ArticlePDF Available

Reclamation impacts on the evolution of the tidal flat at Chongming Eastern Beach in Changjiang estuary

Authors:

Abstract

The Chongming Eastern Beach continues to expand owing to sediment deposition from river basins and the nearby ocean. Since the 1960s, the eastern coastline of the beach has extended about 10 km seaward and more than 150 km2 of the tidal flat has been enclosed by embankments for reclamation. This study investigated the influence of these embankments on the evolution of the tidal flat. CORONA, Landsat and SPOT images covering Chongming Eastern Beach were collected to investigate the changing features of the tidal flat from 1965 to 2011.The results indicate that the extension of the flat accelerated after embankments were established. The rate of extension was greater in the first three years following construction; however, the average rate decreased as less sediment was transported from the river basin to the estuary. The construction of embankments also modified the direction of extension from north and northeast to southeast. The reflected tidal currents caused by embankments and the development of tidal creeks destroyed the vegetation cover outside the banks, leading to diffuse catchments that eventually transitioned to large areas of bare flat. This phenomenon repeated with embankments constructed at different times. The merging of the Tuanjiesha sandbank with Chongming Eastern Beach is meaningful for the study of new arising sandbank in the north channel.
5 J 遥感学报
ntno
G X
!"# $"%&'()&' *+,-#.& /#+0" 0%&-)&1#, -% #23+&4 %5)&' -% ,#4)(#&- 4#3%,)-)%& 6.%( .)7#. 8+,)&, +&4 -"# &#+.89
%0#+&: ;)&0# -"# <=>?,@ -"# #+,-#.& 0%+,-A)&# %6 -"# 8#+0" "+, #2-#&4#4 +8%1- <? B( ,#+5+.4 +&4 (%.# -"+& <C? B(D%6 -"# -)4+A
6A+- "+, 8##& #&0A%,#4 89 #(8+&B(#&-, 6%. .#0A+(+-)%&: !"), ,-149 )&7#,-)'+-#4 -"# )&6A1#&0# %6 -"#,# #(8+&B(#&-, %& -"# #7%A1
-)%& %6 -"# -)4+A 6A+-: $EFEGH@ I+&4,+- +&4 ;JE! )(+'#, 0%7#.)&' $"%&'()&' *+,-#.& /#+0" 5#.# 0%AA#0-#4 -% )&7#,-)'+-# -"#
0"+&')&' 6#+-1.#, %6 -"# -)4+A 6A+- 6.%( <=>C -% D?<<:!"# .#,1A-, )&4)0+-# -"+- -"# #2-#&,)%& %6 -"# 6A+- +00#A#.+-#4 +6-#. #(8+&B
(#&-, 5#.# #,-+8A),"#4: !"# .+-# %6 #2-#&,)%& 5+, '.#+-#. )& -"# 6).,- -".## 9#+., 6%AA%5)&' 0%&,-.10-)%&K "%5#7#.@ -"# +7#.+'# .+-#
4#0.#+,#4 +, A#,, ,#4)(#&- 5+, -.+&,3%.-#4 6.%( -"# .)7#. 8+,)& -% -"# #,-1+.9: !"# 0%&,-.10-)%& %6 #(8+&B(#&-, +A,% (%4)6)#4 -"#
4).#0-)%& %6 #2-#&,)%& 6.%( &%.-" +&4 &%.-"#+,- -% ,%1-"#+,-: !"# .#6A#0-#4 -)4+A 01..#&-, 0+1,#4 89 #(8+&B(#&-, +&4 -"# 4#7#A%3
(#&- %6 -)4+A 0.##B, 4#,-.%9#4 -"# 7#'#-+-)%& 0%7#. %1-,)4# -"# 8+&B,@ A#+4)&' -% 4)661,# 0+-0"(#&-, -"+- #7#&-1+AA9 -.+&,)-)%&#4 -%
A+.'# +.#+, %6 8+.# 6A+-: !"), 3"#&%(#&%& .#3#+-#4 5)-" #(8+&B(#&-, 0%&,-.10-#4 +- 4)66#.#&- -)(#,: !"# (#.')&' %6 -"# !1+&L)#,"+
,+&48+&B 5)-" $"%&'()&' *+,-#.& /#+0" ), (#+&)&'61A 6%. -"# ,-149 %6 &#5 +.),)&' ,+&48+&B )& -"# &%.-" 0"+&&#A:
-)4+A 6A+- .#0A+(+-)%&@ $"%&'()&' *+,-#.& /#+0"@ .#(%-# ,#&,)&'@ #(8+&B(#&-@ 8#+0" #2-#&,)%&@ 7#'#-+-)%& 4#'.+4+-)%&
Cn
!JM=   
nf
uBXZnino
hinC
D?<D
?<
<MK
D?<D
?N
D?
!"# ;-+-# O#9 J.%'.+( %6 G+-)%&+A G+-1.+A ;0)#&0# %6 $")&+PG%:Q<<N?RC> SK !"# T+L%. J.%'.+( %6 ;"+&'"+) $%(()--## %6 ;0)#&0# +&4 !#0"
&%A%'9@ $")&+ P G%: << 4U<D?Q=??SK J": V $+&4)4+-# W1&4 %6 *+,- $")&+ G%.(+A X&)7#.,)-9 6%. E7#.,#+ ;-14)#,@ Y&-#.&+-)%&+A $%&6#.#&0# +&4 V%(#,-)0
;0"%A+.A9 Z),)-,
IX /)&' P<=RM S@ (+A#@ (+,-#. 0+&4)4+-#@ "# (+L%., )& 0%+,-+A .#(%-# ,#&,)&': *
(+)A[ A18)&'?CNN\<>N:0%(
]YHG^ _1#U"%&' P<=MQ S@ (+A#@ J":V:@ +,,%0)+-# 3.%6#,,%.: `), .#,#+.0" )&-#.#,-, +.# #,-1+.)&# +&4 0%+,-+A .#,#+.0"
5)-" .#(%-# ,#&,)&' +&4 ^Y;: *
(+)A[ 2UL)+&'\ ,BA#0:#0&1:#41:0&
 I
$"%&'()&' Y,A+&4@ A%0+-#4 )& -"# $"+&'L)+&' #,-1+.9@ ), -"#
A+.'#,- +AA17)+A ),A+&4 %& #+.-"K )- 5+, 6%.(#4 89 81)A413 %6 ,#4)(#&-
-.+&,3%.-#4 6.%( -"# $"+&'L)+&' F)7#. 8+,)& +&4 ,-+.-#4 %1- +, +
,+&48+. +8%1- <Q?? 9#+., +'% P ;-%&#@ D??R S: $"%&'()&' *+,-#.&
/#+0" ), A%0+-#4 )& -"# #+,-#.& 3+.- %6 $"%&'()&' Y,A+&4@ 8#-5##&
-"# G%.-" /.+&0" +&4 G%.-" $"+&&#A: Y- ), +& #,-1+.)&# -)4+A 6A+- -"+-
0%&-)&1#, -% 0%AA#0- ,)A- +&4 #23+&4 1&4#. &+-1.+A 0%&4)-)%&, Pa+&'
b c"+&'@ D??CK I)+%@ #- +A:@ D?<?S: $"%&'()&' *+,-#.& /#+0" ), )&
+& +.#+ %6 ),A+&4 ,"+4%5@ 5"#.# -"# -)4+A 01..#&- ), 4)66A1#&- +- 6A%%4
-)4# +&4 0%&6A1#&- +- #88 -)4#: a)-" -"# )&6A1#&0# %6 -"# $%.)%A),
6%.0#@ -"# (+)& ,-.#+(A)&# %6 -"# 6A%%4 -)4# ,")6-, &%.-"5+.4 +&4 -"+-
%6 -"# #88 -)4# ,")6-, ,%1-"5+.4: H44)-)%&+AA9@ -"# 8#+0" ,1.6+0# ),
8.%+4 +&4 ,(%%-"@ #23#.)#&0#, 5#+B "94.%49&+()0 0%&4)-)%&,:
!"#,# 6+0-%., 0%&-.)81-# -% ,#4)(#&- 4#3%,)-)%& +&4 8#+0" #2-#&,)%&
Pd1&@ D??QK a+&'@ #- +A:@ D??>S: $"%&'()&' *+,-#.& /#+0" 0%7#.#4
+& +.#+ %6 =>:D< B(D)& <=CRK )-, +.#+ "+4 )&0.#+,#4 -% DM?:> B(D-)AA
D??<@ + D:R
6%A4 )&0.#+,# P `#@ #- +A:@ D?<?S: !"# #0%,9,-#( %6 -"#
8#+0" ), .#A+-)7#A9 4)7#.,#@ "%,-)&' +& +81&4+&0# %6 #,-1+.)&# U%%8
#&-"%, +&4 7#'#-+-)%& 0%((1&)-)#,: !"# 8#+0" +A,% 3.%7)4#, 0.)-)0+A
"+8)-+- 6%. ()'.+&- 8).4, )& -"# H,)+&
J+0)6)0 .#')%& +&4 ,#.7#, +, +&
)(3%.-+&- 5)&-#.)&' +.#+ 6%. 5+-#.6%5A P a+&'@ #- +A:@ D??RK I)+%@
#- +A:@ D?<? S: H, + .#,1A- %6 )-, )(3%.-+&- #0%A%')0+A 61&0-)%&,@
$"%&'()&' *+,-#.& /#+0" 5+, +44#4 -% -"# A),- %6 Y&-#.&+-)%&+A Y(
3%.-+&- a#-A+&4, )& ]+&1+.9 D??D +&4 8#0+(# + G+-)%&+A G+-1.# F#
,#.7# )& ]1A9 D??C:
$"%&'()&' *+,-#.& /#+0" ), )&6A1#&0#4 0%&-)&1+AA9 89 "1(+&
+0-)7)-9@ 3+.-)01A+.A9 4#7#A%3(#&- 3.#,,1.#,: X&4#. 0%&-)&1)&'
4#(+&4 6%. A+&4 .#,%1.0#,@ 7+.)%1, (#-"%4, %6 .#0A+(+-)%& "+7#
8##& 1,#4 -% .#-+)& -"# ,+&4 +&4 3.%(%-# ,)A-+-)%& %& -"# 8#+0"[ -"#
0%&,-.10-)%& %6 #(8+&B(#&-,@ -"# 1,# %6 7#'#-+-)%& -% .#-+)&
,#4)(#&-@ 8A%0B)&' %6 -"# -)4+A 0"+&&#A@ +&4 (14 )(3%.-)&' 6.%(
4.#4')&' 5%.B, PI)@ #- +A:@ D?<< S: !"# 0%&,-.10-)%& %6 #(8+&B(#&-,
5+, + 3+.-)01A+.A9 )(3%.-+&- +33.%+0": T+&9 #66%.-, +- .#0A+(+-)%&
"+7# 8##& )(3A#(#&-#4 6.%( -"# <=>?, %&5+.4K 1&-)A D??D@ -"# -%-+A
+.#+ .#0A+)(#4 #e1+A#4 <M> B(D+&4 MRf %6 .#0A+(+-)%& +0-)7)-)#,
5#.# 0%&410-#4 41.)&' -"# <=R?, +&4 <==?, PI)1@ #- +A:@ D??NS:W%.
#2+(3A#@ .#0#&- A+.'# .#0A+(+-)%&, 5#.# 0%&410-#4 6.%( G%7#(8#.
<==? -% W#8.1+.9 <==< %& -"# !1+&L)#,"+ ,+&48+&B P5"#.# +& +.#+ %6
<R:DM B(D5+, #&0A%,#4S +&4 6.%( ]1&# <==< -% T+.0" <==D %& -"#
V%&'5+&',"+ ,+&48+&B P5"#.# +& +.#+ %6 QQ B(D5+, #&0A%,#4S:
!"#,# -5% .#0A+(+-)%&, 5#.# 0%&410-#4 )& -"# 133#. -)4+A U%&# +- +&
#A#7+-)%& %6 +33.%2)(+-#A9 N:> (: !"# 8+&B, 5#.# 0%&&#0-#4 +&4
&+(#4 +,
d#+. <==<
, /+&B
: W.%( <==R -% <===@ + 8+&B 6%. &#5
.#0A+(+-)%& P.#6#..#4 -% +, d#+. <==R
, /+&BS5+, 0%&,-.10-#4 +- +&
   J  感学报 2
#A#7+-)%& %6 D:C ( %& -"# V%&'5+&',"+ +&4 !1+&L)#,"+ ,+&48+&B,@
#&0A%,)&' + 6A+- %6 DR B(DPa+&'@ #- +A:@ D??RK c"+%@ #- +A:@ D??RS:
!"#,# 8+&B,@ 0%&,-.10-#4 6%. .#0A+(+-)%& +- 4)66#.#&- -)(#,@
"+7# "+4 0%&,)4#.+8A# )&6A1#&0# %& -"# 4#7#A%3(#&- %6 $"%&'()&'
*+,-#.& /#+0": !"# 8+&B, %8,-.10-#4 -)4+A 6A%5@ 5")0" )&6A1#&0#4 -"#
4#3%,)-)%& %6 ,1,3#&4#4 ,#4)(#&- +&4@ 0%&,#e1#&-A9@ )(3+0-#4 -"#
#7%A1-)%& %6 -"# 6A+- P I)@ #- +A:@ D?<<S : !"# 7#'#-+-)%& 0%7#. 5+,
#&0A%,#4 89 -"# #(8+&B(#&-,@ A%,)&' )-, 61&0-)%&, %6 ,A%5)&' 4%5&
-"# 5+-#. 01..#&- +&4 0+3-1.)&' -"# ,#4)(#&- P `+&@ #- +A:@ D??= S:
Z#'#-+-)%& 0%7#. %1-,)4# -"# 8+&B, 5+, ,0%1.#4 89 .#6A#0-#4 5+-#.
01..#&- P$"#&@ <==? S@ 5")0" 5+, "+.(61A -% )-, 4#7#A%3(#&-: !"#
(1A-)3A# .#0A+(+-)%&, ,3A)- -"# #0%,9,-#( %& $"%&'()&' *+,-#.&
/#+0"K )& 3+.-)01A+.@ .#0#&- #(8+&B(#&-, 5#.# 0%&,-.10-#4 6.%( -"#
133#. -)4+A U%&# -% -"# )&-#.-)4+A U%&#@ )&-#.6#.)&' 0%&,)4#.+8A9 5)-"
-"# &+-1.+A #&7).%&(#&- +&4 A#+4)&' -% 4#'.+4+-)%& %6 -"# #0%,9,-#(
Pd+&'@ #- +A:@ D??QS: a)-" A#,, ,#4)(#&- 8#)&' -.+&,3%.-#4 6.%( -"#
$"+&'L)+&' F)7#. 8+,)& -% -"# #,-1+.9@ -"# #2-#&4#4 .+-# %6 $"%&'
()&' *+,-#.& /#+0" 4#0.#+,#4 +&4 ,%(# +.#+, %6 -"# 0%+,-A)&#
#.%4#4 P`#@ #- +A:@ D?<?S: !"1,@ (%.# .#,#+.0" ), .#e1).#4 -% ,-149
-"# 4#7#A%3(#&- +&4 0%+,-+A 3.%-#0-)%& %6 $"%&'()&' *+,-#.&
/#+0":
W%.-9
,)2 ,+-#AA)-# )(+'#, P6.%( $EFEGH@ I+&4,+-@ +&4 ;JE!
4+-+S 0%7#.)&' <=>CD?<< 5#.# 0%AA#0-#4 +&4 0%(3+.#4 -% #7+A1+-#
-"# 4#7#A%3(#&- %6 $"%&'()&' *+,-#.& /#+0" 1&4#. )&-#.6#.#&0#
6.%( -"# #(8+&B(#&-: !"# 6%AA%5)&' .#,#+.0" e1#,-)%&, 5#.#
+44.#,,#4[ "%5 4)4 -"# #(8+&B(#&-, )&6A1#&0# -"# .+-# +&4 4).#0-)%&
%6 #2-#&,)%& %6 -"# 8#+0"K "%5 4)4 -"# 7#'#-+-)%& 0%7#. )& 6.%&- %6
-"# 8+&B, #.%4#K "%5 4)4 -"# !1+&L)#,"+ ,+&48+&B P&#+. $"%&'()&'
Y,A+&4S (#.'# 5)-" -"# #+,-#.& 8#+0"K +&4 5"+- #66#0- 4)4 -"),
(#.')&' "+7# %& -"# &#5 ,+&48+&B )& -"# G%.-" $"+&&#A:
 SYA
$"%&'()&' Y,A+&4 6%.(, -"# 6).,- ,3A)- )& -"# .)7#. 0"+&&#A )&
-"# $"+&'L)+&' #,-1+.9: $"%&'()&' *+,-#.& /#+0" ), A%0+-#4 +- -"#
#+,-#.& #&4 %6 $"%&'()&' Y,A+&4K )-, &%.-"#.& +&4 ,%1-"#.& ,)4#, +.#
-"# G%.-" /.+&0" +&4 -"# G%.-" $"+&&#A@ .#,3#0-)7#A9@ +&4 )-, #+,-#.&
,)4# ), 0A%,# -% -"# *+,- $")&+ ;#+PW)': <S:*7#.9 9#+.@ +8%1- C?f %6
-"# -%-+A ,#4)(#&- -.+&,3%.-#4 6.%( -"# .)7#. 8+,)& ), 4#3%,)-#4 )& -"#
#,-1+.)&# +.#+ P$"#&@ #- +A:@ <=RCS@ 5")0" "+, .#,1A-#4 )& -"# 4#7#A%3
(#&- %6 + (1449 #,-1+.9 +&4 0%+,- +&4 +& #,-1+.)&# -)4+A 6A+- P`#@ #-
+A:@ D?<?S: !"# -)4# &#+. $"%&'()&' *+,-#.& /#+0" ), )..#'1A+. ,#()
4)1.&+A@ 5)-" + (#+& -)4+A .+&'# %6 +8%1- D :C ( P d1&@ D??QS: !"#
8#+0" -#..+)& +8%7# -"#
C ( ),%8+-" ), ,(%%-"@ 5)-" + (#+&
'.+4)#&- %6 %&A9 ?:DQPd+&'@ #- +A:@ <===S:
V+-+ 6.%( -"# V+-%&' "94.%A%')0+A ,-+-)%& 6.%( <=C< -% D??C
)&4)0+-#, -"+- -"# -%-+A 5+-#. 4),0"+.'# %6 -"# $"+&'L)+&' F)7#.
.#+0"#4 =:?N×
<?<< (N+&&1+AA9 +&4 -"# +7#.+'# ,#4)(#&- A%+4 #+0"
9#+. 5+, +8%1- Q:<Q ×
<?R-: `%5#7#.@ -"# ,#4)(#&- A%+4 5+, L1,-
?:RC×
<?R- )& D??> +&4 <:NR×
<?R- )& D??M@ -"1, #2")8)-)&' +& %87)
%1, 4#0A)&)&' -.#&4 P$"+&'L)+&' a+-#. F#,%1.0# $%(()--##@ D??MS:
W.%( <=Q= -% D??<@ ,#7#& A+.'# #(8+&B(#&-, 5#.# 0%&,-.10-#4
%& $"%&'()&' *+,-#.& /#+0" 6%. .#0A+(+-)%&: W.%( 5#,- -% #+,-@
8+,#4 %& 9#+. %6 0%&,-.10-)%&@ -"#9 +.# .#6#..#4 -% +, -"# d#+.
<=Q=
,@ <=CQ
,@ <=>Q
,@ <=M?
,@ <==<
,@ <==R
,@ +&4 D??<
, /+&B
PW)':<S:!"# d#+. <==<
, /+&B 0%&-)&1#4 +8%1- Q:D B( 61.-"#. #+,-
5+.4 -"+& d#+. <=M?
, /+&B@ #&0%(3+,,)&' +& +.#+ %6 +8%1- >> B(DK
,18,#e1#&-A9@ -"# d#+. <==R
, /+&B 0%&-)&1#4 6%. + 61.-"#. D:N B(
#+,-5+.4@ #&0A%,)&' +& +.#+ %6 +8%1- DD B(D:
W)':< F#(%-# ,#&,)&' )(+'# %6 $"%&'()&' *+,-#.& /#+0"
PI+&4,+- )(+'#.9[ (+33#4 %& D??Rg ?Qg DCK 8+&4, M@Q@ +&4 D 0%(3%,)-#4 F^/K
-"# 6)'1.# )& -"# A%5#. A#6- ,"%5, -"# -)4+A ,-+-)%&, &#+. -"), 8#+0"S
 SEIMAYAME
!"# 6)7# $EFEGH )(+'#, 1,#4 "#.# 5#.# +0e1).#4 %& <=>C
g ?Rg DN@ <=>Mg ?Rg D<@ <=M? g <Dg ?>@ <=MQ g <<g D< @ +&4 <=M> g ?<g
<DK -"# Q? I+&4,+- )(+'#, 5#.# +0e1).#4 8#-5##& <=M= +&4 D?<<
P3+.-, %6 -"#,# )(+'#, 5#.# )AA1,-.+-#4 )& W)':DSK +&4 -"# ;JE! )(+'#
5+, +0e1).#4 )& D??C: $EFEGH 5+, + ,#.)#, %6 X; ,39 ,+-#AA)-#,
A+1&0"#4 )& -"# <=>?, -"+- +0e1).#4 )(+'#.9 +- + ")'" .#,%A1-)%&
PD ( 3)2#A ,)U#S +&4 5#.# (+4# 318A)0 )& <==C PHA-(+)#. b O+&9@
D??DS: !"# +8%7# 4+-+ 5#.# +0e1).#4 6.%( -"# X&)-#4 ;-+-#, ^#%A%'
)0+A ;1.7#9 PhD?<? g ?N i "--3[jj555:1,',: '%7jS %. -"# Y&-#.&+-)%&+A
;0)#&-)6)0 V+-+ ;#.7)0# JA+-6%.(@ $")&#,# H0+4#(9 %6 ;0)#&0#,
PhD?<<g <?i"--3[jj4+-+()..%.:0,48:0&j)&4#2:"-(S:
HAA ,+-#AA)-# )(+'#, 5#.# '#% 0%..#0-#4 -% X!T 3.%L#0-)%&: !"#
#..%., %6 '#%(#-.)0 0%..#0-)%& 5#.# A#,, -"+& < 3)2#A 6%. $EFEGH
+&4 ;JE! )(+'#, +&4 A#,, -"+& ?:D 3)2#A, 6%. I+&4,+- )(+'#,: !"#
+.#+ 0%7#.)&' $"%&'()&' *+,-#.& /#+0" 5+, ,18,#--#4 +, -"# .#')%&
%6 )&-#.#,-: W%. -"# I+&4,+- )(+'#.9@ 8+&4 N 5+, 1,#4 -% #2-.+0- -"#
5+-#.A)&# 8+,#4 %& -"# 4#&,)-9 ,A)0# )& -"# *GZY ,%6-5+.#K +&
+.-)6)0)+A 6)2 5+, +A,% 0%&410-#4 1,)&' 8+&4, N +&4 > -% ,(%%-" -"#
A)&# Pc"#&'@ D??MK ;"#&@ #- +A:@ D??R S: !"# 5+-#.A)&# )& -"), ,-149
5+, .#'+.4#4 +, %&# 0%&-%1.: !"# #A#7+-)%& %6 #+0" 5+-#.A)&# +- -"#
-)(# %6 )(+')&' 5+, )&-#.3%A+-#4 )& H.0^Y; 8+,#4 %& -)4+A "#)'"-,
6.%( 6)7# -)4+A ,-+-)%&,[ ;")4%&'B%1@ $"+&'2)&'@ `#&',"+@
/#)0+%U"%&'@ +&4 ;"#,"+& PW)':<S: !"# )&-#.3%A+-#4 .#,1A-, +.# 3.#,
#&-#4 )& !+8A# <: V#3#&4)&' %& -"# (1A-)3A# 5+-#.A)&#, 5)-" 4)66#.#&-
#A#7+-)%&@ -"# kD ( 0%&-%1., 5#.# )&-#.3%A+-#4 6%. <==? @ <==N@ <==R@
<===@ D??D@ +&4 D??M: !"# (+2)(1( #2-#&4#4 4),-+&0#, %6 -"# kD (
0%&-%1. +- 4)66#.#&- 3#.)%4, 5#.# (#+,1.#4 -% 0%(3+.# -"# .+-# %6
#2-#&,)%&: !"# #+.A)#,- +7+)A+8A# -)4+A 4+-+ 5#.# 6.%( <=M=K -"1,@
-)4+A )&6%.(+-)%& .#'+.4)&' 5+-#.A)&#, 6.%( $EFEGH )(+'#, 0%1A4
UBninBnCy 3  
&%- 8# %8-+)&#4: $EFEGH )(+'#.9 5+, +0e1).#4 )& 3+&%.+()0 7)#5
P-"# +&'A# 8#-5##& 6%.5+.4 +&4 +6-#.5+.4 7)#5, 5+, N? !S +- ")'"
.#,%A1-)%&@ (+B)&' )- 3%,,)8A# -% #2-.+0- -"# V*T PHA-(+)#. b O+&9@
D??DK $"#&@ #- +A:@ D??MS: `%5#7#.@ 8#0+1,# -"# '.+4)#&- %6 $"%&'
()&' *+,-#.& /#+0" 5+, ,A)'"- +&4 &% -#..+)& 4+-+ 5+, +7+)A+8A# 6%.
-"+- -)(#@ V*T #2-.+0-)%& 0%1A4 &%- 8# 3#.6%.(#4 6%. -"), +.#+:
J.#7)%1, ,-14)#, "+7# 6%1&4 -"+- -"# .#A+-)%&,")3 8#-5##& -"# 7#'#-+
-)%& 0%7#. +&4 -"# 6A+- #A#7+-)%& %& $"%&'()&' *+,-#.& /#+0": !"#
6A+- 8#A%5 +8%1- kD ( )& -"), +.#+ ), 8+.# +&4 -"#.# +.# &% ")'"#.
3A+&-, 4),-.)81-#4: !"# +.#+ %6 8#+0" ")'"#. -"+& -"# 8+.# 6A+- .#3.#
,#&-, -"# %. U%&#@ 5"#.# -"#
#A#7+-)%& ), +8%1- DD: = ( P^+% b c"+&'@ D??>S: !"1,@ )& -"),
,-149@ -"# #4'#, %6 -"# 7#'#-+-)%& 0%7#. 5#.# 1,#4 -% )&4)0+-# -"#
kD ( 0%&-%1. 6%. $EFEGH )(+'#,PW)':DS: !"# -)4+A 0.##B ,9,-#(,
5#.# #2-.+0-#4 6.%( )(+'#, 5)-" -"# #$%'&)-)%& ,%6-5+.# 1,)&'
%8L#0-
%.)#&-#4 0A+,,)6)0+-)%&: !"# 7#'#-+-)%& 0"+&'#, %1-,)4# -"# 8+&B,
W)':D $EFEGH )(+'# %6 $"%&'()&' *+,-#.& /#+0" %& <=>Cg ?Rg DN
PH..%5 )&4)0+-#, #4'# %6 7#'#-+-)%& 0%7#.S
  dt
gmnCgEnB
1 12 1
1 36 2
7 2
2 19 2
1 35 2
8 2
3 22 2
6 25 2
9 3
3 36 2
3 26 2
4 3
1 23 2
4 24 2
5 2
7 19 2
6 17 2
5 1
1 13 2
1 14 2
6 2
9 37 2
7 13 2
7 2
4 22 2
3 18 2
0 2
8 13 2
9 18 2
2 3
1 17 2
5 1
3 27 2
0 1
5#.# ,-149)&' 89 0%(3+.)&' I+&4,+- )(+'#, +0e1).#4 )& ,1((#.
5)-" 6+A,# 0%A%. 0%(3%,)-#,: E& I+&4,+- )(+'#.9 5)-" 6+A,# 0%A%.
0%(3%,)-#4@ -"# 7#'#-+-)%& 0%7#. +33#+., .#4 +&4 -"# 0%+,-+A 6A+-
5)-"%1- 7#'#-+-)%& +33#+., 9#AA%5
'.##&@ (+B)&' )- #+,)#. -% 4),-)&
'1)," 8#-5##& -"#( +&4 -% 7),1+A)U# -"#). 4),-.)81-)%& %7#. + A+.'#
+.#+ PV#&' b $"#&@ <==<S:
 RSA
 Vnenr
!+8A# D 3.#,#&-, .#,1A-, 6%. -"# #2-#&,)%& .+-# %6 -"# k D (
0%&-%1. %7#. 7+.)%1, -)(# 3#.)%4, 6%AA%5)&' -"# 0%&,-.10-)%& %6
#(8+&B(#&-, )& <=>Q@ <=M?@ <==<@ +&4 <==R : !"# .#,1A-, )&4)0+-#
-"+- -"# #(8+&B(#&-, #2#.-#4 + 3%,)-)7# )&6A1#&0# %& -"# .+-# %6 6A+-
#2-#&,)%& +6-#. -"#9 5#.# #,-+8A),"#4 +&4 -"), +00#A#.+-)%& 5+, (%.#
%87)%1, )& -"# 6).,- -".## 9#+.,: !"), %001..#4 3.)(+.)A9 8#0+1,# -"#
#(8+&B(#&-, ,3A)- -"# 8#+0" +&4 #&0).0A#4 -"# 133#. -)4+A U%&# +&4
3+.-, %6 -"# )&-#.-)4+A U%&#K -"#9 61&0-)%&#4 +, 8+..)#., -% -)4+A
01..#&-, +&4 4#0.#+,#4 -"# 7#A%0)-9 %6 5+-#. 6A%5: $%&,#e1#&-A9@ -"#
,#4)(#&-
0+..9)&' 0+3+0)-9 5+, .#,-.)0-#4 +&4 )- 8#0+(# (10" #+,)#.
-% 4#3%,)- -"# ,#4)(#&- %1-,)4# %6 -"# 8+&B,: H, + .#,1A-@ -"# #2-#&
,)%& %6 -"# 6A+- 5+, +00#A#.+-#4 P$"#&@ <==?K I)@ #- +A:@ D?<<S: H, -"#
6A+- 0%&-)&1#4 -% #2-#&4@ ,#4)(#&- 6A12 %& +&4 %66 -"# 8#+0" -#&4#4
-%5+.4 + &#5 #e1)A)8.)1(@ -"# +00#A#.+-)&' )&6A1#&0# %6 -"# #(8+&B
(#&- 4#0.#+,#4@ +&4 -"# #2-#&,)%& .+-# 4#0.#+,#4 0%..#,3%&4)&'A9
PI)@ #- +A:@ D?<<S:
!"# +7#.+'# #2-#&,)%& .+-# %6 -"# kD ( 0%&-%1. )& !+8A# D )&4)
0+-#, + '.+41+A 4#0.#+,# -% A#,, -"+& "+A6 )-, )&)-)+A 7+A1#@ 6.%(
?:QQ B(j+ )& -"# <=>? , -% ?:<C B(j+ )& -"# D??? ,: H&+A9,), %6 -"#
.#A+-)%&,")3 8#-5##& #2-#&,)%& .+-# +&4 ,#4)(#&- A%+4 %7#. -"# ,+(#
3#.)%4 )&4)0+-#, + ,)'&)6)0+&- 0%..#A+-)%& 5)-" + 0%#66)0)#&- %6 ?:=?:
!"1,@ -"# 4#0A)&# )& ,#4)(#&- 6A12 6.%( -"# .)7#. 8+,)& -% -"# #,-1+.9
4#0.#+,#4 -"# ,#4)(#&- +7+)A+8A# 6%. #2-#&,)%& %6 -"# 6A+-@ .#,1A-)&' )&
+ ,A%5#. #2-#&,)%& .+-#: J.#7)%1, ,-14)#, "+7# )&4)0+-#4 -"+- -"# ,#4)
(#&- 6A12 6.%( -"# .)7#. 8+,)& 5)AA 0%&-)&1# -% 4#0.#+,# Pd+&'@ #- +A:@
D??NK c"+&'@ #- +A:@ D??>SK -"1,@ -"# #2-#&,)%& %6 $"%&'()&' *+,-#.&
/#+0" ), A)B#A9 -% 0%&-)&1# -% ,A%5 4%5&:
H .#A+-)7#A9 ,-.%&' 0%..#A+-)%& 5+, +A,% %8,#.7#4 8#-5##& -"#
#2-#&,)%& .+-# %6 -"# kD ( 0%&-%1. +&4 -"# +.#+ #&0A%,#4 89 -"#
#(8+&B(#&-, +&4 -"# kD ( 0%&-%1.K -"# 0%..#A+-)%& 0%#66)0)#&- 5+,
?:R<: X,)&' -"# #(8+&B(#&- %6 <==R +, +& #2+(3A#@ )- 0+& 8# ,##&
-"+- -"# ,#4)(#&- 6A12 4#0.#+,#4 %&A9 ,A)'"-A9 P=f S 6%. -"# 6).,- -".##
9#+., +6-#. 0%&,-.10-)%& P0%(3+.#4 -% -"# 6A12 )& -"# 6)7# 9#+., 3.)%.
-% 0%&,-.10-)%&K !+8A# DS: `%5#7#.@ -"# #2-#&,)%& .+-# %6 -"# kD (
0%&-%1. #2")8)-#4 +& %87)%1, 4#0A)&# %6 (%.# -"+& QCf : H 3%,,)8A#
.#+,%& 6%. -"), ), -"+- -"# #(8+&B(#&- %6 <==R 5+, 0%&,-.10-#4 )&
-"# )&-#.-)4+A U%&# +- +& #A#7+-)%& %6 +8%1- D :C ( P a+&'@ #- +A:@
D??RS: !"# +.#+ %1-,)4# -"# #(8+&B(#&- 5+, ,(+AA +&4 -"+- (+9
+'+)&,- -"# 4#3%,)-)%&: H, + .#,1A-@ -"# 6A+- #2-#&4#4 ,A%5#.:
  nr
m cno
r Cda
d1
nrm/a A
9 10 0
6 16 0
1 3 3 13 0
1 18 0
8 2 2 12 0
8 27 0
   J  感学报 2
 Vnend
W)': N )AA1,-.+-#, 0"+&'#, )& -"# #2-#&,)%& 4).#0-)%& %6
$"%&'()&' *+,-#.& /#+0" 6.%( <=>C -% D?<<: Y& '#&#.+A@ -"# 8#+0"
5+, 6%1&4 -% ,")6- -%5+.4 -"# ,%1-"#+,-K -"), ), 0%&,),-#&- 5)-" -"#
0%&0A1,)%& %6 `#@ #- +A: PD?<?S: !"# 4#7#A%3(#&- %6 -"# 8#+0" 4#7)+
-#4 %7#. -)(#@ #2-#&4)&' 0A#+.A9 -%5+.4 -"# &%.-"#+,- )& <=>C PW)':DS:
!"), ), -"%1'"- -% "+7# %001..#4 3.)(+.)A9 8#0+1,# -"# 5+-#. +- -"#
&%.-"#.& #&4 %6 -"# 8#+0" "+, + ")'" ,1,3#&4#4 ,#4)(#&- 0%&0#&-.+
-)%& +&4 0%1A4 "+7# ,133A)#4 ,166)0)#&- ,#4)(#&- 6%. #2-#&,)%& %6 -"#
6A+-: H44)-)%&+AA9@ -"# 7#A%0)-9 %6 -"# 6A%%4 -)4# +- -"# &%.-"#.& #&4 %6
*+,-#.& /#+0" ), 6+,-#. -"+& -"+- %6 -"# #88 -)4#@ 5")0" 5%1A4 +A,%
0%&-.)81-# -% ,#4)(#&- 4#3%,)-)%& Pc"+%@ #- +A:@ D??RS: $%&7#.,#A9@
-"# ,%1-"#.& #&4 %6 *+,-#.& /#+0" ), 0A%,# -% -"# &%.-" 0"+&&#A@ +
(+)& .)7#. 0"+&&#A: !"# 7#A%0)-9 %6 -"# #88 -)4# ), 6+,-#. -"+& -"+- %6
-"# 6A%%4 -)4#@ 5")0" ), 4),+47+&-+'#%1, 6%. 6A+- #2-#&,)%&: Y&
+44)-)%& -% -"# ,#4)(#&- 0%&4)-)%&, %6 -"# &%.-"#.& *+,-#.& /#+0"@
#2-#&,)%& 5+, +00#A#.+-#4 89 d#+. <=>Q
, /+&B@ 5")0" #&0A%,#4 -"#
&%.-"#+,-#.& 3+.- %6 $"%&'()&' *+,-#.& /#+0":
W)':N Z+.)+-)%& %6 kD ( 0%&-%1. %6 $"%&'()&' *+,-#.&
/#+0" 6.%( <=>C -% D?<<
W.%( -"# <=>?, %&5+.4@ 5)-" -"# %1-0.%3 %6 -"# !1+&L)#,"+
,+&48+&B +- -"# ,%1-"#+,- #&4 %6 $"%&'()&' *+,-#.& /#+0"@ -"#
()44A# %6 *+,-#.& /#+0" #2")8)-#4 %87)%1, #2-#&,)%&: /#-5##& <=M=
+&4 <=RD@ -"# 0"+&&#A 8#-5##& $"%&'()&' *+,-#.& /#+0" +&4 -"#
!1+&L)#,"+ ,+&48+&B 5+, 3A1''#4 89 8+&B,: !"#&@ -"# 0"+&&#A ,)A-#4
13 +&4 -"# !1+&L)#,"+ ,+&48+&B (#.'#4 '.+41+AA9 5)-" $"%&'()&'
*+,-#.& /#+0": ;18,#e1#&-A9@ -"# +.#+, %6 &%.-"#.& +&4 ,%1-"#.&
3+.-, 5#.# (%.# ,)()A+.:
$"+&'#, )& -"# kD ( 0%&-%1. 6.%( <==? -% D?<< )&4)0+-# -"+-
-"# ()44A# %6 $"%&'()&' *+,-#.& /#+0" #2-#&4#4 3.)(+.)A9 -%5+.4
-"# #+,-@ 5)-" + (+2)(1( #2-#&,)%& %6 Q :D B(: !"# &%.-"#.& 3+.- %6
*+,-#.& /#+0" +A,% 4#7#A%3#4 -%5+.4 -"# &%.-" +&4 &%.-"#+,- )& +
,(+AA +(%1&-: $%&7#.,#A9@ -"# ,%1-"#.& 3+.- %6 *+,-#.& /#+0" 5+,
#.%4#4 +&4 .#-.#+-#4: !"), .#')%& 5+, ,0%1.#4 )&-#&,#A9 89 -)4# +&4
5)&4 5+7#,K +44)-)%&+AA9@ -"# 6A%%4 -)4# ), %.)#&-#4 3.)(+.)A9 &%.-"
5+.4@ ,10" -"+- )- 0%AA)4#, 5)-" -"# 8+&B PI)&@ #- +A:@ D??NS:
W)':Q ,"%5, -"# 4#-+)A#4 7+.)+-)%& %6 -"# kD ( 0%&-%1. 6.%(
<==? -% D?<<K -"# #&-).# 3.%0#,, 5+, )(3+0-#4 89 -"# 0%&,-.10-)%& %6
#(8+&B(#&-,: Y- 5+, 6%1&4 -"+- -"# #2-#&,)%& +.#+ 0"+&'#4 6.%(
8%-" )& -"# &%.-"#.& +&4 #+,-#.& 3+.- -% %&A9 )& -"# #+,-#.& PW)': QP+S
+&4 W)': QP0SSK -"# #2-#&,)%& 4).#0-)%& ,")6-#4 -%5+.4 -"# ,%1-"#+,-
PW)':QP8S +&4 W)':Q P0SS: Y- (+9 8# -"+- -"# A#,, &%.-"5+.4 #2-#&,)%&
%6 *+,-#.& /#+0" %001..#4 8#0+1,# -"# d#+. <==<
, +&4 <==R
, /+&B
#&0A%,#4 + A+.'# +.#+ %& -"# &%.-"#.& 6A+-@ A#+7)&' + ,(+AA .#')%& %1-
,)4# -"# 8+&B, 6%. 4#3%,)-)%&: !"# ,1,3#&4#4 ,#4)(#&- 5+, (10"
(%.# #+,)A9 0+..)#4 8+0B -% -"# .)7#. 0"+&&#A 89 -"# #88 -)4#K -"#,#
0%&4)-)%&, 5#.# 1&6+7%.+8A# 6%. 6A+- #2-#&,)%&: !"# #2-#&,)%& %6 *+,-
#.& /#+0" -%5+.4 -"# ,%1-"#+,- 3.%8+8A9 .#,1A-#4 6.%( -"# d#+. <==R
,
/+&B: !"), 8+&B 5+, 81)A- +- +& #A#7+-)%& %6 +8%1- D:C ( +&4 #2#.-#4
+ A+.'# )&6A1#&0# %& -"# -)4#: W1.-"#.(%.#@ )-, ,%1-"#.& 3+.- 5+, %.)#&
-#4 &%.-"#+,-
,%1-"5#,-@ 5")0" 4.%7# -"# #88 -)4# -% -"# ,%1-"#+,-:
 Dhs
!"#"$ %&'()*+', '- *./ &/0/*1*+', 2'&/3
!"# 0%&,-.10-)%& %6 #(8+&B(#&-, &%- %&A9 #&0A%,#4 + A+.'#
+.#+ %6 7#'#-+-)%& 0%7#. 81- +A,% A#4 -% 4#'.+4+-)%& %6 -"# 7#'#-+-)%&
%1-,)4# -"# 8+&B: !"), 3.%0#,, .#3#+-#4 5)-" -"# 4)66#.#&- #(8+&B
(#&-, 0%&,-.10-#4 %& $"%&'()&' *+,-#.& /#+0": a)-")& +8%1- CM
+ %6 0%&,-.10-)%& %6 #(8+&B(#&-, )& <=MQ@ <==< +&4 <==R@ -"# 7#'#
-+-)%& %1-,)4# -"# 8+&B 5+, #.%4#4 +&4 4),0%&-)&1%1, 0+-0"(#&-, "+4
4#7#A%3#4 PW)':CP+SP0SP#SS: X&4#. &+-1.+A 0%&4)-)%&,@ -"# 0+-0"(#&-,
'.+41+AA9 0%&&#0-#4@ #&A+.'#4@ +&4 #7%A7#4 -% 6%.( 8+.# 6A+- PW)':C
P8SP4SP6 SS:V1.)&' 6)#A4 %8,#.7+-)%& %6 $"%&'()&' *+,-#.& /#+0" )&
H3.)A D??N@ `#@ #- +A: PD??QS +A,% 6%1&4 A+.'# +.#+, %6 #.%4#4 7#'#-+
-)%& )& -"# ()44A# +&4 ,%1-"#.& 3+.-, %6 -"# 8#+0"@ 0%&6).()&' -"#
6)&4, %& ,+-#AA)-# )(+'#.9: X,)&' '#%'.+3")0 )&6%.(+-)%& ,9,-#(,
P^Y;S +&4 6)#A4 )&7#,-)'+-)%& %6 $"%&'()&' *+,-#.& /#+0"@ `+&@ #- +A:
W)':Q Z+.)+-)%& %6 kD ( 0%&-%1. +6-#. -"# 0%&,-.10-)%& %6 8+&B,
UBninBnCy 3  
PD??=S )&-#.3.#-#4 I+&4,+- )(+'#, -% ,-149 7#'#-+-)%& 4),-.)81-)%&
+&4 +A,% &%-#4 #2-#&,)7# 8+.# 6A+- %1-,)4# -"# d#+. <==<
, +&4 <==R
,
/+&B: !"# #&A+.'#(#&- %6 8+.# 6A+- %1-,)4# -"# d#+. <=MQ
, +&4
<==<
, /+&B 5+, .#,-.+)&#4 89 -"# d#+. <==<
, +&4 <==R
, /+&B:
`%5#7#.@ 8+.# 6A+- 4#7#A%3#4 +'+)& .#0#&-A9 )& -"# ,%1-"#.& 3+.-, %6
*+,-#.& /#+0"@ %1-,)4# -"# d#+. <==R
, /+&B@ +&4 -"# 0%+,-A)&# .#-.#+-#4:
!"# 0+1,# %6 -"# #7%A1-)%& %6 7#'#-+-)%& 0%7#. )&-% 8+.# 6A+-
5+, ,"%5& -% 8# -5%6%A4: W).,-@ -"# #7%A1-)%& 5+, )&6A1#&0#4 89
.#6A#0-#4 5+-#. 6A%5: H6-#. -"# #(8+&B(#&-, 5#.# 0%&,-.10-#4@ -"#
6A%%4 -)4# 5+, )&-#.0#3-#4 +&4 -"# 6A%5 .#')(# 6%.0#4 -% 0"+&'#@
.#,1A-)&' )& .#6A#0-#4 4),-1.8+&0# -"+- 5+, ,-.%&'#. 0A%,#. -% -"#
8+&B, P$"#&@ <==? S: !"), 4),-1.8+&0# 4+(+'#4 -"# 7#'#-+-)%& 0%7#.
&#+. -"# 8+&B,@ +AA%5)&' 4),0%&-)&1%1, 0+-0"(#&-, -% 4#7#A%3:
;#0%&4@ #7%A1-)%& %6 7#'#-+-)%& 5+, )&6A1#&0#4 89 -"# #7%A1-)%& %6
-)4+A 0.##B,: X&4#. &+-1.+A 0%&4)-)%&,@ 5)-" -"# 4#7#A%3(#&- %6 -"#
-)4+A 6A+-@ -"# -)4+A 0.##B &#-5%.B #&A+.'#4 +&4 4#7#A%3#4 &#5 8.+&
0"#,: H, + .#,1A-@ ,(+AA ,+&48+&B, +&4 7#'#-+-)%& 0%((1&)-)#, 5#.#
),%A+-#4 +&4 ,1..%1&4#4 89 0+-0"(#&-,: /#0+1,# %6 #.%,)%& %6 -"#
),%A+-#4 ,+&48+&B +&4 7#'#-+-)%& 89 -)4+A 01..#&-,@ -"# 0+-0"(#&-,
8#0+(# 0%&&#0-#4 +&4 '.#5 )&0.#+,)&'A9 A+.'#.: *7#&-1+AA9@ -"#
0+-0"(#&-, #7%A7#4 )&-% 8+.# 6A+-: Y& +44)-)%& -% -"#,# -5% 6+0-%.,@
'.+U)&'@ -.+(3A)&'@ +&4 "+.7#,-)&' +A,% 0%&-.)81-#4 -% -"# A%,, %6
7#'#-+-)%& P`#@ #- +A:@ D??QS:
W)':C *.%,)%& %6 7#'#-+-)%& +- 4)66#.#&- -)(#, %1-,)4# -"#
d#+. <=M?
,@ <==<
,@ +&4 <==R
, /+&B
PP+S/+&4 >@ 8+&4 C@ +&4 8+&4 Q@ 0%(3%,)-#4 6+A,# 0%A%.: P8SP6S/+&4, Q@ N@
+&4 D@ 0%(3%,)-#4 6+A,# 0%A%.: F#4 0%A%. )&4)0+-#, 7#'#-+-)%& 0%7#.S
!"#"4 %&'()*+', '- *./ *+51( 23//6 787*/9
!"# -)4+A 0.##B, %& $"%&'()&' *+,-#.& /#+0" 4#7#A%3#4 )&
4).#0-)%&, 4)7#.'#&- 6.%( -"# 6A+- -% -"# %0#+& PW)': > S: !"# 0.##B
,9,-#( 5+, 01- %66 89 -"# 0%&,-.10-)%& %6 #(8+&B(#&-,K 0.##B,
%1-,)4# 8+&B, 0%&-)&1#4 -% 4#7#A%3 -%5+.4 -"# ,#+ +&4 6%.(#4 &#5
(+)& 0.##B,: HA-"%1'" -"# d#+. <==R
, /+&B 5+, 0%&,-.10-#4 )& -"#
)&-#. -)4+A U%&# +&4 #&0A%,#4 (%,- %6 -"# 0.##B,@ -"# 4#7#A%3(#&-
3+--#.&, +&4 4),-.)81-)%& .1A#, %6 -"# &#5 0.##B, 5#.# ,)()A+. -%
-"%,# %6 -"# %A4: ^#&#.+AA9@ -"# 0.##B, 5#.# %.)#&-#4 3#.3#&4)01A+. -%
-"# 0%+,-@ +, 0+& 8# %8,#.7#4 )& -"# &%.-"#.& +&4 ()44A# 3+.-, %6
*+,-#.& /#+0": `%5#7#.@ +- -"# ,%1-"#.& #&4 %6 *+,-#.& /#+0"@ -"#
#88 -)4# ,")6-, -%5+.4 -"# ,%1-"#+,- %5)&' -% -"# $%.)%A), 6%.0# +&4
-"# -)4+A 0.##B, 4#7#A%3#4 ,%1-"#+,-5+.4 )& .#,3%&,#:
W)':> *7%A1-)%& %6 -)4+A 0.##B, %& $"%&'()&' *+,-#.& /#+0"
E6 -"# 6+0-%., )&6A1#&0)&' -"# 4#7#A%3(#&- %6 -)4+A 0.##B,@ -)4+A
01..#&-, +&4 7#'#-+-)%& 0%7#. +0- )& %33%,)&' 4).#0-)%&,: !"# 8A%%(
%6 7#'#-+-)%& #&"+&0#, -"# .#,),-+&0# %6 -)4+A 6A+-, -% #.%,)%&@ .#,-.+)
&)&' -"# 4#7#A%3(#&- %6 -)4+A 0.##B,: !"# %.)')&+A -)4+A 0.##B, A)B#A9
8#0%(# #2-)&0- '.+41+AA9: $%&7#.,#A9@ + 5#AA
4#7#A%3#4 -)4+A 0.##B
,9,-#( 5%1A4 0+1,# 6A+- #.%,)%& +&4 7#'#-+-)%& 4#'.+4+-)%&: W)':CP6S
+&4 W)':> )AA1,-.+-# .#0#&- 4),-)&0- 4)66#.#&0#, 8#-5##& -"# ,%1-"#.&
+&4 &%.-"#.& 3+.-, %6 *+,-#.& /#+0": Y& -"# &%.-"#.& 3+.-@ -)4+A +0-)%&
), 5#+B +&4 7#'#-+-)%& 6A%1.),"#,@ .#,1A-)&' )& + A+0B %6 A+.'# -)4+A
0.##B,: Y& -"# ,%1-"#.& 3+.-@ -)4+A +0-)%& ), ,-.%&'@ -)4+A 0.##B, "+7#
4#7#A%3#4@ +&4 7#'#-+-)%& ), ,3+.,#: !)4+A 0.##B, (%7# A+-#.+AA9@
.#6%.()&' -"# -)4+A 6A+- +&4 )(3+0-)&' )-, ,-+8)A)-9 P;"+%@ <=RRK _)#@
#- +A:@ D??>S: !"1,@ 5"#& 4#,)'&#4 -% 3.%-#0- -"# 0%+,-@ #&')&##.)&'
(#+,1.#, -+B#& -% .#,-.+)& 61.-"#. 4#7#A%3(#&- %6 A+.'# -)4+A 0.##B,
0%1A4 3.%7# "#A361A:
!"#"# :/&/(';9/,* '- *./ <)1,=+/7.1 71,5>1,6 1,5 *./ 71,5>1,6 +,
*./ ,'3*. 2.1,,/(
W)':M )AA1,-.+-#, -"# #(#.'#&0# %6 -"# !1+&L)#,"+ ,+&48+&B +&4
)-, 0%&&#0-)%& -% $"%&'()&' Y,A+&4: WA%%4 -)4# 4%()&+-#4 -"#
0"+&&#A 8#-5##& -"#( +&4 A#4 -% -"# #2-#&,)%& %6 -"# !1+&L)#,"+
,+&48+&B -%5+.4 *+,-#.& /#+0"PW)':MP8S@ P0SS:V1.)&' -"), #2-#&,)%&@
-"# 0%+,-A)&# %6 $"%&'()&' *+,-#.& /#+0" 5+, )(3+0-#4 +&4 #.%4#4
89 -"# 6A%%4 -)4#@ 0+1,)&' )- -% .#-.#+- -% -"# 6.%&- %6 -"# 8+&B: !"#
&%.-"#.& %1-A#- %6 -"# 0"+&&#A #7#& .#+0"#4 +, 6+. +, -"# ()44A# %6
   J  感学报 2
W)':M $%&&#0-)%& %6 -"# !1+&L)#,"+ ,+&48+&B -% $"%&'()&' Y,A+&4
Pd#AA%5 +..%5 )&4)0+-#, $"%&'()&' Y,A+&4@ -"# 5")-# )&4)0+-#, !1+&L)#,"+ ,+&48+&BS
$"%&'()&' *+,-#.& /#+0": a"#& -"), 0"+&&#A 5+, 8A%0B#4 89
0%&,-.10-)%& %6 + 8+&B )& <=M=@ )- 0%&-.+0-#4 '.+41+AA9 +&4 -"# !1+&
L)#,"+ ,+&48+&B 8#0%(# 0%&&#0-#4 -% $"%&'()&' Y,A+&4 #7#&-1+AA9:
!"# 3.%0#,, %6 (#.')&' 8#-5##& -"# !1+&L)#,"+ ,+&48+&B +&4
$"%&'()&' Y,A+&4 3.%7)4#, )&6%.(+-)%& 1,#61A )& -"# ,-149 %6 -"#
,+&48+&B -"+- ), )& -"# &%.-" 0"+&&#A +- 3.#,#&-K 8%-" %6 -"#
#(#.')&' A%0+-)%&, 5#.# +- -"# ,%1-"#+,- #&4 %6 $"%&'()&' *+,-#.&
/#+0" PW)':R S: I)@ #- +A: PD?<< S )&4)0+-#4 -"+- -"# #7%A1-)%& %6 -"#
,+&48+&B )& -"# &%.-" 0"+&&#A 5%1A4 6%AA%5 -"# .1A#, %6 -"#
$"+&'L)+&' #,-1+.9 6%. -"%1,+&4, %6 9#+., ,10" -"+- -"# ,+&48+&B
5%1A4 (%7# &%.-"5+.4 +&4 #7#&-1+AA9 8#0%(# 0%&&#0-#4 -% -"#
(+)&A+&4: !"1,@ 0%&,-.10-)%& %6 #(8+&B(#&-, -% 8A%0B -"# 0"+&&#A
P+, 5)-" -"# !1+&L)#,"+ ,+&48+&BS 0%1A4 8# 1,#61A )& 4#+A)&' 5)-"
-"# ,+&48+&B )& -"# G%.-" $"+&&#A: Y- ,"%1A4 8# &%-#4 -"+- -"# 6A%%4
-)4# &%.-" %6 -"# ,+&48+&B )& -"# &%.-" 0"+&&#A ,")6-, &%.-"5+.4
1&4#. -"# +0-)%& %6 -"# $%.)%A), 6%.0#@ 5")0" 5%1A4 8.)&' #66#0-)7#
W)':R *(#.'#&0# %6 -"# ,+&48+&B )& -"# &%.-" 0"+&&#A
Pd#AA%5 +..%5 )&4)0+-#, $"%&'()&' Y,A+&4@ -"# 5")-# )&4)0+-# -"#
,+&48+&B )& -"# &%.-" 0"+&&#A@ -"# 3)&B )&4)0+-#, -"# `#&',"+ Y,A+&4K
#A#7+-)%& %6 -"# 5+-#.A)&# %6 $"%&'()&' *+,-#.& /#+0" 5+, +8%1- k<: N (
)& 8%-" 0+,#,S
#.%,)%& -% -"# ,%1-"#.& 0%+,- %6 $"%&'()&' *+,-#.& /#+0": !"), (+9
+A,% 8# + 6+0-%. )& -"# .#0#&- .#-.#+- %6 -"# ,%1-"#.& 0%+,-A)&#: !"#
,+&48+&B )& -"# &%.-" 0"+&&#A ), 0A%,# -% $"%&'()&' *+,-#.& /#+0"
+&4 -"# #A#7+-)%& %6 -"# 5+-#.A)&# +- -"# ,+&48+&B )& -"# G%.-" $"+&
&#A 0%1A4 8# ,)()A+. -% -"+- %6 $"%&'()&' *+,-#.& /#+0": !"# #A#7+
-)%& %6 -"# 5+-#.A)&# +- -"# ,+&48+&B )& -"# G%.-" $"+&&#A 5+, +8%1-
k<:N ( PW)': RS:!"# #(#.')&' +.#+ +8%7# k<:N? ( 5+, 0%(31-#4 )&
H.0^Y;K )- '.#5 6.%( <: RN B(D)& <==M -% <D : D< B(D)& D?<<@
,1''#,-)&' +& )&0.#+,# %6 +8%1- ?:MQ B(Dj+: V1.)&' #(#.'#&0#@ -"#
133#. .#+0" %6 -"# ,+&48+&B )& -"# &%.-" 0"+&&#A 5+, +66#0-#4 89
.1&%66 +&4 (%7#4 +8%1- <:> B( 4%5&,-.#+(: H .#410-)%& )& -"#
+(%1&- %6 ,#4)(#&- -.+&,3%.-#4 -% -"# #,-1+.9 5%1A4 A)B#A9 ,A%5 -"#
4#7#A%3(#&- %6 -"# ,+&48+&B )& -"# &%.-" 0"+&&#A:
 C
/+,#4 %& 0%(3+.),%& %6 .#(%-# ,#&,)&' )(+'#, %7#. 6%.-9
9#+.,@ -"), ,-149 0%&6).(#4 -"+- -"# #(8+&B(#&-, +00#A#.+-#4 #2-#&
,)%& %6 -"# -)4+A 6A+-: !"# .#,1A-, +A,% )&4)0+-# -"+- -"# 0%&,-.10-)%& %6
#(8+&B(#&-, (%4)6)#4 -"# 4).#0-)%& %6 #2-#&,)%& %6 $"%&'()&'
*+,-#.& /#+0" +&4 )(3+0-#4 7#'#-+-)%& 0%7#. %1-,)4# -"# 8+&B,: !"#
(#.')&' %6 -"# !1+&L)#,"+ ,+&48+&B 5)-" $"%&'()&' Y,A+&4 0"+&'#4
4.+(+-)0+AA9 -"# 4).#0-)%& %6 #2-#&,)%& %6 -"# $"%&'()&' *+,-#.&
/#+0" +, + 5"%A#K B&%5A#4'# %6 -"), 3.%0#,, 0%1A4 8# 1,#61A )&
4).#0-)&' -"# 3.#,#&- ,-149 %6 -"# ,+&48+&B )& -"# &%.-" 0"+&&#A: !"#
(+)& 0%&0A1,)%&, %6 -"), ,-149 +.# +, 8#A%5:
P<S a)-" ,166)0)#&- ,#4)(#&-@ -"# 0%&,-.10-)%& %6 #(8+&B(#&-,
+00#A#.+-#4 -"# #2-#&,)%& %6 -)4+A 6A+-, )& -"# $"+&'L)+&' #,-1+.9: !"),
+00#A#.+-)%& 5+, (%,- %87)%1, )& -"# 6).,- -".## 9#+., +6-#. 0%&,-.10
UBninBnCy 3  
-)%& %6 #(8+&B(#&-,: /#0+1,# A#,, ,#4)(#&- 5+, -.+&,3%.-#4 -% -"#
#,-1+.9@ -"# .+-# %6 #2-#&,)%& %6 -"# 8#+0" ,A%5#4 4%5&:
P D S X&4#. &+-1.+A 0%&4)-)%&,@ $"%&'()&' *+,-#.& /#+0"
#2-#&4#4 -%5+.4 -"# &%.-" +&4 #+,-@ 81- -"), -.#&4 0%1A4 8# +A-#.#4 89
-"# 0%&,-.10-)%& %6 #(8+&B(#&-, +- A%5 #A#7+-)%&,: F#0#&-A9@ $"%&'
()&' *+,-#.& /#+0" "+, #2-#&4#4 -%5+.4 -"# ,%1-"#+,-:
PN S a)-" -"# )&6A1#&0# %6 .#6A#0-#4 -)4+A 01..#&-, +&4
4#7#A%3(#&- %6 -"# -)4+A 0.##B@ + A+.'# +.#+ %6 7#'#-+-)%& 0%7#.
%1-,)4# -"# #(8+&B(#&-, #7%A7#4 )&-% 8+.# -)4+A 6A+-: !"), 3.%0#,,
.#3#+-#4 5)-" #+0" %6 -"# #(8+&B(#&-,@ 5")0" 5#.# 0%&,-.10-#4 +-
4)66#.#&- -)(#,: *.%,)%& 0+1,#4 89 -)4+A 6A%5 +&4 -"# 3.%-#0-)%& )(3+.-#4
89 7#'#-+-)%& 0%7#. 3A+9#4 %33%,)-# .%A#, )& -"# 4#7#A%3(#&- %6 -"#
8#+0": X&4#. &#5 5+-#. +&4 ,#4)(#&- 0%&4)-)%&,@ (#-"%4, -% 3.%-#0-
-"# 0%+,- 5)-"%1- 4),-1.8)&' -"# 8)%A%')0+A #&7).%&(#&- %&
$"%&'()&' *+,-#.& /#+0" ,"%1A4 8# -"# ,18L#0- %6 61.-"#. .#,#+.0":
PQS !"# #7%A1-)%& %6 -"# !1+&L)#,"+ ,+&48+&B 6%AA%5#4 -"#
4#7#A%3)&' .#'1A+.)-9 %6 ,+&48+&B, )& -"# $"+&'L)+&' #,-1+.9 +&4
5+, +A,% )&6A1#&0#4 89 "1(+& +0-)7)-9: !"# -)4# )& -"# 0"+&&#A
8#-5##& -"# ,+&48+&B +&4 -"# ),A+&4 8.%1'"- #.%,)%& -% -"# 0%+,-K
-"# 0"+&&#A 0%&-.+0-#4 '.+41+AA9 +6-#. 8#)&' 8A%0B#4 89 8+&B, +&4
#7#&-1+AA9 4),+33#+.#4: !"), 3.%0#,, 0%1A4 4).#0- #23#.)(#&-+A ,-149
%6 -"# ,+&48+&B )& -"# G%.-" $"+&&#A )& 61-1.#:
!"+&B, -% d1"%&' `# +&4 H(9 T1) %6
-"# X&)7#.,)-9 %6 !%.%&-% 6%. -"#). "#A3 )& )(3.%7)&' -"# (+&1,0.)3-:
HA-(+)#. H +&4 O+&9 $: D??D: V)')-+A ,1.6+0# (%4#A '#&#.+-)%& 6.%(
$EFEGH ,+-#AA)-# )(+'#,: ]%1.&+A %6 J"%-%'.+((#-.9 +&4 F#(%-#
;#&,)&'@ C>PQS[ DD<
DNC
VEY[ <?:<?<>j;?=DQ
DM<>P?DS???Q>
<
$"+&'L)+&' a+-#. F#,%1.0# $%(()--##: D??M: $"+&'L)+&' ;#4)(#&-
/1AA#-)&: a1"+&[ $"+&'L)+&' J.#,,[C
<?
$"#& $ ]: <==?: $"+&'#, )& (14 6A+- +6-#. -)4#A+&4 8#)&' #&0A%,#4:
T+.)&# ;0)#&0# /1AA#-)&@ =PNS[ >=
MQ
$"#& ] d@ ;"#& ` !@ +&4 d1& $ _: <=RR: !"# V9&+()0+A J.%0#,, +&4
J"9,)%'&%(9 *7%A7#(#&- )& -"# d+&'-U# F)7#.: ;"+&'"+)[ ;"+&'"+)
;0)#&0# +&4 !#0"&%A%'9 J.#,,[ QCQ
$"#& ] d@ c"1 ` W@ V%&' d W +&4 ;1& ] T: <=RC: V#7#A%3(#&- %6 -"#
$"+&'L)+&' #,-1+.9 +&4 )-, ,18(#.'#4 4#A-+: $%&-)&#&-+A ;"#A6
F#,#+.0"@ QP<jDS[ QM
C>
VEY[ <?:<?<>j?DMR
QNQNPRCS=??D<
Q
$"#& G `@ a+&' _ +&4 d+&' ; W: D??M: l1+&-)-+-)7# #2-.+0-)%& %6 ,"+A
A%5 ,-.+-1( )&6%.(+-)%& 8+,#4 %& $%.%&+ )(+'#.9: ]%1.&+A %6
c"#L)+&' X&)7#.,)-9 P*&')&##.)&' ;0)#&0#S@ Q<PQS[ >>D
>>M
V#&' d +&4 $"#& ; J: <==<: !"# +33A)0+-)%& %6 6+A,# 0%A%. 0%(3%,)-#4
I+&4,+- )(+'#.9 )& (+33)&' 7#'#-+-)%&: *0%A%')0+A ;0)#&0#@ P<S[
=Q
=C
^+% c ^ +&4 c"+&' I l: D??>: Y4#&-)6)0+-)%& %6 -"# ,3#0-.+A 0"+.+0-#.),
-)0, %6 ,+A-(+.," 7#'#-+-)%& 1,)&' )&4).#0- %.4)&+-)%&[ + 0+,# ,-149
6.%( $"%&'()&' *+,-#.& /#+0"@ ;"+&'"+): ]%1.&+A %6 JA+&-
*0%A%'9@ N?PDS[ DCD
D>?
`+& c@ I)1 d@ d1& $ _ +&4 c"#&' ] `: D??=: !"# -#(3%.+A +&4 ,3+-)+A
49&+()0, .#,#+.0" %6 7#'#-+-)%& 0%((1&)-9 %& $"%&'()&' *+,-#.&
/#+0" 8+,#4 %& F; +&4 ^Y; jj J.%0##4)&' %6 -"# <Q-" $")&+
E0#+&)0 *&')&##.)&' ;9(3%,)1([ <<C=
<<>N
`# _ l@ V+) _ F@ I)1 l d@ I) I ] +&4 ^1 $ ]: D??Q: E8,#.7+-)%& +&4
+&+A9,), %6 -"# 3.%0#,, %6 3.#,#&-
4+9 (%.3"%A%'9 )& -"#
$"%&'()&' -)4+A 6A+- %6 -"# d+&'-U# F)7#. *,-1+.9: T+.)&# ^#%A%'9
b l1+-#.&+.9 ^#%A%'9@ DQPDS[ DN
DM
`# _ l@ V+) _ F +&4 ^1 $ ]: D?<? : ^#%(%.3")0 #7%A1-)%& %6 *+,-#.&
$"%&'()&' Y,A+&4 41.)&' -"# A+,- Q? 9#+., +&4 )-, 61-1.# -.#&4@
8+,#4 %& -"# ,#+ 0"+.-, 0%(3+.),%&: T+.)&# ^#%A%'9 b l1+-#.&+.9
^#%A%'9@ PQS[ <?C
<<N
I+& F l +&4 I)& I _: D???: $%.%&+ ;+-#AA)-# Y(+'#.9 +&4 )-, T+33)&'
H33A)0+-)%&,: ]%1.&+A % 6 Y&6%.(+-)%& *&')&##.)&' Y&,-)-1-#@ < P Q S[
<<<
<<Q
I) ] W@ W#&' I _@ _1 T@ d+% ` d +&4 $"#& a: D?<<: !"# 8#+0" 4#7#A
%3(#&- +&4 .#0A+(+-)%& &#+. -"# (%1-" 8+. 0"+&&#A, )& $"+&'L)+&'
*,-1+.9 jj J.%0##4)&', %6 -"# <C-" $")&#,# E0#+&)0 *&')&##.)&'
$%&6#.#&0#[ <<<=
<<DQ
I)+% ] d@ `1 $ d +&4 I)& c c: D?<?: *7%A1-)%& %6 5#-A+&4 )& d+&'-U#
F)7#. *,-1+.9: d+&'-U# F)7#.@ Q<PMS[ NR
QD
I)& W d@ d1+& c d +&4 $"#& l: D??N: F#7)#5 +&4 0%')-+-# %6 )&-#'.+-#4
#&')&##.)&' 5%.B, +- -"# ,#+8+&B, %6 !1+&L)#,"+ ;+&48+&B:
;"+&'"+) a+-#.@ PDS[ D=
N?
I)1 l d@ V+) _ F +&4 `# _ l: D??N : !"# ,#4)(#&-+.9 #&7).%&(#&- %6
-"# #+,- -)4+A 6A+- %6 -"# $"%&'()&' Y,A+&4: T+.)&# ^#%A%'9 I#--#.,@
<=P<DS[ <
Q
;"+% _ ;: <=RR: ^#&#-)0 0A+,,)6)0+-)%& %6 -)4+A 0.##B +&4 6+0-%., +66#0-)&'
)-, 4#7#A%3(#&-: H0-+ ^#%'.+3")0+ ;)&)0+@ QNP<S[ NC
QN
;"#& W@ ^+% H@ a1 ] J@ c"%1 d _ +&4 c"+&' ]: D??R: H .#(%-#A9
,#&,#4 +33.%+0" %& 5+-#.A)&# #2-.+0-)%& %6 ,)A-9 -)4+A 6A+- 6%. V*T
0%&,-.10-)%&
+ 0+,# ,-149 )& ])141+&,"+ ,"%+A %6 d+&'-U# F)7#.:
H0-+ ^#%4+#-)0+#- $+.-%'.+3")0+ ;)&)0+@ NMP<S[ <?D
<?M
;-%&# F: D??R: !".## '%.'#, 4+([ )&-% -"# 1&B&%5&: ;0)#&0#@ ND<PCRR=S[
>DR
>ND
VEY[ <?:<<D>j,0)#&0#:ND<:CRR=:>DR
a+&' / ;@ I)1 H $@ $"#& ` W +&4 I1 l: D??>: !"# ,-149 %& -)4+A 6A+-
+&4 ,"%+A +00.#-)%&
#.%,)%& #7%A1-)%& %6 ;"+&'"+) $)-9
, (+L%. +AA1
7)+A ),A+&4,: !"# J.%0##4)&', %6 -"# = -" G+-)%&+A *,-1+.)&# +&4
$%+,-+A ;9(3%,)1([ D
<?
a+&' I +&4 c"+&' !: D??C: !"# 4#7#A%3(#&- +&4 0"+&'# %6 $"%&'()&'
*+,-#.& /#+0" )& <C 9#+.,: ;"+&'"+) ^#%A%'9@ PDS[ R
<?@ <C
a+&' I@ I) ]@ d+&' ]@ c"+&' ! +&4 $+) d I: D??R: H&+A9,), %6 -"# A+&4
,0+3# 3+--#.& 0"+&'# +&4 -"# )&6A1#&0# 0+1,#4 89 4)B)&' +&4 4#7#A
%3(#&- +0-)7)-)#, )& #,-1+.)&# -)4+A 6A+- 5#-A+&4: ]%1.&+A %6 H&"1)
H'.)01A-1.+A ;0)#&0#,@ N>PDNS[ <?<N<
<?<NQ
d+&' ; I@ /#AB)& Y T@ /#AB)&+ H Y@ c"+% l d@ c"1 ] +&4 V)&' J _:
D??N: V#A-+ .#,3%&,# -% 4#0A)&# )& ,#4)(#&- ,133A9 6.%( -"#
d+&'-U# F)7#.[ #7)4#&0# %6 -"# .#0#&- 6%1. 4#0+4#, +&4 #23#0-+-)%&,
6%. -"# &#2- "+A6
0#&-1.9: *,-1+.)&#@ $%+,-+A +&4 ;"#A6 ;0)#&0#@ CM
PQS[ >R=
>==
VEY[ <?:<?<>j;?DMD
MM<QP?DS ??Q?=
D
_)# V W@ W+& V V +&4 ^+% ;: D??> : WA+- %6 $"%&'()&' Y,A+&4 +&4 )-,
)(3+0-, %& -"# ,#4)(#&- 4),-.)81-)%&: T+.)&# ^#%A%'9 b l1+-#.&+.9
^#%A%'9@ D>PDS[ =
<>
d+&' ; I@ d+% d T +&4 `# ; I: <=== : $%+,-+A 3.%6)A# ,"+3# +&4
#.%,)%&
+00.#-)%& 0"+&'#, %6 -"# ,#4)(#&- ),A+&4, )& -"# $"+&'L)+&'
F)7#. *,-1+.9: E0#+&%A%')+ *! I)(&%A%')+ ;)&)0+@ N?P>S[ M>Q
M>=
d+&' ; I@ ;") c +&4 c"+% l d: D??<: Y&6A1#&0# %6 -)4+A (+.," 7#'#-+
-)%&, %& "94.%49&+()0, +&4 ,#4)(#&-+-)%& )& -"# $"+&'L)+&'
*,-1+.9: H0-+ E0#+&%A%')0+ ;)&)0+@ DNPQS[ MC
R?
d+&' d _@ a1 I I@ c"+% ^ d +&4 d+&' $ T: D??Q : !"# 4#'.+4+-)%&@
3.#,#&- 0%&4)-)%& +&4 3.%-#0-)%& %6 -"# #+,- (14 6A+- %6 $"%&'()&'
Y,A+&4: X.8+& F#,#+.0"@ <=P<DS[ <?
<D
d1& $ _: D??Q: !"# /+,)0 F1A#, %6 -"# d+&'-U# F)7#. *,-1+.9 F#0#&-
V#7#A%3(#&-: /#)L)&'[ E0#+& J18A),"#. )& $")&+[ D
D=
c"+&' l@ _1 $ d@ /#0B#. ; +&4 ])+&' !: D??> : ;#4)(#&- +&4 .1&%66
0"+&'#, )& -"# d+&'-U# F)7#. 8+,)& 41.)&' 3+,- C? 9#+.,: ]%1.&+A %6
`94.%A%'9@ NN<PN jQS[ C<<
CDN
VEY[ <?:<?<> jL: L"94.%A:D??> :?C :
?N>
c"+% $ l@ T+% c $@ d1 cd@ _1 ` ^ +&4 I) ] W: D??R : !"# +&+A9,), %6
-"# #+,-#.& $"%&'()&' -)4+A 6A+-
, #7%A1-)%& )& -"# d+&'-U# F)7#.
*,-1+.9: !.+&,+0-)%&, %6 E0#+&%A%'9 +&4 I)(&%A%'9@ PNS[ DM
NQ
c"#&' c ;: D??M : F#-.)#7+A +&4 H&+A9,), %6 *A#7+-)%& +- T146A+- X,)&'
F#(%-# ;#&,)&': ;"+&'"+)[ *+,- $")&+ G%.(+A X&)7#.,)-9[ D=
N>
... Therefore, reclamation in the YRD tidal flat promotes the development of tidal creek curvature [24]. The large-scale reclamation activities of the eastern Chongming tidal flat in the Changjiang River Estuary have gradually disappeared from the tidal creek system in the northeast [28]. Coastal engineering, such as dikes, also affects hydrodynamics and erosion and deposition of sediments, resulting in tidal flat evolution [29], but usually with a threshold limitation [30]. ...
... The TP reclamation project was built in 2010, and a large bare tidal flat outside the seawall was formed. The tidal creeks became more erodible due to vegetation loss [28,73,74]. A large area characterized by tidal creeks disappeared. ...
... The number of tidal creeks increased with the increase in vegetation density, and the CC value was 0.79 ( Figure 12c). Furthermore, because vegetation constrained the lateral swing and development of tidal creeks [28], tidal creeks inside the vegetation area are mostly high-grade, which are longer in the longitudinal direction and have fewer branching points (Figure 12d). ...
Article
Full-text available
Tidal flat plays an important role in coastal development because of its ecological and spatial resources. We take the southern tidal flat in the macro-tidal turbid Hangzhou Bay as an example to study the long-term (1990–2020) evolution of the muddy tidal flat, using remote sensing data and field observational data. The detailed bathymetric elevation of the tidal flat is obtained, using remote sensing images of Landsat and Sentinel-2, combined with the real-time kinematic (RTK) data. The correlation coefficient between the remote sensing data and the RTK data is 0.73. The tidal flat and vegetation areas are affected by reclamation. The total tidal flat area decreased by 467.78 km². The vegetation area declined from 64.98 km² in 2000 to 13.41 km² in 2015 and recovered to 41.62 km² in 2020. The largest change in tidal flat slope occurs in the eastern and western sides of the tidal flat, compared with the wide middle part. The total length of tidal creeks decreased to 45.95 km in 2005 and then increased to 105.83 km in 2020. The middle- and low-grade tidal creeks accounted for 91.4%, with a curvature slightly larger than 1 in 2020. High-grade tidal creeks occur inside the vegetation areas, with less bending and fewer branch points. Vegetation promotes the development of tidal creeks but limits the lateral swing and bifurcation. These results provide a basis for the management of global tidal flat resources and ecosystems.
... Reclamation is bound to influence intertidal morphodynamics (Chen, 1990;Jiang and Feng, 1991;Wang et al., 2012;Lu and Jiang, 2013;Wei et al., 2017). Studies have revealed that reclamation can influence the local tidal dynamics, including amplitude, asymmetry, and tidal currents (Manda and Matsuoka, 2006;Lu et al., 2009;Gao et al., 2014;Lin et al., 2015). ...
... The extent to which the equilibrium is changed by reclamation depends on many factors, including the height of dikes and the relative location. Lu and Jiang (2013) reported the impact of sequential reclamation on eastern Chongming Island, which shows different accretion rates for different reclamation projects, possibly related to the elevation All simulations start from the same initial equilibrium profile as in Figure 3, and the time span is 20 years. The wave climate and sediment supply are varied to simulate tidal flats that are not in equilibrium. ...
... When tidal flats are not in equilibrium, the natural evolution and the reclamation-induced adjustment are coupled together. On prograding flats, the enclosure accelerates the natural accretion, which has been established in previous studies at different sites (Chen, 1990;Lu and Jiang, 2013;Li et al., 2016). In this case, upper-flat enclosure is desirable because it brings land resources while maintaining the sustainability of tidal flats. ...
Article
Full-text available
Reclamation is one of the most prominent anthropogenic activities affecting tidal flat morphology and the related ecosystem service. Two representative types of reclamation are upper-flat enclosure and lower-flat enrockment. From a historical perspective, different type of reclamation was adapted in different areas in ancient China. As previous studies on reclamation are often site-specific, the reason that leads to such a difference is unclear. The intertidal dynamic equilibrium theory (DET) provides a comprehensive framework for this quest. Here, we extend the DET with additional effects of reclamation. A model based on DET (DET-ESTMORF) was applied to investigate the impact of reclamation on tidal flats. The model was validated by comparing our results against previous records and observations. Results show that both types of reclamation induce morphological adjustment by enhancing local accretion, which upset the previous equilibrium. Specifically, upper-flat enclosure drives tidal flats into evolution toward wave dominance, whereas lower-flat enrockment causes adjustment toward tidal dominance. Next, the impact of reclamation on tidal flats in different states (prograding or retreating) was investigated. We show that both enclosure and enrockment can induce accretion despite the varying wave climate and sediment supply, with the mean accretion rate raised by 1.8 cm/year and 1.2 cm/year, respectively. However, the resulting profiles are different in shape, especially on retreating flats. Finally, we point out that tidal range and sediment supply are the potential reasons affecting the choice of reclamation types in practices.
... It can be seen that the excessive wetland exploitation was eased and the whole landscape tended to become stable after 2000. Furthermore, the Chongming Dongtan and Jiuduansha Wetland nature reserves were established in 2000, and Shanghai, also contributed to the area of the hypsometric 6 m curve conservation (Lu and Jiang, 2013;Li et al., 2016). The trend of natural wetland loss did not cease until 2000, even though China joined the Ramsar Convention in 1992 (Chen et al., 2018). ...
... During the period 1980 to 1990, the fragmentation of the entire landscape increased owing to the development of culture ponds, as other wetland types showed a downward trend (Fig. 5d, Fig A.3d). Simultaneously, the fast urbanization and reclamation projects have been affecting the estuarine environments of Yangtze River in recent years (Lu and Jiang, 2013;Yu and Bin, 2006), although it helped shape the landscape pattern. Peter et al. (2007) and Peters et al. (2008) believe that human activities at the socio-economic level can promote landscape changes at multiple scales. ...
Article
In this study, the land use/cover vector data for 1960, 1980, 1990, 2000, 2010, and 2015 were used to calculate and characterize the landscape metrics and dynamics of the Yangtze Estuary. The hypsometric 6m curve was first delineated and considered in the research of the Yangtze Estuary wetlands landscape patterns. The associated landscape-changing driving forces were then analyzed through correlation analyses using socioeconomic variables. Three main conclusions were obtained from the results. First,from 1960, the total area of coastal wetlands consistently increased while the trend of landscape patterns became more complicated. According to the associated economic development policy during the studied period, the year 2000 was found to be a boundary after which the landscape metrics differed from prior years.Second, the hypsometric 6m curve can provide indispensable information for characterizing wetland patterns. Even though the patterns are similar when the hypsometric 6 m curve is not considered, the change range of the landscape metrics differs, and the extent and intensity of the metrics are higher than when the hypsometric 6m curve is not considered. Third, agriculture and urban development are recognized as the major factors driving landscape evolution. This study emphasizes the importance of integrating land and sea when crafting wetlands conservation policies on coasts around the world.
... For instance, peatlands store up to one-third of global soil carbon and thus play an important role in the carbon cycle (United Nations Environment Programme, 2022). Tidal marshes provide refuge habitats for fish and invertebrates, filter contaminants, protect shoreline from erosions, and store carbon (Lu & Jiang, 2013). Despite the importance of various types of wetlands, their losses and degradation have persisted worldwide in the past few decades (Davidson, 2014). ...
Article
Full-text available
Wetlands provide numerous ecosystems services and benefits that are essential for human society and the environment. However, wetlands have suffered significant loss and degradation globally over the past few centuries due to human disturbances and climate change. It is thus critical to monitor wetlands comprehensively and manage effectively. Meanwhile, comprehensive monitoring is challenging due to difficulties in collecting various wetland data (e.g. in situ hydrological and ecological data, remote sensing images), data analysis using diverse models (e.g. physically based and data-driven), and data visualization. Digital twins, which integrate data collection, analysis, visualization, and sharing into a comprehensive platform, are promising for addressing these challenges. While the concepts and technologies of digital twins have been frequently explored for cities and farms, they have been discussed far less for wetlands. This study attempts to explore the concept of wetland digital twins, identify technologies needed, and discuss associated challenges and opportunities. Though technologies from digital twins of cities and farms are transferable, it is essential to recognize the unique challenges of wetlands, such as their remote locations, limited accessibility, and the need to minimize human interventions. This study aims to bring insights to wetland policymakers and practitioners, promoting digital twins for more effective managements.
... The results indicated that breakwaters caused an average wave damping of 10-50% on average, being an obstacle for sediment transport and hence impeded long-term saltmarsh survival (Vona et al., 2020). In addition, remote sensing images and aerial photos were used to study the dynamic changes before and after the embankment of saltmarshes (Lu and Jiang, 2013;Almeida et al., 2014). ...
Article
Full-text available
Artificial coastal dykes have been widely built to prevent erosion, or to accelerate sedimentation processes in saltmarshes. To investigate the sediment dynamic changes induced by construction of dykes, three observation stations were set around a dyke within an expanding Scirpus mariqueter saltmarsh, in southern Hangzhou Bay. The hydrodynamics of the study area was dominated by tidal currents. The presence of dyke, in combination with the adjacent tidal creek, altered the hydrodynamic boundary conditions, thereby affecting the flow field. When the tidal flows approaching the dyke, the speed was accelerated at the head of the dyke and then decreased at the rear, due to the narrowing effect of the dyke head. Turbulence intensity around the dyke showed a similar pattern to that of the tidal flows. The net sediment input behind the dyke is approximately 2.3 times of that at the dyke head, illustrating sediment deposition in the back region of the dyke. As a result, flows entrained the sediments and then deposited behind the dyke to cause a local accretion to promote saltmarsh vegetation succession from a dominance of native species to exotic species (Spartina alterniflora). The construction of dykes should be taken into account for future coastal wetland management.
... The embankments interrupted the tidal current, decreased the water flow velocity, and restricted the sedimentcarrying capacity, thus accelerating wetland sedimentation . Subsequently, Lu and Jiang (2013) also identified that the ECW underwent a remarkable expansion in the first three years following the construction of the embankments in 1999 and then gradually recovered to equilibrium conditions. The results indicate that mudflat areas in 2002-2003, 2010, 2013, and 2015 appeared to increase (Fig. 4C), which confirms that these projects dramatically promoted mudflat expansion in the following 1-2 years (Fig. 11). ...
Article
The extreme decline in fluvial sediment discharge and rapid increase in sea level have increased salt marsh vulnerability in some of the world’s mega-delta. However, limited research has addressed both the vertical accretion and horizontal/lateral progradation of salt marshes induced by anthropogenic activities in recent decades. Here, a machine learning-based method for retrieving remote sensing images of the salt marsh along the Eastern Chongming Wetland (ECW), the largest wetland in the Yangtze River Delta, was used to monitor salt march dynamics between 2002 and 2019. The results demonstrate that salt marshes have experienced significant expansion, including seaward progradation and accretion with ranges of -18.5-60.6 m/yr and 0.103-0.178 m/yr, respectively. Nevertheless, the bare mudflat areas adjoining the salt marshes have remained almost unchanged, while their progradation and accretion have also shown similar trends with the ranges of -13.3-103.7 m/yr, and 0.066-0.256 m/yr, respectively. Although there was a 70% reduction in fluvial sediment supply in the Yangtze River Delta after the Three Gorges Dam (TGD) began operating in 2003, it is less understood if the constant local suspended sediment concentration (SSC) of the estuary could be responsible for supporting enough sediment to enable salt marsh and mudflat expansions. Meanwhile, the results showed that the seaward expansion of the mudflats provided suitable space for the salt marsh to trap vast amounts of sediment and gradually occupy the adjoining mudflat area. The mudflat progradation further provided a larger space for the growth of salt marsh vegetation and promoted salt marsh expansion. Moreover, the accretion of the ECW indicates the high resilience of these salt marshes to sea-level rise (SLR). The present work highlights the external factors and internal driving forces of the salt marsh evolution process, providing information that can be used by communities and coastal managers to conserve and restore the salt marshes in the future.
... Nonetheless, only a few studies on historical urban sprawl in a small number of cities have used historical map archives. In addition, a combination of Landsat and high-resolution remote sensing images obtained from spy satellites during the 1960s and 1970s (e.g., Keyhole-CORONA images) have been used in studies on land use and land cover changes (LUCC) (Li et al., 2003(Li et al., , 2015Shahtahmassebi et al., 2017;Saleem et al., 2018), archeological sites (Scardozzi, 2011, seashore reclamation (Lu and Jiang, 2013) and geology (Lorenz, 2004) in different world regions. These images recorded true and useful information on LUCC and urban features used for geospatial analyses. ...
Article
Urban expansion has become one of the most intense types of land use transitions worldwide. How to theoretically explain urban expansion under different political regimes from the perspective of land use transitions is a vital question. We therefore revealed the urban expansion in the Guangzhou metropolitan area during 1665–2017 by using historical maps and remote sensing images. The results showed that the international trade policy directly affected urban expansion and the emergence of new buildings with educational and religious functions during 1665–1907. During 1912–1938, the political regime change in the Nationalist Era caused a climax of urban expansion. However, urban expansion was again obvious in the Socialist Era after 1949, and China’s reform and opening-up policy in 1978 further promoted Guangzhou’s urban expansion. The direction and scale of Guangzhou’s urban expansion were in line with policies and urban planning. Moreover, land policy and urban planning triggered more orderly urban expansion than socioeconomic drivers, especially in political regime change periods. The declining overall urban expansion speed from 1860 to 2017 illustrated that urban expansion triggered land use transitions and that conflicts tended to stabilize. The abovementioned evidence indicates that variance in the level of social and economic development caused by policy obviously affected the degree of urban expansion and ultimately tended toward orderliness. Our research first contributes to revealing the urban expansion that occurred under different political regimes using long-term hybrid spatial data and then theoretically illustrates the driving mechanism of urban expansion affected by land policies, urban planning, and socioeconomic development under different political regimes from the perspective of land use transitions.
... To meet the increasing demand for new land by city and port expansions, or other purposes, large-scale sea reclamation has been carried out in the Shanghai municipality since the 1960s (Yu and Bin, 2006), with 649.99 km 2 reclaimed there between 1979 and 2014 (Meng et al., 2017). This area is mainly distributed near Hengsha Island, Chongming Island, and the east shoal of Nanhui (Lu and Jiang, 2013;Xu and Chen, 2011). Of notable interest are the different reclamation methods in these areas: enclosed reclamation on the east shoal of Hengsha Island; semi-closed reclamation on the east shoal of Chongming Island; opened reclamation on the east shoal of Nanhui. ...
Article
The effects of enclosed, semi-closed, and opened reclamation methods on the macrobenthos community structure were investigated. Compared with their paired controls, water salinity decreased sharply in the enclosed reclamation region with no apparent change in the opened reclamation region. Declining species and biodiversity was observed in the reclamation regions, but the extent of this declining trend was weaker in the semiclosed and opened reclamations than in the enclosed reclamation region. The ABC curve indicated that the enclosed reclamation was disturbed, whereas the semi-closed and opened reclamations were undisturbed. Taken together, these results suggest that reclamation may have a negative effect on the community and health status of macrobenthos in the intertidal wetlands of the Yangtze Estuary. Semi-closed and opened reclamation methods may mitigate the problem of a salinity decrease caused by enclosed reclamation, while also having a relatively weaker negative effect on community structure and wetland habitat.
... The Jiuduan Shoal, East Chongming Mudflat and East Nanhui Mudflat experienced continuous accretion in the study period. A tidal inlet located at the southeast side of the East Chongming Mudflat before 1986 was reclaimed during 1986-1997 (specifically in 1991 as reported by Lu and Jiang, 2013). A new tidal channel at its seaward side formed after this reclamation, with the same channel orientation relative to the old one (Figs. ...
Article
The Yangtze Estuary in China has been intensively influenced by human activities including altered river and sediment discharges in its catchment and local engineering projects in the estuary over the past half century. River sediment discharge has significantly decreased since the 1980s because of upstream dam construction and water-soil conservation. We analyzed bathymetric data from the Yangtze Estuary between 1958 and 2010 and divided the entire estuary into two sections: inner estuary and mouth bar area. The deposition and erosion pattern exhibited strong temporal and spatial variations. The inner estuary and mouth bar area underwent different changes. The inner estuary was altered from sedimentation to erosion primarily at an intermediate depth (5-15 m) along with river sediment decline. In contrast, the mouth bar area showed continued accretion throughout the study period. The frequent river floods during the 1990s and simultaneously decreasing river sediment probably induced the peak erosion of the inner estuary in 1986-1997. We conclude that both sediment discharge and river flood events played important roles in the decadal morphological evolution of the Yangtze Estuary. Regarding the dredged sediment, the highest net accretion rate occurred in the North Passage where jetties and groins were constructed to regulate the navigation channel in 1997-2010. In this period, the jetties induced enhanced deposition at the East Hengsha Mudflat and the high accretion rate within the mouth bar area was maintained. The impacts of estuarine engineering projects on morphological change extended beyond their sites.
Article
Tidal creeks are the main channels of land-sea ecosystem interactions, and their high dynamics are an important factor affecting the hydrological connectivity of tidal flats. Taking the Yellow River Delta as the research area, we selected remote sensing images obtained during five periods from 1998 to 2018 as the data sources. Based on the spatial analysis function in GIS, the typical morphological characteristics of tidal creeks, such as the level, length, density, curvature, bifurcation ratio, and overmarsh path length (OPL), were extracted to characterize the degree of development of the tidal creeks in the Yellow River Delta wetlands. The spatio-temporal evolution of the tidal creeks was studied, and the development process and the characteristics of the tidal creeks during the different stages of development were investigated. The results revealed that (1) The number, density, and bifurcation ratio of tidal creeks exhibit an increasing trend, but the growth of the trend is slowing. The number of tidal creeks increased by 44.9% from the initial stage of the Yellow River diversion to the late stage of the wetland restoration, but it only increased by 26.2% from the late stage of the wetland restoration to the slow expansion of the Spartina alterniflora. (2) The curvature of the tidal creeks on the landward side is greater than that on the seaward side. (3) The development degree of tidal creek has spatial heterogenetiy, which is Area III > Area II > Area I. (4) The drainage efficiency is significantly correlated with the tidal creak density and bifurcation ratio. Based on the analysis of the various morphological parameters and the drainage efficiency, it was found that after the rapid change in the tidal creek system in the early stage, the tidal creeks entered a state of slow change, and the development state of the tidal creeks tends to be in dynamic balance. The results of this study are expected to provide scientific support for the sustainable development and utilization of coastal tidal flats.
Article
Full-text available
Tidal flat as geographically terrestrial and oceanic transition area is generally not mapped, also called "mapping blank area". However, it has paramount significance due to containing rich land and biological resources. For this reason, this paper discussed an approach that was how digital elevation model (DEM) of tidal flat was established by a series of waterlines extracted from multi-temporal Landsat Thermal Mapper (TM) data. It was found that each TM spectral band has distinct sensitivity to waterline extraction, and short-wave infrared band is optimistic for waterline extraction based on sand-flat type, but not on silty-flat type. The attribute of sets of waterline from multi-temporal satellite data were assigned into tidal level value by the estimation from tidal station record while the satellite was passing through the studied area. Then, DEM from waterline extraction was built with GIS. Compared with the results of in situ mapping, relative error was less than 0.5 m in most regions, and mean error was 0.18 m.
Conference Paper
After analyzing the classification and training ability of a wavelet neural network (WNN), a novel WNN learning scheme integrating immunity based evolutionary algorithm (IDEA) is proposed, in which, IDEA is an evolutionary algorithm with an embedded immune mechanism. When WNN is used as a classifier, the process of seeking the least mean-square error (LMS) of an optimal problem is equivalent to that of finding the wavelet feature with maximal separability, namely, maximizing its separable division. On the other hand, with the capability of robust learning of its evolutionary process, IDEA is able to eliminate local degenerative phenomenon due to blindfold behaviors of original operators in the existing evolutionary algorithms. In the case of the twin-spiral problem, experimental simulation shows the feasibility of WNN training with the IDEA based learning algorithm.
Article
Since the postglacial transgression, the Changjiang estuary has undergone a progressive progradation seaward of shoals and tidal flats fringing the south bank, merging of linear sandbanks with the north bank, successive filling and narrowing of the estuarine embayment, and a resultant seaward migration of the river mouth. Knowledge of the development and evolution of the Changjiang estuary and its subaqueous delta are critical in selecting navigational channels, managing coastal resources and fisheries, as well as reclaiming coastal areas for cultivation.
Article
Digital surface models (DSMs) are used for various analyses in environmental science, e.g. for erosion and water studies. Aerial photos and maps, which are necessary for the extraction of DSMs, often do not exist due to financial or political reasons. This situation can be also encountered in Morocco and, in particular, a test area of the international research project IMPETUS was used in this study. Therefore, stereo satellite images of CORONA have been used, as they allow DSM generation, have a ground resolution of 1.83 m, reasonable price (US$12–18 per filmstrip of 188×14 km) and large coverage (especially of Asia and eastern Europe). The software program ERDAS IMAGINE OrthoBASE Pro was used to generate DSMs automatically from CORONA satellite images with best vertical accuracy of about 10 m and planimetric accuracy of about 3 m. These DSMs could afterwards be used to generate orthoimages, e.g. for mapping change detection and generating thematic maps or land use classifications.