Content uploaded by Gary Feierbach
Author content
All content in this area was uploaded by Gary Feierbach on Jan 17, 2016
Content may be subject to copyright.
WholeBrainEmulationStateoftheArt
©2015GaryFeierbachandRandalA.Koene
Abstract
Inthenextdecade,highperformancecomputingisprojectedtoreachexascalecapacity(10
18
floatingpointoperationspersecond),aregiondeemedsuitableforemulatingoneormore
continuouslearningspikingneuronmodelsofthehumanbraininrealtime[Markram2012].
Alternatively,specializedhardwaremaymakeanexascalecomputersystemunnecessary.Ourhuman
braincontains86billionneurons,nearlyasmanyglialcells,100trillionsynapsesandover100
differentchemicalneurotransmitters[HerculanoHouzel2009].Adequatepreservationofthehuman
brainafterdeathsuchthatthepotentialinformationrepresentedbyallofthosepartsisnotlostis
difficult,thoughprogressisbeingmadeonseveralfronts.Capturingthefullhumanbrainconnectome,
withallrelevantconnectomedataofagivenperson,appearstobeverydifficultandmayremainoneof
thegreatesttechnologicalhurdlesinthecomingyears.In2012,KennethJ.Hayworthemphasizeda
specifictechniqueforSEMscanningofbrainslicesforwholebrainemulation[Hayworth2012].
Hayworth'spaperisrecommendedasacomplementtothepresentpaper.Oursurveyhasamore
generalapproachtomethodandabroaderscope.Theearlierreportonwholebrainemulationby
SandbergandBostrum[Sandberg2008]recognizedthepotentialimportanceofbodyandenvironment
simulations.
Introduction
Recently,therehasbeenaflurryofnewsconcerningprogressinartificialintelligence(AI).Wesee
possiblesignsofintelligenceinSiri(Apple),Watson(IBM)andtheselfdrivingcar(Google).Atthe
sametime,newtoolsarebeingdevelopedtounderstandbiologicalneuronalnetworks.Here,we
examineprogresstowardsthetwogoalsof(1)acquiringthedatathatrepresentstheneuronalnetwork
ofaspecifichumanbrainand(2)recreatingthatneuronalnetworkinoperationalform,forexampleby
acomputeremulationwithmemories,emotionsandpersonalityintact.Effortsareunderwayinthe
UnitedStatesandintheEuropeanUniontotacklethehumanbrainatthelevelofphysiologyand
neuronalcircuits[EFPL2014,NIH2013,NIH2014].Thebyproductsoftheseefforts,braintissue
preservationandpreparation,neuronandglialcellbehaviorandneuralnetworkunderstandingand
modeling,havedirectbearingonwholebrainemulation.
Thefundamentalsforwholebrainemulationthroughsystemidentificationinneuronaltissuewere
laidoutinpriorwork[Koene2012a],andaroadmapoftechnologicalrequirementswaspostulated
[Koene2012b,Deca2014].Thepresentpaperisconstrainedtoareviewofthestateoftheart,andwe
refertothosepriorpublicationsfordetailsaboutthestructuredapproachforwhichthetechnologies
reviewedbelowareneeded.
Technologyfortissuepreservation,preparation,circuittracingandemulationatthescaleofa
humanbrainarealsodiscussed.Asuccessfulemulationwillneedtobeembodiedwithinputandoutput
ineitheravirtualorphysicalmanner.
Toconstrainthisconcretestudy,wedonotaddressmatterssuchasunderstandinghow
consciousnessworks,definitionsorintuitivenotionsofpersonalidentity,dualistphilosophies(e.g.
'souls'),legalconsiderations,moralconsiderationsoranyothermetaphysicalpoints.Thesemaybe
importantissues,butarewellbeyondthescopeofthistechnologicalsurvey.
InvivoBrainScanning
A.MagneticResonanceImaging(MRI)
Theidealistoobtainahighresolutionscanofthecompleteconnectomeinvivoandwithoutharm.
Toadegree,theHumanConnectomeProject[HCP2012]takesthatapproach,usingahighlymodified
3and7TeslaMRIwithcustomizedheadcoils[Ugurbil2013].Thisyieldsa1.25mmvoxelresolution
andcanidentifyonlylargebundlesofnervefiber(whitematter).Acube1.25mmoneachsidecan
contain170,000neuronsandmillionsofsynapses.MRIresolutionwouldhavetoincreasebyfiveor
moreordersofmagnitudetoseeallofthesedetails(leavingasideotherconstraintsaboutthethings
MRIcanorcannotdetect).Thisresolutionhasbeenusefultolearnabouthowvariousbrainsubsystems
areconnectedandhashelpedresearchersidentifyfunctionalunitsandtosomeextentthepurposeof
thoseunits.9.4TMRImachinesarenowavailableandawholebody11.7Tmachineisexpected
[Wada2010].The11.7Tmachinesareexpectedtoresolve100μmvoxels.
ResolutionofcurrentMRIimaginghasbeenimprovedbyalmostanorderofmagnitudeby
applyingdiffusiontechniques[Hagmann2007,CohenAdad2012]andfurtherimprovementmaybe
possiblewithbetterMRIdetectionandprocessingalgorithms.AheadonlyMRImachinemight
achievehigherresolutionat25T.MRImachinesfornonhumanuseareavailableupto17T[Wada
2010].InvivoMRIscanshavetodealwithseveraldifficulties[Passingham2013].(1)Movement:
Clampingapersonsheadmayrestrictoverallheadmotiontoamillimeterorlessbutrespirationand
bloodpressurechangescanalsomoveneuronssignificantfractionsofamillimeter,makingitdifficult
toincreaseresolution.(2)Theneedformorepowerfulmagnets:Toreachtherequiredresolution(~40
nm)[Marblestone2013],themagnetswouldrequiretechnologybeyondanythingwecanconceiveof
today.Theeffectsofultrastrongmagneticfieldsonhumanneuronalsystemsareunknown.Magnets
usedincurrentMRIsystemsareneverturnedoffandcaninducesmallcurrentsinneuralcircuitsasa
personisloadedintothemachine.PeoplehavereportedvertigoinandaroundMRImachines,
indicatingpossibleinterferencewiththevestibularsystem.Strongermagnetswillinducestronger
currentsduringmovementwithinthefield,leadingtoincreasedsafetyconcerns.Thehumanbody
consistsof65%water,adiamagnetic.Water’sdiamagneticpropertiesallowpowerfulmagnetsto
levitatesmallmammals.
B.MagneticResonanceSpectroscopy(MRS)
MRImachinesat3TandabovecanapplyMagneticResonanceSpectroscopy(MRS)toidentify
neuraltransmitterssuchasgammaaminobutyricacid(GABA),Nacetylaspartatylglutamate(NAAG),
Acetylcholine(Acl),myoinositol,andglutamate/glutamine(Glu)fromsmallmoleculenuclear
resonance[Foerster2013].AsinMRI,thesetechniquesaremanyordersofmagnituderemovedfrom
theresolutionthatisneededfordetailedneuronalcircuittracing,butareusefulfortracinglong
myelinatednervebundlesfromonepartofthebraintoanother.
C.UltrasoundImaging
XiangZhangatLawrenceBerkeleyLabisexperimentingwith10GHzultrasoundimaging,
currentlyusedon2Dmaterialsat1,000timestheresolutionoftypicalultrasoundimaging.Ultrasound
maybecomecompetitivewithMRIforfineneuralstructure.
D.CarbonNanotubeDetectors
JunichiroKonoofRiceandFrançoisLéonardofSandiaNationalLaboratoriesdemonstrate
promisingresultsusingcarbonnanotubeterahertzdetectorsthatmayreplaceMRIformedicalimaging
athigherresolution[He2014].Thetechniqueisalsoaffectedbysmallheadmotionsandchangesin
bloodpressure.Theseeffectsmaybemitigatedbyanesthetizingthesubjectandscanningbetween
carotidpulses.
Someproposalsenvisionusinggeneticallyengineered/modifiedvirusesthatcouldfollowneural
pathwaysandrecordthepathbyextendingDNAwitha‘barcode’,usingsetsofbasepairsforthebars,
tobedecodeduponcollection[Zador2014,Kramer2013,Callaway2008].Atechnologycurrently
usedonsomesmallanimalsistheuseoflightemittingtracers,florescentlabelsandquantumdots
addedtotagneurotransmittersandstructures.Inthiscase,boneandintermediatetissuewithpoorlight
transmittancehastoberemoved.Othertechnologies,suchasfunctionalmagneticresonanceimaging
(fMRI),diffuseopticaltomography(DOT),magnetoencephalography(MEG),singlephotonemission
computerizedtomography(SPECT)andpositronemissiontomography(PET)canbeusedtocorrelate
regionsofthehumanbrainwithparticularmentaltasks,butataresolutionseveralordersofmagnitude
belowthatrequiredfordetailedneuronalcircuittracing.Anewtechnique,usingahighlymodified
longtippedhighspeedatomicforcemicroscope(LTHSAFM),allowsonetowatchthemorphology
ofliveneuralcellschangeundervariousstimuli[Shibata2015].
PostmortemBrainPreservation
Theproblemwithwaitingfordeath,beforecapturingthatperson’sconnectome,isirreversible
braindamagemayhaveoccurredbefore(e.g.Alzheimer'sdisease,stroke)andafterdeath(e.g.
ischemicdamage),orinthebrainpreservationprocess(e.g.icecrystalformation).Ifbraindamagedue
toconditionssuchasAlzheimer'sdiseaseorstrokeoccursthenthereisagreatlyreducedpossibilityof
recreatingthatperson’spriorbrainconnectivity.
Thecurrentpreservationmethodofreplacingbloodwithanagentthatdoesnotformicecrystals
andpreservesbrainconformationhasbeenaccomplishedwithsmallbrains,butitstillfallsshortfor
brainsthesizeofahumanbrain.TheBrainPreservationFoundation(www.brainpreservation.org)has
offereda$100,000challengeforareliablebrainpreservationtechnique.Therearetwoserious
challengersplustwonewmethods,onedevelopedatStanfordUniversitythatreplacesthelipidswitha
hydrogelthathasmetwithsuccessonratbrainstheotherdevelopedatMIT[Chen2015]using
expansionmicroscopy(ExM).
Thefirsttechnique,usedattheMaxPlanckInstitutetopreservedawholemousebrainused
chemicalpreservationandplasticembedding[Mikula2012].Thesecondtechnique,usedby21
st
CenturyMedicine,usescryopreservationfreezingandreplacingbloodandwaterbasedfluidswithan
antifreezetypefluidcalledM22thatdoesn'texpandandformsharpcrystalsonfreezing[Fahy12004,
Fahy22004].ThethirdisStanfordUniversitydevelopedhydrogelmethodcalledCLARITYthat
createsatransparentblockofbraintissuewithlipidmembranesremovedthatiseasiertocircuittrace
[Cheng2013].Theforthandnewestadditionisexpansionmicroscopy[Chen2015]thatenlargesthe
specimenbysynthesizingaswellablepolymernetworkwithinthespecimengivinga4.5linear
expansionin3dimensionsproviding~70nmlateraland~200nmaxialresolutionusingaconfocal
spinningdiskmicroscope.
Therearedifferentgoalsforpreservinginternalorgans.Preservationdowntothemolecularlevelis
necessaryfororgansthataretobetransplanted.Generallycryopreservationhasbeenthemethod
chosenforreanimationofbiologictissueandsomesuccesseswithsmallanimalsandorgansincluding
fishandflyembryos.MorerecentlyFahy[Fahy22004]hashadsuccesswithlowtemperature
vitrificationfollowedbycontrolledthawingandtransplantingofarabbit'skidney.
Inthelastdecade,considerableprogresshasbeenmadeinpreservingthehumanbrainafterdeath,
butthehopeofbringingabrainbacktolifelooksremote.Currently,perfusingthehumanbrainwith
cryopreservationagentsdoessignificantdamageatthemolecularlevel.However,thismaynotmatter
forbrainconnectometracinganddownloading.ForthepurposesofSEM,Clarityorexpansion
microscopyaldehydestabilizedcryopreservation,accordingtoMcIntyreandFahy[McIntyre2015],
enablesindefinitestorageofwholebrainswhilepreservingtheultrastructurewithminimaldistortion
andisscalabletoanysizedbrain.Ifneuralwallstructuresareintactsothatdendrites,neuralcelltypes,
somaconfigurationandaxonscanbetracedalongwiththesynapticjunctionsthenonecanreconstruct
anetwork.Additionally,ifassociatedinformationsuchasneurotransmittertypeandsynapticstrength
areidentified,thenitmaybepossibletoestablishthekeyinformationthatcouldbeusedtoreconstitute
thatperson'smemoryandpersonalitywhenneuroscienceisabletoreliablymapsuchdatatofunctional
representations.
UnderstandingBrainPhysiology
Itmaynotbenecessarytounderstandhowthewholebrainorevensubsectionsofthebrainworkin
ordertoemulateahumanbrain.However,itwillbenecessarytounderstandhowthebasicbuilding
blocks,thevariousneurontypesandmorphologies,workandhowtofunctionallysimulatethem.This
involvesidentifyingandunderstandingneurotransmitters,synapticjunctions,neuronsandtheir
connectivity,theinfluenceofglialcells,etc.Significantprogresshasbeenmadeintheseareasbutnew
detailsandcomplexitiesarebeingrevealedcontinuously.
StartingwithLapicque'sspikingmodelofaneuronin1907[Abbott1999],progresswashampered
bytheinabilitytoprobeneuralnetsofanycomplexitytoascertaintheiractualfunction.Thelasttwenty
yearshavebroughtaboutaremarkablechangeinourabilitytoprobeneurons,circuittraceneural
circuits,understandthefunctioningofalargearrayofneurotransmittersandlightuptheinner
workingsoftheinnermachineryoftheneuron.Methodsforprobingneuralactivityhaveimproved
fromglasspipettestoParyleneCcoatedselfentangledcarbonnanotubeswithtipstrimmedusinga
Ga+focusedionbeam[Yoon2013]forintraandextracellularrecording.Arraysofimplanted
electrodes(upto127)usedforsimultaneousrecordingofupto14brainareasinthemacaquemonkey
havebeendeveloped[Feingold2012]forpermanentimplant.CMOSsensorarraysforextracellular
recordingcannowrecord16Kpixelsataframerateof2kiloframespersecondwithapixelpitchof
7.8μmx7.8μm[Eversmann2003].Thishasbeenusedforimagingactivityinabrainslice.Membrane
currentsgeneratedbyneuronscanbemeasuredinintracellularspace[Nadasdy1998]andthesource
neuronscangenerallybeascertainedwithsomesignalprocessingifanarrayofsensorsareused.
RomainBrette[Brette2009]bringsthespikebasedmodelnearlyuptodatewithcomputer
simulationsandnowwithimprovedtoolssuchasinvitroandinvivoexperiments,multichannel
monitoring,andcomputersimulationonecanshowthatinvivoneuronsappeartoexhibitashorter
timeconstant(afewmillisecondsorless)thaninvitroneurons(afewtensofmilliseconds)anda
neuron’soutputiscorrelatedtothetimingoftheinputpulses.Spikingneuronsaredifferentthanthe
perceptronstylelevelinput(thelevelthoughtofasafunctionofspikerepetitionrate)artificialneuron,
variantsofwhichhavebeenusedinmanyAIneuralnetworks.Computingtheforwardpropagationofa
perceptronnetworkismorethananorderofmagnitudesimplersinceonesetofcomputationscan
representaseriesofspikecomputations.Furthermore,spikingnetworksaresensitivetospike
correlationsontheirinputsindicatingthattheremaynotbeasimpletransformationbetweenspiking
modelsandnonspikingmodels.Ifonewantstoemulatehumanneuralnetworksanduseparameters
derivedfromhumanneuralnetworksthen,itseems,itissafesttousespikingmodelstoachievethe
sameresult.Althoughnotallpropertiesofbiologicalneuronsareimportantforneuralcomputation,
clearlymanyare[Ostojic2009],andtheremaybemanysubtletiesthatcontributetoreplicatinghuman
behavior.
Weareatatimeofacceleratingdiscoveryandactivityinneuroscience,andcouldsaythatweare
onatrajectorythatresemblesMoore'sLaworBell'sLawphenomena.Recentdevelopmentsin
nanoscaleanalysistools[Alivisatos2013]andinthedesignandsynthesisofnanomaterialshave
generatedoptical,electrical,andchemicalmethodsthatcanreadilybeadaptedforuseinneuroscience.
TheultimateintentoftheBrainActivityMapping(BAM)[Alivisatos2013]projectistobeableto
monitortheactivityofeveryneuroninamousebrainsimultaneouslyat1mssampleresolution.Thisis
currentlybeingtackledwithimproved2Delectrodearrayswithoutcellpenetration,buttheneedfora
“spikesorting”algorithmthatcanhandlerecordingfromalargefractionofthecellsinapieceof
neuraltissueisstillaproblem.New3Dmicrofabricatedelectrodearraysmayovercomesomeofthe
problemsof2Darrays.Thesearrayscanstimulate,aswellasrecordfromneurons.Thisresearch
coupledwithoptical[Micheva2010]andothertechniques,includingneuralnetsimulations,isleading
toanunderstandingofindividualneuronbehavioratthemolecularlevel.Inaddition,thisshouldlead
toanunderstandingofvariousneuralsubsystems.Thisworkisthenverifiedbyneuralsimulation
[Dethier2011]thatshould,ultimately,manifestthesamebehaviorifthenetworkistracedcorrectly
andtheneuronsaremodeledandinitializedcorrectly.
Notallthisresearchisrelevanttowholebrainemulationbutit'stooearlytobesurewhatisand
whatisn't.Currentactiveresearchindicatesthatglia[Fields2013],astrocytesinparticular,
communicateandperformanactivebutnotthoroughlyunderstoodroleinnetworkactivationand
plasticity.
CapturingtheFullConnectomeofaBrain
Thereareseveralmeansforpreparingbraintissueforelectronmicroscopesandsuperresolution
lightmicroscopes.Toidentifythoseparametersnecessaryforconnectomereconstructionand
behavioralsimulationitcurrentlyappearsthat40nmvoxelsarenecessary.Bothelectronmicroscopes
andsuperresolutionlightmicroscopesarecapableof40nmorlessvoxelresolution[Denk2012,
Briggman2012]andbothmaybenecessarytoidentifyeverythingthatisnecessaryfornotonlytracing
theconnectomebutcountingvesicles,identifyingtypesofneurotransmitters,enzymes,anddistribution
ofionchannels.Thetechnologiesinvolvedincludeserialsectionelectronmicroscopy,serialblockface
electronmicroscopyandsuperresolutionlightmicroscopy.
Serialsectionelectronmicroscopyhastwomainsubdivisions,transmissionelectronmicroscopy
(TEM)withsamplespreparedonTEMgrids,andsectionscollectedonsolidsupportforserialelectron
microscope(SEM)imaging.TEMadvantagesinclude:tissuesmaybestainedaftercutting,sectionscan
bereimagedandparallelimagingispossible.TEMhasthehighestlateralresolutionandthefastest
imagingrate.SEMcanuseautomatedsectioncollectionandlargesectionareaswithalowerlikelihood
ofsectionloss.Bothmethodsarecurrentlysubjecttosectionfolding,distortionandloss.Heavymetal
stainingisusedtooutlinemembranousstructures.
Serialblockfaceelectronmicroscopy(SBFSEM)hastwomaingroups,diamondknifecutting
SEMandfocusedionbeamablationFIBSEM[Knott2008,Marblestone2013].Theadvantagesareno
lossofsections,littledistortionandautomatedcuttingandimageacquisition.Thedisadvantageis
sectionsaredestroyedduringcuttingorablation.TheSBFSEMcurrentlyhasaproblemofsometimes
leavingresidueonthenewlycleavedsurface.TheFIBSEMhasthedisadvantageofbeinglimitedto
rectangularblocks12μmononesideduetothedepthoffocusoftheionablationbeam.
Superresolutionlightmicroscopesalsofallintotwogeneralcategories,stimulatedemission
depletionnanoscopy(STED)[Persson2011]andphotoactivationlocalizationmicroscopy(STORMor
PALM)[Huang2008].Also,twophotonexcitationmicroscopy(TPEM)[So2002]isofinterestsince
thesamplesufferslessphotodamagealthoughtheresolutionisn'tasgood.AdvantagesofSTEDand
STORMincludecolortodistinguishdifferentfluorophorestaggingfeaturesofinterestandtheability
togetresolutionsdownto2030nmlateralresolutionalthoughtheaxialresolutionis5060nm.
Disadvantagesincludethedifficultyofgettingasufficientlyhighfluorophoreconcentrationina
section,thesectionthicknessandmultipleimagesaregenerallyrequired.Theseopticalmethodsrival
electronmicroscopyandinsomecasescanbeusedonlivebiologicalsystems.
Automatedtapecollectedlatheultramicrotomy(ATLUM)[Hayworth2012]slicesablockoftissue
intosectionsdownto25nmthick.Largelateralsectionscanbeachievedof2.5x6mm.Thetissue
blockcanbepretreatedwithfluorophoreandmetallicstainingenablinguseofbothopticalandSEM
imaging.Zeiss[ZEISS2013]isdevelopingmultibeamSEMs(mSEM)andwillhavea61beamunit
commerciallyavailablein2015.Thiswillgivea10xprocessingspeedimprovement.Usingassembly
lineprocessingATLUM>STORM>mSEM>imageprocessingwithmultipleassemblylinesit
appearsconceivablethatahumanbraincanbeprocessedinthismannerinareasonabletimeframeof
perhaps3yearswith100processinglinesandexascaledataprocessingandstoragefacilities.This
assumesa50x50x50nmvoxelandonegigavoxelpersecondthroughputperlinecreatingadatabaseof
10petavoxels.
Hayworth[Hayworth2012]hasevaluatedseveralcurrenttechnologieswiththeviewtoward
automatingvariousformsoftissuepreparationanduseofscanningelectronmicroscopes.Hesuggested
thattheplasticembeddedbrainbesubdividedinto3x180mmstrip20μmthick.Thisprocedurewould
create250,000tissuestrips.Thesearethenprocessedinto20x20μm,180mmlongtissuepillars.so
thattheycanbeparceledouttomultipleFIBSEMmachines.Inthiscase,losttissuebetweencylinders,
layeralignmentbetweencylindersanddistortionduetothecuttingprocessmaybeproblems.In
additiontheFIBprocessdestroystissuesoitisoneshot.Itisnotknownwhetherthiscanbecombined
withopticaltechniquesforidentifyingotherkeyelementsoftheconnectomesothatitcanbesimulated
withbehaviorintact.
Kreshuketal.[Kreshuk2013]usedatransmissionelectronmicroscopecameraarray(TEMCA)to
getfasterthroughputwhileusing40x40x40nmvoxels.Theyachievedreasonableresultsonadesktop
(12core3.2GHzXeonES1630CPU)usingrandomforestpatternrecognitionin3Dforsynapse
identification,butitstillfellshortofexperthumanidentificationofconnectomeinformation.
Automatedserialtwophoton(STP)tomography[Ragan2012]hasbeenusedsuccessfullyonwhole
mousebrains.ItisablockfacesetuponanXYZstage,laserscanningandwithabuiltin
vibratingblademicrotome.ThestageelevatesintheZdirectionin50μmstepsforblockfaceslicing
andapiezoelectricallycontrolledobjectiveallowsvoxelsZdimensionsassmallas2.5μm.Awhole
mousebraincanbeimagedbymovingthestageintheXandYdirectiongetting260overlapping
coronalsections.At0.5x0.5μmXYresolutionand2.5μminZ,thewholemousebraincanbe
automaticallyimagedwithin7days.Thiscanbecomplicatedwhenusingmultiplefluorophores.
Further,thedesiredresolution,40nmforcompleteconnectomeinformationanddeterminingsynaptic
strength(e.g.imagingsynapticvesicles)forsimulation,maynotbeattainable.
Anotherwaytocapturetheconnectomeisusingthepseudorabiesvirus(PRV)whichisknownto
travelneuralpathways[Callaway2008,Kramer2013].Othervirusesarealsoknowntospreadinthis
fashionbuttheBarthstrainofPRVspreadsslowerwithreducedcytopathiceffectsanddoesnotaffect
humansorotherprimates.EvidencesuggeststhatPRVmaybeexclusivelytranssynapticmakingit
idealforthispurpose.
Largescaleexperimentsneedtobeconductedtodeterminewhichofthesetechniquesarecapable
ofhighlyparalleloperation,highreliability,automatedimaging/processing,canacquiresynaptictype
(neurotransmitters)andstrengthinformation(synapticvesiclesandreceptordistributions),andcan
makenewconnections(dendriticspines[Bonhoeffer2002]).
PatternRecognitionandCapturingtheConnectome+
Accuratesimulationofthehumanconnectomeinvolvednotjustthemorphologicalneuralmapof
our85billionneuronsbutshouldincludealltheinformationrelatedtotheirtypeandlocality,their
associatedglialcells,synaptictypesandstrengthsandwhateverotherinformationmaybefound
necessaryinthefutureforafullbehavioralsimulation.Thiswillbecalledtheconnectome+.
Currentlymuchconnectomepatternrecognitionattheneuralleveliseitherperformedbycomputer
aidedhumans,byusingpatternrecognitionsoftwareorlabelingneuronswithfluorescentproteins
(Brainbow)[Livet2007].Acrowdsourcedhumanrecognitionofneuralmorphologyusingatoolcalled
EyeWire[Eyewire2014]iscurrentlybeingusedtocreateatrainingdatabaseforwhatwillbecome
fullyautomatedsoftware[Turaga2014,Lang2011].Evenifhumanscouldrecognizeaneuronora
synapticjunctioneveryseconditwouldtakemorethan10billionpersonhourstocompileahuman
connectomeinthismanner.Clearly,thisprocessmustbecomeentirelyautomatedandextremelyfast.
Earliereffortsatneuralcircuittracingfromconfocalimagesusedthefilamenttracersoftwareof
Imaris(Bitplane,Zurich)[Schmitt2004,Evers2005]totracethecenterlineofneuron'snetcomplete
soma,axonanddendrites.AccuracywasimprovedbySchmittetal.byfittingcenterlinesandradiito
thecorrespondingimageofeachsection,constructingaskeletonoftheneuron.Thesurfacewas
createdusingcylindricalsectionsusingtheradiiassociatedwitheachsection.Theprocedurestill
requiredmanualinterventiontocorrecterrorsinbuildingtheskeleton.
Currentpatternrecognitionsoftwareusesanumberoftechniquesthathaverecentlyemergedas
powerfulpatternrecognitionprocedures.Theseincludeconvolutionnets(CN)[Turaga2014],random
forest(RF)[Andres2014],Markovrandomfields(MRF),NeuralNetworks(NN)andanumberof
otherstatisticalandadhoctechniques.Thefirsttaskistopartitionasectionbyconnectingrelated
pixels.Thisiscalledanaffinitygraph.BothTuragaetal.usingCNsandAndres,etal.usingRF
achievedsimilarresultscomparabletohumansandasizableimprovementovertheothertechniques,
butthatstilllefteighttotenpercentofthevoxelsindisagreementwiththehumananalysisofthetest
set.Thisresultisbetterthanonemightexpectbecauseitisjusttheclassificationofindividualvoxels
andnottheoverallpicture.Iftheseareedgevoxelsbetweentwodifferentneurons,thiscouldleadtoa
mergingofthetwoneuronsorapartitioningofonegivingafalseresult.Weareledtotheconclusion
thatmorethanlocalknowledgemightbenecessarytoarriveatanaccurateresult.Forexample,finding
thatanetworkhasmorethanonecellnucleuswouldindicatethatthesenetworkswereincorrectly
combined.Voxelsthatwereweaklyclassifiedasnonboundaryvoxelsthatcouldseparatethenetworks
wouldthenbesuspect.EvenifoneascertainsthefullhumanCNSwithnear100percentaccuracythere
isstilltheproblemoftheadditionalinformationtomaketheemulationofahumanneuralnetfunction
suchassynapsetypesandconnectionstrength.
SEMsarepowerfultoolsbuttheyprovideverylimitedinformationineachvoxel,sevenbitsof
intensitylevel.Oneoftenneedopticalmethodsusingfluorescenttagstoprovideinformationon
neurotransmitters,vesicles,neuraltypes,etc.thatcanbecorrelatedwithEMsections.Tapedsections
thatcanbefeedthroughbothatwophotonmicroscopeandanSEMappearstobetheonlywaytodo
this.Thisdoesn'tnecessarilyruleouttheuseofFIBSEMsandSBFSEMsiftheelectronbeamand
photonbeamcansharethesamemountedsample.Theproblemisboththeelectrongunandthe
microscopeobjectivelenshavetobequiteclosetothesection.Apossiblesolutionistorotatethe
sampleholderbetweentwostops.Gravitationaldistortionshouldbeminimalforcylindricalsamplesof
afewmillimeterssquare.
Opticalmethodscanbeusedtotraceneuralfibersinmyelinsheathsusingpolarizedlightimaging
(PLI)[Palm2010].Thepolarizedlight,duetothebirefringenceofthemyelinsheathsofthenerve
fibersrevealsathirddimensionforplacingthefibersina3Dspace.ChristophPalm,etal.wasableto
usethistotracenervefibers1μmto20μmindiameterbundles.
Anoveltechniqueistophysicallyexpandthesampleasmuchas4.5foldlinearexpansionusinga
polyelectrolytegel[Chen2015]todosuperresolutionmicroscopybyincreasingthespeedofvoxel
captureusingdiffractionlimitedmicroscopesinstead.Onecanalsoincreasethepossibleresolutionof
superresolutionmicroscopyusingthismethod.
Thereisthepossibilitythatoneoracombinationoftechniqueswillbeabletorisetotheoccasion
sincemostofthesuperresolutionopticaltechniquesareveryrecentdevelopments.Onewouldexpecta
combinationoftechniquesusingsuperdefinitionopticalmicroscopywillhavethecapabilitytocircuit
traceandimagealltheparametersnecessaryforneuralemulationintenyearssinceanorderof
magnitudeofopticalresolutionhasbeenattainableinthelastdecadeandmajorimprovementsarestill
possible.
Indetailedstudiesofsmallsectionsofthehumanbrain(e.g.cerebralcortex)weknowweare
dealingwithrepeatingpatternsofneuralconnections.Thereareloadsofexceptionstotherepeating
patternsbutthegeneralstructureinagivenareacanbearoughguidecombinedwithotherinformation
forbothdecidingwhetheragivensynapseshouldbeinhibitoryorexcitatoryandthetypeof
neurotransmittersinvolved.
Dependingontheresourcesmadeavailablethetimeframeforthefirsthumanbraintobefaithfully
capturedcouldrangefromacoupleofdecadestomanydependingonwhetheritbecomesanational
priority.Duetotheincrediblecomplexityofthehumanbrainonemustassumetherewillbeseveral
yearsoffailuresbutthesefailuresshouldteachusagreatdeal.Success,withinthistimeframe,
dependsonwhethertheinformationnecessaryforemulationisknownorobtainableusingreasonable
extensionsofcurrenttechnology.Furthermore,itdependsonexceedinglyaccurateconnectome+
captureandemulationbecausesmallerrorsincriticalplacesmaycausepoorresults.
BrainEmulation
In2008Koggeetal.[Kogge2008]laidouttherequirementsandproblemstobuildanexascale
computersystem.ThisbecameapriorityfortheUSgovernmentforavarietyofapplicationsranging
fromparticlesimulationsofstarformationtoquantumchemistry[Hopkins2011].Inanotherdecade
weshouldhavesupercomputersthatwillprocessexaflops(10
18
floatingpointoperationseachsecond).
TheplansofIntelandAMD[Intel2012,AMD2014,Tirias2014]targetprocessorsinthe2020time
framethatwillhave25timestheenergyefficiencyofcurrentprocessors.Energyefficiencyisakey
factorsinceIntel[Sodani2011]statedthatthethencurrent(2011)supercomputersystemsinthe10
petaflops/secondrangeburn12megawattsofpower.Theyseeanexaflopmachinein2020usingnot
morethan20megawatts(thehumanbrain,bycomparison,consumesbetween2540watts).In2013
KoggeandShalf[Kogge2013]pointedoutthatanotherchallengeforexascalesystemsisdatalocality.
Shufflingdataathighspeedandlowlatencybetweenprocessorsonchip,betweenchipsandbetween
circuitboardswillbecomemoreimportantthatjusttherawprocessingpower.Theyalsopointedout
thatbuildingcompilersthatrearrangedataandprocessingpowertoachievemoredatalocalitywill
becomevitalassystemsscalewithanordersofmagnitudemoreprocessorcores.Theexafloptargetis
importantsincesuchmachineswillbeabletoemulateone[Markram2012]ormorehumanbrains
usingspikingneuralmodelsinrealtimeandaverysophisticatedvirtualworldaswell.Thiswill
probablyhappenusingthesamesiliconbasedCMOS(ComplementaryMetalOxideSemiconductor)
processorpathwe'vefollowedsincetheRCA1802(COSMAC)microprocessorin1976.
Transistorcircuitshavebeenmadewithcarbonnanotubes[Bachtold2001,Sun2011]],graphene
[Liu2013]andMoS
2
[Mak2013]thatmaybecapableofverylowpowerandhighperformance.These
technologiesmaybetenyearsoutbeforereachingusefullevelsofintegrationandspeedorenduplike
siliconcarbide,diamond,galliumarsenideandgermaniumwithlimitedapplicationspaces.
Inthelastdecade,therehasbeenmanynewdevicesthatmayhavearoleinfuturebrainemulators
includingthememrister(HP),ReRAM(UniversityCollegeLondon),correlatedoxidediode(Harvard
University),32Gbittwistedradiobeams(UniversityofSouthernCalifornia),phasechangematerials
(PCMs)andmanygraphenestylenanomaterialsthathavememoryandswitchproperties.Verylow
powerismoreimportantthanspeedsinceitlimitsthepackingdensityandoperatingcostsofan
emulator.Connectivityanddevicesonchiphavemanyordersofmagnitudehigherreliabilitythanoff
chipconnectionsanddevices,sothemoredevicesonecanputonasubstratethebetterthechanceof
buildingareliablelargescalesystem.
Currentneuralsimulationmodels(theBrianprogram)[Goodman2008]usethebasic
Hodgkin–Huxleymodelwithasynchronoussystemclock.Thereis,infact,evidencethatspiking
correlationisusedforretinaandothertimevaryingsensoryinputfordatainterpretationandmaybea
fundamentalaspectoftheirutility.Therearemanycurrenteffortstomakeneuralnetworksimulations
thatarebiologicallyrealistic.PietroMazzonietal.[Mazzoni1990]showedthatspikingneuralmodels
couldlearnusingreinforcementratherthanthebiologicallyunrealisticbackpropagation.Asimple
modelofspikingneuronsthatreproducedtherichbehaviorofbiologicalcorticalneuronswas
demonstratedbyEugeneIzhikevich[Izhikevich2003].Thismodelreproducedspiking,bursting,
mixedmodefiringpatterns,postinhibitory(rebound)spikesandbursts,continuousspikingwith
frequencyadaption,spikethresholdvariability,bistabilityofrestingandspikingstates,and
subthresholdoscillationsandresonance.TchumatchenkoandClopath[Tchumatchenko2014]
demonstratedhowinhibitoryinterneuronsinthepresenceofasubthresholdresonanceselectively
amplifiesfiringrateresponsetoselectfrequenciesalreadypresentinisolatedneurons.Othermodels
andframeworksincludeGENESIS2.4,LFPy,MvaSpike,PyNN,NeuroML,NineML,SpineML
[Richmond2013].
It'snotclearthataspikingmodelwillbenecessaryforallneuralcircuitsbutcurrentlythereisno
clearcircuitandweightmappingformulafromspikingtononspikingtoachievethesameresultant
behavior.Thereis,infact,evidencethatspikingcorrelationisusedinmanyneuralcircuits[Goodman
2008].Currentnonspikingimplementationsofneuralnetsareapproximately100timesless
computationallyintensive.Othersimplificationmayalsobepossiblebyreplacingsomeneuralcircuits
withothermoreefficientcomputationalalgorithmsthatachievethesamefunctionality.
Muchcurrentemphasishasbeenonthehumanneocortexformachinelearningalgorithm
development[Numenta2011,Schmidhuber2013].Numenta'spurposeistodistilloutprinciplesfor
developingalgorithmsfromthewaythehumanneocortexseemstowork.Theirgoalisnottoreplicate
aparticularhumanneocortexbuttocreateacomputationalmodelforAIuse.Whattheyhaverealized
isthesparsedistributedrepresentationencodingandneuralnethierarchiesleadtowhattheyterm
HierarchicalTemporalMemory(HTM)fortheirclassofmodels.Thenextstepwastomakethebottom
layerneuralnetsrecurrent(RNN)orbidirectionalrecurrentneuralnets(BRNN)[Karpathy2014]since
thiscausedthelowerlevelstobecomemorestableandlongtermrecognizers.Thisclassofmodelshas
beenabreakthroughinAIandgivesusasimplifiedunderstandingofwhatgoesonintheneocortexbut
itisnotcurrentlypurposedforconvertinganactualhumanneuralnetwithassociatedsynapticweights
foremulation.
Anotherapproachistomakehardwarethatisarchitecturallydesignedtoemulateneuralnetworks.
ThishasbeenaccomplishedatIBM[Merolla2014,Cassidy2014]witha5.4billiontransistorchip
(TrueNorth)thatemulates4096neurosynapticcores.Ithandles1millionspikingneuronsand256
millionconfigurablesynapses.Thesechipscanbetiledin2dimensionsanduseonly65milliwattsor3
ordersofmagnitudelesspowerthanusingstateoftheartgeneralpurposemicroprocessors.Thisisa
verysignificantsteptowardadedicatedneuralemulatorandmaybeabetterfitthanageneralpurpose
supercomputer.However,itmaybesomewhatlessversatilewhenotheralgorithmsareavailableto
replacesomebrainparts.Anotherproblemisthischipismodeledonacorticalcolumnofamacaque
cerebralcortex.Ahumanequivalentcorticalcolumnismorecomplexbutshouldbereachablesince
thischipwasimplementedin28nmCMOSandthecurrentstateoftheart(Intel)is14nmCMOS.
TherearestillsomeproblemareassincePurkinjecellscanbranchouttoadendriticarborof200,000
fibersandapyramidalcellreceives30,000excitatoryinputsand1700inhibitoryinputs.Thereisstill
theproblemofhowglialcellsmodulateneuralactivity.Thisapproachhaspromisebutmayrequirea
piggybackmemoryandconnectionchiptoemulatetheselargerhumancellsandtheirconnectivity.To
reduceexternalchipconnectionsonereallyneedanentirehumancorticalstack(hypercorticalcolumn)
emulatedononechip.Itmaytakeastackofpiggybackchipsormoreactivesiliconlayerstodothat.
GeneralVisionhasacommerciallyavailablechipandboardsetsfeaturingoneormoreoftheir
CM1Kchipsthatcontain1024‘neurons’.Ratherthanaspikingneuronmodelthischipusesnumerical
valuesforinputsmakingitusefulforAIapplicationsbutprobablylessusefulforreplicatinghuman
neuralnetworks.
Otherspecializedneuralsimulationsystemsincludeamixedanalogdigitalmultichipsystem
(Neurogrid)[Benjamin2014],theUniversityofManchesterprojectSpiNNaker,theIBMSyNAPSE
project(GoldenGateChip),andtheHeidelbergUniversityBrainScaleproject(HICANNchip).Of
these,theNeurogridusestheleastchipareaandtheleastpowerandisonaparwithTrueNorthabove.
Currentlyitmakessensetomakesurethatthevarioustypesofhumanhypercorticalcolumns,and
otherlowerbrainsystemsoperatethesameinageneralpurposesupercomputersasinvivo.The
flexibilityofgeneralpurposecomputersisneededtomakesurethateverythingnecessaryforafaithful
simulationcanbeincludedthenspecialpurposesystemscanbedevelopedtoreplicatethosesimulated
features.Unfortunately,mostAIemphasisisjustonthecerebralcortexandthehypercorticalcolumns
ortheirmammaliancorticalcolumnancestors.Forthepurposesofbrainemulationtheentirehuman
brainisimportant,notjustthecerebralcortex.
VirtualEmbodiment
Initially,emulatedindividualsmayliveinasimulatedenvironmentinwhichtheycaninteractwith
eachotherandalsointeractwiththerealworldviatheInternet[Abrash2014].Evenwithtoday's
technology,suchanenvironmentwillbefarricherthanSecondLifebutwouldcurrentlyfallshortofa
realworldsensualexperience.Theresolutionofvariousvirtualworldsisincreasingatarapidratein
linewithcomputingpowerandisreachingthegeneralpublicintermsofinteractiveonlinegaming.
Sensoryandhapticbodysuits,omnidirectionaltreadmillsandsophisticatedheadgeararebeginningto
emergealongwithsupportingsoftware.Theemulatedhuman'sneuralinterfaceshouldbeabletotake
advantageofthesamevirtualinterfacethatrealhumanswouldbepluggedinto.
Realistic3Dvirtualreality(VR)worldsmaybecomewidespreadwiththeOculusRiftandother
VRviewersavailabletoconsumers.Theseviewerscanoffersufficientresolution,accuratetranslation
andlowpersistencetoavoidpreviousmotionsicknessproblemsforhumanviewers.Atfirst,
applicationswillbeprimarily3Dgamingbutlateritmaybeenvironmentswithhighlyevolvedcitiesin
virtualspacewithrealisticavatarsspeakingintheuser’svoiceoracopyoftheuser’svoice
synthesized.Thiswillbeaspaceformeetingpeopleprivatelyorpublicly,forshopping,recreationand
sightseeing.Eventuallyuserwillbeabletobecomeabirdorotheranimal,mythicalorrealinthis
world.Asavirtualperson(brainuploaded)thereisnoreasononecannotbeinthisworldwiththe
additionoffullsensoryfeedbacktothepersonsvirtualneuralsystem.Therealdangerofsuchavirtual
worldisbecominghabituatedtoitandhavingtherealworldseemblandbycomparison.
AndroidEmbodiment
Portableroboticsisadvancingatafairratebutisn'tfollowingMoore'sLawbyprogressingatan
exponentialrate.Therearenowwalkingrobotswithhighdexteritybutportablepowerandcompact
lowpowerhighefficiencyartificialmuscleshavebeenaproblem.Thefirstandroidsforbrain
emulatedindividualswillhavetobeRFlinkedtoasupercomputerfortheirbrainpowerandmayalso
haveapowertetherforlocomotion.Formoreportability,powercouldbesuppliedbyaplutonium238
radioisotopethermoelectricgenerator(RTG).RTGs,althoughtheyfoundwideuseinthe1970s,are
nowonlysuitedtospacecraftduetotheirexpense,threatofradioactivecontaminationafter
decommissioningandthescarcityofplutonium238.Adirectethanolfuelcellisadistinctpossibility
givenafewmoreyearsofdevelopment.Ifchemicalrechargeablebatterytechnologyimproves
markedlythenwellplacedfastrechargingstations,chairsorbedscouldsolvethisproblem.Atotally
independentandroidexistencemayinvolvereducinganexascaleoralternativecustomsupercomputer
andpowersourcetofitsomewhereinahumanbodysizeframecompletewithalltheotherpartsthat
wouldmaketheandroidrobotlifelikeandacceptabletotheuploadedhumanandtothoseheorshe
willinteractwith[Ishiguro12010,Ishiguro22010].Humansturnedandroidwillwanttolookandfeel
ashumanaspossibleandwillwantothertoreacttothemwithoutvisitingtheuncannyvalley(aterm
coinedbyMasahiroMoritodescribetheuncomfortablefeelingonehaswhenencounteringsomething
nearhumanlookingbutnotquitehumaninmotionorlikeness).
Hapticfeedbacktofeelvirtualheat,pressureandtexturearestillveryrudimentary[Varalakshmi
2012].Currentlygaming,robotics,surgicaltraining(laparoscopy,endoscopyandendovascular
procedures),telemanipulationandartificiallimbsprovidethemotivationforresearchinthisarea.For
thepurposeofhumanbrainemulationjustthedevelopmentofsensorsthatreplicatethehumansensory
systemsisimportant.Thesenseoftouchforanartificialhandisupto20sensors[Tan2014].The
majordrawbackisnotthesensorsbutconnectingthesetoappropriatenervesintheupperarm.Of
course,thisisnonissueinanandroidconnectedtoawholebrainemulator.Thehumanbodyhasfive
typesofcutaneousreceptors:LayeredcapsulePaciniancorpuscle(vibration),Layeredcapsule
Meissnercorpuscle(touch),thincapsuleRuffiniending(pressure),nonencapsulatedathairroot
(touch),andnonencapsulatedMerkelendings(touch).Afreenerveendingsensespain,temperature
andtouch[Nolte1999].Thesensordensityvariesfrom200MeissnerandMerkelunits/cm
2
onthe
fingertips,tongueandlipstoabout40onthepalmsandface.Organicfilmtransistorsandsensors
shouldallowthisdensityofsensorsinmaterialsthatcanbeformedintofingersandlipswithin5years
buttherehastobeaneedwithsufficientfinancingtodevelopthetechnology.
Humanmusclesarecompactandfairlyefficient;seeTable1from[Mirfakhrai2007].Thereare
manytypesofactuatorsthatcanactasartificialmusclesincludinghydraulic,pneumatic,thermal
shapedmemoryalloys,linearandrotarymotors,piezoelectricpolymers,ferroelectricpolymersand
manyothers.Tomakeandroidscordlessartificialmusclesneedactuatorsthataremorecompactand
uselesspowerthatcurrenttechnology.Astepinthatdirectionincludesrecentworkwithelectroactive
polymers(EAPs),conductivepolymers,carbonnanotubes(CNTs)[Mirfakhrai2007]andtwistedfibers
[Baughman2014,Haines12014,Haines22014,Lima2012].Aninexpensivenylonversionoftwisted
fibers,heatactivated,isfarmorepowerfulthanhumanmusclebyweightandsize.Usingcarbon
nanotubefilamentyarnyieldsanevenmorepowerfulcontractileforce.Asourceofheatisrequiredto
makethisworksothatisabitinconvenient,otherwise,thesmoothactionandsizemakesitidealfor
androidfacialandhandmuscles.
Table1Propertiesofmammalianskeletalmuscles
Property
TypicalValue
MaximumValue
Strain(%)
20
>40
Stress(MPa)
.01(Sustainable)
0.35
Workdensity(kj/m
3
)
8
Density(kg/m
3
)
1037
StrainRate(%/s)
500
Powertomass(W/kg)
50
200
Efficiency(%)
40
CycleLife
10
9
Modulus(MPa)
10to60
Visionandhearingcanuseofftheshelftechnologywithconventionaltechnologytoconvertthis
intoappropriateneuralspiketrains.Speechcanuseavocaltractsimulator.Thehumansenseoftaste
includessalt,bitter,sour,sweetandumami[Trivedi2012].Smellmayconsistofasmanyas1000
differentkindsofolfactoryneurons,allsimilarbutwitheach'binding'andifferentarrayofodorants.
Althoughhumantastehasbeencrudelyreplicated,smellhasbeenmorechallenging.Inthelastdecade
nanocompositesensortechnologieshaveadvancedtothepointthatcompanieslikeSensigentsellsa32
sensorarraysensitivetoawideassortmentofvolatileorganiccompounds.Moresensitivesensorsuse
metalligandbondingcolorimetric5x5and6x6sensorarrays[Suslick2004].Thisisbasedonthe
strongandrelativelyspecificbondingbetweentheanalytesandachemoresponsivedye.Sensitivityof
subppmsensitivityisreadilyrealizablewiththistechnologyusinganinexpensiveCMOSorCCD
imagingarrayorscanner.
Summary
Therearethreeinterdependentareasthatwillrequirethemostfocus,agoodunderstandingofbrain
physiologyatthelocallevel(corticalcolumn,etc.)pertinenttoemulation,highreliabilitybraintissue
scanningautomationandfast3Dpatternrecognitionthat'sconsiderablymoreaccuratethanhuman
recognition.
Therearemanyneurontypes,synapsetypes,synapsegrowthmechanisms,neurotransmittersand
variousglialcellsthatneedtobefuntionallyunderstood.Patternrecognitionsoftwaremustrecognize
andrejectjunksuchasdamagedordeadneuronsandganglia,plaques,tumors,lesions,calcium
deposits,vascularanomalies,bloodclots,strokedamage,unimportantglialcellsandotherirrelevant
cellularmaterialorforeignmatter.Itwasn'tuntilthelate80sandearly90sthatnitricoxide(NO),
hydrogensulfide(H
2
S)andcarbonmonoxide(CO)wererecognizedaslocalbroadcasttype
neurotransmitters[Dawson1994].Beforethatnoonesuspectedthatgasescouldbeneurotransmitters.
JustrecentlyFieldshasobservedatypeofglialcell(astrocyte)communicationusingcalciumion
wavesbetweenthemselvesandnearbyneuronsthepurposeofwhichisstillnotwellunderstood[Fields
2013].Anotherunsuspectedinconvenienceisthatsomehippocampalpyramidalneuronshavebeen
discoveredwithdendritesthathavegrowntheirownaxons[Thome2014]thatfireindependentlyofthe
pyramidalcell.It'sbeenacardinalrulethataneuronhasoneandonlyoneaxonforacenturybutthese
recentdiscoveriesdemonstratethatneuralbiologystillhasfundamentalsurprises.
Thesecondareaofconcernishighlyreliableautomatedsectionpreparationsystemwithlowtissue
distortionandnolossofthefeatureinformationnecessaryforsimulation.Thisalsoinvolvesreliable
marking,dyingandcataloging(ifsampleisnotdestroyed)andstoragetechniques.Beyondthis,highly
parallelscanningmicroscopesmustbedevelopedalongwithmultiexabytestoragefacilitiesforthe
datathatwillbecollected(30x30x30nmvoxelforanaveragehumanmalebrainofvolume1260cm
wouldrequire4.7x10
19
bytesat1bytepervoxel).Notethattheentiredatabasewouldhavetobesaved
tomakecorrectionsbasedonadditionalinformation,betterpatternrecognitionalgorithmsoralgorithm
learning.
Thethirdhurdleisthepatternrecognitionofallfeaturesandinterconnectivityrelevanttoafaithful
reproductionoftheindividualhuman'sconnectome.Itisdifficultforawelltrainedhumantocircuit
traceevenaverysmallneuralnet.Ittookyearstoteaseoutthestructureofthe302(hermaphrodite)
and384(male)neuronwiringdiagramofnematodeC.elegans.Notethatjustrecently[Li2014]itwas
discoveredthatoneoftheneuronsinC.eleganswasactuallyprovidingtwodifferentoutputs:
locomotionspeedanddirection.Thisshowsthatapparentlysimpleneuralsystemscancontain
unsuspectedcomplexity.
HenryMarkram’sBlueBrainProjecthassimulatedajuvenilerat’ssomatosensorycortexconsisting
of31kneuronsand37millionsynapses[Markram2015].Thisisbasedonpatchclampstudiesthat
identified55layerspecificmorphologicaland207morphoelectricalneuronsubtypes.Thecapturing
ofahumancorticalcolumn(~100kneurons)thoughttobe700to1000minicolumnsisinprogress.
Capturingthecerebralcortexofanindividualisordersofmagnitudemoredifficultsinceinvivo
studiesaredifficultandasinotheranimalseverycorticalcolumnnetworkisdifferent(thoughmany
areverysimilar)sothisindicatesthattheremaybeagenericbiologicallyapproximatedsimulated
artificialintelligencewellbeforeanindividualbraincanbeuploaded.Onewouldexpectthatthe
humancorticalcolumnnetworkwouldprovideabettermodelforAIusethaneitheraratora
macaque’scorticalcolumn.
Inareaswherethefunctionofagroupofneuronscanbefullycharacterizedanalgorithmic
replacementmightbemadeandcommittedtodigitallogic.Aprosthesisreplacementforpartofthe
hippocampusisbeingdevelopedinTheodoreBerger’sLab[Berger2012]atUniversityofSouthern
California.Theintentionistodevelopabiomimeticmicroelectronicdevicetorestorelostmemory.
Otherbiomimeticdeviceslikethecochlearimplantforthedeafhavebeenaroundformanydecades.
Areaslikeseeing,movement/intentionarealsounderbiomimeticmicroelectronicdevelopmentat
variousuniversitylabswithprototypedevicesinafewhumansubjects.Thiscanworkwellforareas
wherelittleornoadultlearningisinvolvedsotheI/Oresponseisbasicallystatic.
TherearemanycriticsofboththeEuropeanandUScurrenteffortsinlargebudgetbrainresearch
dealingwithlargescalecomputersystemsforsimulations[Fregnac2014]sincemanybasicscience
neuroscientistsfeltleftoutoftheprocessandthecurrentroadmap.Thecriticsclaimthiswilldelay
resultsusefulforcuringbraindiseases.Ifthecriticshavetheirwayitwilllikelydelaybotheffortsat
extractingwhatisusefulforAIandwholebrainemulation.Thisissimilartotheuproaroverthehuman
genomeprojectbegunin1990thatfeltmappingthehumangenomewouldnotleadtocuresfordisease.
Insteadithadprovideduswithabigpictureunderstandingofgeneticdiseases,geneticpredispositions
tovariousdiseasesandopenedtodoortomodernepigeneticsthatwouldhavepreviouslybeenwritten
offasLysenkoism.
Table2containsguesstimatesofwheneachbenchmarkmaybeaccomplished.Thisassumes
fundingisavailable.The“CapturingIndividualHumanBrainConnectome”entryisdependentonthe
priortableentriesandthewill(andmoney)tocreateasectioningandscanningfactory.
Akeypartoftheproblemwasnotincludedintheguesstimatesorinthedetaileddiscussioninthis
paper:Theproblemofbuildinganemulatorthatcontainstherightfunctions,arrangedintheright
manner,withsufficientlycorrectfunctionparametersderivedbysometransformationfromthevarious
measurementsmadeinabrain.Atpresent,thereisnosuchemulator,noristhereamethodfor
populatingsuchanemulatorwithparametervalues.Itisacrucialareathatdemandsfurtherresearch
anddevelopment.
DevelopmentLeadTimes
HumanBrainPreservationsufficientforstorageand
uploading
1015years
UnderstandingBrainPhysiologyatdepthnecessary
forbehavioralemulation
10–15years
AutomatedBrainsectioningandscanning
1015years
CapturingIndividualHumanBrainConnectome
2550years*
ComputationPotentialforHumanBrainEmulation
(LevelOutput).Probablywon'tworkbutusefulforAI
Currentmultipetaflopsupercomputers
ComputationPotentialforBrainEmulation(Spiking
Output)
10–20years(ExascaleSuper
Computers)orSpecializedarchitectures
VirtualWorldExistence(~computationalpower)
Possiblenow,mixofAIsandgamers
AndroidExistence(RFlinkandpartiallytethered)
1015Years
IndependentAndroidExistence(selfcontained)
2550years
*AnApollolikeprojectcouldgetearlyresultsbuteconomicandpoliticalconsiderationscoulddelayresultsformany
years.
Table2
References
[Abbott1999]L.F.Abbott,“Lapicque’sintroductionoftheintegrateandfiremodelneuron(1907)
BrainResearchBulletin,Vol.50,Nos.5/6,pp.303–304,1999
[Abrash2014]MichaelAbrash,“WhatVRcould,should,andalmostcertainlywillbewithintwo
years”ValveatSteamDevDaysinSeattleFebruary2014
[Alivisatos2013]A.PaulAlivisatos,etal.,“NanotoolsforNeuroscienceandBrainActivity
Mapping”ACSNano7(3)pp18501866
[AMD2014]"AMDAcceleratesEnergyEfficiencyofAPUs,DetailsPlanstoDeliver25xEfficiency
Gainsby2020
http://www.amd.com/enus/pressreleases/Pages/amdacceleratesenergy2014jun19.aspx
[Andres2014]BjörnAndres,etal.,“SegmentationofSBFSEMVolumeDataofNeuralTissueby
HierarchicalClassification”DOI:10.1007/9783540693215_15Conference:PatternRecognition,
30thDAGMSymposium,Munich,Germany,June1013,2008,Proceedings
[Bachtold2001]AdrianBachtold,PeterHadley,TakeshiNakanishi,CeesDekker,“LogicCircuitswith
CarbonNanotubeTransistors”ScienceVol2949November2001pp13171320
http://www.cs.duke.edu/courses/spring06/cps296.5/papers/BHND01.pdf
[Baughman2014]RayBaughman,“SpinningYarnintoMuscles”Science20February2014
[Benjamin2014]BenVarkeyBenjamin,etal.,“Neurogrid:MixedAnalogDigitalMultichipSystem
forLargeScaleNeuralSimulations”Vol102,No.5,May2014ProceedingsoftheIEEE
[Berger2012]TheodoreW.Berger,etal.,“TowardaCognitiveHippocampalNeuralProthesis:
ImplantableBiomimeticMicroelectronicstoRestoreLostmemory”CNS*2012WorkshoponMethods
ofSystemIdentificationForStudyingInformationProcessinginSensorySystems.July25,2012
Atlanta/Decatur,GA.
http://www.bionet.ee.columbia.edu/workshops/cns/methods/2012/identification
[Bonhoeffer2002]TobiasBonhoefferandRafaelYuste,“SpineMotility:Phenomenology,
Mechanisms,andFunction”Neuron,Vol.35,1019–1027,September12,2002
[Brette2009]RomainBrette,“SpikedBasedModelsofNeuralComputation”Thesis2009–Université
ParisV
[Briggman2012]“KevinL.BriggmanandDavidD.Bock,“VolumeElectronMicroscopyfor
NeuronalCircuitReconstruction”CurrentOpinioninNeurobiology201222:154161
[Callaway2008]EdwardM.Callaway,“TransneuronalCircuitTracingwithNeurotropicViruses”
CurrentOpinioninNeurobiology2008,18:617623
[Cassidy2014]AndrewS.Cassidy,etal.,“RealtimeScalableCorticalComputingat46GigaSynaptic
OPS/Wattwith~100XSpeedupinTimetoSolutionand~100,000XReductioninEnergytoSolution”
SC14,November1621,2014,Neworleans9781479955008/14/$31.00©2014IEEE
[Chen2015]FeiChen,PaulW.Tillberg,EdwardS.Boyden,“ExpansionMicroscopy”Sciencexpress
15January2015,DOI:10.1126/science.1260088
[Cheng2013]KwanghunCheng,etal.,“StructrualandMolecularInterrogationofIntactBiological
Systems”NatureDOI10.1038/12107
[CohenAdad2012]JulienCohenAdad,etal.,“ImprovedQBallimagingusinga300mT/mhuman
gradient”
http://www.humanconnectomeproject.org/wpcontent/uploads/2012/06/CohenAdad__abstract_ISMR
M12_QBall3.pdf
[Dawson1994]TedM.DawsonandSolomonH.Snyder,“GasesasBiologicalMessengers:Nitric
OxideandCarbonMonoxideintheBrain”TheJournalofNeuroscienceSeptember1994,14(9):
51475159
[Deca2014]RandalA.KoeneandDianaDeca(2014).Editorial:WholeBrainEmulationseeksto
ImplementaMindanditsGeneralIntelligencethroughSystemIdentification,JournalofArtificial
GeneralIntelligence.Volume4,Issue3,Pages1–9,ISSN(Online)19460163,DOI:
10.2478/jagi20130012,April2014
[Denk2012]WinfriedDenk,KevinLBriggman,andMoritzHelmsteadter.“Structuralneurobiology:
missinglinktoamechanisticunderstandingofneuralcomputation,”NatureReviewsNeuroscience
13.5(2012),351–8
[Dethier2011]JulieDethier,etal.,“SpikingNeuralNetworkDecoderforBrainMachineInterfaces”
Proceedingsofthe5thInternationalFrD1.14IEEEEMBSConferenceonNeuralEngineeringCancun,
Mexico,April27May1,2011
[EPFL2014]TheBlueBrainProjectEPFLhttp://bluebrain.epfl.ch/page58124en.html
[Evers2004]EversJF,SchmittS,SibilaM,DuchC.“Progressinfunctionalneuroanatomy:precise
automaticgeometricreconstructionofneuronalmorphologyfromconfocalimagestacks.J
Neurophysiology.2005Apr;93(4):233142.Epub2004Nov10.
[Eversmann2003]BjornEversmann,etal.,“A128x128CMOSBiosensorArrayforExtracellular
RecordingofNeuralActivity”IEEEJouralofSolidStateCirsuits,Vol.38,No.12,December2003
DOI:10.1109/JSSC.2003.819174
[Eyewire2014]Eyewire/ArtificialIntelligencehttp://wiki.eyewire.org/en/Artificial_Intelligence
[Fahy12004]GregoryM.Fahy,etal.,“CryopreservationofOrgansbyvitrification:Perspectivesand
RecentAdvances”CryobiologyDOI10.1016/j.cryobiology.2004.02.002PMID15094092
[Fahy22004]GregoryM.Fahy,BrianWowk,JunWu,andSharonPaynter,“Improvedvitrification
solutionsbasedonthepredictabilityofvitrificationsolutiontoxicity”Cryobiology48(2004)2235
[Feingold2012]JosephFeingold,etal.,"AsystemforRecordingNeuralActivityChronicallyans
simultaneouslyfromMultipleCorticalandSubcorticalRegionsinnonhumanprimates"DOI:
10.1152/jn.00625.2011(2012)
[Fields2013]
http://rdouglasfields.wordpress.com/2013/03/06/braincellsthatcommunicatewithoutelectricitycalci
umwavesinglia/
[Foerster2013]FoersterBR,etal.,“Animbalancebetweenexcitatoryandinhibitoryneurotransmitters
inamyotrophiclateralsclerosisrevealedbyuseof3Tprotonmagneticresonancespectroscopy”
JAMANeurol.2013Jun24:18.
[Fregnac2014]YvesFregnac,GillesLaurent“Neuroscience:WhereisthebrainintheHumanBrain
Project”Nature/Comment,03September2014
[Goodman2008]DanGoodman,RomainBrette,“Brian:ASimulatorforSpikingNeuralNetworksin
Python”FrontiersinNeuroinformatics,18November2008,DOI:10.3389/neuro.11.005.2008
[Hagmann2007]PatricHagmann,etal.,“MappingHumanWholeBrainStructuralNetworkswith
DiffusionMRI”PLoSONE.2007;2(7):e597.PublishedonlineJul4,2007.
DOI:10.1371/journal.pone.0000597
[Haines12014]CarterS.Haines,etal.,“ArtificialMusclesfromFishingLineandSewingThread”
Science343,868(2014)DOI:10.1126/science.1246906
[Haines22014]CarterS.Haines,etal.,“SupplementaryMaterialsforArtificialMusclesfromFishing
LineandSewingThread”21February2014,Science343,868(2014),DOI:10.1126/science.1246906
[Hayworth2012]KennethJ.Hayworth,"ElectronImagingTechnologyforWholeBrainNeuralCircuit
Mapping"InternationalJournalofmachineConsciousnessVol.4,No.1(20112)1250006DOI:
10.1142/S1793843012500060
[HCP2012]HumanConncetomeProjecthttp://www.humanconnectome.org/about/project
[He2014]XiaoweiHe,etal.,“CarbonNanotubeTerahertzDetector”NanoLett.,2014,14
(7),pp
3953–3958DOI:10.1021/nl5012678May29,2014
[HerculanoHouzel2009]SuzanaHerculanoHouzel,“TheHumanBraininNumbers:alinearly
scaledupprimatemodel”FrontiersinHumanNeuroscienceDOI10.3389/neuro.09.031
[Hopkins2011]CurtHopkins,“ObamaBudgetIncludes$126MillionforExascaleComputing”
http://readwrite.com/2011/02/21/obama_budget_includes_126_million_for_exascale_com#awesm=~oI
liLPMVOQJLxo
[Huang2008]BoHuangetal.,“ThreedimensionalSuperresolutionImagingbyStocasticOptical
ReconstructionMicroscopy”,Science2008February8;319(5864):810813.
DOI:10.1126/science.1153529.
[Intel2012]IntelEuropeanExascaleLabsReport2012
http://www.exascalecomputing.eu/wpcontent/uploads/2013/09/IntelEuropeanExascaleLabsAnnual
Report2012.pdf
[Ishiguro12010]HiroshiIshiguro,
http://spectrum.ieee.org/robotics/humanoids/hiroshiishigurothemanwhomadeacopyofhimself
[Ishiguro22010]HiroshiIshiguro,
http://spectrum.ieee.org/automaton/robotics/humanoids/040310geminoidfhiroshiishigurounveilsne
wsmilingfemaleandroid
[Izhikevish2003]EugeneM.Izhikevich,“SimpleModelofSpikingNeurons”IEEETransactionson
NeuralNetworks”,Vol.14,No.6,November2003
[Karpathy2014]AndrejKarpathyandLiFeiFei,“DeepVisualSemanticAlignmentsforGenerating
ImageDescriptions”,StanfordUniversityTechnicalReportCS231n/2014
[Knott2008]GrahamKnott,HerschelMarchman,DavidWall,BenLich,“SerialSectionScanning
ElectronMicroscopyofAdultBrainTissueUsingFocusedIonBeamMilling”TheJournalof
Neuroscience,19March200828(12):29592964;DOI:10.1523/jneurosci.318907.2008
[Koene2012a]RandalA.Koene(2012).FundamentalsofWholeBrainEmulation:State,Transition
andUpdateRepresentations.InternationalJournalofMachineConsciousness,Vol.4,No.1(2012)
1250002,doi:10.1142/S1793843012500023
[Koene2012b]RandalA.Koene(2012).ExperimentalResearchinWholeBrainEmulation:TheNeed
forInnovativeInVivoMeasurementTechniques.InternationalJournalofMachineConsciousness,
Vol.4,No.1(2012)1250004,doi:10.1142/S1793843012500047
[Kogge2008]PeterKogge,etal.,“ExaScaleComputingStudy:TechnologyChallengesinAchieving
ExascaleSystems”September28,2008AFRLcontract#FA865007C7724
[Kogge2013]PeterKogge,JohnShalf,“ExascaleComputingTrends:Adjustingtothe“NewNormal”
forComputerArchitecture”ComputinginScience&Engineering,November/December2013
CISE156Shalf.Indd
[Kramer2013]TanKramer,LynnW.Enquist,“DirectionalSpreadofAlphaherpesvirusesinthe
NervousSystem”Viruses2013,5,678707;DOI:10.3390/v5020678
[Kreshuk2014]AnnaKreshuk,etal.,“AutomatedDetectionofSynapsesinSerialSection
TransmissionElectronMicroscopyImageStacks”PLoSONE9(2):e87351.
DOI:10.1371/journal.pone.0087351
[Lang2011]StephanLang,etal.“FastextractionofneuronmorphologiesfromlargescaleSBFSEM
imagestacks”10.3389/neuro.11.005.2008JournalofComputationalNeuroscience(ImpactFactor:
2.44).03/2011;31(3):53345.DOI:10.1007/s1082701103161(2011)
[Li2014]ZhaoyuLi,etal.,“EncodingofBothAnalogandDigitallikeBehavioralOutputsbyOneC.
elegansInterneuron”DOI:http://dx.doi.org/10.1016/j.cell.2014.09.056(2014)
[Lima2012]Marciod.Lima,etal.,“Electrically,Chemically,andPhotonicallyPoweredTorsionaland
TensileActuationofHybridCarbonNanotubeYarnMuscles”Science338,928(2012);
DOI:10.1126/science.1226762
[Liu2013]GuanxiongLiu,etal.,“GrapheneBasedNonBooleanLogicCircuits”Departmentof
ElectricalEngineering,UniversityofCalifornia–Riverside1308.2931v1.pdf
[Livet2007]JeanLivet,etal.,“Transgenicstrategiesforcombinatorialexpressionoffluorescent
proteinsinthenervoussystem”NatureVol450,1November2007DOI:10.1038/nature06293
[Mak2013]KinFaiMak,etal.,“TheValleyHallEffectinMoS2Transistors”
[Marblestone2013]AdamH.Marblestone,etal.,“Conneconomics:TheEconomicsofLargeScale
NeuralConnectomics”bioRxivpostedonlineDecember10,2013,DOI:
http://dx.DOI.org/10.1101/001214
[Markram2012]H.Markram,‘‘Thehumanbrainproject,’’Sci.Amer.,vol.306,no.6,pp.50–55,May
2012.
[Markram2015]HenryMarkram,etal.,“ReconstructionandSimulationofNeocorticalCirsuitry”Cell
Volume163,Issue2,p456492,8October2015DOI:http://dx.doi.org/10.1016/j.cell.2015.09.029
[Mazzoni1990]PietroMazzoni,etal.,“AMoreBiologicallyPlausibleLearningRuleforNeural
Networks”Proc.Natl.Acad.Sci.USAVol.88pp.44334437,May1991Neurobiology
[McIntyre2015]RobertL.McIntyre,GregoryM.Fahy,“AldehydestabilizedCryopreservation”
Cryobiology71(2015)448458,http://dx.doi.org/10.1016/j.cryobiol.2015.09.003
[Merolla2014]PaulA.Merolla,etal.,“AMillionSpikingNeuronIntegratedCircuitwithaScalable
CommunicationsNetworkandInterface”Science8August2014:Vol.345no.6197pp.668673,
DOI:10.1126/science.1254642
Suplementarytext:
http://www.sciencemag.org/content/suppl/2014/08/06/345.6197.668.DC1/Merolla.SM.rev1.pdf
[Micheva2010]KristinaD.Micheva,“SingleSynapseAnalysisofaDiverseSynapsePopulation:
ProteomicImagingMethodsandMarkers”NeuronDOI10.1016/j.neuron.2010.09.024
[Mikula2012]ShawnMikula,JonasBinding,WinfriedDenk,“Stainingandembeddingthewhole
mousebrainforelectronmicroscopy”NatureMethodspublishedonline21October2012;
DOI:10.1038/NMETH.2213
[Mirfakhrai2007]TissaphernMirfakhrai,JohnD.W.MaddenandRayBaughman“PolymerArtificial
Muscles”MaterialsTodayApril2007Vol10No.4,ISDN13697021ElsevierLtd.2007
[Nadasdy1998]ZoltanNádasdy,etal.,“ExtracellularRecordingandAnalysisofNeuronalActivity:
FromSingleCellstoEnsembles”,Chapter2
[NIH2013]AdvisoryCommitteetotheNIHDirectorINTERIMREPORT“BrainResearchthrough
AdvancingInnovativeNeurotechnologies(BRAIN)WorkingGroup”September16,2013
[NIH2014]BRAIN2025:“AScientificVisionBrainResearchthroughAdvancingInnovative
Neurotechnologies(BRAIN)”WorkingGroupReporttotheAdvisoryCommitteetotheDirector,NIH
June5,2014
[Nolte1999]JohnNolte“TheHumanBrain–AnIntroductiontoIt'sFunctionalAnatomy”Forth
Edition,SensoryReceptorsandThePeripheralNervousSystem,pp191214
[Numenta2011]Numenta,“HierarchialTemporalMemoryincludingHTMCorticalLearning
Algorithms.”Version0.2.1September12,2011
[Ostojic2009]Ostojic,S.;Brunel,N.;Hakim,V.(2009)."HowConnectivity,BackgroundActivity,
andSynapticPropertiesShapetheCrossCorrelationbetweenSpikeTrains".JournalofNeuroscience
19August2009,29(33):10234–10253.DOI:10.1523/JNEUROSCI.127509.2009
[Palm2010]ChristophPalm,etal.,“TowardsUltraHighResolutionFibreTractMappingofthe
HumanBrain–RegistrationofPolarisedLightImagesandReorientationofFibreVectors”FrontHum
Neurosci.2010;4:9.PMCID:PMC2866503PublishedonlineApr23,2010.PrepublishedonlineSep
28,2009.DOI:10.3389/neuro.09.009.2010
[Passingham2013]RichardE.Passingham,“Whatwecanandcannottellaboutthewiringofthe
humanbrain”DOI:10.1016/j.neuroimage.2013.01.010
[Persson2011]F.Persson,etal.,“FluorescenceNanoscopyofSingleDNAMoleculesbyUsing
StimulatedEmissionDepletion(STED)”DOI:10.1002/anie.201100371AngewandteChem.Int.Ed.
2011,50,5581–5583
[Ragan2012]Ragan,Yimothy,etal.,“Serialtwophotontomography:anautomatedmethodfor
exvivo
mousebrainimaging”NatMethods.;9(3):255–258.DOI:10.1038/nmeth.1854.
[Richmond2013]PaulRichmond,etal.,“FromModelSpecificationtoSimulationofBiologically
ConstrainednetworksofSpikingNeurons”Neuroinformatics2014;12(2):307323.doi:
10.1007/s120210139208z2013
[Sandberg2008]AndersSandberg,NickBostrom,“WholeBrainEmulation–ARoadmap”,Futureof
HumanityInstitute,OxfordUniversity,Technicalreport20083(2008)
[Schmidhuber2013]JurgenSchmidhuber,“MyFirstDeepLearningSystemof1991+DeepLearning
Timeline19622013”TecnicalreportarXiv:1312.5548v1[cs.NE]
[Schmitt2004]SchmittS,EversJF,DuchC,ScholzM,ObermayerK."Newmethodsforthe
computerassisted3Dreconstructionofneuronsfromconfocalimagestacks.”Neuroimage.2004
Dec;23(4):128398.
[Shibata2015]MikihiroShibata,etal.,“LongtipHighSpeedAtomicForceMicroscopyfro
Nanometerscaleimaginginlivecells”,NatureScientificReports5,8724;DOI:10.1038/srep08724
(2015).March4,2015.
[So2002]PeterT.C.So(MIT),“TwophotonFluorescenceLightMicroscopy”EncyclopediaofLife
Sciences,2002MacmillanPublishersLtd,NaturePublishingGroup
[Sodani2011]AvinashSodani,“RacetoExascale:OpportunitiesandChallenges”
http://www.microarch.org/micro44/files/MicroKeynoteFinalAvinashSodainash.pdf
[Sun2011]DongmingSun,etal.,“Flexiblehighperformancecarbonnanotubeintegratedcircuits”
NatureNanotechnology6,156161***
[Suslick2004]KennethS.Suslick,“AnOptoelectronicNose:“Seeing”SmellsbyMeansof
ColorimetricSensorArrays”MRSBULLETINOctober2004pg720725
[Tan2014]DanielW.Tan,etal.,“Aneuralinterfaceprovideslongtermstablenaturaltouch
perception”SciTranslMed8October2014:Vol.6,Issue257,p.257ra138Sci.Transl.Med.DOI:
10.1126/scitranslmed.3008669
[Tchumatchenko2014]TatjanaTchumatchenkoandClaudiaClopath,“Oscillationsemergingfrom
noisedrivensteadystateinnetworkswithelectricalsynapsesandsubthresholdresonance”2NATURE
COMMUNICATIONS|5:5512|DOI:10.1038/ncomms6512
[Thome2014]ChristianThome,etal.,“AxonCarryingDendritesConveyPrivilegedInputin
HippocampalNeurons”DOI:http://dx.dol.org/10.1016/j.neuron.2014.08.013
[Tirias2014]TiriasResearch“AMDTargetsAcceleratingEnergyEfficiencyGains”June2014
[Trivedi2012]BijalP.Trivedi,“Neuroscience:Hardwiredfortaste”Nature
486,S7–S9(21June
2012)DOI:10.1038/486S7a
[Turaga2014]SrinivasC.Turaga,etal.,“ConvolutionalNetworksCanLearntoGenerateAffinity
GraphsforImageSegmentation.”NeuralComputation22.2(2014):511538.MIT
[Ugurbil2013]KamilUgurbil,etal.,“Pushingspatialandtemporalresolutionforfunctionaland
diffusionMRIintheHumanConnectomeProject”
http://dx.DOI.org/10.1016/j.neuroimage.2013.05.012
[Varalakshmi2012]B.D.Varalakshmi,etal.,“Haptics:StateoftheArtSurvey”InternationalJournal
ofComputerScienceIssues,pp234244(2012)http://ijcsi.org/papers/IJCSI953234244.pdf
[Wada2010]HitoshiWada,etal.,“ProspectofHighFieldMRI”IEEETransactionsonApplied
Superconductivity20No.3,115122
[Yoon2013]InhoYoon,etal.,“IntracellularNeuralRecordingwithPureCarbonNanotubeProbes”
DOI:10.1371/journal.pone.0065715(2013)
[Zador2014]IanD.Peikon,DianaI.GizatullinaandAnthonyM.Zador,“InVivoGenerationofDNA
SequenceDiversityforCellularBarcoding”NucleicAcidsResearch,2014DOI:10.1093/nar/gku604
[ZEISS2013]ZeissNews8.10.2013Dr.ChristianJagerOverviewproductPortfolioZEISS
Microscopy