Article

Improved shape of rotating grinding wheels for high speed grinding

Authors:
To read the full-text of this research, you can request a copy directly from the authors.

Abstract

High speed grinding methods are continuously being developed and have been highly accepted due to high productivity and resulting surface quality when machining materials dissimilar in physical and mechanical properties. Grinding wheels are the most important part of the entire technological system, in particular their stress state. Hence, the article focuses on the determination of the mathematical model of the grinding wheel with uniform strength. Based on it are calculated critical wheel speeds for various bonding material. Then, the optimal models of grinding wheel under high wheel speed are solved by finite element analysis.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

... Nowadays, a fairly large number of works of study on the processes of metal grinding have been carried out [5,6]. There are practically no works aimed at increasing the mechanical strength of abrasive reinforced wheels, which are widely used in cutting and cleaning operations. ...
Article
Full-text available
The mechanical strength of unreinforced abrasive wheels is determined by centrifugal and bending forces, but their distribution during reinforcement is unknown. It was assumed that the stresses are distributed evenly, but a comparison of calculations on the theory of elasticity and real characteristics on a special stand showed complete discrepancy. Tensile tests of the wheels made it possible to compare the stresses results in the circumferential and radial directions. Was found that the reinforced wheel is an anisotropic body. Anisotropy can be reduced by displacing one reinforcement mesh relatively to the other by angle of 45°. In this paper, a mathematical model of the stress-strain state of the abrasive reinforced wheel was developed, taking into account the anisotropy of its properties. To determine the centrifugal forces, the theory of elasticity for an orthotropic body is applied. The bending forces that arise in the working wheel were determined during solving the problem of the distribution of deformations in the anisotropic annular plate rigidly fixed along the inner contour. As a result of experimental studies, it was found that stresses reach 8...23 MPa, which can be compared with the ultimate strength of the wheel matrix. The elastic module of the wheel matrix is noticeably greater than the elastic module of the reinforcing mesh, which practically does not perceive the load at the initial stage. The developed mathematical model of the strength indicators for abrasive reinforced wheels makes it possible to predict their reliability and safe operation.
... In the manufacturing industry, grinding is the most commonly used material removal process to achieve superior finish and geometric integrity on machined work piece [1]. A grinding wheel is a cutting tool, which has abrasive grains distributed throughout the wheel [2]. The material removal efficiency of a grinding wheel decreases with the underlying grinding operations, e.g., cutting forces due to complex interactions between fixed hard abrasive grits and work piece surface, thus affecting the grinding performance. ...
Article
Recent years have highly been productive in terms of development of both conventional machining technology, but in workpiece surfaces finishing, as well. The overall trend is heading towards increasing accuracy and quality of the manufactured components for machinery and equipment. In a range of finishing abrasive technologies there has been known the introduction of microcrystalline corundum, modification of tools with these abrasive grains, including sintered tools. This development continues and the latest trend is the development of pyramidal grain the Cubitron II. How individual grains behave during operation and how we can use their properties in comparison to classic white corundum still remains complicated matter. The behaviour of selected abrasives has been described in the submitted article.
Article
This research paper deals with behavior of particles of a recycled material at a higher temperature depending on the particle size. Behavior is tested by mechanical properties. During grinding particles are formed which have a different size, shape and surface, from larger pieces to dust particles. During processing these particles melt at different rates depending on their size. For example they can cause material degradation or lack of melt homogeneity. Several recycled mixtures were prepared that had differed particle size after crushing. The recycled material is always the same as is the original material. The studied material was high-heat polycarbonate. Testing was performed using a tensile test, Charpy impact test and hardness test. Specimens were prepared by the mostly used technology for production products, which is injection molding. Each mixture is one by one loaded by high temperature 100°C and consequently tested. This temperature was chosen because we encounter products made with recycled material additive, which can be used at elevated temperatures. When comparing a virgin polycarbonate with recycled mixtures, the particle size of the recycled material affects some of the material parameters quite substantially, but it had no effect on some other properties.
Article
Full-text available
Due to intensive friction between grinding particles and workpiece material, a substantial quantity of thermal energy develops during grinding. Efficient determination of real heat loading in the surface layer of the workpiece material in grinding largely depends on the reliability of basic principles of distribution of heat sources and the character of the temperature field within the cutting zone. Therefore, this paper takes a different approach towards the identification of the thermal state of the creep-feed grinding process by using the inverse problem to approximate heat conduction. Based on a temperature measured at any point within a workpiece, this experimental and analytical method allows the determination of a complete temperature field in the workpiece surface layer as well as the unknown heat flux on the wheel/workpiece interface. In order to solve the inverse heat conduction problem, a numerical method using finite differences in implicit form was used. When the inverse heat conduction problem is transformed into an extreme case, the optimization of heat flux leads to an allowed heat loading in the surface layer of workpiece material during grinding. Given the state function and quality criterion, the control of workpiece heat loading allows the determination of optimal creep-feed grinding conditions for particular machining conditions.
Article
Problems about hardened steels grinding is presently very important part of engineering. Many applications of these materials using in practice, machine, devices and in different industry like automotive, aviation, cosmonautics and in area of health, safety and protection of passengers in vehicles, planes, aircrafts, ships, trains and many others. Because of these areas that used the passengers is very important surface quality and durability of these parts of machines. Topic of surface quality changes in working of the parts is especially important in dynamic load parts. These parts are very loaded by alternating stress in cases of double axis stress (torsion and bend). Such materials are for example bearing, shafts and gears. In all cases the production technology influences surface quality.
Article
Heat distribution during machining is one of the phenomenological characteristics of this process because it significantly influences the functional properties of machined surfaces. This paper deals with heat distribution during the grinding of a VT 9 titanium alloy and its relationship to the quality of ground parts in terms of residual stresses. The analysis of the heat distribution is based on a measurement of the temperature in the contact of the grinding wheel and workpiece, and the tangential component of the cutting force. The heat distribution when grinding a VT 9 titanium alloy differs from the heat distribution when grinding a conventional (14 209.4) roll-bearing steel (a typical representative of ground-hardened steels) mainly because of the low heat conductivity of titanium alloys. Also the application of CBN and diamond grinding wheels significantly reduces the thermal exposition of the ground parts, primarily when applying cutting fluid. This fact significantly influences the residual stresses after grinding. The results of the analysis show that there is a strong correlation between energy partitioning and residual stresses.
Article
The residual stress on the ground surface of workpiece in high efficiency deep grinding (HEDG) has been investigated. It has been found that the mechanism in forming the ground surface residual stress in HEDG is much different to that in the conventional shallow cut grinding process. It is not a thermally dominant event as in most of the shallow cut grinding mode; it is instead driven by the combined effects of both the thermal and mechanical loadings. The compressive plastic deformation near the workpiece surface during grinding and the short contact time in the HEDG regime, makes it possible to generate compressive surface stresses even when the surface temperatures are above 700-800°C.
Article
Abrasive machining is a widely employed finishing process for different-to-cut materials such as metals, ceramics, glass, rocks, etc to achieve close tolerances and good dimensional accuracy and surface integrity. High speed and super-high speed abrasive machining technologies are newest developed advanced machining processes to satisfy super-hardness and difficult-to-machining materials machined. In the present paper, high-speed/super-high speed abrasive machining technologies relate to ultra high speed grinding, quick-point grinding, high efficiency deep-cut grinding were analyzed. The efficiency and parameters range of these abrasive machining processes were compared. The key technologies and the newest development and current states of high speed and super-high speed abrasive machining were investigated. It is concluded that high speed and super-high speed abrasive machining are a promising technology in the future.
Article
This paper presents a jet-impingement technology to enhance heat transfer at the grinding zone. The jet-impingement technology uses a new apparatus developed to spray grinding fluid onto the workpiece surface at the grinding zone from the radial holes of an electroplated CBN wheel. Because the fluid is sprayed normally on the workpiece surface at the grinding zone, the heat transfer to the fluid is significantly improved as compared to the conventional fluid delivery methods. Experimental results, obtained under both imitated grinding tests and actual creep-feed grinding of titanium alloys, show that the jet-impingement technology lowers grinding temperature significantly. Much higher material removal rates are possible with jet-impingement without workpiece burn.
Article
There are strong demands for a machining process capable of reducing the surface roughness of sliding parts, such as auto parts and other components, with high efficiency. In this work, we attempted to grind hardened steel to a mirror-like surface finish with high efficiency using an ultra-high speed grinding process. In the present study, we examined the effects of the work speed and the grinding wheel grain size in an effort to optimize the grinding conditions for accomplishing mirror-like surface grinding with high efficiency. The results showed that increasing the work speed, while keeping grinding efficiency constant, was effective in reducing the work affected layer and that the grinding force of a #200 CBN wheel was lower than that of a #80 CBN wheel. Based on these results, a high-efficiency grinding step with optimized grinding conditions was selected that achieved excellent ground surface quality with a mirror-like finish.
Article
Automated manufacturability assessment of a given design is a key requirement in realizing complete integration of design (CAD) and manufacturing (CAM). The paper deals with a system developed for automated manufacturability assessment by machining processes. The purpose of this system is to assist designers in their effort to come up with manufacturable parts economising in terms of cost and time. Unlike most of the work done in the past, which concentrates on assessment by primary machining processes such as turning and milling, the present work deals with grinding operation. The present system uses geometric reasoning to extract manufacturing specific information from a part model. It uses a knowledge base consisting of grinding process knowledge and control rules, which are activated by the designer. It also has a provision to account for company-specific manufacturing resources to come up with meaningful assessment for part manufacturability. The use of the proposed system is demonstrated for the assessment of axisymmetric parts to be manufactured by cylindrical and internal grinding processes.
Article
Burn threshold diagrams are useful for the prediction of thermally induced grinding damage and were originally developed to describe the conventional shallow cut grinding regime. With the development of new high stock removal grinding processes such as High Efficiency Deep Grinding (HEDG), the prevention of thermal damage to the workpiece is of particular concern. The principle of HEDG is based around the change in thermal characteristics of the grinding process at high Peclet numbers, whereby less heat is partitioned to the workpiece. Conventional burn threshold diagrams are valid for Peclet numbers below 50, well below the values expected in HEDG. This study presents a modified approach to the construction of burn threshold diagrams which takes account of the change in thermal partitioning with Peclet number. The approach has been validated through grinding trials over a range of specific material removal rates.