Article

Inhibitory Effect of Rosa multiflora hip Extract on UVB-induced Skin Photoaging in Hs68 Fibroblasts

Authors:
To read the full-text of this research, you can request a copy directly from the authors.

Abstract

Acute and chronic ultraviolet (UV) irradiation triggers severe skin photoaging processes, which directly disrupt the normal three-dimensional integrity of skin. UV light stimulates the expression of matrix metalloproteinases (MMPs) which degrade constituents of extracellular matrix (ECM) proteins. These MMPs reduce collagen synthesis and decrease skin elasticity and integrity, resulting in wrinkle formation. In this study, we identified Rosa multiflora hip extract (RME) as an effective anti-photoaging ingredient. First, cell proliferation activity of RME was verified using Hs68 human dermal fibroblast cell line. RME downregulated MMPs expression through the inhibition of activator protein (AP)-1. In addition, type I and IV collagen expressions were increased with RME treatment and UVB-induced inflammatory responses were also reduced after RME treatment. In conclusion, R. multiflora hip extract may effectively improve UVB-induced skin aging and wrinkle formation which may provide as an anti-aging, anti-wrinkle, and anti-inflammation ingredient in cosmetic industry.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

Article
Background: We investigated the antioxidant, anti-wrinkles, whitening, and moisturizing properties and amounts of phenolic compounds of ethanol extracts from flowers of 10 resource plants from Namwon and Mt. Jiri., Korea. Methods and Results: We measured antioxidant efficacy based on the total polyphenol, and total flavonoid content, and the 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay. We evaluated the inhibi-tory effect on melanin synthesis and tyrosinase activity for the whitening effect. Furthermore, we analyzed the elastase and matrix metalloproteinase-1 (MMP-1) inhibition activity for anti-wrinkle capacity. To evaluate the moisturizing effect, we examined hyaluronan synthase (HAS) mRNA expression. In addition, the 19 phenolic compounds were detected using high performace liquid chromatography (HPLC). Among the 10 flowers, the antioxidant effect was high in the order of Rosa multiflora, Nelumbo nucifera, and Elsholtzia splendens. Whitening effect was high in the order of N. nucifera, R. multiflora, and Dendranthema zawadskii. As for the anti-wrinkle property, N. nucifera was the most effective followed by R. multiflora. Taraxacum coreanum was the best for moisturizing effect, followed by D. zawadskii, and E. splendens. Seven phenolic compounds were detected in the extracts of the 10 flowers. Conclusions: Overall, the extracts of five flowers extracts showed strong potential as antioxidant, whitening, anti-wrinkle, and moisturizing functional cosmetic agents. © 2020, Korean Society of Medicinal Crop Science. All rights reserved.
Article
Full-text available
Photoaging of the skin depends primarily on the degree of ultraviolet radiation (UVR) and on an amount of melanin in the skin (skin phototype). In addition to direct or indirect DNA damage, UVR activates cell surface receptors of keratinocytes and fibroblasts in the skin, which leads to a breakdown of collagen in the extracellular matrix and a shutdown of new collagen synthesis. It is hypothesized that dermal collagen breakdown is followed by imperfect repair that yields a deficit in the structural integrity of the skin, formation of a solar scar, and ultimately clinically visible skin atrophy and wrinkles. Many studies confirmed that acute exposure of human skin to UVR leads to oxidation of cellular biomolecules that could be prevented by prior antioxidant treatment and to depletion of endogenous antioxidants. Skin has a network of all major endogenous enzymatic and nonenzymatic protective antioxidants, but their role in protecting cells against oxidative damage generated by UV radiation has not been elucidated. It seems that skin's antioxidative defence is also influenced by vitamins and nutritive factors and that combination of different antioxidants simultaneously provides synergistic effect.
Article
Full-text available
Ultraviolet B (UVB; 290~320nm) irradiation-induced lipid peroxidation induces inflammatory responses that lead to skin wrinkle formation and epidermal thickening. Peroxisome proliferator-activated receptor (PPAR) α/γ dual agonists have the potential to be used as anti-wrinkle agents because they inhibit inflammatory response and lipid peroxidation. In this study, we evaluated the function of 2-bromo-4-(5-chloro-benzo[d]thiazol-2-yl) phenol (MHY 966), a novel synthetic PPAR α/γ dual agonist, and investigated its anti-inflammatory and anti-lipid peroxidation effects. The action of MHY 966 as a PPAR α/γ dual agonist was also determined in vitro by reporter gene assay. Additionally, 8-week-old melanin-possessing hairless mice 2 (HRM2) were exposed to 150 mJ/cm(2) UVB every other day for 17 days and MHY 966 was simultaneously pre-treated every day for 17 days to investigate the molecular mechanisms involved. MHY 966 was found to stimulate the transcriptional activities of both PPAR α and γ. In HRM2 mice, we found that the skins of mice exposed to UVB showed significantly increased pro-inflammatory mediator levels (NF-κB, iNOS, and COX-2) and increased lipid peroxidation, whereas MHY 966 co-treatment down-regulated these effects of UVB by activating PPAR α and γ. Thus, the present study shows that MHY 966 exhibits beneficial effects on inflammatory responses and lipid peroxidation by simultaneously activating PPAR α and γ. The major finding of this study is that MHY 966 demonstrates potential as an agent against wrinkle formation associated with chronic UVB exposure.
Article
Full-text available
Solar ultraviolet (UV) radiation is an important environmental factor that leads to immune suppression, inflammation, photoaging, and skin carcinogenesis. Here, we reviewed the specific signal transduction pathways and transcription factors involved in the cellular response to UV-irradiation. Increasing experimental data supporting a role for p38, MAPK, JNK, ERK1/2, and ATM kinases in the response network to UV exposure is discussed. We also reviewed the participation of NF-κB, AP-1, and NRF2 transcription factors in the control of gene expression after UV-irradiation. In addition, we discussed the promising chemotherapeutic intervention of transcription factors signaling by natural compounds. Finally, we focused on the review of data emerging from the use of DNA microarray technology to determine changes in global gene expression in keratinocytes and melanocytes in response to UV treatment. Efforts to obtain a comprehensive portrait of the transcriptional events regulating photodamage of intact human epidermis after UV exposure reveals the existence of novel factors participating in UV-induced cell death. Progress in understanding the multitude of mechanisms induced by UV-irradiation could lead to the potential use of protein kinases and novel proteins as specific targets for the prevention and control of skin cancer.
Article
Full-text available
Type IV collagen is a type of collagen found primarily in the skin within the basement membrane zone. The type IV collagen C4 domain at the C-terminus is not removed in post-translational processing, and the fibers are thus link head-to-head, rather than in a parallel fashion. Also, type IV collagen lacks a glycine in every third amino-acid residue necessary for the tight collagen helix. Thus, the overall collagen-IV conformation is structurally more pliable and kinked, relative to other collagen subtypes. These structural features allow collagen IV to form sheets, which is the primary structural form found in the cutaneous basal lamina. There are six human genes associated with collagen IV, specifically COL4A1, COL4A2, COL4A3, COL4A4, COL4A5 and COL4A6. The aim of this review is to highlight the significance of this protein in normal skin, and in selected diseases. The alpha 3 protein constituent of type IV collagen is thought to be the antigen implicated in Goodpasture's syndrome, wherein the immune system attacks the basement membranes of the renal glomeruli and pulmonary alveoli. In addition, mutations to the genes coding for type IV collagen lead to the Alport syndrome. Furthermore, autoantibodies directed against denatured human type IV collagen have been described in rheumatoid arthritis, scleroderma, and SLE. Structural studies of collagen IV have been utilized to differentiate between subepidermal blistering diseases, including bullous pemphigoid, acquired epidermolysis bullosa, anti-epiligrin cicatricial pemphigoid, and bullous lupus erythematosus. Collagen IV is also of importance in wound healing and in embryogenesis. Pathological studies have demonstrated that minor structural differences in collagen IV can lead to distinct, clinically different diseases.
Article
Full-text available
Marine organisms form a prominent component of the oceanic population, which significantly contribute in the production of cosmeceutical and pharmaceutical molecules with biologically efficient moieties. In addition to the molecules of various biological activities like anti-bacterial, anti-cancerous, anti-inflammatory and anti-oxidative etc., these organisms also produce potential photoprotective or anti-photoaging agents, which are attracting present day researchers. Continuous exposure to UV irradiation (both UV-A and UV-B) leads to the skin cancer and other photoaging complications, which are typically mediated by the reactive oxygen species (ROS), generated in the oxidative pathways. Many of the anti-oxidative and anti-photoaging compounds have been identified previously, which work efficiently against photodamage of the skin. Recently, marine originated photoprotective or anti-photoaging behavior was observed in the methanol extracts of Corallina pilulifera (CPM). These extracts were found to exert potent antioxidant activity and protective effect on UV-A-induced oxidative stress in human dermal fibroblast (HDF) cells by protecting DNA and also by inhibiting matrix metalloproteinases (MMPs), a key component in photoaging of the skin due to exposure to UV-A. The present review depicts various other photoprotective compounds from algae and other marine sources for further elaborative research and their probable use in cosmeceutical and pharmaceutical industries.
Article
Full-text available
UV radiation from the sun impacts skin health adversely through complex, multiple molecular pathways. Premature skin aging (photoaging) is among the most widely appreciated harmful effects of chronic exposure to solar UV radiation. Extensive damage to the dermal connective tissue is a hallmark of photoaged skin. Disruption of the normal architecture of skin connective tissue impairs skin function and causes it to look aged. UV irradiation induces expression of certain members of the matrix metalloproteinase (MMP) family, which degrade collagen and other extracellular matrix proteins that comprise the dermal connective tissue. Although the critical role of MMPs in photoaging is undeniable, important questions remain. This article summarizes our current understanding of the role of MMPs in the photoaging process and presents new data that (1) describe the expression and regulation by UV irradiation of all members of the MMP family in human skin in vivo and (2) quantify the relative contributions of epidermis and dermis to the expression of UV irradiation-induced MMPs in human skin in vivo.Journal of Investigative Dermatology Symposium Proceedings (2009) 14, 20-24; doi:10.1038/jidsymp.2009.8.
Article
The rate of skin aging, or that of tissue in general, is determined by a variable predominance of tissue degeneration over tissue regeneration. This review discusses the role of oxidative events of tissue degeneration and aging in general, and for the skin in particular. The mechanisms involved in intrinsic and extrinsic (photo-) aging are described. Since photoaging is recognized as an important extrinsic aging factor, we put special emphasize on the effects of UV exposure on aging, and its variable influence according to global location and skin type. We here summarise direct photochemical effects of UV on DNA, RNA, proteins and vitamin D, the factors contributing to UV-induced immunosuppression, which may delay aging, the nature and origin of reactive oxygen species (ROS) and reactive nitrogen species (RNS) as indirect contributors for aging, and the consequences of oxidative events for extracellular matrix (ECM) degradation, such as that of collagen. We conclude that conflicting data on studies investigating the validity of the free radical damage theory of aging may reflect variations in the level of ROS induction which is difficult to quantify in vivo, and the lack of targeting of experimental ROS to the relevant cellular compartment. Also mitohormesis, an adaptive response, may arise in vivo to moderate ROS levels, further complicating interpretation of in vivo results. We here describes how skin aging is mediated both directly and indirectly by oxidative degeneration.This review indicates that skin aging events are initiated and often propagated by oxidation events, despite recently recognized adaptive responses to oxidative stress.
Article
Ethnopharmacological relevance: The hip of Rosa multiflora Thunb. (HRM) has been traditionally used as a dietary supplement and a herbal remedy for the treatment of various diseases, including inflammation, osteoarthritis, rheumatoid arthritis and chronic pain, in China. The current study was to evaluate the therapeutic efficacy of the petroleum ether extractive of HRM (PEE) on type II collagen-induced rheumatoid arthritis (CIA) in male Wistar rats. In addition, the anti-inflammatory mechanism(s) of PEE on type II CIA was explored. Materials and methods: Rheumatoid arthritis (RA) was induced by intradermal injection of bovine type II collagen on Day 1 and Day 8. Starting from Day 13, normal rats were treated with vehicle (serving as the control group); the CIA rats were treated with vehicle (CIA group), dexamethasone (0.25mg/kg bw per day, p.o.) (a positive control), lei-gong-teng (LGT: 10mg/kg bw per day, p.o.) (a clinically used Chinese patent medicine in RA therapy) or PEE (12, 36 or 120mg/kg bw per day, p.o.) for 28 days. Results and conclusions: PEE (120mg/kg bw per day) efficiently attenuated the severity of arthritis in the CIA rats by reducing the mean arthritis severity scores and the fore/hind paw swelling as well as reduced histological changes by decreasing the cartilage surface erosion and cartilage proteoglan depletion. PEE׳s therapeutic effect in RA may involve the inhibition of pro-inflammatory cytokines, such as TNF-α, IL-1β and IL-6, in serum and/or the elevation of the activities of hepatic anti-oxidative enzymes including SOD, CAT and GSH-Px. However, the detailed anti-inflammatory mechanism, the main effective components and the interaction between different ingredients in PEE are still not clear and require more studies.
Article
Aim: Cilostazol is a selective inhibitor of type III phosphodiesterase that inhibits platelet aggregation. Cilostazol is a useful vasodilator, antithrombotic, and cardiotonic agent. Ultraviolet B (UVB) irradiation increases the production of matrix metalloproteinase-1 (MMP-1) during skin photoaging. The UVB-induced increase of MMP-1 results in connective tissue damage, and the skin becomes wrinkled and aged. Here, we investigated the capacity of cilostazol to inhibit MMP-1 expression in UVB-irradiated human dermal fibroblasts. Main methods: Cultured human dermal fibroblasts were irradiated with UVB, followed by the addition of cilostazol to the culture medium. Key findings: Post-treatment with cilostazol attenuated UVB-induced production of MMP-1 and prevented the reduction of type I procollagen. Cilostazol inhibited UVB irradiation-induced phosphorylation of the mitogen-activated protein kinase (MAPK) signaling molecules Jun-N-terminal kinase (JNK) and p38 kinase, as well as activator protein-1 (AP-1) in dermal fibroblasts. Significance: Overall, these results demonstrate that cilostazol regulates UVB-induced MMP-1 expression and type I procollagen synthesis by inhibiting MAPK signaling and AP-1 activity. Therefore, we suggest that cilostazol may be useful for the prevention and treatment of skin photodamage caused by UVB-irradiation.
Article
The purpose of this article is to offer perspective on current understanding of ultraviolet (UV) irradiation-induced signal transduction, with emphasis on membrane-initiated, non-nuclear signaling events. We will describe the role of UV-induced signaling in the mechanism of premature skin aging (photoaging). UV irradiation serves as a universal ligand to active cell surface receptors and to induce assembly of signaling complexes at the plasma membrane. These complexes activate cytosolic protein kinase cascades that relay signals to the cell nucleus, thereby regulating the activity of a variety transcription factors. Key cellular responses are up-regulation of matrix-degrading metalloproteinases, and down-regulation of extracellular matrix biosynthesis. The resultant net deficit of structural integrity of skin connective tissue is one of the major factors that contributes to the phenotype of photoaging. Insights into the molecular mechanisms of UV-induced signal transduction will eventually translate into new, effective methods to prevent UV-induced skin damage.
Article
Since their discovery it has become clear that peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors involved in the genetic regulation of the lipid metabolism and energy homoeostasis. Subsequently, accumulating evidence suggests a role of PPARs in genomic pathways including the regulation of cell growth, apoptosis and differentiation. These findings indicate that PPARs and PPAR agonists play an important role in inflammatory responses and tumor promotion. Because of their diverse biologic activities on keratinocytes and other skin cells, PPARs represent a major research target for the understanding and treatment of many skin pathologies, such as hyperproliferative and inflammatory diseases. Overmore recent clinical trials identified PPARs as promising drug targets for the prevention and treatment of various diseases in the field of dermatology. The present review summarizes the current knowledge of PPAR functions in various skin disorders particularly those involving inflammation and epidermal hyperproliferation (i.e., psoriasis, atopic dermatitis, acne, scleroderma, skin malignancies).
Article
The hip of Rosa multiflora Thunb. has been traditionally used as a dietary supplement and a herbal remedy for the treatment of various diseases including cold, flu, inflammation, osteoarthritis, rheumatoid arthritis and chronic pain in China. To explore the anti-inflammatory ingredient of the hip of R. multiflora Thunb. and its mechanism of action. The ethanol extract of the hip of R. multiflora Thunb. was fractioned with petroleum ether, ethyl acetate and water, and each fraction was screened for anti-inflammatory activity in xylene-induced mouse ear edema model. Three more models, acetic acid-induced mouse vascular permeation, cotton pellet-induced rat granuloma, and carrageenan-induced rat hind paw edema were also employed to verify the anti-inflammatory effect of the identified fraction. To explore the mechanism of action, the activity of inducible nitric oxide synthase (iNOS) and the level of nitric oxide (NO) in sera, as well as mRNA expression level of cyclo-oxygenase-2 (COX-2) in inflammatory tissues of rats with carrageenan-induced hind paw edema were measured. GC-MS technology was applied to identify the active components in the active fraction. The petroleum ether fraction (PEF) was identified to be the active fraction in inflammation animal models (i.e., oral administration of PEF (168.48, 42.12 and 10.53 mg/kg) evoked a significantly (P<0.001) dose-dependent inhibition of the xylene-induced mice ear edema). Down-regulating COX-2 expression (P<0.001) and reducing NO production (P<0.05) through inhibiting iNOS activity (P<0.001) may be the partial mechanism of action of PEF. GC-MS analysis indicated that unsaturated fatty acids are enriched in PEF and may be responsible for the anti-inflammatory activity of PEF and this herb. The results of this study provide pharmacological and chemical basis for the application of the hip of R. multiflora Thunb. in inflammatory disorders.
Article
One of the most important but as yet unanswered questions in inflammation research is not why inflammation occurs (we all get episodes of self limiting inflammation during the course of our lives) but why it does not resolve. Current models of inflammation stress the role of antigen-specific lymphocyte responses and attempt to address the causative agent. However, recent studies have begun to challenge the primacy of the leukocyte and have instead focused on an extended immune system in which stromal cells, such as fibroblasts play a role in the persistence of the inflammatory lesion. In this review I will illustrate how fibroblasts help regulate the switch from acute resolving to chronic persistent inflammation and provide positional memory during inflammatory responses. In chronic inflammation the normal physiological process of the removal of unwanted inflammatory effector cells becomes disordered, leading to the accumulation of leucocytes within lymphoid aggregates that resemble those seen in lymphoid tissue. I will describe how fibroblasts provide survival and retention signals for leukocytes leading to their inappropriate and persistent accumulation within inflamed tissue.
Article
A large part of the aging phenotype, including immunosenescence, is explained by an imbalance between inflammatory and anti-inflammatory networks, which results in the low grade chronic pro-inflammatory status we proposed to call inflammaging. Within this perspective, healthy aging and longevity are likely the result not only of a lower propensity to mount inflammatory responses but also of efficient anti-inflammatory networks, which in normal aging fail to fully neutralize the inflammatory processes consequent to the lifelong antigenic burden and exposure to damaging agents. Such a global imbalance can be a major driving force for frailty and common age-related pathologies, and should be addressed and studied within an evolutionary-based systems biology perspective. Evidence in favor of this conceptualization largely derives from studies in humans. We thus propose that inflammaging can be flanked by anti-inflammaging as major determinants not only of immunosenescence but eventually of global aging and longevity.
Article
An increased expression of members of the matrix metalloproteinase (MMP) family of enzymes is seen in almost every human tissue in which inflammation is present. Through the use of models of human disease in mice with targeted deletions of individual MMPs, it has become clear that MMPs act broadly in inflammation to regulate barrier function, inflammatory cytokine and chemokine activity, and the generation of chemokine gradients. Individual MMPs regulate both normal and pathological inflammatory processes, and therefore, developing rational therapies requires further identification of specific MMP substrates and characterization of the downstream consequences of MMP proteolytic activity.
Article
Synopsis As the proportion of the ageing population in industrialized countries continues to increase, the dermatological concerns of the aged grow in medical importance. Intrinsic structural changes occur as a natural consequence of ageing and are genetically determined. The rate of ageing is significantly different among different populations, as well as among different anatomical sites even within a single individual. The intrinsic rate of skin ageing in any individual can also be dramatically influenced by personal and environmental factors, particularly the amount of exposure to ultraviolet light. Photodamage, which considerably accelerates the visible ageing of skin, also greatly increases the risk of cutaneous neoplasms. As the population ages, dermatological focus must shift from ameliorating the cosmetic consequences of skin ageing to decreasing the genuine morbidity associated with problems of the ageing skin. A better understanding of both the intrinsic and extrinsic influences on the ageing of the skin, as well as distinguishing the retractable aspects of cutaneous ageing (primarily hormonal and lifestyle influences) from the irretractable (primarily intrinsic ageing), is crucial to this endeavour.
Article
This study aimed to assess the anti-inflammatory and analgesic effects of Fructus Rosae Multiflorae (FRM, hips of Rosa multiflora Thunb.). FRM was extracted with 75% ethanol and the dried extract (FRME) was administered intragastrically (i.g.) at 100, 200 and 400mg/kg. The anti-inflammatory effect was evaluated in four experimental animal models and analgesic effect in two animal models. Pretreatment with a single dose of FRME produced significant dose-dependent anti-inflammatory effects on carrageenin-induced rat hind paw edema, xylene-induced mouse ear edema and acetic acid-induced mouse vascular permeation. In a 7-day study, daily administration of FRME suppressed cotton pellet-induced rat granuloma formation. Pretreatment with a single dose of FRME also produced dose-dependent anti-nociceptive effects in thermally- and chemically induced mouse pain models. In addition, a single dose of FRME at 2.4g/kg body weight (equivalent to 87.6g of dried hips per kg body weight) produced no observable acute toxicity in mice within seven days. These results demonstrate that FRME possesses anti-inflammatory and analgesic effects and has no obvious acute toxicity, which advanced our understanding of the folk use of FRM in treating various inflammatory disorders.
Collagen IV in normal and in disease process
  • A M A Velez
  • M S Howard
A. M. A. Velez and M. S. Howard, Collagen IV in normal and in disease process, N. Am. J. Med. Sci., 4(1), 1 (2012).
  • M H Park
  • J Y Park
  • H J Lee
  • D H Kim
  • K W Chung
  • D Park
  • H O Jeong
  • H R Kim
  • C H Park
  • S R Kim
  • P Chun
  • Y Byun
  • H R Moon
  • H Y Chung
M. H. Park, J. Y. Park, H. J. Lee, D. H. Kim, K. W. Chung, D. Park, H. O. Jeong, H. R. Kim, C. H. Park, S. R. Kim, P. Chun, Y. Byun, H. R. Moon, and H. Y. Chung, The Novel PPAR α/γ Dual Agonist MHY 966 Modulates UVB-induced skin inflammation by inhibiting NF-κB activity, PLoS One, 8(10), 4 (2013).