ArticlePDF Available

The Origin of Data Information Knowledge Wisdom (DIKW) Hierarchy

Authors:

Abstract

The Data Information Knowledge and Wisdom Hierarchy (DIKW) has been gaining popularity in many domains. While there has been a lot of articulation of the hierarchy itself, the origins of this ubiquitous and frequently used hierarchy are largely unexplored. In this short piece we trace the trails of this hierarchy. Like an urban legend, it’s everywhere yet few know where it came from.
TheOriginofDataInformation
KnowledgeWisdom(DIKW)Hierarchy
NikhilSharma
[Updated:February4,2008]
ImageoriginallypublishedintheDecember1982issueofTHEFUTURIST.Usedwithpermission
fromtheWorldFutureSociety,7910WoodmontAvenue,Suite450,Bethesda,Maryland20814.
Telephone:301/6568274;Fax:301/9510394;http://www.wfs.org
TheHierarchy
TheDataInformationKnowledgeandWisdomHierarchy(DIKW)hasbeengainingpopularityinmany
domains.InmostKnowledgeManagementliteraturethehierarchyisoftenreferredtoasthe“Knowledge
Hierarchy”orthe“KnowledgePyramid”,whilethe“InformationScience”domainreferstothesame
hierarchyas“InformationHierarchy”or“InformationPyramid”forobviousreasons.Oftenthechoice
between“Information”and“Knowledge”isbasedonwhattheparticularprofessionbelievestobe
manageable.
Whiletherehasbeenalotofarticulationofthehierarchyitself,theoriginsofthisubiquitousand
frequentlyusedhierarchyarelargelyunexplored.Inthisshortpiecewetracethetrailsofthishierarchy.
Likeanurbanlegend,it’severywhereyetfewknowwhereitcamefrom.
TheDomains
WhilethedomainsofInformationScienceandKnowledgeManagementbothrefertotheDIKWhierarchy,
theydonotcrossreference.Thustherearetwoseparatethreadsthatleadtotheoriginofthehierarchy.
InKnowledgeManagement,RussellAckoffisoftencitedastheinitiatoroftheDIKWhierarchy.His1988
PresidentialAddresstoISGSRisconsideredbymanytobetheearliestmentionofthehierarchy.Ackoff’s
presidentialaddresswasprintedina1989article“FromDatatoWisdom”[1]anditdoesnotciteany
earliersourcesofthehierarchy.
SearchingfortheoriginsofthehierarchyintheKnowledgemanagementdomain,wefindMilanZelenyto
beanearlierproponentofthehierarchy.Inhisarticleon“ManagementSupportSystems”[2],Zeleny
detailsouttheDIKWhierarchyin1987.ZelenybuildstheknowledgehierarchybyequatingData,
Information,KnowledgeandWisdomtovariousknowledgeforms:“knownothing”,“knowwhat”,
“knowhow”and“knowwhy”respectively.Yet,thetrailstopsagain,Zeleny’s1987mentionofthe
hierarchyisearlierthanAckoff’s1989address,buthealsodoesnotciteanyearliersourcesofthe
hierarchy.ItcanthusbearguedthatZelenywasthefirsttomentionthehierarchyinthefieldof
KnowledgeManagement.
ThedomainofdesignhasalsodrawnonandreferredtotheDIKWhierarchy.Almostatthesametimeas
MilanZeleny’sarticle,MichaelCooley’sbookpublishedin1987:“ArchitectureorBee?”[3],buildsthe
DIKWhierarchyduringhisdiscussionoftacitknowledgeandcommonsense.Onceagainnoearlierwork
iscitedorreferredtobyCooleyandtrailoftheoriginhasanabruptending.
ItisinInformationSciencedomainthatthetrailcanbepickedupagain.Herethehierarchyismentioned
asearlyas1982,whenHarlanCleveland[4]wroteaboutitinaFuturistarticle.Cleveland’sarticle
mentionstheInformationKnowledgeWisdomhierarchyindetailgivinganexample.Whatisdifferent
aboutthisarticlefromtheonesmentionedaboveisthatClevelandpointstothesurprisingoriginofthe
hierarchyitself.
TheOrigin
InterestinglythefirstevermentionofthehierarchyisneitherintheKnowledgeManagementfield,northe
InformationSciencedomain,butinanunexpectedplace:poetry.InhisFuturistarticle,Clevelandcites
T.S.Eliotasthepersonwhosuggestedthehierarchyinthefirstplace.Clevelandnamesit“theT.S.Eliot
hierarchy”.ThepoetT.S.Eliotwasthefirsttomentionthe“DIKWhierarchy”withoutevencallingitbythat
name.In1934Eliotwrotein“TheRock”[5]:
WhereistheLifewehavelostinliving?
Whereisthewisdomwehavelostinknowledge?
Whereistheknowledgewehavelostininformation?
ThisisthefirstvaguementionofthehierarchythatwasexpandedbyCleveland.Thoughthisisthefirst
mentionofthehierarchyinthearts,itisnottheonlyone.Beforemanagementandinformationscience
caughton,FrankZappaalludedtothehierarchyin1979[6]:
Informationisnotknowledge,
Knowledgeisnotwisdom,
Wisdomisnottruth,
Truthisnotbeauty,
Beautyisnotlove,
Loveisnotmusic,
andMusicisTHEBEST.
BeyondEliot’shierarchy
InhisFuturistarticle[4],HarlanClevelandconcedesthatinformationscientistsare“stillstrugglingwiththe
definitionsofbasicterms”ofthehierarchy.HeusesElliot’shierarchyasastartingpointtoexplainthe
basicterms.Clevelandalsoagreesthattherearemanywaysinwhichtheelementsofthehierarchymay
bedefined,yetuniversalagreementonthemneednotbeagoalinitself.WhileClevelandhimselfdoesn’t
add‘Data’toEliot’shierarchyhementionsYiFuTuan’sandDanielBell’sversionsofthehierarchyinthe
articlewhichincludes“data”[4].
RussellAckoff’sversionoftheDIKWhierarchyhasanother“layer”of“understanding”builtin.Thus
Ackoff’shierarchyisDataInformationKnowledgeUnderstanding&Wisdom.“Understanding”requires
diagnosisandprescription,whichAckoffconsiderstobebeyond“knowledge”butbelow“wisdom”.
Discussingthetemporaldimensionofhisversionofthehierarchy,Ackoffpointsoutthatwhileinformation
agesrapidly,knowledgehasalongerlifespanandunderstandinghasonlyanauraofpermanence.Itis
wisdomthatheconsiderstobe“permanent”inthetruesense.
ZelenyalsoproposesadditionstotheDIKWhierarchy.Accordingtohim“enlightenment”shouldbeonthe
topofthefamiliarDIKWframework[2].Enlightenment,accordingtoZeleny(personalcommunication,
October29,2004)“isnotonlyansweringorunderstandingwhy(wisdom),butattainingthesenseoftruth,
thesenseofrightandwrong,andhavingitsociallyaccepted,respectedandsanctioned.”
Acknowledgements
GeorgeFurnassuggestedthisessay.MilanZeleny,AdamKeenandPaulLinkprovidedimportant
feedback,pointersandreferences.
References
1. Russell.L.Ackoff,“FromDatatoWisdom,”JournalofAppliedSystemsAnalysis16(1989):
39.
2. MilanZeleny,“ManagementSupportSystems:TowardsIntegratedKnowledgeManagement,”
HumanSystemsManagement7,no1(1987):5970.
3. M.Cooley,ArchitectureorBee?(London:TheHogarthPress,1987).
4. HarlandCleveland,“InformationasResource,”TheFuturist,December1982,3439.
5. T.S.Eliot,TheRock(Faber&Faber1934).
6. FrankZappa,“PackardGoose”inalbumJoe’sGarage:ActII&III(TowerRecords,1979).
Contactinformation
NikhilSharma,UserExperienceResearcher,GoogleInc.(nsharmaATumichDOTedu)
... Kondisi ini menciptakan tantangan besar dalam memperoleh wawasan yang komprehensif mengenai profil perusahaan di Indonesia. Menurut kerangka Data Information Knowledge Wisdom (DIKW) pyramid, direktori perusahaan baru menyajikan data dan informasi mentah sehingga sulit untuk mendapatkan insights yang mendalam (Sharma, 2008). Sehingga integrasi data dari berbagai direktori menjadi penting dalam memberikan gambaran yang menyeluruh guna mendukung pengambilan kebijakan berdasarkan bukti atau evidence-based policy (Maulidya and Rozikin, 2022). ...
Article
Penelitian ini membahas pentingnya integrasi data direktori perusahaan di Indonesia melalui pendekatan graf pengetahuan (knowledge graph) menggunakan Neo4j. Direktori perusahaan, yang berisi informasi dasar seperti nama, alamat, dan kode Klasifikasi Baku Lapangan Usaha Indonesia (KBLI), sering kali tersebar dalam berbagai format dan sumber yang berbeda, sehingga menyulitkan analisis data yang komprehensif. Penelitian ini mengusulkan penggunaan graf pengetahuan sebagai solusi untuk mengatasi keterbatasan dalam integrasi data berbasis Relational Database Management System (RDBMS), dengan menonjolkan fleksibilitas dan efisiensi Neo4j dalam menangani data kompleks dan melakukan kueri yang intuitif. Studi kasus dalam penelitian ini menunjukkan bahwa graf pengetahuan dapat digunakan untuk mengidentifikasi pola dan hubungan signifikan antara entitas perusahaan, membantu dalam pemetaan industri, perencanaan ekonomi regional, serta mendukung pengambilan keputusan berbasis data. Meskipun demikian, penelitian ini juga mengidentifikasi beberapa tantangan dalam pengumpulan dan transformasi data, yang memerlukan penelitian lanjutan untuk meningkatkan penerapan graf pengetahuan di masa depan.
... Where is the knowledge we have lost in information?" These questions were taken up in the field of information science, and separately in the field of knowledge management, where the relationships are often expressed visually, with the addition of the concept of data, as the DIKW pyramid, a hierarchical display with data on the bottom, information above it, knowledge above information, and wisdom at the top [24][25][26][27][28]. While limited to specialized scholarly circles during the 1980s, the basic idea was popularized and widely circulated among the digerati around the time that the internet first became a popular phenomenon, in the early 1990s. ...
Article
Full-text available
John Henry Newman defined the university as “a place of teaching universal knowledge”, which suggests that it is also an environment for the teaching and creation of knowledge, and therefore a medium for the teaching and creation of knowledge. Based on the field of media ecology, defined by Neil Postman as “the study of media as environments”, and following Marshall McLuhan’s famous maxim that, “the medium is the message”, we can understand knowledge to be the product of a particular type of medium or environment. Taking inspiration from the poetic questions posed by T.S. Eliot, “Where is the wisdom we have lost in knowledge? Where is the knowledge we have lost in information?”, this essay takes issue with the view expressed among internet boosters that information is the basis of knowledge, and knowledge is the basis of wisdom. Instead, an alternative understanding presented in which information as a contemporary phenomenon is a product of the electronic media environment, knowledge is a product of the literacy associated with the chirographic and typographic media environments, and wisdom is a product of the oral media environment.
... This pyramidal hierarchy was introduced by Sharma (2004), who provided the framework for additional discussions in the domain of Knowledge and Information Management sciences. It ought to be underscored that Sharma (2004) just consolidated and structured the already available information, referring to the works of Zeleny (1987) and Ackoff (1989) in this subject. Figure 2.1 represents the so-called "Knowledge Pyramid", which demonstrates the links between the discussed ideas. ...
Book
Full-text available
Explore the transformative role of web scraping in mitigating information asymmetry within e-commerce through this scholarly volume. With a focus on the automotive sector, particularly the prominent OTOMOTO portal in Poland, this book provides a nuanced examination of automated tools designed to empower market participants. Tailored for researchers, academics, and data scientists, as well as legal professionals and policymakers who may find valuable perspectives on the regulatory landscape surrounding web scraping and its implications for information transparency. Emphasizing the imperative of informed decision-making, this work serves as a comprehensive resource for understanding and harnessing the potential of web scraping in the digital marketplace.
... Transport network data is well suited to graph-based representation, and this approach is widely used for modelling transport networks of all types. In STUB, we propose to go further than a simple graph representation, by using a linked data approach to capture not just the raw data but, but also derived contextual information; the relationship between data, information and inferred knowledge, as first presented by Sharma [18]. ...
Article
Full-text available
Transport ticketing systems are crucial for enabling seamless, efficient, and sustainable mobility. However, traditional ticketing systems face limitations such as ticket fraud, lack of interoperability, and the inability to adapt to changes in the dynamic transport networks they issue tickets for. This paper presents new approaches to the system for ticketing ubiquity with blockchains (STUB), a novel smart transport ticketing solution that employs ontochains, a hybrid data structure combining blockchains and ontologies to form a type of distributed knowledge graph. STUB aims to address these limitations by providing a secure, transparent, and flexible platform for ticket issuance, validation, and management. We describe the key components and workflow of the STUB system, highlighting the use of transport network ontologies for modelling complex relationships within transportation systems and blockchain technologies for transport network ontology's state. Additionally, the implementation of Merkle proofs for efficient and secure validation between on‐chain and off‐chain ontological data is discussed. Finally, a simulated toy example is used as a lightweight proof‐of‐concept to demonstrate these capabilities. The proposed STUB system has the potential to significantly impact the future of transportation ticketing by offering a more seamless, interoperable, and user‐friendly experience whilst addressing the challenges associated with traditional ticketing systems.
Chapter
Using data to inform public policy decision is a challenge given the multiple, and sometimes competing, goals for public agencies. Public transit agencies often have large amounts of data, but the data are not always accurate, and there are problems to solve where no data exists. Informing policy outcomes requires identifying the right problem, following the data to find the right research questions, accepting some level of uncertainty, and determining the right way to visualize the results based on the audience. This paper assumes a limited understanding of statistics and basic knowledge about public transit systems.
Article
A minimál invazív sebészet (MIS) új korszakot hozott a sebészetben, kisebb bemetszésekkel csökkentve a beavatkozás kockázatait. A MIS digitális technológiával való ötvözésével létrejött a robotasszisztált minimál invazív sebészet (RAMIS), amely teleoperáció segítségével olyan további újításokat vezetett be, mint a kézremegés kiszűrése és a jobb ergonómia. Ezek az újítások tovább növelték a sebészi precizitást. Az elmúlt években egyre nagyobb hangsúlyt kapott a műtéti eljárás egyes fázisainak elemzése, amelyre a sebészeti adattudomány (Surgical Data Science, SDS) mesterségesintelligencia-alapú módszerei kínálnak hatékony megoldásokat. A fázisfelismerés lehetővé teszi a beavatkozás különböző szakaszainak azonosítását, amely támpontot ad a sebészeti teljesítmény precízebb értékeléséhez és személyre szabott képzési programok kidolgozásához. Az orvostudomány, a technológia és a mesterséges intelligencia összefonódása forradalmasítja a sebészetet, és javítja a betegellátás minőségét.
Chapter
This chapter seeks to ascertain whether the Delphi process can be effectively implemented to examine the extent to which policy and best practice pertaining to indigenous interests held in networked environments can address contestations regarding ownership. The chapter provides an overview of the Delphi research technique especially its design and administration. It also examines the possible bottlenecks which can undermine the proper application of the Delphi technique especially to indigenous knowledge research within the field of library and information science. Paying proper attention to these bottlenecks should ensure successful application of the method. The chapter concludes that the Delphi method can be a valid and reliable research technique in this field. The method has evolved as experience with it has accumulated, and its application to new areas of study continues to gain momentum.
Article
Full-text available
This article points out deficiencies in present-day definitions of public health surveillance, which include data collection, analysis, interpretation and dissemination, but not public health action. Controlling a public health problem of concern requires a public health response that goes beyond information dissemination. It is undesirable to have public health divided into data generation processes (public health surveillance) and data use processes (public health response), managed by two separate groups (surveillance experts and policy-makers). It is time to rethink the need to modernize the definition of public health surveillance, inspired by the authors’ enhanced Data, Information, Knowledge, Intelligence and Wisdom model. Our recommendations include expanding the scope of public health surveillance beyond information dissemination to comprise actionable knowledge (intelligence); mandating surveillance experts to assist policy-makers in making evidence-informed decisions; encouraging surveillance experts to become policy-makers; and incorporating public health literacy training – from data to knowledge to wisdom – into the curricula for all public health professionals. Work on modernizing the scope and definition of public health surveillance will be a good starting point. Keywords Public health surveillance; data collection; health information management; population health management; health literacy; learning health system; intelligence
Article
In the emerging post-industrial society, there is little understanding of the characteristics of information, a basic, yet abstract resource. Information is expandable, compressible, substitutable, transportable, diffusive, and shareable. Implications for life, work, community, and conflict are considered. (AM)
Article
Humans do not apply formalistic scaffolds of fixed rules of ‘knowledge’ to integrate the a priori given objective world of data ‘out there’: they do not compute the world. Regardless of some ‘knowledge’-modeling assumptions, just the opposite is true: humans use their subjectively perceived world of turbulent circumstances to bring forth (create, recreate and adapt), again and again, knowledge as an autopoietic network of relations through which they coordinate their actions. Such knowledge brings (through language) coherence and coordination to the otherwise turbulent and chaotic world of human action. Knowledge is not ‘processing of information’ but a coordination of action. As a consequence, any management support system (DSS, AI, ES, etc.) claiming knowledge as its purpose or its base, cannot be of the symbolic computation type à la Simon.
Architecture or Bee?
  • M Cooley
M. Cooley, Architecture or Bee? (London: The Hogarth Press, 1987).
The Rock (Faber & Faber
  • T S Eliot
T.S. Eliot, The Rock (Faber & Faber 1934).
User Experience Researcher
  • Nikhil Sharma
Nikhil Sharma, User Experience Researcher, Google Inc. (nsharma AT umich DOT edu)