Article

Embedded fibers enhance nano-scale interconnections

Authors:
To read the full-text of this research, you can request a copy directly from the authors.

Abstract

While the density of chip-to-chip and chip-to-package component interconnections increases and their size decreases the ease of manufacture and the interconnection reliability are being reduced. This paper will introduce the use of embedded fibers in the interconnections as a means of addressing these issues. Flip chips bumps are evolving from large solder balls down to small thin copper pillars. Some copper pillars are solder capped and use a thermo-compression reflow attachment process. Smaller diameter copper pillars, while desirable by users, present a significant challenge to assemblers and reliability issues for end-users. Nanostructures in the form of carbon nano-tubes have been evaluated for years. The recently created a means of growing metallic carbon nano-fibers, CNF's, to micro bumps which are solderable. When embedded with solder the fiber bumps produce robust component interconnections which can be less than 10 um in diameter and up to 20 um high. Attachment of the fiber micro bumps uses conventional thermo-compression bonding. Results from the most recent evaluations will be presented indicating electrical performance and showing ease of manufacture resulting of such solder coated carbon nano-fiber micro bumps.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

ResearchGate has not been able to resolve any citations for this publication.
Article
Purpose – The transferred carbon nanofibers (CNFs) can be applied in flip chip package as interconnect material, as an alternative to the conventional solder and conductive adhesive (CA) materials. Design/methodology/approach – The structure of CNFs was confirmed by transmission electron microscopy (TEM). The electrical performance of the vertically aligned carbon nanofibers (VACNFs) joint was measured by four points probe method and compared to conventional lead‐free solder Sn3.0Ag0.5Cu, pure indium and silver CA. A shear test was carried out in order to evaluate the mechanical performance of VACNFs joint. After the shear test, the fracture surface was analyzed by scanning electron microscopy and energy dispersive spectroscopy (SEM‐EDS). Findings – The results showed a high success rate in the transfer of VACNFs from growth chip to target chip. The Au‐coated CNF can be wetted well with melted indium during the transfer and bonding process. In‐Au intermetallic compound (IMC) formed on the surface of CNF. The electrical and mechanical performance of VACNFs is comparable to that of the traditional interconnect materials. The fracture surface is located at the interface between VACNFs and chips. The stacked‐cone structure of CNF can be confirmed from a cross‐section of the break CNF by TEM. Originality/value – Ultra‐short VACNFs were grown and first successfully transferred to the target chip using a process which required little pressure, low temperature and short time.
Article
Tin-lead (40 wt. % Pb) solder-matrix composites containing 8–54 vol.% continuous unidirectional copper plated carbon fibers were fabricated by squeeze casting for use as low thermal expansion solder preforms. The low thermal expansion greatly increased the thermal fatigue life for solder joints between materials with low thermal expansion coefficients. For example, for 29 vol.% fibers, the thermal expansion coefficient was 8 ⊠ 10−6/°C (25–105°C) in the direction parallel to the fibers compared to a corresponding value of 24 ⊠ 10−6/°C for plain solder. The thermal fatigue life for cycling 2 cm long alumina-to-alumina solder joints between 25 and 100°C was increased from 98 to 183 cycles by using 29 vol.% carbon fibers in the composite solder. The fibers also increased the tensile modulus and tensile strength of the solder, but the ductility was decreased. The copper coating on the carbon fibers increased the tensile strength and ductility of the composite.
Article
Improved dimensional stability of composites is desired in applications where they are exposed to varying temperature conditions. The current study aims at analyzing the effect of vapor-grown carbon nanofibers (CNFs) on the thermal expansion behavior of epoxy matrix composites and hollow particle-filled composites (syntactic foams). CNFs have a lower coefficient of thermal expansion (CTE) than epoxy resin, which results in composites with increased dimensional stability as the CNF content is increased. The experimental measurements show that with 10 wt.% CNF, the composite has about 11.6% lower CTE than the matrix resin. In CNF-reinforced syntactic foams, the CTE of the composite decreases with increasing wall thickness and volume fraction of hollow particle inclusions. With respect to neat epoxy resin, a maximum decrease of 38.4% is also observed in the CNF/syntactic foams with microballoon inclusions that range from 15 vol.% to 50 vol.% in all composite mixtures. The experimental results for CNF/syntactic foam are in agreement with a modified version of Kerner’s model. A combination of hollow microparticles and nanofibers has resulted in the ability to tailor the thermal expansion of the composite over a wide range.
Article
Varying weight fractions of graphene nanosheets were successfully incorporated into lead-free solder using the powder metallurgy route. The effects of graphene nanosheets on the physical, thermal, and mechanical properties of a SnAgCu solder alloy were investigated. With the increasing addition of graphene nanosheets, the nanocomposite solders showed a corresponding improvement in their wetting property but an insignificant change in their melting point. The thermomechanical analysis showed that the presence of graphene nanosheets can effectively decrease the coefficient of thermal expansion (CTE) of the nanocomposites. Furthermore, an improvement in UTS and a decrease in ductility were recorded with the addition of graphene nanosheets. The reinforcing mechanism of the graphene nanosheets on various properties obtained was also analyzed in this study.