Content uploaded by Hafedh Rguigui
Author content
All content in this area was uploaded by Hafedh Rguigui on Jan 02, 2023
Content may be subject to copyright.
Chaos, Solitons and Fractals 84 (2016) 41โ48
Contents lists available at ScienceDirect
Chaos, Solitons and Fractals
Nonlinear Science, and Nonequilibrium and Complex Phenomena
journal homepage: www.elsevier.com/locate/chaos
Characterization of the QWN-conservation operator and
applications
Hafedh Rguiguiโ
Department of Mathematics, High School of Sciences and Technology of Hammam Sousse, University of Sousse, Rue Lamine Abassi, 4011
Hammam Sousse, Tunisia
article info
Article history:
Received 5 June 2015
Accepted 28 December 2015
Keywo rds:
Space of entire function
QWN-conservation operator
Number operator
Wick derivation
abstract
Based on the ๏ฌnding that the quantum white noise (QWN) conservation operator is a Wick
derivation operator acting on white noise operators, we characterize the aforementioned
operator by using an extended techniques of rotation invariance operators in a ๏ฌrst place.
In a second place, we use a new idea of commutation relations with respect to the QWN-
derivatives. Eventually, we use the action on the number operator. As applications, we in-
vest these results to study three types of Wick differential equations.
ยฉ 2016 Elsevier Ltd. All rights reserved.
1. Introduction
The number operator (called also conservation opera-
tor) was initiated by Piech in [16] as an in๏ฌnite dimen-
sional analogue of a ๏ฌnite dimensional Laplacian on an ab-
stract Wiener space. Such operator is very important in
quantum physics because it coincides with the Hamilto-
nian of the harmonic oscillator. It has been extensively
studied in [12,13] and the references cited therein. In par-
ticular, Kuo [11] formulated the number operator as con-
tinuous linear operator acting on the space of test white
noise functionals. Let S(R)and S๎(R)be the Schwarz
space consisting of rapidly decreasing Cโ-functions and
the space of the tempered distributions, respectively. Based
on the test function space Fฮธ(S๎
C(R)) of holomorphic func-
tions with ฮธ-exponential growth and its topological dual
space Fโ
ฮธ(S๎
C(R)),see for more details [6], the number op-
erator Nhas the following expressions:
N=๎R2
ฯ(s,t)aโ
satdsdt =๎R
aโ
sasds (1)
โTel.: +21 697810448.
E-mail address: hafedh.rguigui@yahoo.fr,hafedhrguigui@yahoo.fr
where atand aโ
tare the annihilation operator and creation
operator at the point tโRand ฯis the usual trace. In [7],
using the Fock expansions of operators in terms of integral
kernel operators and rotation-invariance, the characteriza-
tion theorem for number operator is given.
Later on, in Ref. [15], by using the new idea of QWN-
derivatives pointed out by JiโObata in [8], for continuous
linear operators B1and B2from S๎
C(R)into itself, the QWN-
analogous NQ
B1,B2is introduced as QWN counterpart of the
conservation operator in (1).WeprovedthatNQ
B1,B2has
functional integral representations in terms of the QWN-
derivatives {Dโ
t,D+
t;tโR}and a suitable Wick product ๎
on the class of white noise operators. Moreover, for B1=
B2=I,the QWN-conservation operator NQis given by
NQ=๎R2
ฯ(s,t)(D+
s)โD+
tdsdt +๎R2
ฯ(s,t)(Dโ
s)โDโ
tdsdt
(2)
=๎R
(D+
s)โD+
sds +๎R
(Dโ
s)โDโ
sds.(3)
In this paper, our goal is to characterize the QWN-
conservation operator NQby using of the same extended
idea of rotation invariant operator, the chaos decomposi-
tion and the notion of Wick derivation on operators. Then,
http://dx.doi.org/10.1016/j.chaos.2015.12.023
0960-0779/ยฉ 2016 Elsevier Ltd. All rights reserved.
42 H. Rguigui / Chaos, Solitons and Fractals 84 (2016) 41โ48
we use the number operator to characterize such opera-
tors. Finally, by means of the QWN-derivatives {Dโ
t,D+
t;tโ
R},we characterize NQ.
The paper is organized as follows. In Section 2,we
brie๏ฌy recall well-known results on nuclear algebra of
entire holomorphic functions and the Fock expansion of
white noise operators. In Section 3, we characterize the
Wick derivation. In Section 4, we characterize the QWN-
conservation operator NQ.InSection 5,weusethesechar-
acterization theorems to study three types of Wick differ-
ential equations.
2. Preliminaries
Let L2(R)be the real Hilbert space of square integrable
functions on Rwith norm |ยท|0. It is well known (see Refs.
[12,13]) that the Schwarz space S(R)and its topological
dual space S๎(R)can be reconstructed using L2(R)and
the harmonic oscillator A=1+t2โd2/dt2. More precisely,
they are given by
S(R)=projlim
pโโ
Sp(R),S(R)๎=indlim
pโโ
Sโp(R),
where, for pโฅ0, Sp(R)is the completion of S(R)with
respect to the norm |.|p=|Ap.|0and Sโp(R)is the topo-
logical dual space of Sp(R). Denoting by SC,Sp,C,Sโp,C
and S๎
Cthe complexi๏ฌcations of S(R),Sp(R),Sโp(R)and
S๎(R),respectively, where the complexi๏ฌcation of any real
locally convex space Xis given by
XC=X+iX.
Throughout the paper, we ๏ฌx a Young function ฮธand ฮธโ
its polar function given by
ฮธโ(x)=sup
tโฅ0
(tx โฮธ(t)),xโฅ0,
see Refs. [6] and [14]. The test space Fฮธ(S๎
C)and the space
Gฮธโ(SCโSC)are de๏ฌned as follows:
Fฮธ(S๎
C):=projlim
pโโ;mโ0๎fโH(Sโp,C);
sup
zโSโp,C
|f(z)|eโฮธ(m|z|โp)<โ๎,
Gฮธโ(SCโSC):=ind lim
pโโ;m,m๎โ0๎fโH(Sp,CโSp,C);
sup
ฮพ,ฮทโSp,C
|f(ฮพ,ฮท)|eโฮธโ(m|ฮพ|p)eโฮธโ(m๎|ฮท|p)<โ๎
where H(B)denotes the space of all entire functions on
a complex Banach space B,seeRefs.[2โ4,6,14,15,17,18].In
all the remainder of this paper we denote by Fฮธthe test
space Fฮธ(S๎
C)and its topological dual space is denoted
by Fโ
ฮธ.
2.1. White noise operators
The space of continuous linear operators from a nuclear
space Xto another nuclear space Yis denoted by L(X,Y)
and assumed to carry the bounded convergence topology.
For zโS๎
Cand ฯin Fฮธ,the holomorphic derivative of ฯat
xโS๎
Cin the direction zis de๏ฌned by
(a(z)ฯ)(x):=lim
ฮปโ0
ฯ(x+ฮปz)โฯ(x)
ฮป.(4)
We can che ck that a(z)โL(Fฮธ,Fฮธ)and aโ(z)โL(Fโ
ฮธ,Fโ
ฮธ),
where aโ(z) is the adjoint of a(z)withrespecttothedu-
ality between Fโ
ฮธand Fฮธ.Now,ifz=ฮดtโS(R)๎we sim-
ply write atinstead of a(ฮดt)andthepairatand aโ
tare
called the annihilation operator and creation operator at
the point tโR.
It is well known that, for each ฮพโSC,the exponential
function
eฮพ(z):=e๎z,ฮพ๎,zโS๎
C,
belongs to Fฮธand the set of such test functions spans a
densesubspaceofFฮธ. The Wick symbol of a white noise
operator ๎โL(Fฮธ,Fโ
ฮธ)is by de๏ฌnition [13] aC-valued
function on SCรSCde๏ฌned by
ฯ(๎)(ฮพ,ฮท)=๎๎ ๎eฮพ,eฮท๎๎ eโ๎ฮพ,ฮท๎,ฮพ,ฮทโSC.(5)
By a density argument, every operator in L(Fฮธ,Fโ
ฮธ)is
uniquely determined by its Wick symbol. Moreover, we
have the following characterization theorem.
Theorem 2.1 (See Ref. [10]).The Wick symbol map
yields a topological isomorphism between L(Fฮธ,Fโ
ฮธ)and
Gฮธโ(SCโSC).
In Ref. [10], it is shown that Gฮธโ(SCโSC)is closed
under pointwise multiplication. Then, for any ๎1,๎2โ
L(Fฮธ,Fโ
ฮธ),there exists a unique ๎โL(Fฮธ,Fโ
ฮธ)such that
ฯ(๎) =ฯ(๎1)ฯ(๎2). The operator ๎will be denoted
๎1๎๎2anditwillbereferredtoasthe Wick product of
๎1and ๎2. It is noteworthy that, endowed with the Wick
product ๎,L(Fฮธ,Fโ
ฮธ)becomes a commutative algebra. It is
a fundamental fact in QWN theory (see [13] and [10])that
every white noise operator ๎โL(Fฮธ,Fโ
ฮธ)admits a unique
Fock expansion
๎=
โ
๎
l,m=0
๎l,m(ฮบl,m),(6)
where, for each pairing l, m โฅ0, ฮบl,mโ(Sโ(l+m)
C)๎
sym(l,m)
and ๎l, m(ฮบl, m ) is the integral kernel operator character-
ized via the Wick symbol transform by
ฯ(๎l,m(ฮบl,m))(ฮพ,ฮท)=๎ฮบl,m,ฮทโlโฮพโm๎,ฮพ,ฮทโSC.(7)
Which can be formally given by
๎l,m(ฮบl,m)=๎Rl+mฮบl,m(s1,ยทยทยท ,sl,t1,ยทยทยท ,tm)
aโ
s1ยทยทยทaโ
slat1ยทยทยทatmds1ยทยทยทdsldt1ยทยทยทdtm.
In this way ๎l, m(ฮบl, m) can be considered as the operator
polynomials of degree l+massociated to the distribution
ฮบl,mโ(Sโ(l+m)
C)๎
sym(l,m)as coe๏ฌcient; and therefore every
white noise operator is a โfunctionโ of the annihilation op-
erators and the creation operators.
2.2. QWN-White noise operators
From Ref. [8], (see also Ref. [1]), we summarize the
novel formalism of QWN-derivatives. For ฮถโSC,then a(ฮถ)
H. Rguigui / Chaos, Solitons and Fractals 84 (2016) 41โ48 43
extends to a continuous linear operator from Fโ
ฮธinto it-
self (denoted by the same symbol) and aโ(ฮถ)(restricted
to Fฮธ)is a continuous linear operator from Fฮธinto itself.
Hence, for any white noise operator ๎โL(Fฮธ,Fโ
ฮธ),the
commutators
[a(ฮถ),๎]=a(ฮถ)๎ โ๎a(ฮถ),
[aโ(ฮถ),๎]=aโ(ฮถ)๎ โ๎aโ(ฮถ),
are well de๏ฌned white noise operators in L(Fฮธ,Fโ
ฮธ).The
QWN-derivatives are de๏ฌned by
D+
ฮถ๎=[a(ฮถ),๎],Dโ
ฮถ๎=โ[aโ(ฮถ),๎].(8)
These are called the creation derivative and annihilation
derivative of ๎, respectively. Note that, for zโSC,the QWN-
derivatives Dยฑ
zand (Dยฑ
z)โare continuous linear operators
from L(Fโ
ฮธ,Fฮธ)into itself and from L(Fฮธ,Fโ
ฮธ)into itself,
i.e.,
Dยฑ
z,(Dยฑ
z)โโL(L(Fโ
ฮธ,Fฮธ)) โฉL(L(Fฮธ,Fโ
ฮธ)).
Moreover, for zโSCand ๎โL(Fฮธ,Fโ
ฮธ),we have
(D+
z)โ๎=aโ(z)๎๎,(Dโ
z)โ๎=a(z)๎๎.
For more details, see [15].
The operator ๎j, k, l, m(ฮบ) is de๏ฌned through two canon-
ical bilinear forms as follows:
๎๎๎ ๎j,k,l,m(ฮบ)S,T๎๎๎ =๎ฮบ,๎๎๎ (D+
s1)โยทยทยท(D+
sj)โ(Dโ
t1)โยทยทยท
(Dโ
tk)โD+
u1ยทยทยทD+
ulDโ
v1ยทยทยทDโ
vmS,T๎๎๎ ๎
where S,TโL(Fโ
ฮธ,Fฮธ)and for S=๎l,m๎l,m(sl,m)in
L(Fโ
ฮธ,Fฮธ)and T=๎l,m๎l,m(tl,m)in L(Fฮธ,Fโ
ฮธ),such that
tl,mโ(S๎
C)๎
โ(l+m)and sl,mโS๎
โ(l+m)
C,the duality between
the two spaces L(Fโ
ฮธ,Fฮธ)and L(Fฮธ,Fโ
ฮธ),denoted by
๎๎๎., .๎๎๎,isde๏ฌnedasfollows
๎๎๎ T,S๎๎๎ :=
โ
๎
l,m=0
l!m!๎tl,m,sl,m๎.(9)
The operator ๎j, k, l, m(ฮบ) can be expressed as the following
integral:
๎j,k,l,m(ฮบ)
=๎Rj+k+l+m
ฮบ(s1,ยทยทยท ,sj,t1,ยทยทยท ,tk;u1,ยทยทยท ,ul,v1,ยทยทยท ,vm)
(D+
s1)โยทยทยท(D+
sj)โ(Dโ
t1)โยทยทยท(Dโ
tk)โD+
u1ยทยทยทD+
ulDโ
v1ยทยทยทDโ
vm
ds1ยทยทยทdsjdt1ยทยทยทdtkdu1ยทยทยทduldv1ยทยทยทdvm.
We call ๎j, k, l, m aQWN-integral operator with kernel distri-
bution ฮบ. (See [5]). For any ๎QโL(L(Fโ
ฮธ,Fฮธ),L(Fฮธ,Fโ
ฮธ))
there exists a unique family of distributions ฮบj,k,l,mโ
(Sโ(j+k+l+m)
C)๎
sym(j,k,l,m),such that
๎QS=
โ
๎
j,k,l,m=0
๎j,k,l,m(ฮบj,k,l,m)S,SโL(Fโ
ฮธ,Fฮธ),
where the right hand side converges in L(Fฮธ,Fโ
ฮธ).
3. Wick derivation
A quantum white noise operator DโL(L(Fโ
ฮธ,Fฮธ),
L(Fฮธ,Fโ
ฮธ)) is called a Wick derivation (see [9])if
D(S๎T)=D(S)๎T+S๎D(T),S,TโL(Fโ
ฮธ,Fฮธ).
Theorem 3.1. Let DโL(L(Fโ
ฮธ,Fฮธ),L(Fฮธ,Fโ
ฮธ)).ThenDis a
Wick derivation if and only if it admits the following decom-
position
D=
โ
๎
j,k=0
๎j,k,0,1(ฮบj,k,0,1)+
โ
๎
j,k=0
๎j,k,1,0(ฮบj,k,1,0),(10)
where, ฮบj,k,0,1,ฮบj,k,1,0โ(S๎
C)๎
โj+k+1.
Proof. Dis a wick derivation if and only if
D(S๎T)=D(S)๎T+S๎D(T),S,TโL(Fโ
ฮธ,Fฮธ).(11)
Let the operator Sa, b (for a,bโSC)begivenby
Sa,bโก
โ
๎
l,m=0
๎l,m(ฮบl,m(a,b)) โL(Fฮธ,Fโ
ฮธ),
where ฮบl,m(a,b)=1
l!m!aโlโbโm. Then, by the density of
{Sa,b,a,bโSC}in L(Fโ
ฮธ,Fฮธ),Eq. (11) is equivalent to
๎๎๎ D(Sa,b๎Sa1,b1),Sc,d๎๎๎ =๎๎๎ D(Sa+a1,b+b1),Sc,d๎๎๎
=๎๎๎ D(Sa,b)๎Sa1,b1,Sc,d๎๎๎
+๎๎๎ Sa,b๎D(Sa1,b1),Sc,d๎๎๎ .(12)
Therefore, for D=๎โ
j,k,l,m=0๎j,k,l,m(ฮบj,k,l,m),Eq. (12) is
equivalent to
โ
๎
j,k,l,m=0
๎ฮบj,k,l,m,cโjโdโkโ(a+a1)โlโ(b+b1)โm๎
=
โ
๎
j,k,l,m=0
๎ฮบj,k,l,m,cโjโdโkโ(aโlโbโm+aโl
1โbโm
1)๎.
(13)
If ฮบj, k, l, m ๎= 0forallj, k, l, m โฅ0. Then to obtain (13)
it must be m+l=1,i.e., (m=0andl=1) or (m=1and
l=0). Hence we show the necessity. By reversing the rea-
soning we get the su๏ฌciency. ๎
As examples, the QWN-derivatives Dยฑ
zand the QWN-
conservation operator NQare Wick derivation, (see Ref.
[15]).
4. The characterization of the QWN-conservation
operator
Let O(S(R),L2(R)) given by (see [13])
O(S(R),L2(R)) ={BโGL(S(R));|Bฮพ|0=|ฮพ|0โฮพโS(R)},
which is called in๏ฌnite dimensional rotation group. We say
that a continuous operator from L(Fโ
ฮธ,Fฮธ)into L(Fฮธ,Fโ
ฮธ)
is rotation-invariant if
(๎Q(B))โ๎Q๎Q(B)=๎Q,โBโO(S(R),L2(R)),(14)
where ๎Q(B)isgivenby
๎Q(B)๎ =๎
l,m
๎l,m(Bโ(l+m)ฮบl,m),
for ๎=๎l,m๎l,m(ฮบl,m)in L(Fโ
ฮธ,Fฮธ).Formoredetailssee
[5]. By de๏ฌnition, if ๎Qis rotation-invariant, so is (๎Q)โ.
We recall that, (see [13]), Fโ(Sโn
C)๎is rotation-invariant
if (Bโn)โF=Ffor all BโO(S(R),L2(R)).Let๎Qโ
44 H. Rguigui / Chaos, Solitons and Fractals 84 (2016) 41โ48
L(L(Fโ
ฮธ,Fฮธ),L(Fฮธ,Fโ
ฮธ)) and ๎Q=๎โ
j,k,l,m=0๎j,k,l,m(ฮบ),
where ฮบโ(Sโ(j+k+l+m)
C)๎
sym(j,k,l,m).Then๎Qis rotation-
invariant if and only if ฮบis rotation invariant, see [5].
Theorem 4.1. Let P โL(L(Fโ
ฮธ,Fฮธ),L(Fฮธ,Fโ
ฮธ)).ThenPis
equal to NQup to a constant factor if and only if
โขP is Wick derivation
โขP=Pโ
โขP is rotation-invariant.
Proof. The necessity is obvious (see also [15]). We
need only to show the su๏ฌciency. To this end let P=
๎โ
j,k,l,m=0๎j,k,l,m(ฮบj,k,l,m)in L(L(Fโ
ฮธ,Fฮธ),L(Fฮธ,Fโ
ฮธ)) and
put Pj,k,l,m=๎j,k,l,m(ฮบj,k,l,m). Using Theorem 3.1,wede-
duce that for all (l, m)๎= (0, 1) and (l, m)๎= (1, 0), Pj,k,l,m=
0. From the condition P=Pโ,we get
Pj,k,l,m=Pโ
l,m,j,k,โj,k,l,mโฅ0.
Then, for (j, k)๎= (0, 1) and (j, k)๎= (1, 0), we get
Pj,k,l,m=Pโ
l,m,j,k=0.
Therefore, from (10),wededucethat
P=P0,1,0,1+P1,0,1,0
=๎0,1,0,1(ฮบ0,1,0,1)+๎1,0,1,0(ฮบ1,0,1,0).
But from the above discussions, we know that ๎j, k, l, m(ฮบ)
is rotation invariant (for ฮบโ(Sโ(j+k+l+m)
C)๎) if and only if ฮบ
is rotation invariant. Moreover, if j+k+l+m=2p,then
ฮบis a linear combination of (ฯโp)ฯfor ฯโSj+k+l+m,(see
[5] for more details). From which we deduce that ฮบ1, 0, 1, 0
and ฮบ0, 1, 0, 1 are linear combinations of ฯ. This gives the
desired statement. ๎
Theorem 4.2. PโL(L(Fโ
ฮธ,Fฮธ),L(Fฮธ,Fโ
ฮธ)) is equal to NQif
and only if
โขP is Wick derivation
โขP(N)=2N.
Proof. We know that NQis a Wick derivation. Moreover,
we have
NQ(N)=๎R4
ฯ(s,t)(D+
s)โD+
t(ฯ(u,v)aโ
uav)dsdtdudv
+๎R4
ฯ(s,t)(Dโ
s)โDโ
t(ฯ(u,v)aโ
uav)dsdtdudv
=๎R4
ฯ(s,t)aโ
s๎D+
t(aโ
uav)ฯ(u,v)dsdtdudv
+๎R4
ฯ(s,t)as๎Dโ
t(aโ
uav)ฯ(u,v)dsdtdudv.
But, we know that
aโ
uav=aโ
u๎avโu,vโR
then, we get
D+
t(aโ
uav)=D+
t(aโ
u)๎av+aโ
u๎D+
t(av)
=ฮดt(u)av(15)
and similarly
Dโ
t(aโ
uav)=Dโ
t(aโ
u)๎av+aโ
u๎Dโ
t(av)
=ฮดt(v)aโ
u(16)
where ฮดt(v)isequalto1ift=vand equal to zero if t๎= v.
Then, we obtain
NQ(N)=๎R3
ฯ(s,t)ฯ(t,v)aโ
s๎avdsdtdv
+๎R3
ฯ(s,t)ฯ(u,t)as๎aโ
udsdtdu
=๎R3
ฯ(s,t)ฯ(t,v)aโ
savdsdtdv
+๎R3
ฯ(s,t)ฯ(t,v)aโ
uasdudsdt
=2๎1,1(ฯ๎
โ1ฯ).
We know that the trace ฯbelongs to (S๎
CโSC)and to
(SCโS๎
C),moreover we have
ฯ๎
โ1ฯ=
โ
๎
i,j=1
(eiโei)๎
โ1(ejโej)
=
โ
๎
i,j=1
๎ej,ei๎eiโej
=
โ
๎
j=1
ejโej
=ฯ
where {en;nโฅ1} form an orthonormal basis for L2(R)and
each enis an element of S(R). Hence, we obtain
NQ(N)=2๎1,1(ฯ)=2N
which shows the necessity. To show the su๏ฌciency,
let P, a continuous linear operator from L(Fโ
ฮธ,Fฮธ)into
L(Fฮธ,Fโ
ฮธ)),be a Wick derivation and P(N)=2N.From
(10),Pis given by
P=
โ
๎
j,k=0
๎j,k,1,0(ฮบj,k,1,0)+
โ
๎
j,k=0
๎j,k,0,1(ฮบj,k,0,1).
Using the de๏ฌnition of the number operator, we get
๎j,k,0,1(ฮบj,k,0,1)(N)
=๎Rj+k+3
ฮบj,k,0,1(s1,...,sj,t1,...,tk,t)ฯ(u,v)
(D+
s1)โยทยทยท(D+
sj)โ(Dโ
t1)โยทยทยท(Dโ
tk)โDโ
t(aโ
uav)
ds1ยทยทยทdsjdt1dtkdt dudv
=๎Rj+k+3
ฮบj,k,0,1(s1,...,sj,t1,...,tk,t)ฯ(u,v)
(D+
s1)โยทยทยท(D+
sj)โ(Dโ
t1)โยทยทยท(Dโ
tk)โDโ
t(aโ
uav)
aโ
s1๎ยทยทยท ๎aโ
sj๎at1๎ยทยทยท๎atk๎aโ
uฮดt(v)
ds1ยทยทยทdsjdt1ยทยทยทdtkdt dudv
where we have used (16),then
๎j,k,0,1(ฮบj,k,0,1)(N)
=๎Rj+k+2
ฮบj,k,0,1(s1,...,sj,t1,...,tk,t)ฯ(u,v)
aโ
s1ยทยทยทaโ
sjaโ
uat1ยทยทยทatkds1ยทยทยทdsjdt1ยทยทยทdtkdtdu
=๎j+1,k(ฮบj,k,0,1๎
โ1ฯ).
Similarly, we get
๎j,k,1,0(ฮบj,k,1,0)(N)=๎j,k+1(ฮบj,k,1,0๎
โ1ฯ).
H. Rguigui / Chaos, Solitons and Fractals 84 (2016) 41โ48 45
On the other hand, we have
ฮบj,k,1,0๎
โ1ฯ=
โ
๎
i1,...,ij+k+1=1
โ
๎
n=1
๎ฮบj,k,1,0,ei1โยทยทยทโeij+k+1๎
(ei1โยทยทยท โeij+k+1)๎
โ1(enโen)
=
โ
๎
i1,...,ij+k+1=1
๎ฮบj,k,1,0,ei1โยทยทยทโeij+k+1๎
(ei1โยทยทยท โeij+k)โ๎โ
๎
n=1
๎en,eij+k+1๎en๎
=๎
i1,...,ij+k+1
๎ฮบj,k,1,0,ei1โยทยทยทโeij+k+1๎ei1
โยทยทยทโ eij+k+1
=ฮบj,k,1,0.
Hence, we obtain
P(N)=
โ
๎
j,k=0
๎j,k+1(ฮบj,k,1,0)+
โ
๎
j,k=0
๎j+1,k(ฮบj,k,0,1).
Finally, by uniqueness of the integral kernel decomposition
of the white noise operator P(N)andbytheequality
P(N)=2๎1,1(ฯ)
we get the following
ฮบj,k,1,0=๎ฯif (j,k)=(1,0)
0 otherwise
ฮบj,k,0,1=๎ฯif (j,k)=(0,1)
0 otherwise
Which implies that
P=๎1,0,1,0(ฯ)+๎0,1,0,1(ฯ).
This completes the proof. ๎
Theorem 4.3. PโL(L(Fโ
ฮธ,Fฮธ),L(Fฮธ,Fโ
ฮธ)) is equal to the
QWN-conservation operator NQif and only if
โขP is Wick derivation
โข[P,(D+
x)โ]=(D+
x)โ,โxโSC
โข[P,(Dโ
y)โ]=(Dโ
y)โ,โyโSC.
Proof. NQis a Wick derivation (see [15]). Using the inte-
gral representation (3) of NQ,weget
[NQ,(D+
x)โ]๎=๎R
aโ
s๎D+
s((D+
x)โ๎)ds
โ๎R
(D+
x)โ(aโ
s๎D+
s(๎))ds
=๎R
aโ
s๎D+
s(aโ
x๎๎)ds
โ๎R
aโ
x๎aโ
s๎D+
s(๎)ds.
Using the fact D+
sis Wick derivation, we obtain
[NQ,(D+
x)โ]๎=๎R
aโ
s๎D+
s(aโ
x)๎๎ds
=๎R
x(s)aโ
sds ๎๎
=aโ
x๎๎,โ๎โL(Fโ
ฮธ,Fฮธ),โxโSC.
Similarly, we can verify that
[NQ,(Dโ
y)โ]๎=ay๎๎,โ๎โL(Fโ
ฮธ,Fฮธ),โyโSC.
Conversely, let PโL(L(Fโ
ฮธ,Fฮธ),L(Fฮธ,Fโ
ฮธ)) given
by ๎j, k, l, m๎j, k , l, m(ฮบj, k , l, m), where ฮบj,k,l,mโ
(Sโj+k+l+m
C)๎
sym(j,k,l,m)verifying: P is a Wick deriva-
tion, [P,(D+
x)โ]=(D+
x)โand [P,(Dโ
y)โ]=(Dโ
y)โ.Weneed
to show that P=NQ. Using (10), then the following
equation
[P,(D+
x)โ]๎=aโ
x๎๎
is equivalent to
aโ
x๎๎=
โ
๎
j,k=0
๎j,k,1,0(ฮบj,k,1,0)(aโ
x๎๎)
+
โ
๎
j,k=0
๎j,k,0,1(ฮบj,k,0,1)(aโ
x๎๎)
โ
โ
๎
j,k=0
aโ
x๎๎j,k,1,0(ฮบj,k,1,0)(๎)
โ
โ
๎
j,k=0
aโ
x๎๎j,k,0,1(ฮบj,k,0,1)(๎).(17)
Using the fact that Dยฑ
sare Wick derivation, we get
๎j,k,1,0(ฮบj,k,1,0)(aโ
x๎๎)
=๎Rj+k+1
ฮบj,k,1,0(s1,...,sj,t1,...,tk,s)
(D+
s1)โยทยทยท(D+
sj)โ(Dโ
t1)โยทยทยท(Dโ
tk)โD+
s(aโ
x๎๎)
ds1ยทยทยทdsjdt1ยทยทยทdtkds
=๎Rj+k+1
ฮบj,k,1,0(s1,...,sj,t1,...,tk,s)aโ
s1๎ยทยทยท ๎aโ
sj
๎at1๎ยทยทยท๎atk๎(aโ
x๎D+
s(๎) +D+
s(aโ
x)๎๎)
ds1ยทยทยทdsjdt1ยทยทยทdtkds
=aโ
x๎๎j,k,1,0(ฮบj,k,1,0)(๎)
+๎Rj+k+1
ฮบj,k,1,0(s1,...,sj,t1,...,tk,s)x(s)
(D+
s1)โยทยทยท(D+
sj)โ(Dโ
t1)โยทยทยท(Dโ
tk)โ(๎)
ds1ยทยทยทdsjdt1ยทยทยทdtkds
=aโ
x๎๎j,k,1,0(ฮบj,k,1,0)(๎) +๎j,k,0,0(ฮบj,k,1,0๎
โ1x)(๎)
and similarly, from the fact that Dโ
s(aโ
x)=0,we obtain
๎j,k,0,1(ฮบj,k,0,1)(aโ
x๎๎) =aโ
x๎๎j,k,0,1(ฮบj,k,0,1)(๎).
Then, from (17), we obtain
aโ
x๎๎=
โ
๎
j,k=0
๎j,k,0,0(ฮบj,k,1,0๎
โ1x)(๎).
Which is equivalent to
ฯ(aโ
x)(ฮพ,ฮท)ฯ(๎)(ฮพ,ฮท)
=
โ
๎
j,k=0
ฯ(๎j,k,0,0(ฮบj,k,1,0๎
โ1x)(๎))(ฮพ,ฮท)
46 H. Rguigui / Chaos, Solitons and Fractals 84 (2016) 41โ48
=
โ
๎
j,k=0๎Rj+k+1
ฮบj,k,1,0(s1,...,sj,t1,...,tk,s)x(s)
ฯ(aโ
s1)(ฮพ,ฮท)ยทยทยทฯ(aโ
sj)(ฮพ,ฮท)ฯ(aโ
t1)(ฮพ,ฮท)ยทยทยทฯ(aโ
tk)(ฮพ,ฮท)
ฯ(๎)(ฮพ,ฮท)ds1ยทยทยทdsjdt1ยทยทยทdtk.
This gives
๎x,ฮท๎ฯ(๎)(ฮพ,ฮท)
=
โ
๎
j,k=0
๎ฮบj,k,1,0๎
โ1x,ฮทโjโฮพโk๎ฯ(๎)(ฮพ,ฮท),
for all ฮพ,ฮทโSCand for all ๎โL(Fโ
ฮธ,Fฮธ). Which yields
that ฮบj,k,1,0=0โj๎= 1, โk๎= 0andฮบ1,0,1,0๎
โ1x=x. Then,
๎ฮบ1,0,1,0๎
โ1x,ฮท๎=๎x,ฮท๎โx,ฮทโSC.
From which we get
๎ฮบ1,0,1,0,ฮทโx๎=๎ฯ,ฮทโx๎โx,ฮทโSC.
This gives ฮบ1,0,1,0=ฯ. Then, we obtain
P=๎1,0,1,0(ฯ)+
โ
๎
j,k=0
๎j,k,0,1(ฮบj,k,0,1).
Similarly to the previous discussions, we get
P=
โ
๎
j,k=0
๎j,k,1,0(ฮบj,k,1,0)+๎0,1,0,1(ฯ).
By identi๏ฌcation we obtain
P=๎1,0,1,0(ฯ)+๎0,1,0,1(ฯ)
=๎R2
ฯ(s,t)(D+
s)โD+
tdsdt +๎R2
ฯ(s,t)(Dโ
s)โDโ
tdsdt
=NQ.
This gives the desired statement. ๎
5. Application to Wick differential equation
Let ฮฒbe a Young function satisfying the condition
lim sup
xโโ
ฮฒ(x)
x2<+โ.
and put ฮธ=(eฮฒโโ1)โ.ForฯโL(Fฮฒ,Fโ
ฮฒ)the exponential
Wick denoted by wexp(ฯ)isde๏ฌnedby
wexp(ฯ ) =
โ
๎
n=0
1
n!ฯ๎n,
belongs to L(Fฮธ,Fโ
ฮธ),see [10]. In the following we study
some Wick differential equations for white noise operators.
Theorem 5.1. The unique solution of the following Wick dif-
ferential equation:
๎โ
โtut+NQ(ut)=N๎ut
u0=N
(18)
is given by
ut=eโ2tN๎wexp๎1
2(1โeโ2t)N๎(19)
Proof. Applying the operator โ
โtto Eq. (19) we get
โ
โtut=โ2N๎wex p๎1
2(1โeโ2t)N๎
+eโ2tN๎N๎wexp๎1
2(1โeโ2t)N๎
=โ2ut+eโ2tN๎ut.(20)
On the other hand, using the fact that NQis a Wick deriva-
tion (see Theorem 4.2), we get
NQ(ut)=eโ2tNQ(N)๎wexp๎1
2(1โeโ2t)N๎
+eโ2tN๎NQ๎wexp๎1
2(1โeโ2t)N๎๎
But one can prove easily that
NQ(N๎n)=nNQ(N)๎N๎(nโ1).
Then, we obtain
NQ(ut)=eโ2tNQ(N)๎wexp๎1
2(1โeโ2t)N๎
+eโ2t1
2(1โeโ2t)N๎NQ(N)
๎wexp๎1
2(1โeโ2t)N๎
Now, using Theorem 4.2,weget
NQ(ut)=2eโ2tN๎wexp๎1
2(1โeโ2t)N๎
+(1โeโ2t)eโ2tN๎N๎wexp๎1
2(1โeโ2t)N๎
=2eโ2tut+(1โeโ2t)N๎ut.(21)
From (20) and (21), we obtain
โ
โtut+NQ(ut)=N๎ut
which shows that utis solution of (18).Now,letutbe an
arbitrary solution of (18) and put
Ft=ut๎wexp๎1
2(eโ2tโ1)N๎
then, we get
โ
โtFt=โ
โtut๎wexp๎1
2(1โeโ2t)N๎
+ut๎(โeโ2t)N๎wexp๎1
2(1โeโ2t)N๎
=โ
โtut๎wexp๎1
2(1โeโ2t)N๎
โNQ๎wexp๎1
2(1โeโ2t)N๎๎๎utโN๎Ft
=๎โ
โtutโN๎ut๎๎wexp๎1
2(1โeโ2t)N๎
โNQ๎wexp๎1
2(1โeโ2t)N๎๎๎ut.
Using (18) and Theorem 4.2, we obtain
H. Rguigui / Chaos, Solitons and Fractals 84 (2016) 41โ48 47
โ
โtFt=โNQ(ut)๎wex p๎1
2(1โeโ2t)N๎
โNQ๎wexp๎1
2(1โeโ2t)N๎๎๎ut
=โNQ(Ft).
From which we deduce that
โ
โtFt+NQ(Ft)=0.(22)
A simple calculus similar to the same used in [3] and [15],
one can show that the unique solution of (22) is given by
Ft=eโ2tN
Then, we deduce that
ut=Ft๎wexp๎1
2(1โeโ2t)N๎
=eโ2tN๎wexp๎1
2(1โeโ2t)N๎.
This completes the proof. ๎
Theorem 5.2. Let x โSC,then the unique solution of the fol-
lowing Wick differential equation
โง
โจ
โฉ
โ
โtut+NQ(D+
x)โ(ut)=(D+
x)โNQ(ut)+๎t๎ut
u0=๎โL(Fฮธ,Fโ
ฮธ)
is given by
ut=wexp{โtaโ(x)}๎๎๎wexp๎๎t
0
๎sds๎.(23)
Proof. Applying the operator โ
โtto (23) we get
โ
โtut=โaโ(x)๎ut+๎t๎ut
using the fact that (see [15]),
(D+
x)โ(T)=aโ(x)๎T
for all TโL(Fฮธ,Fโ
ฮธ).Thenweget
โ
โtut+(D+
x)โ(ut)=๎t๎ut.
Hence, using Theorem 4.3, we obtain
โ
โtut+NQ(D+
x)โ(ut)โ(D+
x)โNQ(ut)=๎t๎ut.
This shows that utis solution of (5.2). To show the unique-
ness, let utbe an arbitrary solution of (5.2) and put
Ft=ut๎wexp๎โ๎t
0
๎sds๎.
Then, we get
โ
โtFt=โ
โtut๎wexp๎โ๎t
0
๎sds๎โ๎t๎ut
๎wexp๎โ๎t
0
๎sds๎.
Using (5.2) and Theorem 4.3, we obtain
โ
โtFt=(โaโ(x)๎ut+๎t๎ut)
๎wexp๎โ๎t
0
๎sds๎โ๎t๎Ft
=โaโ(x)๎ut+๎t๎Ftโ๎t๎Ft
=โaโ(x)๎ut
which has a unique solution given by
Ft=wexp{โtaโ(x)}๎๎.
Then,wededucethat
ut=Ft๎wexp๎๎t
0
๎sds๎
=wexp{โtaโ(x)}๎๎๎wexp๎๎t
0
๎sds๎.
Which completes the proof. ๎
Let G(x)=aโ(x)+a(x),where xโS(R)such that
|x|0=1. It is well known that the operator G(x)hasa
standard Gaussian distribution in the vacuum state. G(x)is
called a quantum Gaussian random variable.
Theorem 5.3. Let P a wick derivation. Then wexp{G(x)} is
the solution (up to constant) of
P(๎) =G(x)๎๎(24)
if and only if
[P,(D+
x)โ+(Dโ
x)โ]=(D+
x)โ+(Dโ
+)โ(25)
Proof. Let P a Wick derivation and suppose that
wexp{G(x)} is the solution of (24). Applying P to the
operator wexp{G(x)}, we get
P(wexp{G(x)})=P(G(x)) ๎wexp{G(x)}
which can be shown using the fact that P is Wick deriva-
tion. By Identi๏ฌcation, we get
P(G(x)) =G(x).
Then, using Theorem 3.1 and similar discussions to those
used in the proof of Theorem 4.3, one can obtain
P=NQ.
Then, using Theorem 4.3,weget
[P,(D+
x)โ]=(D+
x)โ
and
[P,(Dโ
x)โ]=(Dโ
x)โ.
From which we obtain
[P,(D+
x)โ+(Dโ
x)โ]=(D+
x)โ+(Dโ
x)โ.
Conversely, let P a wick derivation satisfying (25). Then, we
get
P(aโ(x)๎๎) โaโ(x)๎P(๎) +P(a(x)๎๎) โa(x)๎P(๎)
=G(x)๎๎.
This implies that
48 H. Rguigui / Chaos, Solitons and Fractals 84 (2016) 41โ48
aโ(x)๎P(๎) +P(aโ(x)) ๎๎โaโ(x)๎P(๎)
+a(x)๎P(๎) +P(a(x)) ๎โa(x)๎P(๎)
=G(x)๎๎
which gives
P(G(x)) =G(x)
from which we get
P=NQ.
Then, it is obvious that wexp{G(x)} is solution of (24) by
replacing P by NQ. Suppose that ๎is an arbitrary solution
of (24) and let F given by
F=๎๎wexp{โG(x)}.
Then, we get
NQ(F)=NQ(๎) ๎wex p{โG(x)}
โNQ(G(x)) ๎๎๎wexp{โG(x)}
=G(x)๎FโG(x)๎F
=0.
Then, F is equal to some constant c multiplied by I. From
which we obtain
cI =๎๎wexp{โG(x)}.
Hence, we get
๎=cwexp{G(x)}.
This completes the proof. ๎
References
[1] Accardi L, Barhoumi A, Ji UC. Quantum Laplacians on generalized op-
erators on boson fock space. Probab Math Stat 2011;31:1โ24.
[2] Barhoumi A, Lanconelli A, Rguigui H. QWN-Convolution operators
with application to differential equations. Random Oper Stoch Equ
2014;22(4):195โ211.
[3] Barhoumi A, Ouerdiane H, Rguigui H. QWN-Euler operator and associ-
ated cauchy problem. In๏ฌn Dimens Anal Quantum Probab Relat Top
2012;15(1):1250004.(20 pages)
[4] Barhoumi A, Ouerdiane H, Rguigui H. Stochastic heat equation on al-
gebra of generalized functions. In๏ฌn Dimens Anal Quantum Probab
Relat Top 2012;15(4):1250026. (18 pages).
[5] Barhoumi A, Ammou BKB, Rguigui H. Operator theory: quantum
white noise approach. Quantum Stud: Math Found 2015;2(2):221โ
41.
[6] Gannoun R, Hachaichi R, Ouerdiane H, Rezgi A. un thรฉorรจme de dual-
itรฉ entre espace de fonction holomorphes ร croissance exponentielle.
J Funct Anal 2000;171:1โ14.
[7] He S-W, Wang J-G, Yao R-Q. The characterizations of Laplacians in
white noise analysis. Nagoya Math J 1996;143:93โ109.
[8] Ji UC, Obata N. Annihilation-derivative, creation-derivative and
representation of quantum martingales. Commun Math Phys
2009;286:751โ75.
[9] Ji UC, Obata N. Implementation problem for the canonical commuta-
tion rela- tion in terms of quantum white noise derivatives. J Math
Phys 2010;51:123507.
[10] Ji UC, Obata N, Ouerdiane H. Analytic characterization of gener-
alized Fock space operators as two-variable entire function with
growth condition. In๏ฌn Dimens Anal Quantum Probab Relat Top
2002;5(3):395โ407.
[11] Kuo H-H. On Laplacian operator of generalized Brownian functionals.
Lect Notes Math 1986;1203:119โ28.
[12] Kuo H-H. White noise distribution theory. Boca Raton: CRC press;
1996.
[13] Obata N. White noise calculus and Fock spaces. Lecture notes in
Mathematics, vol. 1577. Spriger-Verlag; 1994.
[14] Obata N. Quantum white noise calculus based on nuclear algebras of
entire function. Trends in in๏ฌnite dimensional analysis and quantum
probability (Kyoto), RIMS No. 1278; 2001. p. 130โ57.
[15] Ouerdiane H, Rguigui H. QWN-Conservation operator and associated
wick differential equation. Commun Stoch Anal 2012;6(3):437โ50.
[16] Piech MA. Parabolic equations associated with the number operator.
Trans Am Math Soc 1974;194:213โ22.
[17] Rguigui H. Quantum ornstein-uhlenbeck semigroups. Quantum Stud:
Math Found 2015a;2(2):159โ75.
[18] Rguigui H. Quantum ฮป-potentials associated to quantum Ornstein-
Uhlenbeck semigroups. Chaos, Solitons Fractals 2015b;73:80โ9.