In this paper, we propose a model to simulate magnetic fluids. Magnetic fluids behave as both fluids and as magnetic bodies, and these characteristics allow them to generate 'spike-like' shapes along a magnetic field. However, the spike shapes could not be reproduced by using the simulation method in the field of magnetic fluids. The spikes are difficult to simulate using fully physical-based methods. Therefore, we propose a visual simulation method for magnetic fluids whose shapes change according to the magnetic field. The shapes of the magnetic fluids can be roughly simulated by incorporating the calculation of magnetic field into the SPH(smoothed particle hydrodynamics) method. We compute the spike shapes using a procedural approach, and map the shapes onto the fluid surface. Although our method is not strictly physical based, our method can generate visually plausible results within a reasonable computational cost and we demonstrate that our method can generate visually plausible results.