Article

DNA testing: New tools for diagnosis and prevention of inherited diseases in dogs and cats

Authors:
To read the full-text of this research, you can request a copy directly from the authors.

Abstract

Many genetic tests are nowadays available to identify the most common inherited diseases in dogs and cats. DNA based diagnostic procedures allow to clearly identify affected, clear and carrier animals for the mutations of interest. They allow the early identification of the healthy, affected and carrier animals even for 'late onset' (that develop years after birth) or with incomplete penetrance pathologies (when some individuals fail to express the trait, even though they carry the allele). In the following paper the transmission and prevention procedures for common inherited disorders with some results on prevalences, through the analysis of data collected by Vetogene spin off of the University of Milan in Italy, are presented.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

ResearchGate has not been able to resolve any citations for this publication.
Article
Full-text available
To identify the causative mutation of canine progressive retinal atrophy (PRA) segregating as an adult onset autosomal recessive disorder in the Basenji breed of dog. Basenji dogs were ascertained for the PRA phenotype by clinical ophthalmoscopic examination. Blood samples from six affected cases and three nonaffected controls were collected, and DNA extraction was used for a genome-wide association study using the canine HD Illumina single nucleotide polymorphism (SNP) array and PLINK. Positional candidate genes identified within the peak association signal region were evaluated. The highest -Log10(P) value of 4.65 was obtained for 12 single nucleotide polymorphisms on three chromosomes. Homozygosity and linkage disequilibrium analyses favored one chromosome, CFA25, and screening of the S-antigen (SAG) gene identified a non-stop mutation (c.1216T>C), which would result in the addition of 25 amino acids (p.*405Rext*25). Identification of this non-stop SAG mutation in dogs affected with retinal degeneration establishes this canine disease as orthologous to Oguchi disease and SAG-associated retinitis pigmentosa in humans, and offers opportunities for genetic therapeutic intervention.
Article
Full-text available
Canine cone-rod dystrophy 1 (cord1) has been previously mapped to CFA15, and a homozygous 44-bp insertion in exon 2 (Ins44) of canine RPGRIP1 (cRPGRIP1(Ins/Ins)) has been associated with the disease. However, from the recent identification of a significant discordance in genotype-phenotype association, we have reexamined the role of cRPGRIP1 in cord1. Retinal structure and function was assessed by clinical retinal examination, noninvasive imaging, electroretinography, and histopathology/immunohistochemistry. cRPGRIP1 splicing was analyzed by RT-PCR. Retinal gene expression was determined by quantitative RT-PCR (qRT-PCR). Five markers spanning the entire cRPGRIP1 were identified and used for haplotyping. Electroretinography demonstrated that cone responses were absent or present in cRPGRIP1(Ins/Ins) individuals. Moreover, performance in vision testing and optical coherence tomography (OCT) were comparable in cRPGRIP1(Ins/Ins) dogs, regardless of the cone ERG status. While histologic changes in retinal structure were minimal, immunohistochemistry demonstrated a lack of cone opsin labeling in cRPGRIP1(Ins/Ins) dogs. cDNA analysis revealed that Ins44 disrupts a putative exonic splicing enhancer that allows for skipping of exon 2, while retaining the functional RPGR-interacting domain (RID) of the protein. New cRPGRIP1 sequence changes were identified, including a 3-bp deletion affecting the 3' acceptor splice site of alternative exon 19c. The extended haplotype spanning cRPGRIP1 was identical in cRPGRIP1(Ins/Ins) dogs with and without retinal degeneration. Gene expression analysis showed that expression levels were not associated with Ins44 genotype. The results indicated that cRPGRIP1 Ins44 is an unlikely primary cause of cord1, and that the causal gene and mutation are likely located elsewhere in the critical disease interval.
Article
Full-text available
EPIDERMOLYSIS bullosa (EB) is a genetic disease involving the skin and mucous membranes in human beings, horses, cattle, sheep, cats and dogs ([Bruckner-Tuderman and others 1991][1], [Olivry and others 1999][2], [Jiang and Uitto 2005][3], [Magnol and others 2005][4], [Fine and others 2008][5], [
Article
Full-text available
To identify the causative mutation in a canine cone-rod dystrophy (crd3) that segregates as an adult onset disorder in the Glen of Imaal Terrier breed of dog. Glen of Imaal Terriers were ascertained for crd3 phenotype by clinical ophthalmoscopic examination, and in selected cases by electroretinography. Blood samples from affected cases and non-affected controls were collected and used, after DNA extraction, to undertake a genome-wide association study using Affymetrix Version 2 Canine single nucleotide polymorphism chips and 250K Sty Assay protocol. Positional candidate gene analysis was undertaken for genes identified within the peak-association signal region. Retinal morphology of selected crd3-affected dogs was evaluated by light and electron microscopy. A peak association signal exceeding genome-wide significance was identified on canine chromosome 16. Evaluation of genes in this region suggested A Disintegrin And Metalloprotease domain, family member 9 (ADAM9), identified concurrently elsewhere as the cause of human cone-rod dystrophy 9 (CORD9), as a strong positional candidate for canine crd3. Sequence analysis identified a large genomic deletion (over 20 kb) that removed exons 15 and 16 from the ADAM9 transcript, introduced a premature stop, and would remove critical domains from the encoded protein. Light and electron microscopy established that, as in ADAM9 knockout mice, the primary lesion in crd3 appears to be a failure of the apical microvilli of the retinal pigment epithelium to appropriately invest photoreceptor outer segments. By electroretinography, retinal function appears normal in very young crd3-affected dogs, but by 15 months of age, cone dysfunction is present. Subsequently, both rod and cone function degenerate. Identification of this ADAM9 deletion in crd3-affected dogs establishes this canine disease as orthologous to CORD9 in humans, and offers opportunities for further characterization of the disease process, and potential for genetic therapeutic intervention.
Article
Full-text available
To identify genes and molecular mechanisms associated with photoreceptor degeneration in a canine model of XLRP caused by an RPGR exon ORF15 microdeletion. Methods. Expression profiles of mutant and normal retinas were compared by using canine retinal custom cDNA microarrays. qRT-PCR, Western blot analysis, and immunohistochemistry (IHC) were applied to selected genes, to confirm and expand the microarray results. At 7 and 16 weeks, respectively, 56 and 18 transcripts were downregulated in the mutant retinas, but none were differentially expressed (DE) at both ages, suggesting the involvement of temporally distinct pathways. Downregulated genes included the known retina-relevant genes PAX6, CHML, and RDH11 at 7 weeks and CRX and SAG at 16 weeks. Genes directly or indirectly active in apoptotic processes were altered at 7 weeks (CAMK2G, NTRK2, PRKCB, RALA, RBBP6, RNF41, SMYD3, SPP1, and TUBB2C) and 16 weeks (SLC25A5 and NKAP). Furthermore, the DE genes at 7 weeks (ELOVL6, GLOD4, NDUFS4, and REEP1) and 16 weeks (SLC25A5 and TARS2) are related to mitochondrial functions. qRT-PCR of 18 genes confirmed the microarray results and showed DE of additional genes not on the array. Only GFAP was DE at 3 weeks of age. Western blot and IHC analyses also confirmed the high reliability of the transcriptomic data. Several DE genes were identified in mutant retinas. At 7 weeks, a combination of nonclassic anti- and proapoptosis genes appear to be involved in photoreceptor degeneration, whereas at both 7 and 16 weeks, the expression of mitochondria-related genes indicates that they may play a relevant role in the disease process.
Article
Full-text available
A naturally occurring animal model of familial hypertrophic cardiomyopathy (FHCM) is lacking. We identified a family of Maine coon cats with HCM and developed a colony to determine mode of inheritance, phenotypic expression, and natural history of the disease. A proband was identified, and related cats were bred to produce a colony. Affected and unaffected cats were bred to determine the mode of inheritance. Echocardiography was used to identify affected offspring and determine phenotypic expression. Echocardiograms were repeated serially to determine the natural history of the disease. Of 22 offspring from breeding affected to unaffected cats, 12 (55%) were affected. When affected cats were bred to affected cats, 4 (45%) of the 9 were affected, 2 (22%) unaffected, and 3 (33%) stillborn. Findings were consistent with an autosomal dominant mode of inheritance with 100% penetrance, with the stillborns representing lethal homozygotes that died in utero. Affected cats usually did not have phenotypic evidence of HCM before 6 months of age, developed HCM during adolescence, and developed severe HCM during young adulthood. Papillary muscle hypertrophy that produced midcavitary obstruction and systolic anterior motion of the mitral valve was the most consistent manifestation of HCM. Cats died suddenly (n=5) or of heart failure (n=3). Histopathology of the myocardium revealed myocardial fiber disarray, intramural coronary arteriosclerosis, and interstitial fibrosis. HCM in this family of Maine coon cats closely resembles the human form of FHCM and should prove a valuable tool for studying the gross, cellular, and molecular pathophysiology of the disease.
Article
Full-text available
Hypertrophic cardiomyopathy (HCM) is one of the most common causes of sudden cardiac death in young adults and is a familial disease in at least 60% of cases. Causative mutations have been identified in several sarcomeric genes, including the myosin binding protein C (MYBPC3) gene. Although numerous causative mutations have been identified, the pathogenetic process is still poorly understood. A large animal model of familial HCM in the cat has been identified and may be used for additional study. As the first spontaneous large animal model of this familial disease, feline familial HCM provides a valuable model for investigators to evaluate pathophysiologic processes and therapeutic (pharmacologic or genetic) manipulations. The MYBPC3 gene was chosen as a candidate gene in this model after identifying a reduction in the protein in myocardium from affected cats in comparison to control cats (P<0.001). DNA sequencing was performed and sequence alterations were evaluated for evidence that they changed the amino acid produced, that the amino acid was conserved and that the protein structure was altered. We identified a single base pair change (G to C) in the feline MYBPC3 gene in affected cats that computationally alters the protein conformation of this gene and results in sarcomeric disorganization. We have identified a causative mutation in the feline MYBPC3 gene that results in the development of familial HCM. This is the first report of a spontaneous mutation causing HCM in a non-human species. It should provide a valuable model for evaluating pathophysiologic processes and therapeutic manipulations.
Article
Full-text available
In the past decade, we have witnessed great advances in the identification of genes underlying numerous neurodegenerative diseases and the stark complexity determining genotype-phenotype relationships that lead to the impairment, and ultimately, premature death of neurons. However, significant challenges lie ahead in understanding the pathobiological and spatiotemporal processes triggered by genetic lesions underlying neurodegenerative disorders. Neuroretinal dystrophies occupy a prominent place among neurodegenerative diseases, because of the large number and prevalence of disease-causing genes, the diverse functions, the wealth of allelic, non-allelic and clinical heterogeneities determining the phenotypic expressivity and penetrance of the disease and the ease of use of animal models to probe gene function and disease pathogenesis in a well-defined neuroretinal circuitry. Retinitis pigmentosa (RP) has a prevalence of about one in 4000. RP is a retinal dystrophy leading primarily to the progressive death of photon-capturing neurons--the rod photoreceptors. X-linked retinitis pigmentosa type 3 (XlRP3) accounts up to 14% of all RP cases, higher than any other single RP locus identified to date, and considered to be the most severe of all RP cases. The XlRP3 encodes the retinitis pigmentosa GTPase regulator (RPGR). RPGR interacts with the RPGR interacting protein-1 (RPGRIP1). Mutations in RPGRIP1 cause Leber's congenital amaurosis. This review highlights the progress devoted to understand the pathogenesis associated with XlRP3 and allied disorders and, concepts, trends and discrepancies emerging as molecular, subcellular and physiological processes linked to RPGR and RPGRIP1-protein network begin to be elucidated, and that may serve as a paradigm for other biological processes and neurodegenerative diseases.
Article
Full-text available
To characterize the course of retinal disease in X-linked progressive retinal atrophy 2 (XLPRA2), a canine model of early onset X-linked retinitis pigmentosa (XLRP) caused by a two-nucleotide microdeletion in RPGR ORF15. The retinas of 25 XLPRA2-affected dogs (age range, 2-40.6 weeks) and age-matched control subjects were collected, fixed, and embedded in epoxy resin for morphologic evaluation or in optimal cutting temperature (OCT) medium for TUNEL assay and immunohistochemistry. Cell-specific antibodies were used to examine changes in rods and cones and to evaluate the effects of the primary photoreceptor degeneration on inner retinal cells. Abnormal development of photoreceptors was recognizable as early as 3.9 weeks of age. Outer segment (OS) misalignment was followed by their disorganization and fragmentation. Reduction in length and broadening of rod and cone inner segments (IS) was next observed, followed by the focal loss of rod and cone IS at later time points. The proportion of dying photoreceptors peaked at approximately 6 to 7 weeks of age and was significantly reduced after 12 weeks. In addition to rod and cone opsin mislocalization, there was early rod neurite sprouting, retraction of rod bipolar cell dendrites, and increased Müller cell reactivity. Later in the course of the disease, changes were also noted in horizontal cells and amacrine cells. XLPRA2 is an early-onset model of XLRP that is morphologically characterized by abnormal photoreceptor maturation followed by progressive rod-cone degeneration and early inner retina remodeling. The results suggest that therapeutic strategies for this retinal degeneration should target not solely photoreceptor cells but also inner retinal neurons.
Article
Full-text available
Familial hypertrophic cardiomyopathy (HCM) is a primary myocardial disease with a prevalence of 1 in 500 in human beings. Causative mutations have been identified in several sarcomeric genes, including the cardiac myosin binding protein C (MYBPC3) gene. Heritable HCM also exists in a large-animal model, the cat, and we have previously reported a mutation in the MYBPC3 gene in the Maine coon breed. We now report a separate mutation in the MYBPC3 gene in ragdoll cats with HCM. The mutation changes a conserved arginine to tryptophan and appears to alter the protein structure. The ragdoll is not related to the Maine coon and the mutation identified is in a domain different from that of the previously identified feline mutation. The identification of two separate mutations within this gene in unrelated breeds suggests that these mutations occurred independently rather than being passed on from a common founder.
Article
Two mutations in the MYBPC3 gene have been identified in Maine Coon (MCO) and Ragdoll (RD) cats with hypertrophic cardiomyopathy (HCM). This study examined the frequency of these mutations and of the A74T polymorphism to describe their worldwide distribution and correlation with echocardiography. Animals: 1855 cats representing 28 breeds and random-bred cats worldwide, of which 446 underwent echocardiographic examination. This is a prospective cross-sectional study. Polymorphisms were genotyped by Illumina VeraCode GoldenGate or by direct sequencing. The disease status was defined by echocardiography according to established guidelines. Odds ratios for the joint probability of having HCM and the alleles were calculated by meta-analysis. Functional analysis was simulated. The MYBPC3 A31P and R820W were restricted to MCO and RD, respectively. Both purebred and random-bred cats had HCM and the incidence increased with age. The A74T polymorphism was not associated with any phenotype. HCM was most prevalent in MCO homozygote for the A31P mutation and the penetrance increased with age. The penetrance of the heterozygote genotype was lower (0.08) compared with the P/P genotype (0.58) in MCO. A31P mutation occurs frequently in MCO cats. The high incidence of HCM in homozygotes for the mutation supports the causal nature of the A31P mutation. Penetrance is incomplete for heterozygotes at A31P locus, at least at a young age. The A74T variant does not appear to be correlated with HCM.
Article
To describe a Hokkaido dog, one of the traditional Japanese breeds that was affected by Collie eye anomaly (CEA), and to report the genotype of this dog and the Hokkaido dog allelic frequency of the CEA-associated mutation. A nine-month-old intact female Hokkaido dog without any obvious visual disturbance was diagnosed ophthalmoscopically with CEA. Severe choroidal hypoplasia was observed in the bilateral temporal area adjacent to the optic nerve head, appearing as whitish areas. Therefore, the dog was suspected of possessing the CEA-associated mutation that was previously reported as an intronic 7.8-kilo base deletion in the canine NHEJ1 gene. SYBR Green-based real-time PCR with a melting curve analysis, conventional PCR with agarose gel electrophoresis, and direct DNA sequencing were carried out to determine the genotype of the dog. Furthermore, a preliminary genotyping survey was carried out in 17 Hokkaido dogs from three kennels using the real-time PCR method, and the pedigree relationships were analyzed using their pedigree papers. The Hokkaido dog affected by CEA was proven to possess the CEA-associated mutation. Of these 17 Hokkaido dogs, 12 dogs were heterozygous carriers and five dogs were affected by this mutation. The preliminary genotyping survey and pedigree analysis demonstrated that the allelic frequency of the CEA-associated mutation is very high in Hokkaido dogs. These data suggest that the Hokkaido breed is highly susceptible to CEA because of the known CEA-associated mutation much like the Collie-related breeds.
Article
Fine mapping followed by candidate gene analysis of erd - a canine hereditary retinal degeneration characterized by aberrant photoreceptor development - established that the disease cosegregates with a SINE insertion in exon 4 of the canine STK38L/NDR2 gene. The mutation removes exon 4 from STK38L transcripts and is predicted to remove much of the N terminus from the translated protein, including binding sites for S100B and Mob proteins, part of the protein kinase domain, and a Thr-75 residue critical for autophosphorylation. Although known to have roles in neuronal cell function, the STK38L pathway has not previously been implicated in normal or abnormal photoreceptor development. Loss of STK38L function in erd provides novel potential insights into the role of the STK38L pathway in neuronal and photoreceptor cell function, and suggests that genes in this pathway need to be considered as candidate genes for hereditary retinal degenerations.
Article
Canine degenerative myelopathy (DM) is an adult-onset fatal neurodegenerative disease that occurs in many breeds. The initial upper motor neuron spastic paraparesis and general proprioceptive ataxia in the pelvic limbs progress to a flaccid lower motor neuron tetraparesis. Recently, a missense mutation in the superoxide dismutase 1 (SOD1) gene was found to be a risk factor for DM, suggesting that DM is similar to some forms of human amyotrophic lateral sclerosis (ALS or Lou Gehrig's disease). This article reviews the current knowledge of canine DM with regard to its signalment, clinical spectrum, diagnostic approach, and treatment. The implications of the SOD1 mutation on both diseases are discussed, comparing pathogenic mechanisms while conveying perspectives to translational medicine.
Article
Canine generalized progressive retinal atrophy (gPRA) is characterized by continuous degeneration of photoreceptor cells leading to night blindness and progressive vision loss. Until now, mutations in 11 genes have been described that account for gPRA in dogs, mostly following an autosomal recessive inheritance mode. Here, we describe a gPRA locus comprising the newly identified gene coiled-coil domain containing 66 (CCDC66) on canine chromosome 20, as identified via linkage analysis in the Schapendoes breed. Mutation screening of the CCDC66 gene revealed a 1-bp insertion in exon 6 leading to a stop codon as the underlying cause of disease. The insertion is present in all affected dogs in the homozygous state as well as in all obligatory mutation carriers in the heterozygous state. The CCDC66 gene is evolutionarily conserved in different vertebrate species and exhibits a complex pattern of differential RNA splicing resulting in various isoforms in the retina. Immunohistochemically, CCDC66 protein is detected mainly in the inner segments of photoreceptors in mouse, dog, and man. The affected Schapendoes retina lacks CCDC66 protein. Thus this natural canine model for gPRA yields superior potential to understand functional implications of this newly identified protein including its physiology, and it opens new perspectives for analyzing different aspects of the general pathophysiology of gPRA.
Article
Autosomal-dominant polycystic kidney disease (AD-PKD) is common in Persians and Persians-related breeds. The aims of this study were to evaluate the sensitivity and specificity of early ultrasound examination and to compare ultrasound and genetic testing for early diagnosis. Sixty-three Persians and seven Exotic Shorthairs were considered. All underwent ultrasonographic and genetic testing (polymerase chain reaction/restriction fragment length polymorphism (PCR/RFLP) assay) between 2.5 and 3.5 months of age (10-14 weeks). With ultrasound, 41.4% showed renal cysts, while 37.1% were PKD positive by genetic testing and DNA sequencing. Six cats with at least one renal cyst were negative by genetic testing, while only one cat negative at ultrasound resulted positive at genetic test. DNA sequencing of three polycystic cats, negative by genetic test, revealed they were heterozygous for the mutation. Agreement was described by Cohen's kappa that resulted 0.85, considering genetic test and DNA sequencing. Sensitivity and specificity of ultrasound were 96.2% and 91%, respectively. Sensitivity was higher and specificity lower than reported previously. The higher sensitivity could be due to improved technical capabilities of ultrasound machines and transducers. Other causes of PKD could explain the lower specificity. In conclusion, ultrasound resulted in a reliable diagnostic method for feline AD-PKD1 at early age and it should always be used with genetic testing, in order to reach a complete screening programme and eventually to identify other genetic mutations.
Article
The Collie Eye Anomaly is described under the headings of the two basic abnormalities—chorioretinal dysplasia and coloboma. The secondary changes of retinal detachment, intraocular haemorrhage and other vascular changes are also described as is the normal collie fundas.
Article
Autosomal dominant polycystic kidney disease (ADPKD) is a commonly inherited disorder in humans that causes the formation of fluid-filled renal cysts, often leading to renal failure. PKD1 mutations cause 85% of ADPKD. Feline PKD is autosomal dominant and has clinical presentations similar to humans. PKD affects approximately 38% of Persian cats worldwide, which is approximately 6% of cats, making it the most prominent inherited feline disease. Previous analyses have shown significant linkage between the PKD phenotype and microsatellite markers linked to the feline homolog for PKD1. In this report, the feline PKD1 gene was scanned for causative mutations and a C>A transversion was identified at c.10063 (human ref NM_000296) in exon 29, resulting in a stop mutation at position 3284, which suggests a loss of approximately 25% of the C-terminus of the protein. The same mutation has not been identified in humans, although similar regions of the protein are truncated. The C>A transversion has been identified in the heterozygous state in 48 affected cats examined, including 41 Persians, a Siamese, and several other breeds that have been known to outcross with Persians. In addition, the mutation is segregating concordantly in all available PKD families. No unaffected cats have been identified with the mutation. No homozygous cats have been identified, supporting the suggestion that the mutation is embryonic lethal. These data suggest that the stop mutation causes feline PKD, providing a test to identify cats that will develop PKD and demonstrating that the domestic cat is an ideal model for human PKD.
Article
A 5-year-old, mixed-breed dog was presented for tetraparesis. Neurologic alterations included a decreased menace response in both eyes. Therefore, an ophthalmic examination was requested. The dog was visual, but menace response, dazzle and pupillary light reflexes were reduced bilaterally. Indirect ophthalmoscopy revealed bilateral optic nerve coloboma and severe choroidal hypoplasia. These lesions closely resembled the ophthalmoscopic features of Collie eye anomaly (CEA). In spite of treatment, the dog's condition worsened and the animal was therefore euthanized. Histology of the globes confirmed severe choroidal hypoplasia and optic disc coloboma in both eyes. The dog was diagnosed to have a lymphoma involving the spinal cord. The two entities were considered not related. As only moderate sight impairment was caused by the posterior segment anomalies, it is by chance that these lesions resembling CEA were found in this mixed-breed dog.
Article
Progressive rod-cone degeneration (prcd) is a late-onset, autosomal recessive photoreceptor degeneration of dogs and a homolog for some forms of human retinitis pigmentosa (RP). Previously, the disease-relevant interval was reduced to a 106-kb region on CFA9, and a common phenotype-specific haplotype was identified in all affected dogs from several different breeds and breed varieties. Screening of a canine retinal EST library identified partial cDNAs for novel candidate genes in the disease-relevant interval. The complete cDNA of one of these, PRCD, was cloned in dog, human, and mouse. The gene codes for a 54-amino-acid (aa) protein in dog and human and a 53-aa protein in the mouse; the first 24 aa, coded for by exon 1, are highly conserved in 14 vertebrate species. A homozygous mutation (TGC --> TAC) in the second codon shows complete concordance with the disorder in 18 different dog breeds/breed varieties tested. The same homozygous mutation was identified in a human patient from Bangladesh with autosomal recessive RP. Expression studies support the predominant expression of this gene in the retina, with equal expression in the retinal pigment epithelium, photoreceptor, and ganglion cell layers. This study provides strong evidence that a mutation in the novel gene PRCD is the cause of autosomal recessive retinal degeneration in both dogs and humans.