GSTZ1 expression and chloride concentrations modulate sensitivity of cancer cells to dichloroacetate

Abstract
Dichloroacetate (DCA), commonly used to treat metabolic disorders, is under investigation as an anti-cancer therapy due to its ability to reverse the Warburg effect and induce apoptosis in tumor cells. While DCA's mechanism of action is well-studied, other factors that influence its potential as a cancer treatment have not been thoroughly investigated. Here we show that expression of glutathione transferase zeta 1 (GSTZ1), the enzyme responsible for conversion of DCA to its inactive metabolite, glyoxylate, is downregulated in liver cancer and upregulated in some breast cancers, leading to abnormal expression of the protein. The cellular concentration of chloride, an ion that influences the stability of GSTZ1 in the presence of DCA, was also found to be abnormal in tumors, with consistently higher concentrations in hepatocellular carcinoma than in surrounding non-tumor tissue. Finally, results from experiments employing two- and three-dimensional cultures of HepG2 cells, parental and transduced to express GSTZ1, demonstrate that high levels of GSTZ1 expression confers resistance to the effect of high concentrations of DCA on cell viability. These results may have important clinical implications in determining intratumoral metabolism of DCA and, consequently, appropriate oral dosing.

Do you want to read the rest of this article?

Request full-text
Request Full-text Paper PDF
  • Article
    Biotransformation of dichloroacetate (DCA) to glyoxylate by hepatic glutathione transferase zeta 1 (GSTZ1) is considered the principal determinant of the rate of plasma clearance of the drug. However, several other organismal and subcellular factors are also known to influence DCA metabolism. We utilized a female rat model to study these poorly understood processes. Rats aged 4 weeks (young) and 42 to 52 weeks (adult) were used to model children and adults, respectively. Hepatic chloride concentrations, which influence the rate of GSTZ1 inactivation by DCA, were lower in rat than in human tissues and rats did not show the age dependence previously seen in humans. We found GSTZ1 expression and activity in rat brain, heart, and kidney cell-free homogenates that were age-dependent. GSTZ1 expression in brain was higher in young rats than adult rats, whereas cardiac and renal GSTZ1 expression levels were higher in adult than young rats. GSTZ1 activity with DCA could not be measured accurately in kidney cell-free homogenates due to rapid depletion of glutathione by γ-glutamyl transpeptidase. Following oral administration of DCA, 100 mg/kg, to rats, GSTZ1 expression and activity were reduced in all rat tissues, but chloride concentrations were not affected. Together, these data extend our understanding of factors that determine the in vivo kinetics of DCA.
  • Article
    Dichloroacetate (DCA) has several therapeutic applications based on its pharmacological property of inhibiting pyruvate dehydrogenase kinase. DCA has been used to treat inherited mitochondrial disorders that result in lactic acidosis, as well as pulmonary hypertension and several different solid tumors, the latter through its ability to reverse the Warburg effect in cancer cells and restore aerobic glycolysis. The main clinically limiting toxicity is reversible peripheral neuropathy. Although administration of high doses to rodents can result in liver cancer, there is no evidence that DCA is a human carcinogen. In all studied species, including humans, DCA has the interesting property of inhibiting its own metabolism upon repeat dosing, resulting in alteration of its pharmacokinetics. The first step in DCA metabolism is conversion to glyoxylate catalyzed by glutathione transferase zeta 1 (GSTZ1), for which DCA is a mechanism-based inactivator. The rate of GSTZ1 inactivation by DCA is influenced by age, GSTZ1 haplotype and cellular concentrations of chloride. The effect of DCA on its own metabolism complicates the selection of an effective dose with minimal side effects.
  • Article
    Full-text available
    Objectives: Glutathione S-transferases (GSTs) are phase-II metabolic enzymes playing important roles in drug metabolism, anti-oxidative stress and anti-aging. Age is a key factor influencing GSTs expression. Thus, age-related changes of 10 GSTs were examined. Methods: Livers from male Sprague–Dawley rats at fetus (−2 d), neonates (1, 7, 14 and 21 d), puberty (28 and 35 d), adulthood (60 and 180 d), and aging (540 and 800 d), were collected and subjected to qPCR analysis. Liver proteins from 14, 28, 60, 180, 540 and 800 d were also extracted for selected protein analysis by Western-blot. Results: The expression of GSTA1 and GSTP1 increased over the life span and the expression of GSTA4, GSTO1 and GSTZ1 gradually increased until adulthood, and slightly decreased at 800 days. The expression of GSTM1, GSTM3, GSTT1, GSTT2 and GSTK1 gradually increased until adulthood, but significantly decreased during aging of 540 and 800 days. There is a small peak at 7–14 d for GSTA1, GSTP1 and GSTZ1. The protein expression of GSTA1, GSTM1 and GSTP1 followed the trend of mRNA changes. Discussion: This study characterized three expression patterns of 10 GSTs during development and aging in rat liver, adding to our understanding of anti-aging role of GSTs.
  • Article
    Full-text available
    Glutathione transferase classical GSH conjugation activity plays a critical role in cellular detoxification against xenobiotics and noxious compounds as well as against oxidative stress. However, this feature is also exploited by cancer cells to acquire drug resistance and improve their survival. As a result, various members of the family were found overexpressed in a number of different cancers. Moreover several GST polymorphisms, ranging from null phenotypes to point mutations, were detected in members of the family and found to correlate with the onset of neuro-degenerative diseases. In the last decades, a great deal of research aimed at clarifying the role played by GSTs in drug resistance, at developing inhibitors to counteract this activity but also at exploiting GSTs for prodrugs specific activation in cancer cells. Here we summarize some of the most important achievements reached in this lively area of research.
  • Article
    Full-text available
    Oral squamous cell carcinoma (OSCC) ranks among the most common cancer worldwide, and is associated with severe morbidity and high mortality. Oral submucous fibrosis (OSF), characterized by fibrosis of the mucosa of the upper digestive tract, is a pre-malignant lesion, but the molecular mechanisms underlying this malignant transformation remains to be elucidated. In this study, matrix-assisted laser desorption ionization imaging mass spectrometry (MALDI-IMS)-based proteomic strategy was employed to profile the differentially expressed peptides/proteins between OSCC tissues and the corresponding adjacent non-cancerous OSF tissues. Sixty-five unique peptide peaks and nine proteins were identified with altered expression levels. Of them, expression of NCOA7 was found to be up-regulated in OSCC tissues by immunohistochemistry staining and western blotting, and correlated with a pan of clinicopathologic parameters, including lesion site, tumor differentiation status and lymph node metastasis. Further, we show that overexpression of NCOA7 promotes OSCC cell proliferation in either in vitro or in vivo models. Mechanistic study demonstrates that NCOA7 induces OSCC cell proliferation probably by activating aryl hydrocarbon receptor (AHR). The present study suggests that NCOA7 is a potential biomarker for early diagnosis of OSF malignant transformation, and leads to a better understanding of the molecular mechanisms responsible for OSCC development.
  • Article
    Full-text available
    Dichloroacetate (DCA) is a potential environmental hazard and an investigational drug. Repeated doses of DCA result in reduced drug clearance, probably through inhibition of glutathione transferase ζ1 (GSTZ1), a cytosolic enzyme that converts DCA to glyoxylate. DCA is known to be taken up by mitochondria, where it inhibits pyruvate dehydrogenase kinase, its major pharmacodynamic target. We tested the hypothesis that the mitochondrion was also a site of DCA biotransformation. Immunoreactive GSTZ1 was detected in liver mitochondria from humans and rats, and its identity was confirmed by liquid chromatography/tandem mass spectrometry analysis of the tryptic peptides. Study of rat submitochondrial fractions revealed GSTZ1 to be localized in the mitochondrial matrix. The specific activity of GSTZ1-catalyzed dechlorination of DCA was 2.5- to 3-fold higher in cytosol than in whole mitochondria and was directly proportional to GSTZ1 protein expression in the two compartments. Rat mitochondrial GSTZ1 had a 2.5-fold higher (App)K(m) for glutathione than cytosolic GSTZ1, whereas the (App)K(m) values for DCA were identical. Rats administered DCA at a dose of 500 mg/kg/day for 8 weeks showed reduced hepatic GSTZ1 activity and expression of ∼10% of control levels in both cytosol and mitochondria. We conclude that the mitochondrion is a novel site of DCA biotransformation catalyzed by GSTZ1, an enzyme colocalized in cytosol and mitochondrial matrix.
  • The pharmacology of dichloroacetate
    • Pw Stacpoole
    Stacpoole PW (1989) The pharmacology of dichloroacetate. Metabolism 38: 1124- 1144.
  • Article
    The zeta-1 family isoform of GST biotransforms the investigational drug dichloroacetate (DCA) and certain other halogenated carboxylic acids. Haplotype variability in GSTZ1 influences the kinetics and, possibly, the toxicity of DCA. DCA metabolism correlates with expression of the GSTZ1 protein, so it is important to document variables that affect expression. Following up on a limited previous study, we tested the hypothesis that a coding single nucleotide polymorphism (SNP), the lysine (K) amino acid (E32>K) in GSTZ1 haplotypes linked to a promoter region SNP results in lower hepatic expression of GSTZ1. The influence of K carrier and non-K carrier haplotypes on GSTZ1 expression was determined by analyzing 78 liver samples from individuals aged 7-84 years of various racial and ethnic backgrounds. GSTZ1 expression data were analyzed on the basis of the presence or absence of lysine 32. GSTZ1 protein expression differed significantly between K carrier and non-K carrier haplotypes (P=0.001) in Whites, but not in African-Americans (P=0.277). We attribute this difference in GSTZ1 expression among K carrier haplotypes in Whites to the linkage disequilibrium between the K or A allele from the G>A SNP (rs7975), within the promoter G>A-1002 SNP (rs7160195) A allele. There is no linkage disequilibrium between these two polymorphisms in African-Americans. We conclude that the lower expression of GSTZ1 in Whites who possess the K carrier haplotype results in lower enzymatic activity and slower metabolism of DCA, compared with those who possess the non-K carrier haplotype. These results further define safe, genetics-based dosing regimens for chronic DCA administration.
  • Article
    We reviewed the anti-cancer effects of DCA, an orphan drug long used as an investigational treatment for various acquired and congenital disorders of mitochondrial intermediary metabolism. Inhibition by DCA of mitochondrial pyruvate dehydrogenase kinases and subsequent reactivation of the pyruvate dehydrogenase complex and oxidative phosphorylation is the common mechanism accounting for the drug's anti-neoplastic effects. At least 2 fundamental changes in tumor metabolism are induced by DCA that antagonize tumor growth, metastases and survival: the first is the redirection of glucose metabolism from glycolysis to oxidation (reversal of the Warburg effect), leading to inhibition of proliferation and induction of caspase-mediated apoptosis. These effects have been replicated in both human cancer cell lines and in tumor implants of diverse germ line origin. The second fundamental change is the oxidative removal of lactate, via pyruvate, and the co-incident buffering of hydrogen ions by dehydrogenases located in the mitochondrial matrix. Preclinical studies demonstrate that DCA has additive or synergistic effects when used in combination with standard agents designed to modify tumor oxidative stress, vascular remodeling, DNA integrity or immunity. These findings and limited clinical results suggest that potentially fruitful areas for additional clinical trials include 1) adult and pediatric high grade astrocytomas; 2) BRAF-mutant cancers, such as melanoma, perhaps combined with other pro-oxidants; 3) in which resistance to standard platinum-class drugs alone may be overcome with combination therapy; and 4) tumors of endodermal origin, in which extensive experimental research has demonstrated significant anti-proliferative, pro-apoptotic effects of DCA, leading to improved host survival.
  • Article
    The molecular mechanisms responsible for the failure of antiangiogenic therapies and how tumors adapt to these therapies are unclear. Here, we applied transcriptomic, proteomic, and metabolomic approaches to preclinical models and provide evidence for tumor adaptation to vascular endothelial growth factor blockade through a metabolic shift toward carbohydrate and lipid metabolism in tumors. During sunitinib or sorafenib treatment, tumor growth was inhibited and tumors were hypoxic and glycolytic. In sharp contrast, treatment withdrawal led to tumor regrowth, angiogenesis restoration, moderate lactate production, and enhanced lipid synthesis. This metabolic shift was associated with a drastic increase in metastatic dissemination. Interestingly, pharmacological lipogenesis inhibition with orlistat or fatty acid synthase downregulation with shRNA inhibited tumor regrowth and metastases after sunitinib treatment withdrawal. Our data shed light on metabolic alterations that result in cancer adaptation to antiangiogenic treatments and identify key molecules involved in lipid metabolism as putative therapeutic targets.
  • Article
    The in vivo elimination rate of dichloroacetate (DCA), an investigational drug; is determined by the rate of its biotransformation to glyoxylate, catalyzed by glutathione transferase ζ1 (GSTZ1). DCA is a mechanism-based inactivator of GSTZ1, thus elimination of DCA is slowed with repeated dosing. We observed that chloride, a physiologically important anion, attenuated DCA-induced GSTZ1 inactivation in human liver cytosol in a concentration and GSTZ1 haplotype-dependent way. In the absence of chloride, incubation with 0.5 mM DCA resulted in inactivation of GSTZ1 with a half-life of 0.4 h (samples with the KRT haplotype) to 0.5 h (EGT haplotype). At the hepatic physiological chloride concentration, 38 mM, samples with the EGT haplotype retained more activity (80%) following a 2-h incubation with 0.5 mM DCA than those possessing the KRT haplotype (55%). The chloride concentration that protected 50% of the GSTZ1 activity following 2-h incubation with 0.5 mM DCA (EC50) was 15.0 ± 3.1 mM (mean ± S.D., n=3) for EGT samples and 36.2 ± 2.2 mM for KRT samples. Bromide, iodide and sulfite also protected GSTZ1 from inactivation by DCA, however fluoride, sulfate, carbonate, acetate, cyanide did not. Protection by bromide varied by GSTZ1 haplotype: EC50 was 1.3 ± 0.3 mM for the EGT haplotype and 5.0 ± 0.60 mM for the KRT haplotype. The EC50 values for iodide and sulfite in liver cytosol samples with EGT haplotype were respectively 0.14 ± 0.06 mM and 9.6 ± 1.1 mM (mean ± S.D., n=3). Because the in vivo half-life of DCA is determined by the fraction of active GSTZ1 in the liver, identifying factors that regulate GSTZ1 activity is important in determining appropriate DCA dosing in humans.
  • Article
    Full-text available
    The UDP-glucuronosyltransferase (UGT) 1A enzymes are involved in the phase II metabolism of many important endogenous and exogenous compounds. The nine UGT1A isoforms exhibit high inter-individual differences in expression but their epigenetic regulation is not well-understood. The purpose of the present study was to examine microRNA (miRNA) regulation of hepatic UGT1A enzymes and determine if that regulation impacts enzymatic activity. In silico analysis identified miRNA 491-3p (miR-491-3p) as a potential regulator of the UGT1A gene family via binding to the shared UGT1A 3' untranslated region common to all UGT1A enzymes. Transfection of miR-491-3p mimic into HuH-7 cells significantly repressed UGT1A1 (P<0.001), UGT1A3 (P<0.05), and UGT1A6 mRNA levels (P<0.05). For UGT1A1, this repression correlated with a significantly reduced metabolism of raloxifene into raloxifene-6-glucuronide (ral-6-gluc; P<0.01) and raloxifene-4'-glucuronide (ral-4'-gluc; P<0.01). In HuH-7 cells with repressed miR-491-3p expression, there is a significant increase (~80%; P<0.01) in UGT1A1 mRNA and a corresponding increase in glucuronidation of raloxifene into ral-6-gluc (50%, P<0.05) and ral-4'-gluc (22%, P<0.01). Knockdown of endogenous miR-491-3p in HepG2 cells did not significantly alter UGT1A1 mRNA levels, but did increase the formation of ral-6-gluc (50%, P<0.05) and ral-4'-gluc (34%, P<0.001). A significant inverse correlation between miR-491-3p expression and both UGT1A3 (P<0.05) and UGT1A6 (P<0.01) mRNA levels was observed in a panel of normal human liver specimens, with a significant (P<0.05) increase in UGT1A3 and UGT1A6 mRNA levels observed in miR-491-3p non-expressing versus expressing liver specimens. These results suggest that miR-491-3p is an important factor in regulating the expression of UGT1A enzymes in vivo.
  • Article
    Full-text available
    Breast cancer is a complex heterogeneous disease for which a substantial resource of transcriptomic data is available. Gene expression data have facilitated the division of breast cancer into, at least, five molecular subtypes, namely luminal A, luminal B, HER2, normal-like and basal. Once identified, breast cancer subtypes can inform clinical decisions surrounding patient treatment and prognosis. Indeed, it is important to identify patients at risk of developing aggressive disease so as to tailor the level of clinical intervention. We have developed a user-friendly, web-based system to allow the evaluation of genes/microRNAs (miRNAs) that are significantly associated with survival in breast cancer and its molecular subtypes. The algorithm combines gene expression data from multiple microarray experiments which frequently also contain miRNA expression information, and detailed clinical data to correlate outcome with gene/miRNA expression levels. This algorithm integrates gene expression and survival data from 26 datasets on 12 different microarray platforms corresponding to approximately 17,000 genes in up to 4,738 samples. In addition, the prognostic potential of 341 miRNAs can be analysed. We demonstrated the robustness of our approach in comparison to two commercially available prognostic tests, oncotype DX and MammaPrint. Our algorithm complements these prognostic tests and is consistent with their findings. In addition, BreastMark can act as a powerful reductionist approach to these more complex gene signatures, eliminating superfluous genes, potentially reducing the cost and complexity of these multi-index assays. Known miRNA prognostic markers, mir-205 and mir-93, were used to confirm the prognostic value of this tool in a miRNA setting. We also applied the algorithm to examine expression of 58 receptor tyrosine kinases in the basal-like subtype, identifying six receptor tyrosine kinases associated with poor disease-free survival and/or overall survival (EPHA5, FGFR1, FGFR3, VEGFR1, PDGFRbeta, and TIE1). A web application for using this algorithm is currently available at http://glados.ucd.ie/BreastMark/index.html. BreastMark is a powerful tool for examining putative gene/miRNA prognostic markers in breast cancer. The value of this tool will be in the preliminary assessment of putative biomarkers in breast cancer. It will be of particular use to research groups with limited bioinformatics facilities.
  • Article
    Full-text available
    The cell contains many mechanisms for protecting the integrity of its genome. These mechanisms are often weakened or absent in many cancers, leading to high rates of chromosomal instability in tumors. Control of the cell cycle is crucial for the function of these checkpoints, and is frequently lost in cancers as well. Overexpression of Cyclin D1 in a large number of breast cancers causes overactivation of the Cyclin Dependent Kinases, including Cdk2. Constitutive Cdk2 activation through Cyclin D1 generates tumors in mice that are aneuploid and contain many characteristics indicative of chromosomal instability. Expression of these complexes in the MCF10A cell line leads to Rb hyperphosphorylation, a subsequent increase in proliferation rate, and increased expression of the spindle assembly checkpoint protein Mad2. This leads to a strengthening of the spindle assembly checkpoint and renders cells more sensitive to the spindle poison paclitaxel. Constitutive Rb phosphorylation also causes a weakening of the p53-dependent tetraploidy checkpoint. Cells with overactive Cdk2 fail to arrest after mitotic slippage in the presence of paclitaxel or cytokinesis failure during treatment with cytochalasin-B, generating 8N populations. This additional increase in DNA content appears to further intensify the tetraploidy checkpoint in a step-wise manner. These polyploid cells are not viable long-term, either failing to undergo division or creating daughter cells that are unable to undergo subsequent division. This study raises intriguing questions about the treatment of tumors with overactive Cdk2.
  • Article
    Full-text available
    Background: Sorafenib is the only drug approved for the treatment of hepatocellular carcinoma (HCC). The bioenergetic propensity of cancer cells has been correlated to anticancer drug resistance, but such correlation is unclear in sorafenib resistance of HCC. Methods: Six sorafenib-naive HCC cell lines and one sorafenib-resistant HCC cell line (Huh-7R; derived from sorafenib-sensitive Huh-7) were used. The bioenergetic propensity was calculated by measurement of lactate in the presence or absence of oligomycin. Dichloroacetate (DCA), a pyruvate dehydrogenase kinase (PDK) inhibitor, and siRNA of hexokinase 2 (HK2) were used to target relevant pathways of cancer metabolism. Cell viability, mitochondrial membrane potential, and sub-G1 fraction were measured for in vitro efficacy. Reactive oxygen species (ROS), adenosine triphosphate (ATP) and glucose uptake were also measured. A subcutaneous xenograft mouse model was used for in vivo efficacy. Results: The bioenergetic propensity for using glycolysis correlated with decreased sorafenib sensitivity (R2=0.9067, among sorafenib-naive cell lines; P=0.003, compared between Huh-7 and Huh-7 R). DCA reduced lactate production and increased ROS and ATP, indicating activation of oxidative phosphorylation (OXPHOS). DCA markedly sensitised sorafenib-resistant HCC cells to sorafenib-induced apoptosis (sub-G1 (combination vs sorafenib): Hep3B, 65.4±8.4% vs 13±2.9% Huh-7 R, 25.3± 5.7% vs 4.3±1.5% each P<0.0001), whereas siRNA of HK2 did not. Sorafenib (10 mg kg−1 per day) plus DCA (100 mg kg−1 per day) also resulted in superior tumour regression than sorafenib alone in mice (tumour size: −87% vs −36%, P<0.001). Conclusion: The bioenergetic propensity is a potentially useful predictive biomarker of sorafenib sensitivity, and activation of OXPHOS by PDK inhibitors may overcome sorafenib resistance of HCC.
  • Article
    MicroRNAs (miRNAs) guide RNA-induced silencing complex (RISC) that contains an Argonaute family protein to complementary target messenger RNAs (mRNAs). Via RISC, miRNAs silence the expression of target mRNAs by shortening the poly(A) tail-which leads to mRNA decay-and by repressing translation. It has been suggested that GW182, an Argonaute-associating protein, plays the central role in such microRNA actions. Here we show that, although GW182 is obligatory for poly(A) shortening, translational repression by microRNAs occurs even in the absence of GW182. Yet, GW182 is also capable of inducing translational repression independently. Both of these translational repression mechanisms block formation of 48S and 80S ribosomal complexes. Thus microRNAs utilize at least three distinct silencing pathways: GW182-mediated deadenylation and GW182-dependent and -independent repression of early translation initiation. Differential contribution from these multiple pathways may explain previous, apparently contradictory observations of how microRNAs inhibit protein synthesis.
  • Article
    Full-text available
    The epithelial to mesenchymal transition (EMT) is a process by which differentiated epithelial cells transition to a mesenchymal phenotype. EMT enables the escape of epithelial cells from the rigid structural constraints of the tissue architecture to a phenotype more amenable to cell migration and, therefore, invasion and metastasis. We characterized an in vivo model of EMT and discovered that marked changes in mitogenic signaling occurred during this process. DNA microarray analysis revealed that the expression of a number of genes varied significantly between post-EMT and pre-EMT breast cancer cells. Post-EMT cancer cells upregulated mRNA encoding c-Met and the PDGF and LPA receptors, and acquired increased responsiveness to HGF, PDGF, and LPA. This rendered the post-EMT cells responsive to the growth inhibitory effects of HGF, PDGF, and LPA receptor inhibitors/antagonists. Furthermore, post-EMT cells exhibited decreased basal Raf and Erk phosphorylation, and in comparison to pre-EMT cells, their proliferation was poorly inhibited by a MEK inhibitor. These studies suggest that therapies need to be designed to target both pre-EMT and post-EMT cancer cells and that signaling changes in post-EMT cells may allow them to take advantage of paracrine signaling from the stroma in vivo.
  • Article
    A reversed-phase high-performance liquid chromatographic method for the determination of chloride in plasma, urine, saliva, sweat and aqueous solution is described. Chloride, in solution in aqueous acetone, is converted by means of pentafluorobenzyl bromide into pentafluorobenzyl chloride. This derivative is separated on a ODS-5 m reversed-phase column using isocratic elution with acctonitrile/water, 50/50, v/v, at a flow rate of 2.0 ml/min, and detected by a UV detector at 264 nm. The method is rapid, accurate and sufficiently sensitive for the determination of chloride in less than 10 l sample volume of a biological fluid.
  • Article
    Full-text available
    Recent studies show that ion channels/transporters play important roles in fundamental cellular functions. Several reports indicating the important roles of Cl(-) channels/transporters on cell proliferation suggest that the intracellular chloride concentration ([Cl(-)](i)) regulated by them would be one of critical messengers. We investigated whether the [Cl(-)](i) controls cell proliferation and cell cycle progression in human gastric cancer cells. Our studies indicated that furosemide, a blocker of Na(+)/K(+)/2Cl(-) cotransporter (NKCC), diminished cell growth by delaying the G(1)-S phase progression in gastric cancer cells with high expression and activity of NKCC. Furthermore, we found that the culture in the low Cl(-) medium (replacement of Cl(-) by NO(3) (-)) decreased the [Cl(-)](i) and inhibited cell growth of gastric cancer cells and that this inhibition of cell growth was due to cell cycle arrest at the G(0)/G(1) phase caused by diminution of CDK2 and phosphorylated Rb. The culture of cells in the low Cl(-) medium significantly increased expressions of p21 mRNA and protein. In addition, the low Cl(-) medium induced phosphorylation of mitogen activated protein kinases (MAPKs). Treatment with an inhibitor of p38 or JNK significantly suppressed p21 upregulation caused by culture in a low Cl(-) medium and rescued gastric cancer cells from the low Cl(-)-induced G(1) cell cycle arrest. These findings revealed that the [Cl(-)](i) affects the cell proliferation via activation of MAPKs through upregulation of p21 in gastric cancer cells. Our results suggest that the [Cl(-)](i) regulates important cellular functions in gastric cancer cells, leading to the development of novel therapeutic strategies.
  • Article
    Unlabelled: Although HCC is the third-leading cause of cancer-related deaths worldwide, there is only an elemental understanding of its molecular pathogenesis. In western countries, HCV infection is the main etiology underlying this cancer's accelerating incidence. To characterize the molecular events of the hepatocarcinogenic process, and to identify new biomarkers for early HCC, the gene expression profiles of 75 tissue samples were analyzed representing the stepwise carcinogenic process from preneoplastic lesions (cirrhosis and dysplasia) to HCC, including 4 neoplastic stages (very early HCC to metastatic tumors) from patients with HCV infection. We identified gene signatures that accurately reflect the pathological progression of disease at each stage. Eight genes distinguish between control and cirrhosis, 24 between cirrhosis and dysplasia, 93 between dysplasia and early HCC, and 9 between early and advanced HCC. Using quantitative real-time reverse-transcription PCR, we validated several novel molecular tissue markers for early HCC diagnosis, specifically induction of abnormal spindle-like, microcephaly-associated protein, hyaluronan-mediated motility receptor, primase 1, erythropoietin, and neuregulin 1. In addition, pathway analysis revealed dysregulation of the Notch and Toll-like receptor pathways in cirrhosis, followed by deregulation of several components of the Jak/STAT pathway in early carcinogenesis, then upregulation of genes involved in DNA replication and repair and cell cycle in late cancerous stages. Conclusion: These findings provide a comprehensive molecular portrait of genomic changes in progressive HCV-related HCC.
  • Article
    Full-text available
    Functional characterization of the human genome requires tools for systematically modulating gene expression in both loss-of-function and gain-of-function experiments. We describe the production of a sequence-confirmed, clonal collection of over 16,100 human open-reading frames (ORFs) encoded in a versatile Gateway vector system. Using this ORFeome resource, we created a genome-scale expression collection in a lentiviral vector, thereby enabling both targeted experiments and high-throughput screens in diverse cell types.
  • Article
    Full-text available
    Metastasis-related recurrence often occurs in hepatocellular carcinoma (HCC) patients who receive curative therapies. At present, it is challenging to identify patients with high risk of recurrence, which would warrant additional therapies. In this study, we sought to analyze a recently developed metastasis-related gene signature for its utility in predicting HCC survival, using 2 independent cohorts consisting of a total of 386 patients who received radical resection. Cohort 1 contained 247 predominantly HBV-positive cases analyzed with an Affymetrix platform, whereas cohort 2 contained 139 cases with mixed etiology analyzed with the NCI Oligo Set microarray platform. We employed a survival risk prediction algorithm with training, test, and independent cross-validation strategies and found that the gene signature is predictive of overall and disease-free survival. Importantly, risk was significantly predicted independently of clinical characteristics and microarray platform. In addition, survival prediction was successful in patients with early disease, such as small (<5 cm in diameter) and solitary tumors, and the signature predicted particularly well for early recurrence risk (<2 years), especially when combined with serum alpha fetoprotein or tumor staging. In conclusion, we have shown in 2 independent cohorts with mixed etiologies and ethnicity that the metastasis gene signature is a useful tool to predict HCC outcome, suggesting the general utility of this classifier. We recommend the use of this classifier as a molecular diagnostic test to assess the risk that an HCC patient will develop tumor relapse within 2 years after surgical resection, particularly for those with early-stage tumors and solitary presentation.
  • Article
    Full-text available
    Background: Accumulating studies reveal that aberrant microRNA (miRNA) expression can affect the development of chemotherapy drug resistance by modulating the expression of relevant target proteins. The aim of this study was to investigate the role of miR-133b in the development of drug resistance in ovarian cancer cells. Methods: We examined the levels of miR-133b expression in ovarian carcinoma tissues and the human ovarian carcinoma cell lines (A2780, A2780/DDP and A2780/Taxol, respectively). We determined the cell viability of these cell lines treated with cisplatin or paclitaxel in the presence or absence of miR-133b or anti-miR-133b transfection using the MTT assay. Reverse transcription polymerase chain reaction and Western blotting were used to assess the mRNA and protein expression levels of two drug-resistance-related genes: glutathione S-transferase (GST)-π and multidrug resistance protein 1 (MDR1). The dual-luciferase reporter assay was used to detect the promoter activity of GST-π in the presence and absence of miR-133b. Results: The expression of miR-133b was significantly lower in primary resistant ovarian carcinomas than in the chemotherapy-sensitive carcinomas (P<0.05), and the same results were found in primary resistant ovarian cell lines (A2780/Taxol and A2780/DDP) compared to the chemotherapy-sensitive cell line (A2780; P<0.05). Following miR-133b transfection, four cell lines showed increased sensitivity to paclitaxel and cisplatin, while anti-miR-133b transfection reduced cell sensitivity to paclitaxel and cisplatin. Dual-luciferase reporter assay showed that miR-133b interacted with the 3'-untranslated region of GST-π. Compared to controls, the mRNA and protein levels of MDR1 and GST-π were downregulated after miR-133b transfection and upregulated after anti-miR-133b transfection. Conclusion: MicroRNA-133b may reduce ovarian cancer drug resistance by silencing the expression of the drug-resistance-related proteins, GST-π and MDR1. In future, the combination of miR-133b with chemotherapy agents may prevent the development of drug resistance in ovarian cancers.
  • Article
    The "Warburg effect," also termed aerobic glycolysis, describes the increased reliance of cancer cells on glycolysis for ATP production, even in the presence of oxygen. Consequently, there is continued interest in inhibitors of glycolysis as cancer therapeutics. One example is dichloroacetate (DCA), a pyruvate mimetic that stimulates oxidative phosphorylation through inhibition of pyruvate dehydrogenase kinase. In this study, the mechanistic basis for DCA anti-cancer activity was re-evaluated in vitro using biochemical, cellular and proteomic approaches. Results demonstrated that DCA is relatively inactive (IC(50) ≥ 17 mM, 48 hr), induces apoptosis only at high concentrations (≥ 25 mM, 48 hr) and is not cancer cell selective. Subsequent 2D-PAGE proteomic analysis confirmed DCA-induced growth suppression without apoptosis induction. Furthermore, DCA depolarizes mitochondria and promotes reactive oxygen species (ROS) generation in all cell types. However, DCA was found to have selective activity against rho(0) cells [mitochondrial DNA (mtDNA) deficient] and to synergize with 2-deoxyglucose in complex IV deficient HCT116 p53(-/-) cells. DCA also synergized in vitro with cisplatin and topotecan, two antineoplastic agents known to damage mitochondrial DNA. These data suggest that in cells "hardwired" to selectively utilize glycolysis for ATP generation (e.g., through mtDNA mutations), the ability of DCA to force oxidative phosphorylation confers selective toxicity. In conclusion, although we provide a mechanism distinct from that reported previously, the ability of DCA to target cell lines with defects in the electron transport chain and to synergize with existing chemotherapeutics supports further preclinical development.
  • Article
    Full-text available
    During brain development, progenitor cells migrate over long distances through narrow and tortuous extracellular spaces posing significant demands on the cell's ability to alter cell volume. This phenotype is recapitulated in primary brain tumors. We demonstrate here that volume changes occurring spontaneously in these cells are mediated by the flux of Cl- along with obligated water across the cell membrane. To do so, glioma cells accumulate Cl- to approximately 100 mM, a concentration threefold greater than predicted by the Nernst equation. Shunting this gradient through the sustained opening of exogenously expressed GABA-gated Cl- channels caused a 33% decrease in cell volume and impaired the ability of cells to migrate in a spatially constrained environment. Further, dividing cells condense their cytoplasm prior to mitosis, a phenomenon which is associated with the release of intracellular Cl- as indicated by a 40-mM decrease in [Cl-]i. These findings provide a new framework for considering the role of intracellular Cl- in glioma cells. Here, Cl- serves as an important osmotically active regulator of cell volume being the energetic driving force for volume changes required by immature cells in cell migration and proliferation. This mechanism that was studied in CNS malignancies may be shared with other immature cells in the brain as well.
  • Article
    Dichloroacetate (DCA) exerts multiple effects on pathways of intermediary metabolism. It stimulates peripheral glucose utilization and inhibits gluconeogeneis, thereby reducing hyperglycemia in animals and humans with diabetes mellitus. It inhibits lipogenesis and cholesterolgenesis, thereby decreasing circulating lipid and lipoprotein levels in short-term studies in patients with acquired or hereditary disorders of lipoprotein metabolism. By stimulating the activity of pyruvate dehydrogenase, DCA facilitates oxidation of lactate and decreases morbidity in acquired and congenital forms of lactic acidosis. The drug improves cardiac output and left ventricular mechanical efficiency under conditions of myocardial ischemia or failure, probably by facilitating myocardial metabolism of carbohydrate and lactate as opposed to fat. DCA may also enhance regional lactate removal and restoration of brain function in experimental states of cerebral ischemia. DCA appears to inhibit its own metabolism, which may influence the duration of its pharmacologic actions and lead to toxicity. DCA can cause a reversible peripheral neuropathy that may be related to thiamine deficiency and may be ameliorated or prevented with thiamine supplementation. Other toxic effects of DCA may be species-specific and reflect marked interspecies variation in pharmacokinetics. Despite its potential toxicity and limited clinical experience, DCA and its derivatives may prove to be useful in probing regulatory aspects of intermediary metabolism and in the acute or chronic treatment of several metabolic disorders.
  • Article
    Full-text available
    Sequence alignment and phylogenetic analysis has identified a new subgroup of glutathione S-transferase (GST)-like proteins from a range of species extending from plants to humans. This group has been termed the Zeta class. An atomic model of the N-terminal domain suggests that the members of the Zeta class have a similar structure to that of other GSTs, binding glutathione in a similar orientation in the G site. Recombinant human GSTZ1-1 has been expressed in Escherichia coli and characterized. The protein is a dimer composed of 24.2 kDa subunits and has minimal glutathione-conjugating activity with ethacrynic acid and 7-chloro-4-nitrobenz-2-oxa-1, 3-diazole. Although low in comparison with other GSTs, GSTZ1-1 has glutathione peroxidase activity with t-butyl and cumene hydroperoxides. The members of the Zeta class have been conserved over a long evolutionary period, suggesting that they might have a role in the metabolism of a compound that is common in many living cells.
  • Article
    The gene for maleylacetoacetate isomerase (MAAI) (EC 5.2.1.2) was the last gene in the mammalian phenylalanine/tyrosine catabolic pathway to be cloned. We have isolated the human and murine genes and determined their genomic structure. The human gene spans a genomic region of approximately 10 kb, has 9 exons ranging from 50 to 528 bp in size, and was mapped to 14q24.3-14q31.1 using fluorescence in situ hybridization. The complete catabolic pathway of phenylalanine/tyrosine is normally restricted to liver and kidney, but the maleylacetoacetate isomerase gene is expressed ubiquitously. This suggests a possible second role for the MAAI protein different from phenylalanine/tyrosine catabolism. We have searched for mutations in the maleylacetoacetate isomerase gene in four cases of unexplained severe liver failure in infancy with clinical similarities to hereditary tyrosinemia type I (pseudotyrosinemia). Several amino acid changes were identified, but all were found to retain MAAI activity and thus represent protein polymorphisms. We conclude that MAAI deficiency is not a common cause of the pseudotyrosinemic phenotype.
  • Article
    Full-text available
    Human malignant gliomas are highly invasive tumors. Mechanisms that allow glioma cells to disseminate, migrating through the narrow extracellular brain spaces are poorly understood. We recently demonstrated expression of large voltage-dependent chloride (Cl(-)) currents, selectively expressed by human glioma cells in vitro and in situ (Ullrich et al., 1998). Currents are sensitive to several Cl(-) channel blockers, including chlorotoxin (Ctx), (Ullrich and Sontheimer; 1996; Ullrich et al; 1996), tetraethylammonium chloride (TEA), and tamoxifen (Ransom and Sontheimer, 1998). Using Transwell migration assays, we show that blockade of glioma Cl(-) channels specifically inhibits tumor cell migration in a dose-dependent manner. Ctx (5 microM), tamoxifen (10 microM), and TEA (1 mM) also prevented invasion of human glioma cells into fetal rat brain aggregates, used as an in vitro model to assess tumor invasiveness. Anion replacement studies suggest that permeation of chloride ions through glioma chloride channel is obligatory for cell migration. Osmotically induced cell swelling and subsequent regulatory volume decrease (RVD) in cultured glioma cells were reversibly prevented by 1 mM TEA, 10 microM tamoxifen, and irreversibly blocked by 5 microM Ctx added to the hypotonic media. Cl(-) fluxes associated with adaptive shape changes elicited by cell swelling and RVD in glioma cells were inhibited by 5 microM Ctx, 10 microM tamoxifen, and 1 mM TEA, as determined using the Cl(-)-sensitive fluorescent dye 6-methoxy-N-ethylquinolinium iodide. Collectively, these data suggest that chloride channels in glioma cells may enable tumor invasiveness, presumably by facilitating cell shape and cell volume changes that are more conducive to migration and invasion.
  • Article
    Full-text available
    Patients suffering from the metabolic disease hereditary tyrosinemia type I (HT1), caused by fumarylacetoacetate hydrolase deficiency, have a high risk of developing liver cancer. We report that a sub-apoptogenic dose of fumarylacetoacetate (FAA), the mutagenic metabolite accumulating in HT1, induces spindle disturbances and segregational defects in both rodent and human cells. Mitotic abnormalities, such as distorted spindles, lagging chromosomes, anaphase/telophase chromatin bridges, aberrant karyokinesis/cytokinesis and multinucleation were observed. Some mitotic asters displayed a large pericentriolar material cloud and/or altered distribution of the spindle pole-associated protein NuMA. FAA-treated cells developed micronuclei which were predominantly CREST-positive, suggesting chromosomal instability. The Golgi complex was rapidly disrupted by FAA, without evident microtubules/tubulin alterations, and a sustained activation of the extracellular signal-regulated protein kinase (ERK) was also observed. Primary skin fibroblasts derived from HT1 patients, not exogenously treated with FAA, showed similar mitotic-derived alterations and ERK activation. Biochemical data suggest that FAA causes ERK activation through a thiol-regulated and tyrosine kinase-dependent, but growth factor receptor- and protein kinase C-independent pathway. Pre-treatment with the MEK inhibitor PD98059 and the Ras farnesylation inhibitor B581 decreased the formation of CREST-positive micronuclei by approximately 75%, confirming the partial contribution of the Ras/ERK effector pathway to the induction of chromosomal instability by FAA. Replenishment of intracellular glutathione (GSH) with GSH monoethylester abolished ERK activation and reduced the chromosomal instability induced by FAA by 80%. Together these results confirm and extend the previously reported genetic instability occurring in cells from HT1 patients and allow us to speculate that this tumorigenic-related phenomenon may rely on the biochemical/cellular effects of FAA as a thiol-reacting and organelle/mitotic spindle-disturbing agent.
  • Article
    Full-text available
    This study creates a compendium of gene expression in normal human tissues suitable as a reference for defining basic organ systems biology. Using oligonucleotide microarrays, we analyze 59 samples representing 19 distinct tissue types. Of approximately 7,000 genes analyzed, 451 genes are expressed in all tissue types and designated as housekeeping genes. These genes display significant variation in expression levels among tissues and are sufficient for discerning tissue-specific expression signatures, indicative of fundamental differences in biochemical processes. In addition, subsets of tissue-selective genes are identified that define key biological processes characterizing each organ. This compendium highlights similarities and differences among organ systems and different individuals and also provides a publicly available resource (Human Gene Expression Index, the HuGE Index, http://www.hugeindex.org) for future studies of pathophysiology.
  • Article
    The two most commonly used methods to analyze data from real-time, quantitative PCR experiments are absolute quantification and relative quantification. Absolute quantification determines the input copy number, usually by relating the PCR signal to a standard curve. Relative quantification relates the PCR signal of the target transcript in a treatment group to that of another sample such as an untreated control. The 2(-Delta Delta C(T)) method is a convenient way to analyze the relative changes in gene expression from real-time quantitative PCR experiments. The purpose of this report is to present the derivation, assumptions, and applications of the 2(-Delta Delta C(T)) method. In addition, we present the derivation and applications of two variations of the 2(-Delta Delta C(T)) method that may be useful in the analysis of real-time, quantitative PCR data.
  • Article
    Glutathione transferase zeta (GSTZ1-1) catalyzes the cis-trans isomerization of maleylacetoacetate or maleylacetone (MA) to fumarylacetoacetate or fumarylacetone (FA), respectively. GSTZ1-1 also catalyzes the glutathione-dependent biotransformation of a range of alpha-haloacids, including dichloroacetic acid. The objective of this study was to investigate the mechanism of inactivation of hGSTZ1-1 by MA and FA and to determine the covalent modification of hGSTZ1-1 by MA and FA in the presence and absence of glutathione. MA and FA (0.01-1 mM) inactivated all hGSTZ1-1 polymorphic variants in a concentration- and time-dependent manner, and this inactivation was blocked by glutathione. The C16A mutant of hGSTZ1c-1c was partially inactivated by MA and FA. Electrospray ionization-tandem mass spectrometry and SALSA (Scoring Algorithm for Spectral Analysis) analyses of tryptic digests of hGSTZ1 polymorphic variants revealed that the active site (SSCSWR) and C-terminal (LLVLEAFQVSHPCR) cysteine residues of hGSTZ1-1 were covalently modified by MA and FA. MA and FA adduction resulted in diagnostic 156-Da shifts in the masses of the modified peptide ions and in their MS-MS fragment ions. Alkylation of the active-site cysteine residues, but not of the C-terminal cysteine, was relatively less intense when hGSTZ1-1 polymorphic variants were incubated with MA or FA in the presence of S-methyl glutathione. These data indicate that MA and FA are substrate and product inactivators of hGSTZ1-1 and covalently modify hGSTZ1-1 at the active-site cysteine residue in the absence of glutathione. The observation that inactivation was blocked by glutathione indicates that binding of glutathione to the active site prevents reaction of MA or FA with the active-site cysteine residue. These data also indicate that MA and FA may covalently modify and inactivate other proteins that have accessible cysteine residues and may, thereby, contribute to dichloroacetic acid-induced or hypertyrosinemia type-I-associated toxicities.
  • Article
    Full-text available
    Hepatocellular carcinoma (HCC) is a leading cause of death worldwide. Using cDNA microarrays to characterize patterns of gene expression in HCC, we found consistent differences between the expression patterns in HCC compared with those seen in nontumor liver tissues. The expression patterns in HCC were also readily distinguished from those associated with tumors metastatic to liver. The global gene expression patterns intrinsic to each tumor were sufficiently distinctive that multiple tumor nodules from the same patient could usually be recognized and distinguished from all the others in the large sample set on the basis of their gene expression patterns alone. The distinctive gene expression patterns are characteristic of the tumors and not the patient; the expression programs seen in clonally independent tumor nodules in the same patient were no more similar than those in tumors from different patients. Moreover, clonally related tumor masses that showed distinct expression profiles were also distinguished by genotypic differences. Some features of the gene expression patterns were associated with specific phenotypic and genotypic characteristics of the tumors, including growth rate, vascular invasion, and p53 overexpression.
  • Article
    Glutathione transferase zeta (GSTZ1-1) is widely expressed in eukaryotic species, and four human allelic variants of hGSTZ1-1 have been described. GSTZ1-1 catalyzes the cis-trans isomerization of maleylacetoacetate to fumarylacetoacetate and the biotransformation of a range of alpha-haloalkanoic acids. GSTZ1-1-catalyzed biotransformation of fluorine-lacking alpha,alpha-dihaloalkanoic acids, including dichloroacetic acid (DCA), results in the mechanism-based inactivation and covalent modification of the enzyme. The objective of this study was to investigate further the DCA-induced inactivation of hGSTZ1c-1c and to explore the mechanism of inactivation by characterization of the sites and types of DCA-induced covalent modifications. The partition ratio for the DCA-induced, mechanism-based inactivation of hGSTZ1c-1c was (5.7 +/- 0.5) x 10(2), and the k(cat) for the biotransformation of DCA was 39 min(-)(1). Inactivation of hGSTZ1c-1c in vitro was limited at high enzyme concentrations and was inhibited by glyoxylate. The stoichiometry of DCA binding to hGSTZ1c-1c was approximately 0.5 mol of DCA/mol of enzyme monomer. A single DCA-derived adduct was observed and was assigned to cysteine-16 by a combination of matrix-assisted laser-desorption-ionization time-of-flight and electrospray-ionization quadrupole ion-trap mass spectrometry and by analysis of [1-(14)C]DCA binding to C16A hGSTZ1c-1c. The DCA-derived adduct contained both glutathione and the carbon skeleton of DCA, presumably in a dithioacetal linkage. Also, cysteine-16 formed a mixed disulfide bond with glutathione. These data support a mechanism of inactivation whereby glutathione displaces a chlorine atom from DCA, and cysteine-16 in the enzyme active site displaces the second chlorine atom to result in a covalently modified and inactivated enzyme. These findings explain the DCA-induced inactivation of GSTZ1-1 observed in humans and rats.
  • Article
    Glutathione transferase zeta (GSTZ1-1) is the major enzyme that catalyzes the metabolism of alpha-halo acids such as dichloroacetic acid, a carcinogenic contaminant of chlorinated water. GSTZ1-1 is identical with maleylacetoacetate isomerase, which catalyzes the penultimate step in the catabolic pathways for phenylalanine and tyrosine. In this study we have deleted the Gstz1 gene in BALB/c mice and characterized their phenotype. Gstz1(-/-) mice do not have demonstrable activity with maleylacetone and alpha-halo acid substrates, and other GSTs do not compensate for the loss of this enzyme. When fed a standard diet, the GSTZ1-1-deficient mice showed enlarged liver and kidneys as well as splenic atrophy. Light and electron microscopic examination revealed multifocal hepatitis and ultrastructural changes in the kidney. The addition of 3% (w/v) phenylalanine to the drinking water was lethal for young mice (<28 days old) and caused liver necrosis, macrovesicular steatosis, splenic atrophy, and a significant loss of circulating leukocytes in older surviving mice. GSTZ1-1-deficient mice showed constitutive induction of alpha, mu, and pi class GSTs as well as NAD(P)H:quinone oxidoreductase 1. The overall response is consistent with the chronic accumulation of a toxic metabolite(s). We detected the accumulation of succinylacetone in the serum of deficient mice but cannot exclude the possibility that maleylacetoacetate and maleylacetone may also accumulate.
  • Article
    MicroRNAs (miRNAs) are small RNAs that regulate the expression of complementary messenger RNAs. Hundreds of miRNA genes have been found in diverse animals, and many of these are phylogenetically conserved. With miRNA roles identified in developmental timing, cell death, cell proliferation, haematopoiesis and patterning of the nervous system, evidence is mounting that animal miRNAs are more numerous, and their regulatory impact more pervasive, than was previously suspected.
  • Article
    Full-text available
    MicroRNAs (miRNAs) interact with target mRNAs at specific sites to induce cleavage of the message or inhibit translation. The specific function of most mammalian miRNAs is unknown. We have predicted target sites on the 3' untranslated regions of human gene transcripts for all currently known 218 mammalian miRNAs to facilitate focused experiments. We report about 2,000 human genes with miRNA target sites conserved in mammals and about 250 human genes conserved as targets between mammals and fish. The prediction algorithm optimizes sequence complementarity using position-specific rules and relies on strict requirements of interspecies conservation. Experimental support for the validity of the method comes from known targets and from strong enrichment of predicted targets in mRNAs associated with the fragile X mental retardation protein in mammals. This is consistent with the hypothesis that miRNAs act as sequence-specific adaptors in the interaction of ribonuclear particles with translationally regulated messages. Overrepresented groups of targets include mRNAs coding for transcription factors, components of the miRNA machinery, and other proteins involved in translational regulation, as well as components of the ubiquitin machinery, representing novel feedback loops in gene regulation. Detailed information about target genes, target processes, and open-source software for target prediction (miRanda) is available at http://www.microrna.org. Our analysis suggests that miRNA genes, which are about 1% of all human genes, regulate protein production for 10% or more of all human genes.
  • Article
    We predict regulatory targets of vertebrate microRNAs (miRNAs) by identifying mRNAs with conserved complementarity to the seed (nucleotides 2-7) of the miRNA. An overrepresentation of conserved adenosines flanking the seed complementary sites in mRNAs indicates that primary sequence determinants can supplement base pairing to specify miRNA target recognition. In a four-genome analysis of 3' UTRs, approximately 13,000 regulatory relationships were detected above the estimate of false-positive predictions, thereby implicating as miRNA targets more than 5300 human genes, which represented 30% of our gene set. Targeting was also detected in open reading frames. In sum, well over one third of human genes appear to be conserved miRNA targets.
  • Article
    Full-text available
    MicroRNAs are key regulators of gene expression, but the precise mechanisms underlying their interaction with their mRNA targets are still poorly understood. Here, we systematically investigate the role of target-site accessibility, as determined by base-pairing interactions within the mRNA, in microRNA target recognition. We experimentally show that mutations diminishing target accessibility substantially reduce microRNA-mediated translational repression, with effects comparable to those of mutations that disrupt sequence complementarity. We devise a parameter-free model for microRNA-target interaction that computes the difference between the free energy gained from the formation of the microRNA-target duplex and the energetic cost of unpairing the target to make it accessible to the microRNA. This model explains the variability in our experiments, predicts validated targets more accurately than existing algorithms, and shows that genomes accommodate site accessibility by preferentially positioning targets in highly accessible regions. Our study thus demonstrates that target accessibility is a critical factor in microRNA function.