.
C4a)Dependenceonotherspeciestogeneratehabitat.Neutral.Thereisnoevidencethatthis
speciesisdependentonotherspeciestogeneratehabitat.
372ColoradoNaturalHeritageProgram©2015
C4c)PollinatorVersatility.Neutral.
C4d)Dependenceonotherspeciesforpropaguledispersal.Neutral.
C4e)FormspartofaninterspecificinteractionnotcoveredbyC4a‐d.SomewhatIncrease.A.
osterhoutiihasnotbeeninvestigatedfornodulization.However,noduleshavebeenreportedfor
severalotherspeciesinthesubgroupArgophylii(A.crassicarpus,A.missouriensis,A.mollissimus,
andA.purshii),soitispossiblethatA.osterhoutiialsopossessesthisability(DeckerandAnderson
2004).
C5a)Measuredgeneticvariation.Unknown.
C5b)Occurrenceofbottlenecksinrecentevolutionaryhistory.Unknown.
C6)Phenologicalresponsetochangingseasonaltemperatureandprecipitationdynamics.
Unknown.
Literature Cited
ColoradoNaturalHeritageProgram.1997+.ColoradoRarePlantGuide.www.cnhp.colostate.edu.Latestupdate:June30,
2014.
ColoradoNaturalHeritageProgram(CNHP).2014.BiodiversityTrackingandConservationSystem(BIOTICS).Colorado
NaturalHeritageProgram,ColoradoStateUniversity,FortCollins.
Decker,K.andD.G.Anderson.2004.AstragalusanisusM.E.Jones(Gunnisonmilkvetch):atechnicalconservation
assessment.[Online].USDAForestService,RockyMountainRegion.Available:
http://www.fs.fed.us/r2/projects/scp/assessments/astragalusanisus.pdf.[May5,2011].
Lukas,J.,J.Barsugli,N.Doesken,I.Rangwala,andK.Wolter2014.ClimateChangeinColorado,ASynthesistoSupport
WaterResourcesManagementandAdaptation,SecondEdition.Availableat:
http://wwa.colorado.edu/climate/co2014report/.Accessed:2014.
USGSNationalGapAnalysisProgram.2004.ProvisionalDigitalLandCoverMapfortheSouthwesternUnitedStates.
Version1.0.RS/GISLaboratory,CollegeofNaturalResources,UtahStateUniversity.
WesternRegionalClimateCenter.2015.AverageannualprecipitationforKremmling,Colorado.
http://www.wrcc.dri.edu/cgi‐bin/cliMAIN.pl?co3488.AccessedFeb24,2015.PeriodofRecord:1908to2015.
ClimateChangeVulnerabilityAssessmentforColoradoBLM373
Astragaluspiscator
FisherTowersmilkvetch
G2G3/S1
Family:Fabaceae
Photo:PeggyLyon
Climate Vulnerability Rank: Extremely Vulnerable
ThisColoradostate‐widerankisbasedonthefollowingfactors:1)A.piscatorhasexperienceda
verysmallrangeinmeanannualprecipitationoverthelast50years;2)seeddispersaldistances
areprobablyfairlylimited;3)potentialincreaseinuraniumandvanadiummininginA.piscator
habitat4)pinyon‐juniperhabitatsoccupiedbyA.piscatormaybesubjecttoincreasedwildfires
undertheclimatechangeprojectionsofhottertemperatures;5)potentiallackofavailablesoil
moistureunderprojectedclimatewarming;6)potentialsymbioticrelationshipwithroot‐
nodulatingbacteria.
Distribution:KnownfromoneoccurrenceinMesaCountyinColorado.AlsoknownfromUtah.
Habitat:Insandy,sometimesgypsiferoussoilsofvalleybenchesandgulliedfoothills.InGateway,it
isfoundonslightlygravellysoilswithmixedredandwhiteparticles.Inaddition,itwasoftenfound
onthesidesofdrygullies(Spackmanetal.1997).Elevation:4500‐5580feet.
EcologicalSystem:SandyAreas,DesertShrub,Pinyon‐Juniper
CCVI Scoring
B1)Exposuretosealevelrise.Neutral.
B2a)Distributionrelativetonaturalbarriers.Neutral.Thisspeciesisknownfromthe
Colorado/Utahborderinruggedcanyonlands.Nomountainrangesorlargerivervalleysoccurhere.
B2b)Distributionrelativetoanthropogenicbarriers.Neutral.Fewanthropogenicdisturbances
arepresentintheruggedcanyonsnearGateway,Colorado.Roads,railroads,andsparsehousing
374ColoradoNaturalHeritageProgram©2015
developmentarethemaindisturbanceslocatednearA.piscatorhabitat,buttheseoccupyafairly
smallfootprint.
B3)Impactoflandusechangesresultingfromhumanresponsestoclimatechange.Increase.
FutureincreasesinuraniumandvanadiumminingarepossiblewithinA.piscatorhabitat(CNHP
2014).
C1)Dispersalandmovements.Increase.Seedsdonotcontainspecializedstructurestoaidin
dispersal,andlikelyfallclosetoparentplant.
C2ai)Predictedsensitivitytotemperature:historicthermalniche.Neutral.Consideringthe
meanseasonaltemperaturevariationforoccupiedcells,A.piscatorhasexperiencedaverage(57.1‐
77°F/31.8‐43.0°C)temperaturevariationinthepast50years.
C2aii)Predictedsensitivitytotemperature:physiologicalthermalniche.Neutral.Thisspecies
isnotlimitedtocoolorcoldenvironments.Itoccursindry,uplandareasdominatedbypinyon‐
juniperanddesertshrubs.
C2bi) Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime:
historicalhydrologicalniche.GreatlyIncrease.Consideringtherangeofmeanannual
precipitationacrossoccupiedcells,A.piscatorhasexperiencedverysmall(<4inches/100mm)
precipitationvariationinthepast50years.
C2bii)Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime:
physiologicalhydrologicalniche.Increase.Climatemodelsprojecthottertemperaturesfor
Colorado,withtrendstowardmoreseveresoil‐moisturedroughtconditionsinColorado(Lukaset
al.2014).Warmertemperatureswillresultinhigherevapotranspirationratesforplants.A.piscator
occursinasemi‐aridclimatewithanaverageof8.7inchesofprecipitationperyear(Western
RegionalClimateCenter2015).Althoughtolerancelimitsforlackofmoistureareunknownforthis
species,ahotterclimatecombinedwithhigherevapotranspirationmayresultinstressful
conditionsforA.piscator.
C2c)Dependenceonaspecificdisturbanceregimelikelytobeimpactedbyclimatechange.
SomewhatIncrease.A.piscatoroccursinpinyon‐juniperhabitats.Thesehabitatsaremorelikelyto
burnwithincreasedtemperaturesandanincreaseinweedyspeciesthatcomprisetheunderstory,
suchascheatgrass.
C2d)Dependenceonice,ice‐edge,orsnowcoverhabitats.Neutral.Thisspeciesisnotrestricted
toordependentoniceorsnowcoverhabitats.
C3)Restrictiontouncommongeologicalfeaturesorderivatives.Neutral.
C4a)Dependenceonotherspeciestogeneratehabitat.Neutral.Thereisnoevidencethatthis
speciesisdependentonotherspeciestogeneratehabitat.
ClimateChangeVulnerabilityAssessmentforColoradoBLM375
C4c)PollinatorVersatility.Neutral.AllAstragalusspeciesareranked‘Neutral’basedonUSFS
speciesassessmentsthatindicateseveralwesternAstragalusspeciesarevisitedbyover20species
ofbees(DeckerandAnderson2004).
C4d)Dependenceonotherspeciesforpropaguledispersal.Neutral.
C4e)FormspartofaninterspecificinteractionnotcoveredbyC4a‐d.SomewhatIncrease.A.
piscatorhasnotbeeninvestigatedfornodulization.However,noduleshavebeenreportedfor
severalotherspeciesinthesubgroupArgophylii(A.crassicarpus,A.missouriensis,A.mollissimus,
andA.purshii),soitispossiblethatA.piscatoralsopossessesthisability(DeckerandAnderson
2004).
C5a)Measuredgeneticvariation.Unknown.
C5b)Occurrenceofbottlenecksinrecentevolutionaryhistory.Unknown.
C6)Phenologicalresponsetochangingseasonaltemperatureandprecipitationdynamics.
Unknown.
Literature Cited
ColoradoNaturalHeritageProgram.1997+.ColoradoRarePlantGuide.www.cnhp.colostate.edu.Latestupdate:June30,
2014.
ColoradoNaturalHeritageProgram(CNHP).2014.BiodiversityTrackingandConservationSystem(BIOTICS).Colorado
NaturalHeritageProgram,ColoradoStateUniversity,FortCollins.
Decker,K.andD.G.Anderson.2004.AstragalusanisusM.E.Jones(Gunnisonmilkvetch):atechnicalconservation
assessment.[Online].USDAForestService,RockyMountainRegion.Available:
http://www.fs.fed.us/r2/projects/scp/assessments/astragalusanisus.pdf.[Feb26,2015].
Lukas,J.,J.Barsugli,N.Doesken,I.Rangwala,andK.Wolter2014.ClimateChangeinColorado,ASynthesistoSupport
WaterResourcesManagementandAdaptation,SecondEdition.Availableat:
http://wwa.colorado.edu/climate/co2014report/.Accessed:2014.
Spackman,S.,B.Jennings,J.Coles,C.Dawson,M.Minton,A.Kratz,andC.Spurrier.1997.Coloradorareplantfieldguide.
PreparedforBureauofLandManagement,U.S.ForestServiceandU.S.FishandWildlifeServicebyColoradoNatural
HeritageProgram.
WesternRegionalClimateCenter.2015.AverageannualprecipitationforGateway,Colorado.
http://www.wrcc.dri.edu/cgi‐bin/cliMAIN.pl?co3246.AccessedFeb24,2015.PeriodofRecord:1947to2015.
376ColoradoNaturalHeritageProgram©2015
Astragalusrafaelensis
SanRafaelmilkvetch
G2G3/S1
Family:Fabaceae
Photo:PeggyLyon
Climate Vulnerability Rank: Extremely Vulnerable
ThisColoradostate‐widerankisbasedonthefollowingfactors:1)A.rafaelensishasexperienceda
verysmallrangeinmeanannualprecipitationoverthelast50years;2)seeddispersaldistances
areprobablyfairlylimited;3)pinyon‐juniperhabitatsoccupiedbyA.rafaelensismaybesubjectto
increasedwildfiresundertheclimatechangeprojectionsofhottertemperatures;5)potentiallack
ofavailablesoilmoistureunderprojectedclimatewarming;6)potentialsymbioticrelationship
withroot‐nodulatingbacteria.
Distribution:ThisisaNavajoBasinendemic;EmeryandlesscommonlyinGrandCounty,Utah
(Welshetal.1993),alsoinMontrose,MesaandLaPlatacountiesinColorado(CNHP1998).
Habitat:Gulliedhills,washes,andtalusundercliffs;inseleniferousclayey,silty,orsandysoils.
Sometimescolonialonroadcuts.ColoradoplantsarefoundonsoilsderivedfromtheMorrison
formation,evenwhenthishaswasheddownontoEntradaorChinleformations(Spackmanetal.
1997).Elevation:4720‐6700feet.
EcologicalSystem:Pinyon‐Juniper
CCVI Scoring
B1)Exposuretosealevelrise.Neutral.
B2a)Distributionrelativetonaturalbarriers.Increase.Rangeshiftinresponsetoclimate
changeisinhibitedbyunsuitablegeologyandhighmountainhabitatsthatwouldnotcontain
suitablehabitatforthisspecies(USGS2004).
ClimateChangeVulnerabilityAssessmentforColoradoBLM377
B2b)Distributionrelativetoanthropogenicbarriers.Neutral.Fewanthropogenicdisturbances
arepresentintheruggedcanyonsnearParadoxandNucla,Colorado.Roads,railroads,andsparse
housingdevelopmentarethemaindisturbanceslocatednearA.rafaelensishabitat,butthese
occupyafairlysmallfootprint.
B3)Impactoflandusechangesresultingfromhumanresponsestoclimatechange.Neutral.
C1)Dispersalandmovements.Increase.Seedsdonotcontainspecializedstructurestoaidin
dispersal,andlikelyfallclosetoparentplant.
C2ai)Predictedsensitivitytotemperature:historicthermalniche.Neutral.Consideringthe
meanseasonaltemperaturevariationforoccupiedcells,A.rafaelensishasexperiencedaverage
(57.1‐77°F/31.8‐43.0°C)temperaturevariationinthepast50years.
C2aii)Predictedsensitivitytotemperature:physiologicalthermalniche.Neutral.Thisspecies
isnotlimitedtocoolorcoldenvironments.Itoccursindrywashesandcliffbasesinareas
dominatedbypinyon‐juniper.
C2bi) Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime:
historicalhydrologicalniche.GreatlyIncrease.Consideringtherangeofmeanannual
precipitationacrossoccupiedcells,A.rafaelensishasexperiencedverysmall(<4inches/100mm)
precipitationvariationinthepast50years.
C2bii)Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime:
physiologicalhydrologicalniche.Increase.Climatemodelsprojecthottertemperaturesfor
Colorado,withtrendstowardmoreseveresoil‐moisturedroughtconditionsinColorado(Lukaset
al.2014).Warmertemperatureswillresultinhigherevapotranspirationratesforplants.A.
rafaelensisoccursinasemi‐aridclimatewithanaverageof11.73inchesofprecipitationperyear
(WesternRegionalClimateCenter2015).Althoughtolerancelimitsforlackofmoistureare
unknownforthisspecies,ahotterclimatecombinedwithhigherevapotranspirationmayresultin
stressfulconditionsforA.rafaelensis.
C2c)Dependenceonaspecificdisturbanceregimelikelytobeimpactedbyclimatechange.
SomewhatIncrease.A.rafaelensisoccursinpinyon‐juniperhabitats.Thesehabitatsaremorelikely
toburnwithincreasedtemperaturesandanincreaseinweedyspeciesthatcomprisethe
understory,suchascheatgrass.
C2d)Dependenceonice,ice‐edge,orsnowcoverhabitats.Neutral.Thisspeciesisnotrestricted
toordependentoniceorsnowcoverhabitats.
C3)Restrictiontouncommongeologicalfeaturesorderivatives.Neutral.
C4a)Dependenceonotherspeciestogeneratehabitat.Neutral.Thereisnoevidencethatthis
speciesisdependentonotherspeciestogeneratehabitat.
378ColoradoNaturalHeritageProgram©2015
C4c)PollinatorVersatility.Neutral.AllAstragalusspeciesareranked‘Neutral’basedonUSFS
speciesassessmentsthatindicateseveralwesternAstragalusspeciesarevisitedbyover20species
ofbees(DeckerandAnderson2004).
C4d)Dependenceonotherspeciesforpropaguledispersal.Neutral.
C4e)FormspartofaninterspecificinteractionnotcoveredbyC4a‐d.SomewhatIncrease.A.
rafaelensishasnotbeeninvestigatedfornodulization.However,noduleshavebeenreportedfor
severalotherspeciesinthesubgroupArgophylii(A.crassicarpus,A.missouriensis,A.mollissimus,
andA.purshii),soitispossiblethatA.rafaelensisalsopossessesthisability(DeckerandAnderson
2004).
C5a)Measuredgeneticvariation.Unknown.
C5b)Occurrenceofbottlenecksinrecentevolutionaryhistory.Unknown.
C6)Phenologicalresponsetochangingseasonaltemperatureandprecipitationdynamics.
Unknown.
Literature Cited
ColoradoNaturalHeritageProgram.1997+.ColoradoRarePlantGuide.www.cnhp.colostate.edu.Latestupdate:June30,
2014.
ColoradoNaturalHeritageProgram(CNHP).2014.BiodiversityTrackingandConservationSystem(BIOTICS).Colorado
NaturalHeritageProgram,ColoradoStateUniversity,FortCollins.
Decker,K.andD.G.Anderson.2004.AstragalusanisusM.E.Jones(Gunnisonmilkvetch):atechnicalconservation
assessment.[Online].USDAForestService,RockyMountainRegion.Available:
http://www.fs.fed.us/r2/projects/scp/assessments/astragalusanisus.pdf.[May5,2011].
Lukas,J.,J.Barsugli,N.Doesken,I.Rangwala,andK.Wolter2014.ClimateChangeinColorado,ASynthesistoSupport
WaterResourcesManagementandAdaptation,SecondEdition.Availableat:
http://wwa.colorado.edu/climate/co2014report/.Accessed:2014.
Spackman,S.,B.Jennings,J.Coles,C.Dawson,M.Minton,A.Kratz,andC.Spurrier.1997.Coloradorareplantfieldguide.
PreparedforBureauofLandManagement,U.S.ForestServiceandU.S.FishandWildlifeServicebyColoradoNatural
HeritageProgram.
USGSNationalGapAnalysisProgram.2004.ProvisionalDigitalLandCoverMapfortheSouthwesternUnitedStates.
Version1.0.RS/GISLaboratory,CollegeofNaturalResources,UtahStateUniversity.
ClimateChangeVulnerabilityAssessmentforColoradoBLM379
Astragalusripleyi
Ripley’smilkvetch
G3/S2
Family:Fabaceae
Photo:CourtesyofColoradoNaturalAreasProgram
Climate Vulnerability Rank: Extremely Vulnerable
ThisColoradostate‐widerankisbasedon:predictedprecipitationdecreases;highmountainsthat
actasnaturalbarriersandhabitatalterationthatresultsfromconversiontofarmland,andlivestock
grazing,whichactasanthropogenicbarrierstorangeshift;limitedseeddispersaldistance;
alterationtothenaturalfiredisturbanceregime;restrictiontoasomewhatuncommongeology;
andpollinatorlimitations.Suitablehabitatislikelytobereducedandreproductivesuccess
diminished.Climatemodelsprojectannualnetdryingthroughoutthisspeciesrange(NatureServe
2012)withresultingtrendstowardmoreseveresoil‐moisturedroughtconditionsinColorado
(Lukasetal.2014).
Distribution:AstragalusripleyihasbeenreportedfromColoradoinConejosCounty(Spackman
1997+)andfromNewMexicoinTaosandRioArribaCounties(NMRPTC2014).However,within
theseregions,A.ripleyidoesnotoccupyallpotentialhabitatbutratherisrestrictedtovolcanic‐
derivedsubstrates(Ladyman2003).Habitat:Astragalusripleyiexhibitsahighdegreeofhabitat
specificity.Itisapparentlyrestrictedtovolcanicsubstrates,inopen‐canopyponderosapine‐
Arizonafescuesavannah,oralongtheedgesofmixedconiferouswoodland/forestwhereArizona
fescueisdominant.Elevation:InColorado,8200‐9300ft.(Spackmanetal.1997).
EcologicalSystem:PonderosaPineWoodlands
380ColoradoNaturalHeritageProgram©2015
CCVI Scoring
B1)Exposuretosealevelrise.Neutral.
B2a)Distributionrelativetonaturalbarriers.Somewhatincrease.Naturalbarriersborderthe
distributionofthisspeciestotheeast,westandnorthimpairingrangeshift.Astragalusripleyi‘s
rangeisborderedtothewestbythehighpeaksofthenorthwest‐southeasttrendingSanJuan
Mountains,totheeastbythenorth‐southtrendingSangredeCristoMountainRangeandtothe
northbytheeast‐westtrendingLaGaritaMountains.Northwardmigrationthroughthecenterof
therangeisinhibitedbyunsuitablehabitatintheSanLuisvalley(USGS2014).
B2b)Distributionrelativetoanthropogenicbarriers.Somewhatincrease.Conversionof
habitattofarmland(USDA2012)andhabitatalterationbylivestockgrazing(USDOIBLM2014)
impairsrangeshift.
B3)Impactoflandusechangesresultingfromhumanresponsestoclimatechange.Neutral.
Neitherexistingnorplannedrenewableenergydevelopmentwilllikelyimpactthisspecies(NRDC
2011).
C1)Dispersalandmovements.Somewhatincrease.Limitedandlocalizeddispersaldistancein
combinationwithinfrequentseedlingrecruitmentincreasesthisspeciesvulnerabilitytoclimate
changebydecreasingmigrationandestablishmentpotential.Seedsmaybedispersedbysmall
mammals,antsandwindorwater(Ladyman2003).Windcanresultadispersaldistanceof1‐15
meters,smallmammalsandantsupto15metersandwaterdispersaldistanceishighly
unpredictable(VittozandEngler2007)buttypicallynotfartherthan100m(Cainetal.2000).
C2ai)Predictedsensitivitytotemperature:historicthermalniche.Neutral.Consideringthe
meanseasonaltemperaturevariationovertherangeofA.ripleyi,thisspecieshasexperienced
averagetemperaturevariation(57.1‐77oF)overthepast50years(NatureServe2012).
C2aii)Physiologicalthermalniche.Neutral.Thisspeciesisnotdependentoncoolorcold
environments.
C2bi) Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime:
historicalhydrologicalniche.Neutral.Consideringtherangeofmeanannualprecipitationacross
occupiedcells,thespecieshasexperiencedaverageprecipitationvariation(21‐40inches)overthe
last50years(NatureServe2012).
C2bii)Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime:
physiologicalhydrologicalniche.Increase.PredictedprecipitationdecreasesfromMarchthrough
Juneduringthisspecies’growthandreproductiveseasonarelikelytoreduceestablishmentand
flowering(Ladyman2003)thusimpactabundance,distributionandhabitatquality.
C2c)Dependenceonaspecificdisturbanceregimelikelytobeimpactedbyclimatechange.
Increase.AstragalusripleyioftenoccupiesPonderosa(Pinusponderosa)forests(CNHP2014).
Historically,short‐interval,low‐severitysurfacefiresmaintainedsparse,openstandsinmostdry
ClimateChangeVulnerabilityAssessmentforColoradoBLM381
Ponderosapineforests(Schoennageletal.2004).Consequencesofdecadesoffiresuppressionwith
theaccumulationoffuelsincombinationwithimpactsofrecentclimatechangehavecontributedto
analteredfireregimewithunprecedentedlylarge,high‐severitywildfiresthatarebeyondtherange
ofnaturalvariability(Schoennageletal.2004).
C2d)Dependenceonice,ice‐edge,orsnowcoverhabitats.Neutral.Thisspeciesisnotrestricted
toordependentoniceorsnowcoverhabitats.
C3)Restrictiontouncommongeologicalfeaturesorderivatives.Increase.Astragalusripleyiis
anedaphicendemicthatoccursexclusivelyonvolcanicderivedsoilsassociatedwiththeSanJuan
volcanicfield(NatureServe2014)withacommensuratelylimitedrange.
C4a)Dependenceonotherspeciestogeneratehabitat.Neutral.Astragalusripleyiisnotknown
tobereliantonotherspeciesforhabitatgeneration.
C4c)PollinatorVersatility.Somewhatincrease.Astragalusripleyiappearstobebee‐pollinated.
Beesandantshavebeenobservedonflowersandbumblebees(Bombusternaries)havebeen
reportedasthemostcommonarthropodvisitor(NatureServe2014).
C4d)Dependenceonotherspeciesforpropaguledispersal.Neutral.Littleevidencehasbeen
documentedforanyparticularmethodofdispersal.However,seeddispersalhasbeenspeculatedto
beeffectedbyants,mice,andotherseedstorers,tumblingofdriedplants,andwindorwater
transport(Ladyman2003)andlikelynotdependentonaspecificspecies.
C4e)FormspartofaninterspecificinteractionnotcoveredbyC4a‐d.SomewhatIncrease.A.
rafaelensishasnotbeeninvestigatedfornodulization.However,noduleshavebeenreportedfor
severalotherspeciesinthesubgroupArgophylii(A.crassicarpus,A.missouriensis,A.mollissimus,
andA.purshii),soitispossiblethatA.rafaelensisalsopossessesthisability(DeckerandAnderson
2004).
C5a)Measuredgeneticvariation.Unknown.Nostudieshavebeenundertakentodeterminethe
geneticstructureofeitherrange‐wideorlocalpopulationsalthoughlocallyendemicspeciesof
Astragalustendtoexhibitreducedlevelsofpolymorphismthatmayimplyareducedrobustness
againstenvironmentaluncertainty(Ladyman2003).
C5b)Occurrenceofbottlenecksinrecentevolutionaryhistory.Unknown.
C6)Phenologicalresponsetochangingseasonaltemperatureandprecipitationdynamics.
Unknown.
Literature Cited
ColoradoNaturalHeritageProgram(CNHP).2014.BiodiversityTrackingandConservationSystem(BIOTICS).Colorado
NaturalHeritageProgram,ColoradoStateUniversity,FortCollins.
Cain,M.L.,B.G.Milligan,andA.E.Strand.2000.Long‐distanceSeedDispersalinPlantPopulations.AmericanJournalof
Botany87(9):1217–1227.
382ColoradoNaturalHeritageProgram©2015
Decker,K.andD.G.Anderson.2004.AstragalusanisusM.E.Jones(Gunnisonmilkvetch):atechnicalconservation
assessment.[Online].USDAForestService,RockyMountainRegion.Available:
http://www.fs.fed.us/r2/projects/scp/assessments/astragalusanisus.pdf.[May5,2011].
Ladyman,J.A.R.2003.AstragalusripleyiBarneby(Ripley’smilkvetch):atechnicalconservationassessment.[Online].
USDAForestService,RockyMountainRegion.Available:
http://www.fs.fed.us/r2/projects/scp/assessments/astragalusripley.pdf
Lukas,J.,J.Barsugli,N.Doesken,I.Rangwala,K.Wolter.2014.ClimateChangeinColorado:ASynthesistoSupportWater
ResourcesManagementandAdaptation,SecondEdition.Available
at:http://cwcbweblink.state.co.us/WebLink/ElectronicFile.aspx?docid=191994&searchid=e3c463e8‐569c‐4359‐8ddd‐
ed50e755d3b7&dbid=0
NatureServe2012.ClimateChangeVulnerabilityAssessmentTool,version2.1.Availableonlineat
https://connect.natureserve.org/science/climate‐change/ccvi.
NatureServe.2014.NatureServeExplorer:Anonlineencyclopediaoflife[webapplication].Version7.1.NatureServe,
Arlington,Virginia.Availablehttp://explorer.natureserve.org.(Accessed:November14,2014)
NewMexicoRarePlantTechnicalCouncil(NMRPTC).1999.NewMexicoRarePlants.Albuquerque,NM:NewMexicoRare
PlantsHomePage.http://nmrareplants.unm.edu(Latestupdate:16January2014).
NRDCRenewableEnergyMapNaturalResourcesDefenseCounsel.2011.RenewableenergyforAmerica:harvestingthe
benefitsofhomegrown,renewableenergy.Online.Available:http://www.nrdc.org/energy/renewables/energymap.asp
Accessed2014.
Schoennagel,T.,T.T.Veblen,andW.H.Romme.2004.TheInteractionofFire,Fuels,andClimateacrossRockyMountain
Forests.BioScience,Vol.54No.7,661‐675.
Spackman,S.,B.Jennings,J.Coles,C.Dawson,M.Minton,A.Kratz,andC.Spurrier.1997.ColoradoRarePlantFieldGuide.
PreparedfortheBureauofLandManagement,U.S.FishandWildlifeServiceandU.S.ForestServicebytheColorado
NaturalHeritageProgram,FortCollins.
U.S.DepartmentofAgriculture(USDA).2012.2012CensusofAgriculture.Availableat:
http://www.agcensus.usda.gov/index.php
U.S.DepartmentoftheInterior,BureauofLandManagement(BLM).2014.Availableat:
http://www.geocommunicator.gov/GeoComm/.Accessed2014.
U.S.GeologicalSurvey.2014.TheNationalMap.Availableat:http://nationalmap.gov/viewer.html
VittozP.andEnglerR.2007.Seeddispersaldistances:atypologybasedondispersalmodesandplanttraits.Botanica
Helvetica,117(2),109–124.DOI:10.1007/s00035‐007‐0797‐8
ClimateChangeVulnerabilityAssessmentforColoradoBLM383
Astragalustortipes
SleepingUtemilkvetch
G1/S1
Family:Fabaceae
Climate Vulnerability Rank: Extremely Vulnerable
ThisColoradostate‐widerankisbasedon:1)A.tortipeshasexperiencedaverysmallrangeinmean
annualprecipitationoverthelast50years;2)seeddispersaldistancesareprobablyfairlylimited;
3)barrierstomovement4)shrublandhabitatsoccupiedbyA.tortipesmaybesubjecttoincreased
wildfiresundertheclimatechangeprojectionsofhottertemperatures;5)potentiallackofavailable
soilmoistureunderprojectedclimatewarming;6)potentialsymbioticrelationshipwithroot‐
nodulatingbacteria.
Distribution:Coloradoendemic(UteMountainUteReservation,MontezumaCounty).Estimated
rangeis10squarekilometers(4squaremiles),calculatedinGISbydrawingaminimumconvex
polygonaroundtheknownoccurrences.Habitat:A.tortipesoccursinamixeddesertscrub,
consistingofAtriplexconfertifolia,Chrysothamnusgreenei,andGutierreziasarothrae(Andersonand
Porter1994).Itisendemictogranite‐derivedgravelssouthoftheSleepingUte(ColoradoNational
HeritageProgram1997).Elevationalrange5400‐5700ft(Spackmanetal.1997).Elevation:5450‐
5700feet.
EcologicalSystem:DesertShrub
CCVI Scoring
B1)Exposuretosealevelrise.Neutral.
B2a)Distributionrelativetonaturalbarriers.Increase/SomewhatIncrease.Highmountains
andunsuitablehabitatssurroundmanyoftheA.tortipesoccurrences.
384ColoradoNaturalHeritageProgram©2015
B2b)Distributionrelativetoanthropogenicbarriers.Increase/SomewhatIncrease.Cropland
onthewesternedgeofoccupiedhabitatmayactasabarriertomovementforA.tortipes.
B3)Impactoflandusechangesresultingfromhumanresponsestoclimatechange.Increase.
Shrublandspecieswereranked‘Increase’duetothepotentialofwindandsolardevelopment.
C1)Dispersalandmovements.Increase.Seedsdonotcontainspecializedstructurestoaidin
dispersal,andlikelyfallclosetoparentplant.
C2ai)Predictedsensitivitytotemperature:historicthermalniche.Neutral.Consideringthe
meanseasonaltemperaturevariationforoccupiedcells,A.tortipeshasexperiencedaverage(57.1‐
77°F/31.8‐43.0°C)temperaturevariationinthepast50years.
C2aii)Predictedsensitivitytotemperature:physiologicalthermalniche.Neutral.Thisspecies
isnotlimitedtocoolorcoldenvironments.Itoccursindry,uplandareasdominatedbydesert
shrubs.
C2bi) Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime:
historicalhydrologicalniche.GreatlyIncrease.Consideringtherangeofmeanannual
precipitationacrossoccupiedcells,A.tortipeshasexperiencedverysmall(<4inches/100mm)
precipitationvariationinthepast50years.
C2bii)Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime:
physiologicalhydrologicalniche.Increase.Climatemodelsprojecthottertemperaturesfor
Colorado,withtrendstowardmoreseveresoil‐moisturedroughtconditionsinColorado(Lukaset
al.2014).Warmertemperatureswillresultinhigherevapotranspirationratesforplants.A.tortipes
occursinasemi‐aridclimatewithanaverageof12.95inchesofprecipitationperyearinnearby
Cortez,CO(WesternRegionalClimateCenter2015).Althoughtolerancelimitsforlackofmoisture
areunknownforthisspecies,ahotterclimatecombinedwithhigherevapotranspirationmayresult
instressfulconditionsforA.tortipes.
C2c)Dependenceonaspecificdisturbanceregimelikelytobeimpactedbyclimatechange.
SomewhatIncrease.A.tortipesoccursinshrublandhabitats.Thesehabitatsmaybemorelikelyto
burnwithincreasedtemperaturesandanincreaseinweedyspeciesthatcomprisetheunderstory,
suchascheatgrass.
C2d)Dependenceonice,ice‐edge,orsnowcoverhabitats.Neutral.Thisspeciesisnotrestricted
toordependentoniceorsnowcoverhabitats.
C3)Restrictiontouncommongeologicalfeaturesorderivatives.Neutral.
C4a)Dependenceonotherspeciestogeneratehabitat.Neutral.Thereisnoevidencethatthis
speciesisdependentonotherspeciestogeneratehabitat.
C4c)PollinatorVersatility.Neutral.AllAstragalusspeciesareranked‘Neutral’basedonUSFS
speciesassessmentsthatindicateseveralwesternAstragalusspeciesarevisitedbyover20species
ofbees(DeckerandAnderson2004).
ClimateChangeVulnerabilityAssessmentforColoradoBLM385
C4d)Dependenceonotherspeciesforpropaguledispersal.Neutral.
C4e)FormspartofaninterspecificinteractionnotcoveredbyC4a‐d.SomewhatIncrease.A.
tortipeshasnotbeeninvestigatedfornodulization.However,noduleshavebeenreportedfor
severalotherspeciesinthesubgroupArgophylii(A.crassicarpus,A.missouriensis,A.mollissimus,
andA.purshii),soitispossiblethatA.tortipesalsopossessesthisability(DeckerandAnderson
2004).
C5a)Measuredgeneticvariation.Unknown.
C5b)Occurrenceofbottlenecksinrecentevolutionaryhistory.Unknown.
C6)Phenologicalresponsetochangingseasonaltemperatureandprecipitationdynamics.
Unknown.
Literature Cited
Anderson,J.L.,andJ.M.Porter.1994.Astragalustortipes(Fabaceae),anewspeciesfromDesertBadlandsinsouthwestern
ColoradoanditsphylogeneticrelationshipswithinAstragalus.SystematicBotany,19(1):116‐125.
ColoradoNaturalHeritageProgram.1997+.ColoradoRarePlantGuide.www.cnhp.colostate.edu.Latestupdate:June30,
2014.
ColoradoNaturalHeritageProgram(CNHP).2014.BiodiversityTrackingandConservationSystem(BIOTICS).Colorado
NaturalHeritageProgram,ColoradoStateUniversity,FortCollins.
Decker,K.andD.G.Anderson.2004.AstragalusanisusM.E.Jones(Gunnisonmilkvetch):atechnicalconservation
assessment.[Online].USDAForestService,RockyMountainRegion.Available:
http://www.fs.fed.us/r2/projects/scp/assessments/astragalusanisus.pdf.[Feb26,2015].
Lukas,J.,J.Barsugli,N.Doesken,I.Rangwala,andK.Wolter2014.ClimateChangeinColorado,ASynthesistoSupport
WaterResourcesManagementandAdaptation,SecondEdition.Availableat:
http://wwa.colorado.edu/climate/co2014report/.Accessed:2014.
Spackman,S.,B.Jennings,J.Coles,C.Dawson,M.Minton,A.Kratz,andC.Spurrier.1997.Coloradorareplantfieldguide.
PreparedforBureauofLandManagement,U.S.ForestServiceandU.S.FishandWildlifeServicebyColoradoNatural
HeritageProgram.
WesternRegionalClimateCenter.2015.AverageannualprecipitationforCortez,Colorado.http://www.wrcc.dri.edu/cgi‐
bin/cliMAIN.pl?co3246.AccessedFeb24,2015.PeriodofRecord:1911to2015.
386ColoradoNaturalHeritageProgram©2015
Bolophytaligulata(Partheniumligulatum)
Coloradofeverfew
G3/S2
Family:Asteraceae
Photo:BobSkowron
Climate Vulnerability Rank: Extremely Vulnerable
ThisColoradostate‐widerankisbasedon:predictedtemperatureincreasesandprecipitation
decreases;presenceofhighmountainrangesandescarpmentsthatpresentnaturalbarriers;
habitatalterationrelatedtooilandgasdevelopmentandlivestockgrazing,whichactas
anthropogenicbarriers;possiblewindpowerdevelopmentonpotentialfuturehabitat;limitedseed
dispersaldistance;restrictiontoarelativelyuncommongeology;andpollinatorlimitations.
Suitablehabitatislikelytobereducedandreproductivesuccessdiminishedasthisspecies’range
becomeswarmeranddrier.Climatemodelsprojectannualnetdryingacrosstherangeofthis
species(NatureServe2012)withresultingtrendstowardmoreseveresoil‐moisturedrought
conditionsinColorado(Lukasetal.2014).
Distribution:BolophytaligulatahasbeenreportedfromColoradoinRioBlancoandMoffat
Counties,andfromUtahinEmeryCounty(NatureServe2014,Welshetal.1987).
EcologicalSystem/Habitat:Bolophytaligulataisknownfrombarrenorsemi‐barrencalciferousor
gypsiferousoutcropsoftheGreenRiver,Uinta,Ferron,Summerville,andCarmelformationsinsalt
desertshrub,serviceberry,rabbitbrush,Indianrice‐grass,greasebush,galleta,blacksagebrush,
pygmysagebrush,andpinyon‐junipercommunities(NatureServe2014).Elevation:1705‐2135
meters(NatureServe2014).
CCVI Scoring
Temperature:CalculatedusingClimateWizard:ensembleaverage,mediumemissionscenario
(A1B),mid‐centurytimeframe,averageannualchange.InColorado,thisspeciesisexpectedtobe
exposedtomeanannualtemperatureincreasesof4.5oFbymid‐century(NatureServe2012).
ClimateChangeVulnerabilityAssessmentforColoradoBLM387
Moisture:CalculatedinGISusingNatureServeHamonAET:PETmoisturemetricdata(thisindex
integratesprojectedtemperatureandprecipitationchangestoindicatehowmuchdryingwilltake
place).InColoradothisspeciesispredictedtobeexposedtonetdryingof9.7to11.9percenton2
percentofitsrange,7.4to9.6percentdryingon13percentofitsrange,5.1to7.3percentdryingon
71percentofitsrangeand2.8to5.0percentdryingon14percentofitsrange.
B1)Exposuretosealevelrise.Neutral.
B2a)Distributionrelativetonaturalbarriers.Somewhatincrease.Severalmountainranges
andescarpments(USGS2014)actasbarrierstoclimatechange‐inducedrangeshiftforthemajority
ofpopulationsofPartheniumligulatum.
B2b)Distributionrelativetoanthropogenicbarriers.Increase.Habitatalterationrelatedto
energyextractionandlivestockgrazingimpairallpopulationsofBolophytaligulatafrom
climatechange–inducedrangeshift.Allpopulationsoccurinornearshaleplaysandbasinsandare
surroundingbyactiveoilandgasdevelopment(FracFocusWells2013).Additionally,themajority
ofthishabitatinspeciesrangeispubliclandmanagedbytheBLMasrangelandforlivestock(BLM
2014).
B3)Impactoflandusechangesresultingfromhumanresponsestoclimatechange.
Somewhatincrease.ExistingandplannedwindpowerdevelopmentontheUtah‐Wyomingborder
(NRDC2011)mayalterhabitatonthepotentialfuturerangeofBolophytaligulata.Because
Bolophytaligulataismoderatelyvulnerabletohabitatalteration(Rocchio2007),windpower‐
relateddevelopmentmaynegativelyimpactthisspeciessurvivability.
*Bolophytaligulata’slifehistorystrategiescanbesuggestedbyBolophytaalpina(Parthenium
alpinum)strategies.BolophytaligulataisverycloselyrelatedtoP.alpinum,suchthattheoriginal
taxonomicrankofP.ligulatumwasavarietyofP.alpinumthatwaslaterelevatedtospecieslevel
(HeidelandHandley2004).
C1)Dispersalandmovements.Somewhatincrease.Windisthelikelydispersalagentfor
Bolophytaalpina(Partheniumalpinum),andthusforB.ligulata.AchenesofB.alpinahavefringed,
wing‐likemembranousextensionsofthepappuswhichcanimprovedispersaldistanceupto15
meters(VittozandEngler2007).
C2ai)Predictedsensitivitytotemperature:historicthermalniche. Neutral. Consideringthe
meanseasonaltemperaturevariationforoccupiedcells,thespecieshasexperiencedaverage
temperaturevariation(57.1‐77oF)inthepast50years(NatureServe2012).
C2aii)Predictedsensitivitytotemperature:physiologicalthermalniche.Somewhatincrease.
Bolophytaligulatamayrequirecoldtemperaturestoinduceflowering.Winterandspring
temperaturesarepredictedtowarmby4.6oFto4.7oF(NatureServe2012)andthusmaybe
inadequatetopromotefloweringorconverselymayprovidemiscuesthatalterflowering
phenology.Timingoflifehistorytraitsiscentraltolifetimefitnessandnowhereisthismore
importantasinthephenologyoffloweringingoverningplantreproductivesuccess(Inouye2008).
388ColoradoNaturalHeritageProgram©2015
C2bi) Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime:
historicalhydrologicalniche.Somewhatincrease.Consideringtherangeofmeanannual
precipitationacrossoccupiedcells,thespecieshasexperiencedsmall(10.1inches)precipitation
variationinthepast50years(NatureServe2014).
C2bii)Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime:
physiologicalhydrologicalniche.Somewhatincrease.AlthoughBolophytaligulataiswell
adaptedtoenvironmentalextremes,predictedprecipitationdecreasesduringtheperiodof
floweringandfruitingmaydiminishreproductivesuccess.
C2c)Dependenceonaspecificdisturbanceregimelikelytobeimpactedbyclimatechange.
Unknown.InColorado,Bolophytaligulatatypicallyoccupiessparselyvegetatedsitesthatdonot
carryfirewell.Although,thesesitesarealsotypicallysurroundedbycommunitiessuchassage
shrublandsandpinyon‐juniperwoodlandswherefirefrequenciesareexpectedtoincreaseinthe
future,followingtrendsthatalreadyshowincreasedfirefrequencies,areaburnedandfireseverity
(Stephens2005,Westerlingetal.2006,Littelletal.2009.However,asyet,impactsonB.ligulata
hasnotbeendocumented.
C2d)Dependenceonice,ice‐edge,orsnowcoverhabitats.Neutral.Thisspeciesisnot
restrictedtoordependentoniceorsnowcoverhabitats.
C3)Restrictiontouncommongeologicalfeaturesorderivatives.Increase.Bolophytaligulatais
edaphicallyrestrictedtocalciferousorgypsiferousoutcropsofshalesandclaysoftheGreenRiver,
Uinta,Ferron,andCarmelformations(Welshetal.1987).
C4a)Dependenceonotherspeciestogeneratehabitat.Neutral.Bolophytaligulatahasnotbeen
showntobedependentonotherspeciestogeneratehabitat.
C4c)PollinatorVersatility.Somewhatincrease.PollinationofthecloselyrelatedB.alpinamay
requirespecializedpollinationvectors,suggestingsimilarpollinationrequirementsforB.ligulata.
C4d)Dependenceonotherspeciesforpropaguledispersal.Neutral.
C4e)FormspartofaninterspecificinteractionnotcoveredbyC4a‐d.Unknown.
C5a)Measuredgeneticvariation.Unknown.
C5b)Occurrenceofbottlenecksinrecentevolutionaryhistory.Unknown.
C6)Phenologicalresponsetochangingseasonaltemperatureandprecipitationdynamics.
Unknown.
Literature Cited
ColoradoNaturalHeritageProgram(CNHP).2014.BiodiversityTrackingandConservationSystem(BIOTICS).Colorado
NaturalHeritageProgram,ColoradoStateUniversity,FortCollins.
ClimateChangeVulnerabilityAssessmentforColoradoBLM389
FracFocusWells.2013.MapProvidedbyFracTrackerAllianceonFracTracker.org.Availableat:
http://www.fractracker.org/map/national/
Heidel,B.andJ.Handley.2004.Partheniumalpinum(Nutt.)Torr.&Gray(alpinefeverfew):atechnicalconservation
assessment.[Online].USDAForestService,RockyMountainRegion.
Available:http://www.fs.fed.us/r2/projects/scp/assessments/partheniumalpinum.pdf.Accessed:2014.
Inouye,D.W.2008.Effectsofclimatechangeonphenology,frostdamage,andfloralabundanceofmontanewildflowers.
Ecology89:353–362.http://dx.doi.org/10.1890/06‐2128.1
Littell,J.,D.McKenzie,D.Peterson,andA.Westerling.2009.ClimateandwildfireareaburnedinwesternU.S.
ecoprovinces,1916‐2003.EcologicalApplications19:1003‐1021
Lukas,J.,J.Barsugli,N.Doesken,I.Rangwala,andK.Wolter2014.ClimateChangeinColorado,ASynthesistoSupport
WaterResourcesManagementandAdaptation,SecondEdition.Availableat:
http://wwa.colorado.edu/climate/co2014report/.Accessed:2014.
NatureServe2012.ClimateChangeVulnerabilityAssessmentTool,version2.1.Availableonlineat
https://connect.natureserve.org/science/climate‐change/ccvi.
NatureServe.2014.NatureServeExplorer:Anonlineencyclopediaoflife[webapplication].Version7.1.NatureServe,
Arlington,Virginia.Availablehttp://explorer.natureserve.org.Accessed2014.
NRDCRenewableEnergyMapNaturalResourcesDefenseCounsel.2011.RenewableenergyforAmerica:harvestingthe
benefitsofhomegrown,renewableenergy.Online.Available:http://www.nrdc.org/energy/renewables/energymap.asp
(accessed2014).
Rocchio,J.2007.FloristicQualityAssessmentIndicesforColoradoPlantCommunities.ColoradoNaturalHeritage
Program,ColoradoStateUniversity,FortCollins,CO.
Spackman,S.,B.Jennings,J.Coles,C.Dawson,M.Minton,A.Kratz,andC.Spurrier.1997.ColoradoRarePlantFieldGuide.
PreparedfortheBureauofLandManagement,U.S.FishandWildlifeServiceandU.S.ForestServicebytheColorado
NaturalHeritageProgram,FortCollins.
Stephens,S.L.2005.ForestfirecausesandextentonUnitedStatesForestServicelands.InternationalJournalofWildland
Fire14:213‐222.
U.S.GeologicalSurvey(USGS).2014.TheNationalMap.Availableat:http://nationalmap.gov/viewer.html.Accessed2014.
VittozP.andEnglerR.2007.Seeddispersaldistances:atypologybasedondispersalmodesandplanttraits.Bot.Helv.
117:109–124.
Welsh,S.L.,N.D.Atwood,andJ.C.Higgins.1987.GreatBasinNaturalistMemoir,no.9.BrighamYoungUniversity,ISBN0‐
8425‐2260‐3.
Westerling,A.L.,B.P.Bryant,H.K.Preisler,T.P.Holmes,H.G.Hidalgo,T.Das,andS.R.Shrestha.2011.Climatechangeand
growthscenariosforCaliforniawildfire.ClimaticChange109:445‐463.
390ColoradoNaturalHeritageProgram©2015
Camissoniaeastwoodiae
Eastwoodeveningprimrose
G2/S1
Family:Onagraceae
Photo:JanisHuggins
Climate Vulnerability Rank: Highly Vulnerable
ThisColoradostate‐widerankisbasedonthefollowingfactors:1)C.eastwoodiaehasexperiencea
smallrangeinprecipitationinthelast50years;2)availablesoilmoisturemaydecreaseif
temperaturesincreaseaspredictedinclimatemodels;3)potentialforincreasedenergy
developmentwithinsuitablehabitat;4)likelihoodofshortseeddispersaldistance;5)potentialfor
increasedfirefrequencyinpinyon‐juniperandshrublandhabitatthatsupportC.eastwoodiae
populations.
Distribution:EndemictotheColoradoPlateau.FoundinUtah(sevencounties),Arizona(2
counties),andColorado(2counties,USDANRCS2012).Habitat:InColoradothisspeciesisfound
onclaysoilsderivedfromMancosshalewithAtriplexgardneriadominantassociate.Elevation:
4,570‐6,050feet.
EcologicalSystem:SaltbushFlatsandFans,Pinyon‐Juniper
CCVI Scoring
B1)Exposuretosealevelrise.Neutral.
B2a)Distributionrelativetonaturalbarriers.Neutral.
B2b)Distributionrelativetoanthropogenicbarriers.Neutral.
B3)Impactoflandusechangesresultingfromhumanresponsestoclimatechange.Increase.
AreasofC.eastwoodiaehabitatmayhavepotentialforincreasedoilandgas,aswellaswindand
solardevelopment.
ClimateChangeVulnerabilityAssessmentforColoradoBLM391
C1)Dispersalandmovements.Increase.Seedslikelyfallclosetoparentplant.
C2ai)Predictedsensitivitytotemperature:historicthermalniche.SomewhatDecrease.
Consideringthemeanseasonaltemperaturevariationforoccupiedcells,thespecieshas
experiencedgreaterthanaverage(>77°F/43.0°C)temperaturevariationinthepast50years.
C2aii)Predictedsensitivitytotemperature:physiologicalthermalniche.Neutral.Thisspecies
isnotlimitedtocoolorcoldhabitatsthatareexpectedtobelosttoclimatechange.
C2bi) Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime:
historicalhydrologicalniche.Increase.Consideringtherangeofmeanannualprecipitationacross
occupiedcells,thespecieshasexperiencedsmall(4‐10inches/100‐254mm)precipitation
variationinthepast50years.
C2bii)Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime:
physiologicalhydrologicalniche.SomewhatIncrease.Climatemodelsprojecthotter
temperaturesforColorado,withtrendstowardmoreseveresoil‐moisturedroughtconditionsin
Colorado(Lukasetal.2014).Warmertemperatureswillresultinhigherevapotranspirationrates
forplants.C.eastwoodiaeoccursinasemi‐aridclimatewithanaverageof11.33inchesof
precipitationperyearinnearbyGrandJunction,CO(WesternRegionalClimateCenter2015).
Althoughtolerancelimitsforlackofmoistureareunknownforthisspecies,ahotterclimate
combinedwithhigherevapotranspirationmayresultinstressfulconditionsforC.eastwoodiae.
C2c)Dependenceonaspecificdisturbanceregimelikelytobeimpactedbyclimatechange.
SomewhatIncrease.Increasedfirefrequencymayoccurinshrublandsandpinyon‐juniper
ecosystemsthatsupportpopulationsofC.eastwoodiae.
C2d)Dependenceonice,ice‐edge,orsnowcoverhabitats.Neutral.Thisspeciesisnotrestricted
toordependentoniceorsnowcoverhabitats.
C3)Restrictiontouncommongeologicalfeaturesorderivatives.Neutral.
C4a)Dependenceonotherspeciestogeneratehabitat.Neutral.Thereisnoevidencethatthis
speciesisdependentonotherspeciestogeneratehabitat.
C4c)PollinatorVersatility.Unknown.
C4d)Dependenceonotherspeciesforpropaguledispersal.Neutral.
C4e)FormspartofaninterspecificinteractionnotcoveredbyC4a‐d.Unknown.
C5a)Measuredgeneticvariation.Unknown.
C5b)Occurrenceofbottlenecksinrecentevolutionaryhistory.Unknown.
C6)Phenologicalresponsetochangingseasonaltemperatureandprecipitationdynamics.
Unknown.
392ColoradoNaturalHeritageProgram©2015
Literature Cited
ColoradoNaturalHeritageProgram.1997+.ColoradoRarePlantGuide.www.cnhp.colostate.edu.Latestupdate:June30,
2014.
ColoradoNaturalHeritageProgram(CNHP).2014.BiodiversityTrackingandConservationSystem(BIOTICS).Colorado
NaturalHeritageProgram,ColoradoStateUniversity,FortCollins.
FracFocusWells.2013.MapProvidedbyFracTrackerAllianceonFracTracker.org.Availableat:
http://www.fractracker.org/map/national/
Littell,J.,D.McKenzie,D.Peterson,andA.Westerling.2009.ClimateandwildfireareaburnedinwesternU.S.
ecoprovinces,1916‐2003.EcologicalApplications19:1003‐1021
Lukas,J.,J.Barsugli,N.Doesken,I.Rangwala,andK.Wolter2014.ClimateChangeinColorado,ASynthesistoSupport
WaterResourcesManagementandAdaptation,SecondEdition.Availableat:
http://wwa.colorado.edu/climate/co2014report/.Accessed:2014.
USDA,NRCS.2012.ThePLANTSDatabase.NationalPlantDataTeam,Greensboro,NC27401‐4901USA.
WesternRegionalClimateCenter.2015.AverageannualprecipitationforGrandJunction,Colorado.
http://www.wrcc.dri.edu/cgi‐bin/cliMAIN.pl?co3488.AccessedFeb24,2015.PeriodofRecord:1900to2015.
ClimateChangeVulnerabilityAssessmentforColoradoBLM393
Cleome(Peristome)multicaulis
Slenderspiderflower
G2G3/S2S3
Family:Capparaceae
Photo:GeorgiaDoyle
Climate Vulnerability Rank: Extremely Vulnerable
ThisColoradostate‐widerankisbasedonthefollowingfactors:1)barrierstomovement;2)
potentialforsolarandwinddevelopmentinSanLuisValley;3)likelihoodoflimitedseeddispersal;
4)specieshasexperienceverysmallprecipitationvariationinlast50years;4)restrictionto
alkalineorsalinesoilsinwetlands.
Distribution:Mexico,Texas,Arizona,NewMexico,Wyoming,andColorado(USDANRCS2013).
WeberandWittmann(2012)reportthatthisspeciesiswidelydistributedinMexico.Habitat:
Cleomemulticaulisisrestrictedtosalineoralkalinesoils,aroundalkalisinks,ponds,alkaline
meadows,oroldlakebeds.Thesurroundingplantcommunityissalinebottomlandshrubland
(dominatedbySarcobatusandChrysothamnus).Theplantoftengrowsinbandsjustaboverushes
(Juncussp.)andmayextendintogreasewoodandsaltgrass(Graff1992,Spackmanetal.1997,
ColoradoNaturalHeritageProgram2014).Elevation:7,500‐8,200feet.
EcologicalSystem:Grass/ForbDominatedWetlands;Playas
CCVI Scoring
B1)Exposuretosealevelrise.Neutral.
B2a)Distributionrelativetonaturalbarriers.Greatlyincrease.Knownoccurrencesarelimited
totheflooroftheSanLuisValley,andsurroundinghighmountainsmayactasabarriersto
movement.
B2b)Distributionrelativetoanthropogenicbarriers.Neutral.
394ColoradoNaturalHeritageProgram©2015
B3)Impactoflandusechangesresultingfromhumanresponsestoclimatechange.Increase.
AnincreaseinsolarandwinddevelopmentcouldoccurintheSanLuisValley.
C1)Dispersalandmovements.Increase.Noinformationisavailableondispersal,butseedslikely
fallclosetoparentplants.
C2ai)Predictedsensitivitytotemperature:historicthermalniche.SomewhatDecrease.
Consideringthemeanseasonaltemperaturevariationforoccupiedcells,thespecieshas
experiencedgreaterthanaverage(>77°F/43.0°C)temperaturevariationinthepast50years.
C2aii)Predictedsensitivitytotemperature:physiologicalthermalniche.Neutral.Thisspecies
isnotlimitedtocoolorcoldhabitatsthatarelikelytobelosttoclimatechange.
C2bi) Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime:
historicalhydrologicalniche.GreatlyIncrease.Consideringtherangeofmeanannual
precipitationacrossoccupiedcells,thespecieshasexperiencedverysmall(<4inches/100mm)
precipitationvariationinthepast50years.
C2bii)Predictedsensitivitytochangesinprecipitation,hydrology,ormoistureregime:
physiologicalhydrologicalniche.GreatlyIncrease.Cleomemulticaulisisrestrictedtosalineor
alkalinesoils,aroundalkalisinks,ponds,alkalinemeadows,oroldlakebeds.Thesewetlandsites
occurinthearidclimateSanLuisValley,whereaverageannualprecipitationis9.39inchesinDel
Norte,CO(WesternRegionalClimateCenter2015).
C2c)Dependenceonaspecificdisturbanceregimelikelytobeimpactedbyclimatechange.
Neutral.
C2d)Dependenceonice,ice‐edge,orsnowcoverhabitats.Neutral.Thisspeciesisnotrestricted
toordependentoniceorsnowcoverhabitats.
C3)Restrictiontouncommongeologicalfeaturesorderivatives.Neutral.
C4a)Dependenceonotherspeciestogeneratehabitat.Neutral.Thereisnoevidencethatthis
speciesisdependentonotherspeciestogeneratehabitat.
C4c)PollinatorVersatility.Unknown.
C4d)Dependenceonotherspeciesforpropaguledispersal.Neutral.