Article
To read the full-text of this research, you can request a copy directly from the authors.

Abstract

Background: Although, α-tocopherol is the most bioavailable form of vitamin E, but several animal and clinical studies have demonstrated tocotrienol bioavailability to various tissues. There are few reports on bioavailability of tocotrienols in humans. Most studies were carried out with mixtures of tocotrienols + tocopherols rather than pure tocotrienols. Moreover, dietary α-tocopherol interferes with the bioavailability of tocotrienols, and prevents absorption and delivery to organs and tissues.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

... Moreover, dietary α-tocopherol interferes with the bioavailability of tocotrienols and prevents absorption and delivery to organs and tissues [12,13]. Recently, Pharmacokinetics and bioavailability of Annatto-based δ-tocotrienol on plasma levels of α-, β-, γ-, δ-tocotrienol and tocopherols were quantified and in addition, several cytokines and microRNAs were also reported [14]. An open-label, randomized study was reported the pharmacokinetics and bioavailability of δ-tocotrienol in 33 healthy-fed subjects. ...
... In which, all subjects (11/dose) were randomly assigned to doses of 125, 250, or 500 mg/d. Plasma samples collected at 0, 1, 2, 3, 4, 6, 8, 10 h intervals and tocols (tocotrienols and tocopherols) were estimated by HPLC [14]. The results reported the effects of δ-tocotrienol on pharmacokinetic parameters of all eight isomers of tocol. ...
... The results reported the effects of δ-tocotrienol on pharmacokinetic parameters of all eight isomers of tocol. Supplementation of 125, 250 and 500 mg/d doses of Annatto δ-tocotrienol have resulted in dose-dependent increases of (a) area under concentration-time curve (AUCt 0 -t 10 (Tables 2A-2D) [14]. Maximum plasma levels of δ-tocotrienol were observed at 3 h with doses of 125 and 250 mg/d, and 6 h with 500 mg/d. ...
Article
Full-text available
δ-Tocotrienol plus AHA Step-1 diet in hypercholesterolemic subjects caused reductions in lipid parameters (14% to 18%) with 250 mg/d dose, and 500 mg/d resulted induction in these parameters. Although, α-tocopherol is the most bioavailable form of vitamin E. There are few reports on bioavailability of tocotrienols in humans. Pharmacokinetics and bioavailability of δ-tocotrienol was quantified on plasma levels of tocol isomers, cytokines, and microRNAs. Subjects were fed doses of 125 mg/d to 500 mg/d. Plasma samples collected between 0 h to 10 h, levels of tocols estimated by HPLC, which resulted dose-dependent increases in AUC0-10, Cmax0-∞, Tmaxh, t1/2h, Cl-T 1/h, Vd/f, keh-1. Maximum plasma levels of δ-tocotrienol were at 3 h (125 mg/d to 250 mg/d), 6 h (500 mg/d). Effects of 32 compounds were evaluated on TNF-α secretion, nitric oxide production, and gene expression (TNF-α, IL-1β, IL-6, iNOS activity) in PPAR-α knockout mice. Anticancer activities of thiostrepton, dexamethasone, 2-methoxyestradiol, δ-tocotrienol, quercetin, amiloride, quinine sulfate showed significant anti-proliferative properties in Hela cells, pancreatic, prostate, breast, lungs, melanoma, B-lymphocytes, T-cells (40% to 95%). Results of plasma total mRNAs after δ-tocotrienol feeding to hepatitis C patients revealed significant down-regulated gene expression of pro-inflammatory cytokines. A mixture of δ-tocotrienol, resveratrol, vitamin D3 (NS-3) were given two capsules/d or cellulose/olive oil as placebo to individuals with T2DM (24-weeks). Significant down-regulation (15% to 74%) of gene expression in diabetes biomarkers and decreases i n serum levels of fasting-glucose, HbA1c, hs-CRP, fasting-insulin, HOMA-IR, MDA (9% to 23%) were observed with NS-3 treated T2DM. Pure plasma mRNAs and miRNAs of pre-dose vs. post-dose of NS-3 treated samples were analyzed by Next Generation Sequencing (NGS). Venn diagrams have established genetic regulatory network images and canonical signaling pathways for mRNA, miRNA, and paired mRNA-miRNA.
... The first human study to assess the pharmacokinetic and bioavailability of pure tocotrienols assessed the effects of 125, 250 and 500 mg/d doses of annatto-based δ-tocotrienol under fed conditions [70]. Plasma concentration levels of all eight vitamin E isomers were quantified at 0, 1, 2, 3, 4, 6, 8, and 10 h post administration [70]. ...
... The first human study to assess the pharmacokinetic and bioavailability of pure tocotrienols assessed the effects of 125, 250 and 500 mg/d doses of annatto-based δ-tocotrienol under fed conditions [70]. Plasma concentration levels of all eight vitamin E isomers were quantified at 0, 1, 2, 3, 4, 6, 8, and 10 h post administration [70]. For all three doses, the time to reach maximum plasma concentration ranged between 3 and 4 h for tocotrienols but between 3 and 6 h for tocopherols [70]. ...
... Plasma concentration levels of all eight vitamin E isomers were quantified at 0, 1, 2, 3, 4, 6, 8, and 10 h post administration [70]. For all three doses, the time to reach maximum plasma concentration ranged between 3 and 4 h for tocotrienols but between 3 and 6 h for tocopherols [70]. Dose-dependent increases in pharmacokinetic parameters were seen for δ-tocotrienol as well as for other isomers [70]. ...
Article
Full-text available
In the past few years, breast cancer has become the most prevalent type of cancer. The majority of patients receive combinatorial chemotherapy treatments, which may result in increased risk of developing drug resistance, a reduced quality of life, and substantial side effects. Treatment modalities that could lessen the physical toll of standard treatments or act in synergy with chemotherapeutic treatments would benefit women worldwide. Research into tocotrienols has thus far demonstrated their potential to be such an agent, with tocotrienols surpassing the pharmacological potential of tocopherols. Further research using in vitro and preclinical breast cancer models to support clinical trials is needed. This review uses bibliometric analysis to highlight this gap in research and summarizes the current and future landscape of tocotrienols as an anti-breast cancer agent.
... We have recently reported the pharmacokinetic and bioavailability of various doses (125 mg, 250 mg, and 500 mg) of δ-tocotrienol in 11 fed healthy participants/group (n=33). This was the first study which demonstrated the effect of δ-tocotrienol on several pharmacokinetic parameters of all eight isomers of tocol family (α-, β-, γ-, δ-tocotrienols and α-, β-, γ-, δ-tocopherols) [1]. Our data showed that in plasmas of healthy subjects, δ-tocotrienol bioavailability resulted in dosedependent increase in area under the curve (AUC) and maximum concentration (C max ). ...
... Our data showed that in plasmas of healthy subjects, δ-tocotrienol bioavailability resulted in dosedependent increase in area under the curve (AUC) and maximum concentration (C max ). The time to achieve maximum peak (T max ) varied between 3-4 h for isomers of tocotrienols and 3-6 h for isomers of tocopherols at 125 mg, 250 mg, 500 mg doses, indicating the longer time of excretion for tocopherols compared to tocotrienols that showed better bioavailability of tocotrienols than tocopherols [1]. The present study is the extension of this study, using higher doses of 750 mg and 1000 mg of tocotrienols. ...
... Tocotrienols group had plasma T max (2-3 h) and αtocopherol group had plasma T max (3-5 h). None of the published studies have reported the bioavailability of β-, γ-, δ-tocopherol other than our recently published study describing the pharmacokinetic, bioavailability and absorption of all four isomers of tocotrienols and tocopherols [1]. As reported earlier, the doses below 500 mg/d of αtocotrienol are effective in lowering lipid parameters by decreasing the level of several lipid parameters while, doses greater than 500 mg/d of δ-tocotrienol (750 mg/d) possibly kill cancer cells [3][4][5]. ...
Article
Full-text available
Background: Tocotrienols has been known to lower serum lipid parameters below 500 mg/d, while increase lipid parameters at higher dose of 750 mg/d. δ-Tocotrienol has a novel inflammatory property of concentration-dependent inhibition and activation. Therefore, inhibition (anti-inflammatory) property of tocotrienols at low doses is useful for cardiovascular disease, whereas, activation (pro-inflammatory) property using high dose is found effective for treatments of various types of cancer. We have recently described plasma bioavailability of 125 mg/d, 250 mg/d and 500 mg/d doses of δ-tocotrienol in healthy fed subjects, which showed dose-dependent increases in area under the curve (AUC) and maximum concentration (Cmax). Hence, in the current study, higher doses of tocotrienols have used to analyze its effect on plasma pharmacokinetic parameters. Aims: To evaluate the safety and bioavailability of higher doses (750 mg and 1000 mg) of annatto-based tocotrienols in healthy fed subjects. All four isomers (α-, β-, γ-, δ-) of tocols (tocotrienols and tocopherols) present in the plasmas of subjects were quantified and analyzed for various pharmacokinetic parameters. Study design: An open-label, randomized study was performed to analyze pharmacokinetics and bioavailability of δ-tocotrienol in 6 healthy fed subjects. All subjects (3/dose) were randomly assigned to one of each dose of 750 mg or 1000 mg. Blood samples were collected at 0, 1, 2, 4, 6, 8 h intervals and all isomers of α-,β-,γ-,δ-tocotrienols, and tocopherols in plasmas were quantified by HPLC. Results: Oral administration of 750 and 1000 mg/d of tocotrienols resulted in dose-dependent increases in plasmas (ng/ml) AUCt0-t8 6621, 7450; AUCt0-∞ 8688, 9633; AUMC t0-∞ 52497, 57199; MRT 6.04, 5.93; Cmax 1444, 1592 (P<0.05), respectively, of δ-tocotrienol isomer. Moreover, both doses also resulted in plasmas Tmax 3.33-4 h; elimination half-life (t1/2 h) 2.74, 2.68; time of clearance (Cl-T, l/h) 0.086, 0.078; volume of distribution (Vd/f, mg/h) 0.34, 0.30; and elimination rate constant (ke; h(-1)) 0.25, 0.17, respectively of δ- tocotrienol isomer. Similar results of these parameters were reported for γ-tocotrienol, β- tocotrienol, α-tocotrienol, δ-tocopherol, γ-tocopherol, and β-tocopherol, except for α- tocopherol. Conclusions: This study has described pharmacokinetics using higher doses of 750 mg/d and 1000 mg/d of δ-tocotrienol. These results confirmed earlier findings that Tmax was 3-4 h for all isomers of tocotrienols and tocopherols except for α-tocopherol (6 h). These higher doses of tocotrienols were found safe in humans and may be useful for treatments of various types of cancer, diabetes, and Alzheimer's disease.
... Therefore, without α-tocopherol, tocotrienol absorption is virtually nonexistent without suitable conditions and optimal fat levels. The findings also showed that the elimination half-lives of several tocotrienol forms ranged between 2.3 and 4.4 h, much shorter than α-tocopherol elimination half-lives, which lasted 48 to 72 h [23][24][25]. The poor and inconsistent oral bioavailability of fat-soluble compounds in the GI led researchers to explore solutions to overcome these issues and ensure positive therapeutic effects in humans. ...
... In a study by Qureshi et al., 33 healthy male subjects were supplemented with δ-tocotrienol at 125, 250, or 500 mg/d, dose dependently increasing the plasma area under the curve (AUC). The findings indicated that tocotrienols augmented in the absence of tocopherols, as δ-tocotrienol had better bioavailability, thus enhancing therapeutic properties by reducing the levels of cytokines related to inflammation [23]. ...
Article
Full-text available
Tocotrienols have higher medicinal value, with multiple sources of evidence showing their biological properties as antioxidant, anti-inflammatory, and osteoprotective compounds. However, tocotrienol bioavailability presents an ongoing challenge in its translation into viable products. This is because tocotrienol oil is known to be a poorly water-soluble compound, making it difficult to be absorbed into the body and resulting in less effectiveness. With the potential and benefits of tocotrienol, new strategies to increase the bioavailability and efficacy of poorly absorbed tocotrienol are required when administered orally. One of the proposed formulation techniques was self-emulsification, which has proven its capacity to improve oral drug delivery of poorly water-soluble drugs by advancing the solubility and bioavailability of these active compounds. This review discusses the updated evidence on the bioavailability of tocotrienols formulated with self-emulsifying drug delivery systems (SEDDSs) from in vivo and human studies. In short, SEDDSs formulation enhances the solubility and passive permeability of tocotrienol, thus improving its oral bioavailability and biological actions. This increases its medicinal and commercial value. Furthermore, the self-emulsifying formulation presents a useful dosage form that is absorbed in vivo independent of dietary fats with consistent and enhanced levels of tocotrienol isomers. Therefore, a lipid-based formulation technique can provide an additional detailed understanding of the oral bioavailability of tocotrienols.
... These findings indicated that the consumption of food increased the onset and extent of T3 absorption [18]. Qureshi and colleagues reported that participants supplemented orally with annatto T3 after heavy breakfast achieved peak plasma concentration for all T3 isomers (αT3, βT3, γT3, and δT3) after 3 h of oral administration [19,20]. For parenteral administration, single subcutaneous (s.c.) injection of 300 mg/kg δT3 was given to the CD2F1 mice and the bioavailability of δT3 was assessed. ...
... However, the gastric adherent mucus content was unaltered in rats fed with a diet containing various doses of TRF (60, 100, 150, and 300 mg/kg) for 4-8 weeks and administered absolute ethanol even though there was a reduction in gastric lesion index compared to the untreated control [240,242,244,246,249]. A similar finding was also observed in rats given a diet containing αTF (20,30,50, and 300 mg/kg) for 4-8 weeks and challenged with aspirin [240,242], which confirms that neither T3 or TF exerts any significant effect on gastric mucus production. A summary of the literature on the effect of T3 on ethanol-induced gastric model subjects was listed in Table 10. ...
Article
Full-text available
Tocotrienol (T3) is a subfamily of vitamin E known for its wide array of medicinal properties. This review aimed to summarize the health benefits of T3, particularly in prevention or treatment of non-communicable diseases (NCDs), including cardiovascular, musculoskeletal, metabolic, gastric, and skin disorders, as well as cancers. Studies showed that T3 could prevent various NCDs, by suppressing 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR) in the mevalonate pathway, inflammatory response, oxidative stress, and alternating hormones. The efficacy of T3 in preventing/treating these NCDs is similar or greater compared to tocopherol (TF). TF may lower the efficacy of T3 because the efficacy of the combination of TF and T3 was lower than T3 alone in some studies. Data investigating the effects of T3 on osteoporosis, arthritis, and peptic ulcers in human are limited. The positive outcomes of T3 treatment obtained from the preclinical studies warrant further validation from clinical trials.
... It has been reported that tocotrienols were transported in triacylglycerol-rich fractions after administration of tocotrienol-rich fraction (TRF) at 1011 mg in healthy subjects, and tocotrienols were found in significant amounts in the plasma and lipoproteins [75]. This study [75], as well as other studies [77][78][79], indicate that high TRF doses from 200 to 3200 mg/d are safe for healthy human consumption. However, it was also mentioned in a review by Ju et al. [80] that the therapeutic efficacy of tocotrienols depends on dose, formulation, route of administration, and study population. ...
... In contrast to these studies, a study by Heng et al. [87] reported higher plasma concentrations of tocotrienols in younger people 30-34 years old, compared to people 50-54 years old after receiving TRF supplementations for six months. In study by Qureshi et al. [77], TRF doses at 125 mg/d, 250 mg/d, and 500 mg/d were given orally to healthy fed subjects (n = 11/dose), and dose-dependent increases in AUC and C max were found. In a later study by Qureshi et al. [78], the safety and bioavailability of higher oral doses of 750 mg/d and 1000 mg/d of annatto-based tocotrienols in healthy fed subjects (n = 3/dose) were analyzed. ...
Article
Full-text available
Radiation countermeasures fall under three categories, radiation protectors, radiation mitigators, and radiation therapeutics. Radiation protectors are agents that are administered before radiation exposure to protect from radiation-induced injuries by numerous mechanisms, including scavenging free radicals that are generated by initial radiochemical events. Radiation mitigators are agents that are administered after the exposure of radiation but before the onset of symptoms by accelerating the recovery and repair from radiation-induced injuries. Whereas radiation therapeutic agents administered after the onset of symptoms act by regenerating the tissues that are injured by radiation. Vitamin E is an antioxidant that neutralizes free radicals generated by radiation exposure by donating H atoms. The vitamin E family consists of eight different vitamers, including four tocopherols and four tocotrienols. Though alpha-tocopherol was extensively studied in the past, tocotrienols have recently gained attention as radiation countermeasures. Despite several studies performed on tocotrienols, there is no clear evidence on the factors that are responsible for their superior radiation protection properties over tocopherols. Their absorption and bioavailability are also not well understood. In this review, we discuss tocopherol’s and tocotrienol’s efficacy as radiation countermeasures and identify the challenges to be addressed to develop them into radiation countermeasures for human use in the event of radiological emergencies.
... Despite VEA's greater stability compared to free VE, its bioavailability is significantly affected by intestinal absorption, hepatic metabolism, and cellular excretion, as its absorption adheres to the general absorptive route of dietary fats [13][14][15]. Qureshi et al. [16] investigated the pharmacokinetics of δ-tocotrienol to ascertain the pharmacokinetics and bioavailability of all eight isomers of tocotrienols and tocopherols isolated from human plasma samples, revealing that only a small amount of VEA is fully absorbed by the body. Following the administration of three separate single doses to a group of healthy males -125 mg, 250 mg, and 500 mgthe peak plasma concentrations recorded 6 h post-ingestion were 1,822 ± 48.24 µg/mL, 1,931 ± 92.54 µg/mL, and 2,188 ± 147.61 µg/mL, respectively. ...
Article
Full-text available
Vitamin E acetate (VEA) is commonly used in manufacturing pharmaceuticals, food additives, and animal feeds. However, VEA possesses disadvantages, including low water solubility, low bioavailability, and susceptibility to degradation and oxidation. This study investigated the use of cocoliposomes for encapsulating VEA (VEACL). The cocoliposomes consisted of coconut phospholipids (CocoPLs) and cholesterol (Chol). Several parameters, such as functional groups, transition temperature, encapsulation efficiency (EE), release profile, particle size, polydispersity index, and zeta potential, were analyzed to evaluate the impact of cholesterol inclusion on the cocoliposome membrane. The results show that the Fourier transform infrared spectra of VEACL do not exhibit any new, distinct peaks that differ from the peaks of its constituent composition. Therefore, it confirmed that no chemical reactions occurred during the manufacturing of VEACL. Cholesterol in the system raises the transition temperature of phospholipids and enhances the stability of VEACL. The EE remains above 80% despite a 20% increase in cholesterol levels. The release rate of VEA from cocoliposomes was slower with VEACL–20%Chol compared to VEACL–0%Chol. The cholesterol level leads to a decrease in particle size and an increase in the negative zeta potential of the cocoliposomes. Data show that cocoliposomes are effective carriers for VEA encapsulation.
... Structurally, tocotrienols have a chromanol ring identical to those of tocopherols. However, the isoprenoid tail from tocotrienols has three unsaturations, which brings some benefits to them (Qureshi and Khan 2015;Peh et al. 2016). ...
Article
Full-text available
Bixa orellana L. is a plant popularly known as “ucurum”, “annatto”, and “achiote”. It is native to South America, and its seeds are an abundant source of geranylgeraniol and tocotrienols. Nanoencapsulation is a valuable technique that can decrease the drug needed to achieve an effect, decreasing potential toxicity, side effects and potentiate the anti-inflammatory effect. This study aimed to evaluate the acute toxicity of an intramuscular application of a nanodispersion containing a standardized extract from the seeds of Bixa orellana (NBO) in Wistar rats. The chemical evaluation showed δ-tocotrienol at 0.725 ± 0.062 mg/mL (72.6 ± 0.9%). The stability study showed the nanoparticles had an average size from 53.15 ± 0.64 to 59.9 ± 3.63 nm, with a polydispersity index ranging from 0.574 ± 0.032 to 0.574 ± 0.32, Zeta potential from 18.26 ± 0.59 to 19.66 ± 1.45 mV. After testing the intramuscular application of NBO with doses from 1 to 5 mg/kg in animals, it was observed that the acute treatment did not elicit any toxic effects within this range. The dose of 10 mg/kg, although not affecting hematological and biochemical parameters (CPK, LDH, myoglobin, AST, ALT, TC, TG, glucose levels, creatinine, and urea), could induce some muscle tissue changes, including leukocyte infiltration, morphological chances, and potentially necrosis. In conclusion, the results showed that the treatments devoided toxicity between 1 and 5 mg/kg. Graphical abstract
... Structurally, tocotrienols have a chromanol ring identical to those of tocopherols. However, the isoprenoid tail from tocotrienols has three unsaturations, which brings some bene ts to them (Qureshi and Khan 2015;Peh et al. 2016). ...
Preprint
Full-text available
Bixa orellana L. is a plant popularly known as “ucurum”, “annatto”, and “achiote”. It is native to South America, and its seeds are an abundant source of geranylgeraniol and tocotrienols. Nanoencapsulation is a valuable technique that can decrease the drug needed to achieve an effect, decreasing potential toxicity and side effects. This study aimed to evaluate the acute toxicity of an intramuscular application of a nanodispersion containing a standardized extract (Chronic®) from the seeds of Bixa orellana (NBO) in Wistar rats. The chemical evaluation showed δ-tocotrienol at 0.725 ± 0.062 mg/ml (72.6 ± 0.9%). The stability study showed the nanoparticles had an average size from 53.15 ± 0.64 nm to 59.9 ± 3.63 nm, with a polydispersity index ranging from 0.574 ± 0.032 to 0.574 ± 0.32, Zeta potential from 18.26 ± 0.59 mV to 19.66 ± 1.45 mV. After testing the intramuscular application of NBO with doses from 1 to 5 mg/kg in animals, it was observed that the acute treatment did not elicit any toxic effects within this range. The dose of 10 mg/kg, although not affecting hematological and biochemical parameters (CPK, LDH, myoglobin, AST, ALT), could induce some muscle tissue changes, including leukocyte infiltration, morphological chances, and potentially necrosis. In conclusion, the results showed that the treatments devoided toxicity between 1 mg/kg and 5 mg/kg.
... According to PreADMET, compounds with Cbrain/Cblood values higher than 2.0 can cross the BBB, and all the molecules had high values, while in Swiss ADME, which uses the BOILED-Egg model, the molecules were predicted not to cross the BBB. However, these molecules probably cross the BBB according to in vivo data of tocotrienols and other vitamins E in SNC disorders [52,53]. The pharmacokinetics of tocotrienols have been reported in patients with favorable results and safety profiles [54,55]. ...
Article
Full-text available
Some significant compounds present in annatto are geranylgeraniol and tocotrienols. These compounds have beneficial effects against hyperlipidemia and chronic diseases, where oxidative stress and inflammation are present, but the exact mechanism of action of such activities is still a subject of research. This study aimed to evaluate possible mechanisms of action that could be underlying the activities of these molecules. For this, in silico approaches such as ligand topology (PASS and SEA servers) and molecular docking with the software GOLD were used. Additionally, we screened some pharmacokinetic and toxicological parameters using the servers PreADMET, SwissADME, and ProTox-II. The results corroborate the antidyslipidemia and anti-inflammatory activities of geranylgeraniol and tocotrienols. Notably, some new mechanisms of action were predicted to be potentially underlying the activities of these compounds, including inhibition of squalene monooxygenase, lanosterol synthase, and phospholipase A2. These results give new insight into new mechanisms of action involved in these molecules from annatto and Chronic®.
... Chronic ® , in turn, is a nutraceutical composed of granules of a standardized annatto powder extract. This plant, whose seeds are a source of geranylgeraniol and tocotrienols (90% δ and 10% γ), is native to South America [10]. Tocotrienols belong to the family of vitamin E and are essential, fat-soluble nutrients found in cells' membranes, possessing antioxidant, neuroprotective, hypocholesterolemic, anticancer, anti-inflammatory, and bone protective properties [11]. ...
Article
Full-text available
This study aimed to evaluate and compare the effects of co-treatment with purified annatto oil (PAO) or its granules (GRA, Chronic®) with that of testosterone on the orchiectomy-induced osteoporosis in Wistar rats. After surgery, rats were treated from day 7 until day 45 with testosterone only (TES, 7 mg/kg, IM) or TES + PAO or GRA (200 mg/kg, p.o.). The following parameters were evaluated: food/water intake, weight, HDL, LDL, glucose, triglycerides (TG), total cholesterol (TC), alkaline phosphatase levels, blood phosphorus and calcium contents, femur weight, structure (through scanning electron microscopy), and calcium content (through atomic absorption spectrophotometry). Our results show that orchiectomy could significantly change the blood lipid profile and decrease bone integrity parameters. Testosterone reposition alone could improve some endpoints, including LDL, TC, bone weight, and bone calcium concentration. However, other parameters were not significantly improved. Co-treatment with PAO or GRA improved the blood lipid profile and bone integrity more significantly and improved some endpoints not affected by testosterone reposition alone (such as TG levels and trabeculae sizes). The results suggest that co-treatment with annatto products improved the blood lipid profile and the anti-osteoporosis effects of testosterone. Overall, GRA had better results than PAO.
... Another source of tocotrienols is found in the bright red seeds of Bixa orellana, from the achiote tree, a plant native to South America. Its seeds contain a unique composition of 90% δtocotrienol and 10% γ-tocotrienol, without any tocopherols in them [17,22,23]. ...
Article
Full-text available
Ageing is a nonmodifiable risk factor that is linked to increased likelihood of cardiovascular morbidities. Whilst many pharmacological interventions currently exist to treat many of these disorders such as statins for hypercholesterolemia or beta-blockers for hypertension, the elderly appear to present a greater likelihood of suffering non-related side effects such as increased risk of developing new onset type 2 diabetes (NODM). In some cases, lower efficacy in the elderly have also been reported. Alternative forms of treatment have been sought to address these issues, and there has been a growing interest in looking at herbal remedies or plant-based natural compounds. Oxidative stress and inflammation are implicated in the manifestation of ageing-related cardiovascular disease. Thus, it is natural that a compound that possesses both antioxidative and anti-inflammatory bioactivities would be considered. This review article examines the potential of tocotrienols, a class of Vitamin E compounds with proven superior antioxidative and anti-inflammatory activity compared to tocopherols (the other class of Vitamin E compounds), in ameliorating ageing-related cardiovascular diseases and its associated morbidities. In particular, the potential of tocotrienols in improving inflammaging, dyslipidemia and mitochondrial dysfunction in ageing-related cardiovascular diseases are discussed.
... Secondly, αTF induced changes in membrane permeability thus suppressing the cellular uptake of T3 (Shibata et al., 2010). Additionally, T3 has been reported to undergo a series of bio-conversions through C-methylation and reduction, leading to the production of αTF as the end product (Qureshi et al., 2015). ...
Article
Full-text available
A constellation of medical conditions inclusive of central obesity, hyperglycemia, hypertension, and dyslipidemia is known as metabolic syndrome (MetS). The safest option in curtailing the progression of MetS is through maintaining a healthy lifestyle, which by itself, is a long-term commitment entailing much determination. A combination of pharmacological and non-pharmacological approach, as well as lifestyle modification is a more holistic alternative in the management of MetS. Vitamin E has been revealed to possess anti-oxidative, anti-inflammatory, anti-obesity, anti-hyperglycemic, anti-hypertensive and anti-hypercholesterolemic properties. The pathways regulated by vitamin E are critical in the development of MetS and its components. Therefore, we postulate that vitamin E may exert some health benefits on MetS patients. This review intends to summarize the evidence in animal and human studies on the effects of vitamin E and articulate the contrasting potential of tocopherol (TF) and tocotrienol (T3) in preventing the medical conditions associated with MetS. As a conclusion, this review suggests that vitamin E may be a promising agent for attenuating MetS.
... Entrapment of non-TP forms of vitamin E in hepatocytes leads to preferential hepatic metabolism of these molecules rather than TP [51]. Recent studies have confirmed that pure T3 (either annatto T3s (90% T3 and 10% T3) [52] or a novel formulation of gamma-delta T3 (75% T3 and 25% T3) [53]) has superior bioavailability than TRF (mixed with -tocopherol and other impurities) in human subjects due to the absence of TP's interference in absorption. ...
Article
Full-text available
Tocotrienols (T3s) are a subclass of unsaturated vitamin E that have been extensively studied for their anti-proliferative, anti-oxidative and anti-inflammatory properties in numerous cancer studies. Recently, T3s have received increasing attention due to their previously unrecognized property to attenuate obesity and its associated metabolic complications. In this review, we comprehensively evaluated the recent published scientific literature about the influence of T3s on obesity, with a particular emphasis on the signaling pathways involved. T3s have been demonstrated in animal models or human subjects to reduce fat mass, body weight, plasma concentrations of free fatty acid, triglycerides and cholesterol, as well as to improve glucose and insulin tolerance. Their mechanisms of action in adipose tissue mainly include (1) modulation of fat cell adipogenesis and differentiation; (2) modulation of energy sensing; (3) induction of apoptosis in preadipocytes and (4) modulation of inflammation. Studies have also been conducted to investigate the effects of T3s on other targets, e.g., the immune system, liver, muscle, pancreas and bone. Since δT3 and γT3 are regarded as the most active isomers among T3s, their clinical relevance to reduce obesity should be investigated in human trials.
Article
Full-text available
Diabetic arthritis (DA) is a microvascular complication associated with diabetes mellitus (DM), necessitating the exploration of innovative therapeutic approaches. The Amazon biome, rich in bioactive compounds, offers potential treatments; notably, Bixa orellana, which contains tocotrienol and geranylgeraniol, exhibits anti-inflammatory and antioxidant properties, particularly when formulated as a nanodispersion. Objective: This study aims to investigate the pharmacological effects of an injectable nanodispersion of Bixa orellana, termed Chronic-in®, in diabetic Wistar rats. Method: Male Wistar rats were employed in the study, and DA was induced using an intraperitoneal injection of 100 mg/kg alloxan and an intraplantar administration of Freund's complete adjuvant. The animals were divided into five groups (n = 5): CON (normal rats treated with saline solution IM), CHR SC (DA rats treated with Chronic-in SC daily), SS (DA rats treated with saline solution IM), IND (DA rats treated with indomethacin orally), and CHR IM (DA rats treated with Chronic-in IM every 3 days). Treatment outcomes were assessed through various parameters, including changes in paw edema, Arthritic Index (AI), performance in the open field and Rotarod tests, radiographic evaluations using the Eichenholtz classification, Scanning Electron Microscopy (SEM) analysis of articular morphology, and hematological and biochemical assessments. Results: Significant reductions in edema were observed in the CHR SC, CHR IM, and IND groups (p < 0.001) compared to the SSA group. The AI showed significant differences among the CON, CHR SC, and CHR IM groups. Enhanced exploratory behavior was noted in the open field test for the Chronic-in-treated groups, particularly with IM administration. The Rotarod test demonstrated marked differences between the Chronic-in-treated, CON and SS groups. Radiographic and SEM evaluations indicated fewer bone alterations in the CHR IM and SC groups compared to the SSA and IND groups, along with preservation of articular surfaces. Histological assessments revealed thickened synovial membranes and pannus formation in the SS and IND groups. In contrast, CHR IM and CHR SC groups exhibited minimal loss of proteoglycans akin to the CON group. Conclusion: Treatment with Chronic-in via both IM and SC routes effectively mitigated the inflammatory manifestations of diabetic neuropathic arthritis, demonstrating lower pain intensity during ambulation and protective effects against inflammation and joint integrity as evidenced in histological analyses. These findings suggest that Chronic-in represents a promising therapeutic option for diabetic arthritis.
Article
Full-text available
Ricinus communis Linn. is a rapidly growing perennial herb (aka Eranda or castor plant) that has long been used to cure a range of ailments in traditional medicine. An extensive search on its ethnomedicinal, phytochemistry, and pharmacotherapeutic potential is completed by meticulously examining information retrieved from Web of Science, PubMed, SciFinder, Google Scholar, Embase, and Infrastructure databases. The plant has yielded beneficial chemical compounds such as alkaloids, flavonoids, coumarins, terpenoids, sterols, and fatty acids. Several reports are available on the anti-inflammatory, antinociceptive, antiasthmatic, antifertility, antihistaminic, hepatoprotective, antimicrobial, free radical scavenging activities, antioxidant, and various other biological roles of the crude herb and its metabolites. This review comprehensively discusses the biopotential of R. communis in pain and inflammation, as evident from in vitro, in vivo, and clinical data, as well as safety and toxicity concerns, various market formulations, and drug-drug interactions. R. communis shows potent anti-inflammatory and analgesic activity possibly by NF-kB, Nrf2, RAF/ERK, Fas receptor, and caspase-mediate apoptosis and Wnt signalling pathways. R. communis is widely distributed globally and is rich in bioactive phytoconstituents with multifaceted therapeutic roles. It modulates numerous inflammatory and biochemical markers and highlights its potential in the management of nociception and inflammation. These findings could pave the way for the identification and developing more effective strategies to combat nociception and inflammatory disorders.
Article
Synaptic dysfunction is a hallmark of aging and is found in several neurological disorders such as Alzheimer's disease. A common mechanism related to synaptic dysfunction is dysregulation of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors, which mediate excitatory neurotransmission and synaptic plasticity. Accumulating evidence suggests that tocotrienols, vitamin E molecules that contain an isoprenoid side chain, may promote cognitive improvement in hippocampal-dependent learning tasks. Tocotrienols have also been shown to reduce the secretion of β-amyloid (Aβ) and cholesterol biosynthesis in part by downregulating 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, the rate-limiting enzyme that controls flux of the mevalonate pathway and cholesterol biosynthesis. We hypothesized that tocotrienols might promote cognitive improvement by increasing AMPA receptor-mediated synaptic transmission. Here, we found that δ-tocotrienol increased surface levels of GluA1 but not the GluA2 AMPA receptor subunit in primary hippocampal neurons. Unexpectedly, δ-tocotrienol treatment caused a decrease in the phosphorylation of GluA1 at Serine 845 with no significant changes in GluA1 at Serine 831. Moreover, δ-tocotrienol increased spontaneous excitatory postsynaptic current (sEPSC) amplitude and reduced the secretion of Aβ40 in primary hippocampal neurons. Taken together, our findings suggest that δ-tocotrienol increases AMPA receptor-mediated neurotransmission via noncanonical changes in GluA1 phosphorylation status. These findings suggest that δ-tocotrienol may be beneficial in ameliorating synaptic dysfunction found in aging and neurological disease.
Article
Full-text available
Vitamin E belongs to the family of lipid-soluble vitamins and can be divided into two groups, tocopherols and tocotrienols, with four isomers (alpha, beta, gamma and delta). Although vitamin E is widely known as a potent antioxidant, studies have also revealed that vitamin E possesses anti-inflammatory properties. These crucial properties of vitamin E are beneficial in various aspects of health, especially in neuroprotection and cardiovascular, skin and bone health. However, the poor bioavailability of vitamin E, especially tocotrienols, remains a great limitation for clinical applications. Recently, nanoformulations that include nanovesicles, solid-lipid nanoparticles, nanostructured lipid carriers, nanoemulsions, and polymeric nanoparticles have shown promising outcomes in improving the efficacy and bioavailability of vitamin E. This review focuses on the pharmacological properties and pharmacokinetics of vitamin E and current advances in vitamin E nanoformulations for future clinical applications. The limitations and future recommendations are also discussed in this review.
Article
Isoprenoids suppress the mevalonate pathway that provides prenyl groups for the posttranslational modification of growth-regulating proteins. We hypothesize that xanthorrhizol and d-δ-tocotrienol synergistically suppress the growth of murine B16 melanoma and human DU145 prostate carcinoma cells. Xanthorrhizol (0–200 µmol/L; half maximal inhibitory concentration [IC50] = 65 µmol/L) and d-δ-tocotrienol (0–40 µmol/L; IC50 = 20 µmol/L) each induced a concentration-dependent suppression of the proliferation of B16 cells and concurrent cell cycle arrest at the G1 phase. A blend of 16.25 µmol/L xanthorrhizol and 10 µmol/L d-δ-tocotrienol suppressed B16 cell proliferation by 69%, an impact greater than the sum of those induced by xanthorrhizol (15%) and d-δ-tocotrienol (12%) individually. The blend cumulatively reduced the levels of cyclin-dependent kinase four and cyclin D1, key regulators of cell cycle progression at the G1 phase. The expression of RAS and extracellular signal-regulated kinase (ERK1/2) in the proliferation-stimulating RAS-RAF-MEK-ERK pathway was downregulated by the blend. Xanthorrhizol also induced a concentration-dependent suppression of the proliferation of DU145 cells with concomitant morphological changes. Isobologram confirmed the synergistic effect of xanthorrhizol and d-δ-tocotrienol on DU145 cell proliferation with combination index values ranging 0.61-0.94. Novel combinations of isoprenoids with synergistic actions may offer effective approaches in cancer prevention and therapy.
Article
The growth-suppressive effect of d-?-tocotrienol and geranylgeraniol is at least partially attributed to their impact on 3-hydroxy-3-methylglutaryl coenzyme A (HMG CoA) reductase, the rate-limiting enzyme in the mevalonate pathway that provides essential intermediates for the posttranslational modification of growth-related proteins including RAS. We hypothesize that these agents synergistically impact cell growth based on their complementary mechanisms of action with HMG CoA reductase. d-?-tocotrienol (0-40??mol/L; half maximal inhibitory concentration [IC50] = 15??mol/L) and geranylgeraniol (0-100??mol/L; IC50 = 60??mol/L) each induced concentration-dependent suppression of the growth of human DU145 prostate carcinoma cells. Blends of the two agents synergistically suppressed the growth of DU145 cells, with combination index values ranging 0.67-0.75. While 7.5??mol/L d-?-tocotrienol and 30??mol/L geranylgeraniol individually had no impact on cell cycle distribution in DU145 cells, a blend of the agents induced cell cycle arrest at the G1 phase. The synergistic downregulation of the expression of HMG CoA reductase by 7.5??mol/L d-?-tocotrienol and 30??mol/L geranylgeraniol was accompanied by a reduction in membrane K-RAS protein. Our finding supports the cancer chemopreventive action of plant-based diets and their isoprenoid constituents. Properly formulated isoprenoids and derivatives may provide novel approaches in prostate cancer prevention and therapy.
Article
Full-text available
Objective: To compare the Friedewald and modified Friedewald formulae with direct homogeneous assay for serum lowdensity lipoprotein cholesterol (LDL-C) levels estimation. Study design: Cross-sectional study. Place and duration of study: Armed Forces Institute of Pathology, Rawalpindi, from June to December 2011. Methodology: Healthy subjects of either gender, from Rawalpindi, aged 18-75 years were included by consecutive sampling. Patients with diabetes mellitus, chronic liver disease, chronic kidney disease, those taking lipid lowering drugs and samples with triglyceride (TG) > 4.52 mmol/l were excluded from the study. Total cholesterol, high-density lipoprotein cholesterol, TG and LDL-C were measured on Hitachi 912 chemistry analyzer (Roche). LDL-C levels were also calculated by Friedewald formula (FF) and Vujovic modified formula (VMF). Paired sample t-test and scatter plots were used for statistical analysis. Results: Although both calculated methods showed good correlation with direct assay (r > 0.93) in 300 subjects, but the difference was statistically significant. The ffLDL-C were 0.12 ± 31 mmol/l (p < 0.001) lower and vmfLDL-C were 0.11 ± 26 mmol/l (p < 0.001) higher than dLDL-C. The difference was not significant between ffLDL-C and dLDL-C at TG levels < 1.70 mmol/l (p = 0.58) and between vmfLDL-C and dLDL-C at TG levels 2.26 - 4.52 mmol/l (p = 0.38). At all other TG levels, the difference between LDL-C calculated by both formulas and dLDL-C was statistically significant (p < 0.001). As compared to direct assay, 11% and 14% subjects were classified in wrong National Cholesterol Education Programm's cardiac risk categories by FF and VMF respectively. Conclusion: LDL-C should be measured by direct homogeneous assay in routine clinical laboratories, as the calculated methods did not have a uniform performance for LDL-C estimation at different TG levels.
Article
Full-text available
Gamma and delta tocotrienols are isomers of Vitamin E with established potency in pre-clinical anti-cancer research. This single-dose, randomized, crossover study aimed to compare the safety and bioavailability of a new formulation of Gamma Delta Tocotrienol (GDT) in comparison with the existing Tocotrienol-rich Fraction (TRF) in terms of gamma and delta isomers in healthy volunteers. Subjects were given either two 300 mg GDT (450 mg γ-T3 and 150 mg δ-T3) capsules or four 200 mg TRF (451.2 mg γ-T3 &102.72 mg δ-T3) capsules and blood samples were taken at several time points over 24 hours. Plasma tocotrienol concentrations were determined using HPLC method. The 90% CI for gamma and delta tocotrienols for the ratio of log-transformation of GDT/TRF for Cmax and AUC0-∞ (values were anti-logged and expressed as a percentage) were beyond the bioequivalence limits (106.21-195.46, 154.11-195.93 and 52.35-99.66, 74.82-89.44 respectively). The Wilcoxon Signed Rank Test for Tmax did not show any significant difference between GDT and TRF for both isomers (p > 0.05). No adverse events were reported during the entire period of study. GDT was found not bioequivalent to TRF, in terms of AUC and Cmax. Gamma tocotrienol in GDT showed superior bioavailability whilst delta tocotrienol showed less bioavailability compared to TRF.
Article
Full-text available
Background: Tocotrienols have hypocholesterolemic, anti-inflammatory, and anti-cancer properties. Clinical studies using tocotrienol-rich fraction (TRF) from palm oil yielded inconsistent results with regards to its efficacy due to presence of tocopherols in TRF mixture.
Article
Full-text available
Bipolar disorder (BD) is a heritable neuropsychiatric disorder with largely unknown pathogenesis. Given their prominent role in brain function and disease, we hypothesized that microRNAs (miRNAs) might be of importance for BD. Here we show that levels of miR-34a, which is predicted to target multiple genes implicated as genetic risk factors for BD, are increased in postmortem cerebellar tissue from BD patients, as well as in BD patient-derived neuronal cultures generated by reprogramming of human fibroblasts into induced neurons or into induced pluripotent stem cells (iPSCs) subsequently differentiated into neurons. Of the predicted miR-34a targets, we validated the BD risk genes ankyrin-3 (ANK3) and voltage-dependent L-type calcium channel subunit beta-3 (CACNB3) as direct miR-34a targets. Using human iPSC-derived neuronal progenitor cells, we further show that enhancement of miR-34a expression impairs neuronal differentiation, expression of synaptic proteins and neuronal morphology, whereas reducing endogenous miR-34a expression enhances dendritic elaboration. Taken together, we propose that miR-34a serves as a critical link between multiple etiological factors for BD and its pathogenesis through the regulation of a molecular network essential for neuronal development and synaptogenesis.
Article
Full-text available
Age-associated altered redox imbalances and dysregulated immune function, contribute to the development of a variety of age associated diseases. Inflammatory markers and lipid profiles are useful prognostic indicators of a variety of age-associated and cardiovascular diseases. We have previously studied the impact of several proteasome inhibitors on several markers of inflammation and lipid profiles in vitro, in vivo, in cell lines, animal models, and in human subjects. The current study represents an extension of this work. Our main hypothesis is that a combination of various naturally-occurring proteasome inhibitors, which inhibits nitric oxide (NO), and C-reactive protein (CRP) mediated inflammation, will have better efficacy in the prevention and treatment of age-associated disorders including cardiovascular disease. Two double blind, randomized, placebo-controlled cross-over trials were conducted to determine the impact of a mixture of NS-5 (resveratrol, pterostilbene, quercetin, δ-tocotrienol, nicotinic acid) on serum NO, CRP, γ-glutamyl-transferase (γ-GT) activity, total antioxidant status (TAS), total cholesterol, LDL-cholesterol, HDL-cholesterol and triglycerides levels. Healthy seniors (Group-1; n = 32) free-living (A, B; 16/group), and hypercholesterolemic (Group-2; n = 64) subjects on AHA-Step-1-diet were divided into two groups (C, D; 32/group). Baseline levels were established for parameters as mentioned above. Groups A, C were administered 4-capsules/d of NS-5 and groups B, D, placebo (starch) for 6-weeks. Groups were crossed-over, followed by a 2-week wash-out period. Groups A, C were given 4-capsules/d of placebo and groups B, D, 4-capsules/d of NS-5 for 6-weeks. Groups C, D were continued on AHA-Step-1-diet. All the subjects completed each phase in both studies without any complaints. There were significant ( P < 0.01 - 0.05) decreases in the serum levels of NO (30%, 26%), CRP (29%, 21%), γ-GT activity (14%, 17%), and blood pressure (systolic/diastolic, 3/6%, 3/3%) of Groups A and B, respectively, of free-living healthy seniors without affecting the total, HDL-, LDL-cholesterol or triglycerides compared to their respective baseline values. However, serum levels of NO (36%, 43%), CRP (31%, 48%), γ-GT (17%, 20%), total cholesterol (19%, 15%), LDL-cholesterol (28%, 20%), triglycerides (11%, 18%) of Groups C and D were significantly ( P < 0.01-0.05) decreased with NS-5 treatment of hypercholesterolemic subjects compared to baseline values, without affecting the serum HDL-cholesterol levels. The serum levels of total antioxidant status (TAS) were increased (10%, 14%; P < 0.05) in Groups A and B, increased (19%, 24%; P < 0.02), and blood pressure (systolic/diastolic, 5/6%, 3/5%) in Groups C and D with NS-5 treatment, compared to respective baseline values. The consumption of NS-5 mixture decreased significantly serum NO, CRP and γ-GT levels, improved TAS and lipid profiles at risk cardiovascular and hold promise for delaying onset of age-associated diseases.
Article
Full-text available
During the last two decades, microRNAs (miRNAs) emerged as critical regulators of gene expression. By modulating the expression of numerous target mRNAs mainly at the post-transcriptional level, these small non-coding RNAs have been involved in most, if not all, biological processes as well as in the pathogenesis of a number of diseases. miR-132 and miR-212 are tandem miRNAs whose expression is necessary for the proper development, maturation and function of neurons and whose deregulation is associated with several neurological disorders, such as Alzheimer's disease and tauopathies (neurodegenerative diseases resulting from the pathological aggregation of tau protein in the human brain). Although their involvement in neuronal functions is the most described, evidences point towards a role of these miRNAs in many other biological processes, including inflammation and immune functions. Incidentally, miR-132 was recently classified as a ‘neurimmiR’, a class of miRNAs operating within and between the neural and immune compartments. In this review, we propose an outline of the current knowledge about miR-132 and miR-212 functions in neurons and immune cells, by describing the signalling pathways and transcription factors regulating their expression as well as their putative or demonstrated roles and validated mRNA targets.
Article
Full-text available
Tocotrienols (T3) and tocopherols (T), both members of the natural vitamin E family have unique biological functions in humans. T3 are detected in circulating human plasma and lipoproteins, although at concentrations significantly lower than α-tocopherol (α-T). T3, especially α-T3 is known to be neuropotective at nanomolar concentrations and this study evaluated the postprandial fate of T3 and α-T in plasma and lipoproteins. Ten healthy volunteers (5 males and 5 females) were administered a single dose of vitamin E [526 mg palm tocotrienol-rich fraction (TRF) or 537 mg α-T] after 7-d pre-conditioning on a T3-free diet. Blood was sampled at baseline (fasted) and 2, 4, 5, 6, 8, and 24 h after supplementation. Concentrations of T and T3 isomers in plasma, triacylglycerol-rich particles (TRP), LDL, and HDL were measured at each postprandial interval. After TRF supplementation, plasma α-T3 and γ-T3 peaked at 5 h (α-T3: 4.74 ± 1.69 μM; γ-T3: 2.73 ± 1.27 μM). δ-T3 peaked earlier at 4 h (0.53 ± 0.25 μM). In contrast, α-T peaked at 6 h (30.13 ± 2.91 μM) and 8 h (37.80 ± 3.59 μM) following supplementation with TRF and α-T, respectively. α-T was the major vitamin E isomer detected in plasma, TRP, LDL, and HDL even after supplementation with TRF (composed of 70% T3). No T3 were detected during fasted states. T3 are detected postprandially only after TRF supplementation and concentrations were significantly lower than α-T. Bio-discrimination between vitamin E isomers in humans reduces the rate of T3 absorption and affects their incorporation into lipoproteins. Although low absorption of T3 into circulation may impact some of their physiological functions in humans, T3 have biological functions well below concentration noted in this study.
Article
Full-text available
Inflammation has been implicated in a variety of diseases associated with ageing, including cancer, cardiovascular, and neurologic diseases. We have recently established that the proteasome is a pivotal regulator of inflammation, which modulates the induction of inflammatory mediators such as TNF-α, IL-1, IL-6, and nitric oxide (NO) in response to a variety of stimuli. The present study was undertaken to identify non-toxic proteasome inhibitors with the expectation that these compounds could potentially suppress the production of inflammatory mediators in ageing humans, thereby decreasing the risk of developing ageing related diseases. We evaluated the capacity of various proteasome inhibitors to suppress TNF-α, NO and gene suppression of TNF-α, and iNOS mRNA, by LPS-stimulated macrophages from several sources. Further, we evaluated the mechanisms by which these agents suppress secretion of TNF-α, and NO production. Over the course of these studies, we measured the effects of various proteasome inhibitors on the RAW 264.7 cells, and peritoneal macrophages from four different strains of mice (C57BL/6, BALB/c, proteasome double subunits knockout LMP7/MECL-1-/-, and peroxisome proliferator-activated receptor-α,-/- (PPAR-α,-/-) knockout mice. We also directly measured the effect of these proteasome inhibitors on proteolytic activity of 20S rabbit muscle proteasomes. There was significant reduction of chymotrypsin-like activity of the 20S rabbit muscle proteasomes with dexamethasone (31%), mevinolin (19%), δ-tocotrienol (28%), riboflavin (34%), and quercetin (45%; P < 0.05). Moreover, quercetin, riboflavin, and δ-tocotrienol also inhibited chymotrypsin-like, trypsin-like and post-glutamase activities in RAW 264.7 whole cells. These compounds also inhibited LPS-stimulated NO production and TNF-α, secretion, blocked the degradation of P-IκB protein, and decreased activation of NF-κB, in RAW 264.7 cells. All proteasome inhibitors tested also significantly inhibited NO production (30% to 60% reduction) by LPS-induced thioglycolate-elicited peritoneal macrophages derived from all four strains of mice. All five compounds also suppressed LPS-induced TNF-α, secretion by macrophages from C57BL/6 and BALB/c mice. TNF-α, secretion, however, was not suppressed by any of the three proteasome inhibitors tested (δ-tocotrienol, riboflavin, and quercetin) with LPS-induced macrophages from LMP7/MECL-1-/- and PPAR-α,-/- knockout mice. Results of gene expression studies for TNF-α, and iNOS were generally consistent with results obtained for TNF-α, protein and NO production observed with four strains of mice. Results of the current study demonstrate that δ-tocotrienol, riboflavin, and quercetin inhibit NO production by LPS-stimulated macrophages of all four strains of mice, and TNF-α, secretion only by LPS-stimulated macrophages of C57BL/6 and BALB/c mice. The mechanism for this inhibition appears to be decreased proteolytic degradation of P-IκB protein by the inhibited proteasome, resulting in decreased translocation of activated NF-κB to the nucleus, and depressed transcription of gene expression of TNF-α, and iNOS. Further, these naturally-occurring proteasome inhibitors tested appear to be relatively potent inhibitors of multiple proteasome subunits in inflammatory proteasomes. Consequently, these agents could potentially suppress the production of inflammatory mediators in ageing humans, thereby decreasing the risk of developing a variety of ageing related diseases.
Article
Full-text available
Inflammation has been implicated in cardiovascular disease, and the important role of proteasomes in the development of inflammation and other macrophage functions has been demonstrated. Tocotrienols are potent hypocholesterolemic agents that inhibit β-hydroxy-β-methylglutaryl coenzyme A reductase activity, which is degraded via the ubiquitin-proteasome pathway. Our objective was to evaluate the effect of tocotrienols in reducing inflammation. Lipopolysaccharide (LPS) was used as a prototype for inflammation in murine RAW 264.7 cells and BALB/c female mice. The present results clearly demonstrate that α-, γ-, or δ-tocotrienol treatments inhibit the chymotrypsin-like activity of 20 S rabbit muscle proteasomes (> 50%; P < 0.05). Chymotrypsin, trypsin, and post-glutamase activities were decreased > 40% (P < 0.05) with low concentrations (< 80 μM), and then increased gradually with concentrations of (80--640 μM) in RAW 264.7 whole cells. Tocotrienols showed 9--33% (P < 0.05) inhibitions in TNF-α secretion in LPS-stimulated RAW 264.7 cells. Results of experiments carried out in BALB/c mice demonstrated that serum levels of TNF-α after LPS treatment were also reduced (20--48%; P < 0.05) by tocotrienols with doses of 1 and 10 μg/kg, and a corresponding rise in serum levels of corticosterone (19--41%; P < 0.05) and adrenocorticotropic hormone (81--145%; P < 0.02) was observed at higher concentrations (40 μM). Maximal inhibition of LPS-induced TNF-α was obtained with δ-tocotrienol (10 μg/kg). Low concentrations of δ-Tocotrienols (< 20 μM) blocked LPS-induced gene expression of TNF-α, IL-1β, IL-6 and iNOS (> 40%), while higher concentrations (40 μM) increased gene expression of the latter in peritoneal macrophages (prepared from BALB/c mice) as compared to control group. These results represent a novel approach by using natural products, such as tocotrienols as proteasome modulators, which may lead to the development of new dietary supplements of tocotrienols for cardiovascular diseases, as well as others that are based on inflammation.
Article
Full-text available
MicroRNAs are modifiers of gene expression, acting to reduce translation through either translational repression or mRNA cleavage. Recently, it has been shown that some microRNAs can act to promote or suppress cell transformation, with miR-17-92 described as the first oncogenic microRNA. The association of miR-17-92 encoded microRNAs with a surprisingly broad range of cancers not only underlines the clinical significance of this locus, but also suggests that miR-17-92 may regulate fundamental biological processes, and for these reasons miR-17-92 has been considered as a therapeutic target. In this study, we show that miR-17-92 is a cell cycle regulated locus, and ectopic expression of a single microRNA (miR-17-5p) is sufficient to drive a proliferative signal in HEK293T cells. For the first time, we reveal the mechanism behind this response - miR-17-5p acts specifically at the G1/S-phase cell cycle boundary, by targeting more than 20 genes involved in the transition between these phases. While both pro- and anti-proliferative genes are targeted by miR-17-5p, pro-proliferative mRNAs are specifically up-regulated by secondary and/or tertiary effects in HEK293T cells. The miR-17-5p microRNA is able to act as both an oncogene and a tumor suppressor in different cellular contexts; our model of competing positive and negative signals can explain both of these activities. The coordinated suppression of proliferation-inhibitors allows miR-17-5p to efficiently de-couple negative regulators of the MAPK (mitogen activated protein kinase) signaling cascade, promoting growth in HEK293T cells. Additionally, we have demonstrated the utility of a systems biology approach as a unique and rapid approach to uncover microRNA function.
Article
Full-text available
The concentration-dependent impact of gamma-tocotrienol on serum cholesterol can be traced to the posttranscriptional down-regulation of 3-hydroxy-3-methylglutaryl coenzyme A reductase activity. gamma-Tocotrienol also suppresses tumor growth. Palmvitee, the tocopherol and tocotrienol-rich fraction of palm oil, is the sole commercial source of gamma-tocotrienol. Contrary to the universal findings of the efficacy of gamma-tocotrienol there are conflicting reports of the impact of Palmvitee on 3-hydroxy-3-methylglutaryl coenzyme A reductase activity, serum cholesterol concentrations and tumor development. These conflicting reports led us to examine the impact of alpha-tocopherol on the cholesterol-suppressive action of gamma-tocotrienol. Control and experimental diets were fed to groups of White Leghorn chickens (n = 10) for 26 d. The control diet was supplemented with 21 nmol alpha-tocopherol/g. All experimental diets provided 141 nmol of blended tocols/g diet. The alpha-tocopherol and gamma-tocotrienol concentrations of the experimental diets ranged from 21 to 141 and 0 to 120 nmol/g, respectively. We now report that including alpha-tocopherol in tocol blends containing adequate gamma-tocotrienol to suppress 3-hydroxy-3-methylglutaryl coenzyme A reductase activity results in an attenuation of the tocotrienol action (P < 0.001). A summary of results from studies utilizing different Palmvitee preparations shows that effective preparations consist of 15-20% alpha-tocopherol and approximately 60% gamma- (and delta-) tocotrienol, whereas less effective preparations consist of > or = 30% alpha-tocopherol and 45% gamma- (and delta-) tocotrienol.
Article
Full-text available
MicroRNAs (miRNAs) are small regulatory RNAs that participate in posttranscriptional gene regulation in a sequence-specific manner. However, little is understood about the role(s) of miRNAs in Alzheimer's disease (AD). We used miRNA expression microarrays on RNA extracted from human brain tissue from the University of Kentucky Alzheimer's Disease Center Brain Bank with near-optimal clinicopathological correlation. Cases were separated into four groups: elderly nondemented with negligible AD-type pathology, nondemented with incipient AD pathology, mild cognitive impairment (MCI) with moderate AD pathology, and AD. Among the AD-related miRNA expression changes, miR-107 was exceptional because miR-107 levels decreased significantly even in patients with the earliest stages of pathology. In situ hybridization with cross-comparison to neuropathology demonstrated that particular cerebral cortical laminas involved by AD pathology exhibit diminished neuronal miR-107 expression. Computational analysis predicted that the 3'-untranslated region (UTR) of beta-site amyloid precursor protein-cleaving enzyme 1 (BACE1) mRNA is targeted multiply by miR-107. From the same RNA material analyzed on miRNA microarrays, mRNA expression profiling was performed using Affymetrix Exon Array microarrays on nondemented, MCI, and AD patients. BACE1 mRNA levels tended to increase as miR-107 levels decreased in the progression of AD. Cell culture reporter assays performed with a subset of the predicted miR-107 binding sites indicate the presence of at least one physiological miR-107 miRNA recognition sequence in the 3'-UTR of BACE1 mRNA. Together, the coordinated application of miRNA profiling, Affymetrix microarrays, new bioinformatics predictions, in situ hybridization, and biochemical validation indicate that miR-107 may be involved in accelerated disease progression through regulation of BACE1.
Article
We previously showed that alpha- and gamma-tocotrienols accumulate in adipose tissue and skin but not in plasma or other tissues of rats fed a tocotrienol-rich fraction extracted from palm oil containing alpha-tocopherol and alpha- and gamma-tocotrienols. To clarify the nature of tocotrienol metabolism, we studied the distribution of alpha- or gamma-tocotrienol in rats fed alpha- or gamma-tocotrienol without alpha-tocopherol, and the effect of alpha-tocopherol on their distribution. Wistar rats (4-wk-old) were fed a diet with 50 mg alpha-tocotrienol/kg alone or with 50 mg alpha-tocopherol/kg in expt. 1, and a diet with 50 mg gamma-tocotrienol/kg alone or with 50 mg a-tocopherol/kg in expt. 2, for 8 wk. alpha-Tocotrienol was detected in various tissues and plasma of the rats fed alpha-tocotrienol alone, and the alpha-tocotrienol concentrations in those tissues and plasma decreased (P < 0.05) by the dietary alpha-tocopherol in the rats fed alpha-tocotrienol with alpha-tocopherol. However, gamma-tocotrienol preferentially accumulated in the adipose tissue and skin of the rats fed gamma-tocotrienol alone, and the dietary alpha-tocopherol failed either to decrease (P greater than or equal to 0.05) gamma-tocotrienol concentrations in the adipose tissue and skin or to increase (P greater than or equal to 0.05) in the urinary excretion of 2,7,8-trimethyl-2(2'-carboxym ethyl)-6-hydroxycroman, a metabolite of gamma-tocotrienol, in the rats fed gamma-tocotrienol with alpha-tocopherol. These data suggest that alpha-tocopherol enhances the alpha-tocotrienol metabolism but not the gamma-tocotrienol metabolism in rats.
Article
Background: Inhibitory effects of NS-5 mixture of resveratrol, quercetin, δ-tocotrienol, nicotinic acid on several inflammatory and cardiovascular risk factors have been reported in normal cholesterolemic and hypercholesterolemic humans. The hypothesis was that combination of cholesterol-lowering and inflammatory-reducing properties of NS-5 mixture would be more effective than its individual components in reducing the serum levels of several biomarkers of cardiovascular disease in humans. However, effects of NS-5 mixture and its components on cytokines, gene expression, and microRNAs were not reported in previous publication. As this area is gaining importance in the understanding of various transcriptional factors and signal pathways, which regulate several biomarkers in various diseases.
Article
Background: Tocotrienols have hypocholesterolemic, anti-inflammatory, and anti-cancer properties. Clinical studies using tocotrienol-rich fraction (TRF) from palm oil yielded inconsistent results with regards to its efficacy due to presence of tocopherols in TRF mixture.
Article
MicroRNAs (miRNAs) have been identified as important posttranscriptional regulators involved in various biological and pathological processes of cells, but their association with tumor chemoresistance has not been fully understood. We detected miR-15b expression in two lung adenocarcinoma cell lines, A549 and A549/CDDP, and then investigated the effects of miR-15b on the metastasis and the chemosensitivity of cancer cells, using both gain- and loss-of-function studies. The correlation between miR-15b level and chemoresistance was further investigated in clinical lung adenocarcinoma specimens. miR-15b was significantly upregulated in cisplatin-resistant lung adenocarcinoma A549/CDDP cells compared with parental A549 cells. miR-15b regulates epithelial-mesenchymal transition (EMT) and cisplatin resistance in vitro and modulates response of lung adenocarcinoma cells to cisplatin in vivo. Further studies identified phosphatidylethanolamine-binding protein 4 (PEBP4) as a direct and functional target of miR-15b. Small-interfering RNA-mediated PEBP4 knockdown revealed similar effects as that of ectopic miR-15b expression, whereas overexpression of PEBP4 attenuated the function of miR-15b in lung adenocarcinoma cells. Increased miR-15b expression was also detected in tumor tissues sampled from lung adenocarcinoma patients treated with cisplatin-based chemotherapy and was proved to be correlated with low expression of PEBP4, decreased sensitivity to cisplatin and poor prognosis. Our results suggest that upregulation of miR-15b could suppress PEBP4 expression and in turn contribute to chemoresistance of lung adenocarcinoma cells to cisplatin.Cancer Gene Therapy advance online publication, 27 February 2015; doi:10.1038/cgt.2014.73.
Article
Awareness of the role that nutraceuticals play in the treatment and prevention of disease has led to an explosion of research in this exciting arena that seems to overflow into the food, cosmetic, nutraceutical, and pharmaceutical industries. Nutrients, supplements and herbal compounds have shown promise as either alternatives to modern medicine or complementary tools in the treatment and prevention of disease. This review provides a brief outlay of the advantages and challenges of nutraceutical delivery via dermatological, oral and ophthalmic routes. Emphasis is directed towards nutraceutical formulation strategies adopted to overcome physicochemical challenges and instability of natural bioactives in order to improve their delivery and bioavailability to the body. This paper highlights how novel techniques have achieved products with greater commercial viability and efficacy than their conventional counterparts. Importance of multicomponent products where individual bioactives potency is not subdued by each other has been marked. Ultimately it is the adoption and merging of the different formulation technologies and prudent scientific validation that will dictate the future success of nutraceuticals. This is especially pertinent in a market where an informed consumer demands an innovative all-in-one product that does not compromise in its results.
Article
Tocotrienols are members of the vitamin E family thought to have hypocholesterolaemic, anti-cancer, and neuroprotective properties. We compared the bioavailability and pharmacokinetics of a single oral dose of 450 mg total tocotrienols from α-tocotrienol-rich barley oil and γ-tocotrienol-rich palm oil (both also low in tocopherols) in seven healthy male human subjects 0–24 h post-dose. The maximum α-tocotrienol plasma concentration (22.57 ± 2.84 mg/L, 2.1 ± 0.3 h) was significantly (p < 0.001) higher for barley oil than for palm oil (5.25 ± 0.99 mg/L, 2.3 ± 0.6 h). The area under the curve (0–24 h) of total (α-, β-, γ-, δ-) tocotrienols was significantly (p < 0.001) (2.6fold) higher in the barley oil group, where the total (0–24 h) urinary metabolites carboxyethyl-hydroxychromans (CEHC) and carboxymethylbutyl-hydroxychromans (CMBHC) were also significantly (p < 0.05) (1.2fold) higher (163.9 ± 19.2 μmol). Thus, due to its high proportion of α-tocotrienol, which is known for its preferential absorption, the barley oil formulation was superior to the commercial palm oil formulation. This provides support for the application of tocotrienols from barley oil in the functional foods field.
Article
Awareness of the role that nutraceuticals play in the treatment and prevention of disease has led to an explosion of research in this exciting arena that seems to overflow into the food, cosmetic, nutraceutical, and pharmaceutical industries. Nutrients, supplements and herbal compounds have shown promise as either alternatives to modern medicine or complementary tools in the treatment and prevention of disease. This review provides a brief outlay of the advantages and challenges of nutraceutical delivery via dermatological, oral and ophthalmic routes. Emphasis is directed towards nutraceutical formulation strategies adopted to overcome physicochemical challenges and instability of natural bioactives in order to improve their delivery and bioavailability to the body. This paper highlights how novel techniques have achieved products with greater commercial viability and efficacy than their conventional counterparts. Importance of multicomponent products where individual bioactives potency is not subdued by each other has been marked. Ultimately it is the adoption and merging of the different formulation technologies and prudent scientific validation that will dictate the future success of nutraceuticals. This is especially pertinent in a market where an informed consumer demands an innovative all-in-one product that does not compromise in its results.
Article
The vitamin E family consists of eight isomers known as alpha-, beta-, gamma-, and delta-tocopherols and alpha-, beta-, gamma-, and delta-tocotrienols. Numerous studies focused on the health benefits of these isomers have been performed since the discovery of vitamin E in 1922. Recent discoveries on the potential therapeutic applications of tocotrienols have revolutionized vitamin E research. Nevertheless, despite the abundance of literature, only 1% of vitamin E research has been conducted on tocotrienols. Many new advances suggest that the use of tocotrienols for health improvement or therapeutic purposes is promising. Although the mechanisms of action of tocotrienols in certain disease conditions have been explored, more detailed investigations into the fundamentals of the health-promoting effects of these molecules must be elucidated before they can be recommended for health improvement or for the treatment or prevention of disease. Furthermore, many of the studies on the effects of tocotrienols have been carried out using cell lines and animal models. The effects in humans must be well established before tocotrienols are used as therapeutic agents in various disease conditions, hence the need for more evidence-based human clinical trials.
Article
ABSTRACTA study was conducted to evaluate the bioavailability of α-, γ- and δ-tocotrienols administered via oral, intravenous, intramuscular and intraperitoneal routes in rats. Three separate experiments, each conducted according to a two-way crossover design, were carried out to compare intravenous and oral, intramuscular and oral, and intraperitoneal and oral administration. Oral absorption of all three tocotrienols was found to be incomplete. Of the three tocotrienols, α-tocotrienol had the highest oral bioavailability, at about 27.7 ± 9.2%, compared with γ- and δ-tocotrienols, which had values of 9.1 ± 2.4% and 8.5 ± 3.5%, respectively. Such biodiscrimination was also observed in their total clearance rates (estimated from the intravenous data). α-Tocotrienol showed the lowest clearance rate at about 0.16 L kg−1 h−1, whereas that of δ- and γ-tocotrienols was quite similar, with values of 0.24 and 0.23 L kg−1 h−1, respectively. Interestingly, all three tocotrienols were found to be negligibly absorbed when administered intraperitoneally and intramuscularly. Thus, these two routes of administration should be avoided when evaluating the biological activities of the tocotrienols in whole animal experiments.
Article
MicroRNA-122 (miR-122), which accounts for 70% of the liver's total miRNAs, plays a pivotal role in the liver. However, its intrinsic physiological roles remain largely undetermined. We demonstrated that mice lacking the gene encoding miR-122a (Mir122a) are viable but develop temporally controlled steatohepatitis, fibrosis, and hepatocellular carcinoma (HCC). These mice exhibited a striking disparity in HCC incidence based on sex, with a male-to-female ratio of 3.9:1, which recapitulates the disease incidence in humans. Impaired expression of microsomal triglyceride transfer protein (MTTP) contributed to steatosis, which was reversed by in vivo restoration of Mttp expression. We found that hepatic fibrosis onset can be partially attributed to the action of a miR-122a target, the Klf6 transcript. In addition, Mir122a(-/-) livers exhibited disruptions in a range of pathways, many of which closely resemble the disruptions found in human HCC. Importantly, the reexpression of miR-122a reduced disease manifestation and tumor incidence in Mir122a(-/-) mice. This study demonstrates that mice with a targeted deletion of the Mir122a gene possess several key phenotypes of human liver diseases, which provides a rationale for the development of a unique therapy for the treatment of chronic liver disease and HCC.
Article
Of the eight natural vitamin E congeners (α-, β-, γ-, and δ-tocopherol and α-, β-, γ-, and δ-tocotrienol), the non-α-tocopherol congeners have unique biological properties that may contribute to human health. Their study in vivo has been complicated by the lack of a simple analytical method that completely resolves and sensitively detects all eight natural tocopherols and tocotrienols in biological matrices. We thus developed and validated (according to the FDA guidelines for bioanalytical method validation) the first reversed-phase liquid chromatographic method for the baseline-separation and quantification of all eight tocopherols and tocotrienols. Analytes were extracted from human plasma or mouse liver and separated on a Phenomenex Kinetex PFP column (2.6 μm, 150 × 4.6 mm) by elution with methanol:water (85:15, vol/vol) at a flow rate of 0.8 mL/min. The developed RP-LC method used a solid-core pentafluorophenyl stationary phase and achieved baseline separation of all eight vitamin E congeners within 15 min at a backpressure of 23 MPa, which is suitable for most conventional HPLC systems. The method was fast, linear, accurate, and precise with detection limits of 27-156 pg and good recoveries (82-122%) for all analytes. In conclusion, we developed and validated the first RP-LC method for baseline resolution of all eight tocopherols and tocotrienols extracted from plasma and liver, which should be useful for the quantification of individual vitamin E congeners in large epidemiological studies and randomized controlled trials.
Article
The aim of this work was to compare the intestinal absorption kinetics and the bioavailability of γ-tocotrienol (γ-T3) and α-tocopherol (α-Tph) administered separately as oil solutions to rats in vivo. Also, to explain the significant difference in the oral bioavailability of the compounds: (1) the release profiles using the dynamic in vitro lipolysis model, (2) the intestinal permeability and (3) carrier-mediated uptake by Niemann-Pick C1-like 1 (NPC1L1) transporter were examined. Absolute bioavailability studies were conducted after oral administration of γ-T3 or α-Tph prepared in corn oil to rats. In situ rat intestinal perfusion with ezetimibe (a NPC1L1 inhibitor) was performed to compare intestinal permeability. The in vitro interaction kinetics with NPC1L1 was examined in NPC1L1 transfected cells. While the in vitro release studies demonstrated a significantly higher release rate of γ-T3 in the aqueous phase, the oral bioavailability of α-Tph (36%) was significantly higher than γ-T3 (9%). Consequent in situ studies revealed significantly higher intestinal permeability for α-Tph compared with γ-T3 in rats. Moreover, the NPC1L1 kinetic studies demonstrated higher Vmax and Km values for α-Tph compared with γ-T3. Collectively, these results indicate that intestinal permeability is the main contributing factor for the higher bioavailability of α-Tph. Also, these results emphasize the potentially important role of intestinal permeability in the bioavailability of γ-T3, suggesting that enhancing its permeability would increase its oral bioavailability.
Article
The aim of this study was to evaluate tissue distribution of vitamin E isoforms such as α- and γ-tocotrienol and γ-tocopherol and interference with their tissue accumulation by α-tocopherol. Rats were fed a diet containing a tocotrienol mixture or γ-tocopherol with or without α-tocopherol, or were administered by gavage an emulsion containing tocotrienol mixture or γ-tocopherol with or without α-tocopherol. There were high levels of α-tocotrienol in the adipose tissue and adrenal gland, γ-tocotrienol in the adipose tissue, and γ-tocopherol in the adrenal gland of rats fed tocotrienol mixture or γ-tocopherol for 7 weeks. Dietary α-tocopherol decreased the α-tocotrienol and γ-tocopherol but not γ-tocotrienol concentrations in tissues. In the oral administration study, both tocopherol and tocotrienol quickly accumulated in the adrenal gland; however, their accumulation in adipose tissue was slow. In contrast to the dietary intake, α-tocopherol, which has the highest affinity for α-tocopherol transfer protein (αTTP), inhibited uptake of γ-tocotrienol to tissues including adipose tissue after oral administration, suggesting that the affinities of tocopherol and tocotrienol for αTTP in the liver were the critical determinants of their uptake to peripheral tissues. Vitamin E deficiency for 4 weeks depleted tocopherol and tocotrienol stores in the liver but not in adipose tissue. These results indicate that dietary vitamin E slowly accumulates in adipose tissue but the levels are kept without degradation. The property of adipose tissue as vitamin E store causes adipose tissue-specific accumulation of dietary tocotrienol.
Article
The therapeutic potential of tocotrienol, a vitamin E extract with anti-cancer properties, is hampered by its failure to specifically reach tumors after intravenous administration. In this work, we demonstrated that novel transferrin-bearing, tocopheryl-based multilamellar vesicles entrapping tocotrienol significantly improved tocotrienol uptake by cancer cells overexpressing transferrin receptors. This led to a dramatically improved therapeutic efficacy in vitro, ranging from 17-fold to 72-fold improvement depending on the cell lines, compared to the free drug. In vivo, the intravenous administration of this novel tocotrienol formulation led to complete tumor eradication for 40% of B16-F10 murine melanoma tumors and 20% of A431 human epidermoid carcinoma tumors. Animal survival was improved by more than 20 days compared to controls, for the two tumor models tested. These therapeutic effects, together with the lack of toxicity, potentially make transferrin-bearing vesicles entrapping tocotrienol a highly promising therapeutic system as part as an anti-cancer therapeutic strategy.
Article
Paradoxically, meta-analysis of human randomized controlled trials revealed that natural but not synthetic α-tocopherol supplementation significantly increases all-cause mortality at 95% confidence interval. The root cause was that natural α-tocopherol supplementation significantly depressed bioavailability of other forms of vitamin E that have better chemo-prevention capability. Meta-analysis outcome demonstrated flaws in the understanding of vitamin E. Reinterpretation of reported data provides plausible explanations to several important observations. While α-tocopherol is almost exclusively secreted in chylomicrons, enterocytes secrete tocotrienols in both chylomicrons and small high-density lipoproteins. Vitamin E secreted in chylomicrons is discriminately repacked by α-tocopherol transfer protein into nascent very low-density lipoproteins in the liver. Circulating very low-density lipoproteins undergo delipidation to form intermediate-density lipoproteins and low-density lipoproteins. Uptake of vitamin E in intermediate-density lipoproteins and low-density lipoproteins takes place at various tissues via low-density lipoproteins receptor-mediated endocytosis. Small high-density lipoproteins can deliver tocotrienols upon maturation to peripheral tissues independent of α-tocopherol transfer protein action, and uptake of vitamin E takes place at selective tissues by scavenger receptor-mediated direct vitamin E uptake. Dual absorption pathways for tocotrienols are consistent with human and animal studies. α-Tocopherol depresses the bioavailability of α-tocotrienol and has antagonistic effect on tocotrienols in chemo-prevention against degenerative diseases. Therefore, it is an undesirable component for chemo-prevention. Future research directions should be focused on tocotrienols, preferably free from α-tocopherol, for optimum chemo-prevention and benefits to mankind.
Article
The therapeutic potential of tocotrienol, an extract of vitamin E with anti-cancer properties, is hampered by its failure to specifically reach tumors after intravenous administration, without secondary effects on normal tissues. We hypothesize that the encapsulation of tocotrienol-rich fraction (TRF) within vesicles bearing transferrin, whose receptors are overexpressed on many cancer cells, could result in a selective delivery to tumors after intravenous administration. The objectives of this study are therefore to prepare and characterize transferrin-targeted vesicles encapsulating TRF, and to evaluate their therapeutic efficacy in vitro and in vivo. The entrapment of TRF in transferrin-bearing vesicles led to a 3-fold higher TRF uptake and more than 100-fold improved cytotoxicity in A431 (epidermoid carcinoma), T98G (glioblastoma) and A2780 (ovarian carcinoma) cell lines compared to TRF solution. The intravenous administration of TRF encapsulated in transferrin-bearing vesicles led to tumor regression and improvement of animal survival in a murine xenograft model, contrary to that observed with controls. The treatment was well tolerated by the animals. This work corresponds to the first preparation of a tumor-targeted delivery system able to encapsulate tocotrienol. Our findings show that TRF encapsulated in transferrin-bearing vesicles is a highly promising therapeutic system, leading to tumor regression after intravenous administration without visible toxicity.
Article
This chapter discusses the biosynthesis of vitamins E and K and related compounds. The past five years have been active and rewarding ones for those studying the biosynthesis of the vitamins E and K, because in this short time the outlines and many of the details of the pathways involved in their formation have been elucidated. The rapid progress made owes much to the ready availability of a wide range of radioactive isotopes, to the marked improvements in the techniques of lipid fractionation and purification by chromatographic methods, and to parallel studies on the biosynthesis of biogenetically related compounds. The two groups of vitamins have many biogenetic features in common; however, the obvious difference is that the synthesis of the vitamins K requires the formation of a naphthoquinone ring, whereas that of the vitamins E requires the formation of a benzene nucleus.
Article
Two novel tocotrienols were isolated from stabilized and heated rice bran, apart from the known alpha-, beta-, gamma-, and delta-tocopherols and tocotrienols. These new tocotrienols were separated by HPLC, using a normal phase silica column. Their structures were determined by ultraviolet, infrared, nuclear magnetic resonance, circular dichroism, and high-resolution mass spectroscopies and established as desmethyl tocotrienol [3, 4-dihydro-2-methyl-2-(4,8,12-trimethyltrideca-3'(E),7'(E), 11'-trienyl)-2H-1-benzopyran-6-ol] and didesmethy tocotrienol [3, 4-dihydro-2-(4,8,12-trimethyltrideca-3'(E),7'(E), 11'-trienyl)-2H-1-benzopyran-6-ol]. These tocotrienols significantly lowered serum total and LDL cholesterol levels and inhibited HMG-CoA reductase activity in chickens. They had much greater in vitro antioxidant activities and greater suppression of B16 melanoma cell proliferation than alpha-tocopherol and known tocotrienols. Results indicated that the number and position of methyl substituents in tocotrienols affect their hypocholesterolemic, antioxidant, and antitumor properties.
Article
We have investigated the pharmacokinetics and bioavailability of alpha-, gamma- and delta-tocotrienols under fed and fasted conditions in eight healthy volunteers. The volunteers were administered a single oral dose of mixed tocotrienols (300 mg) under fed or fasted conditions. The bioavailability of tocotrienols under the two conditions was compared using the parameters peak plasma concentration (Cmax), time to reach peak plasma concentration (Tmax) and total area under the plasma concentration-time curve (AUC(o-infinity)). A statistically significant difference was observed between the fed and fasted logarithmic transformed values of Cmax (P < 0.01) and AUC(0-infinity) (P < 0.01) for all three tocotrienols. In addition, the 90% confidence intervals for the ratio of the logarithmic transformed AUC(0-infinity) values of alpha-, gamma- and delta-tocotrienols under the fed state over those of the fasted state were found to lie between 2.24-3.40, 2.05-4.09 and 1.59-3.81, respectively, while those of the Cmax were between 2.28-4.39, 2.31-5.87 and 1.52-4.05, respectively. However, no statistically significant difference was observed between the fed and fasted Tmax values of the three homologues. The mean apparent elimination half-life (t(1/2)) of alpha-, gamma- and delta-tocotrienols was estimated to be 4.4, 4.3 and 2.3 h, respectively, being between 4.5- to 8.7-fold shorter than that reported for alpha-tocopherol. No statistically significant difference was observed between the fed and fasted t(1/2) values. The mean apparent volume of distribution (Vd/f) values under the fed state were significantly smaller than those of the fasted state, which could be attributed to increased absorption of the tocotrienols in the fed state.
Article
Male hamsters were fed on semi-synthetic diets containing commercial corn oil (CO), isolated corn oil triglycerides (COTG), COTG supplemented with 30 ppm of alpha-tocopherol (COTGTL) and COTG supplemented with 81 ppm of alpha-tocopherol (COTGTH) as the dietary lipid for 45 days. Male albino guinea pigs were fed on commercial chow pellets and treated with different dosages of tocopherol and tocotrienols intra-peritoneally for 6 consecutive days. Serum and liver were taken for analysis. Our results show that stripping corn oil of its unsaponifiable components resulted in COTG which yielded lower serum total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C) and raised high-density lipoprotein cholesterol (HDL-C) and serum triglycerides (TG) levels. These results indicate that the COTG with its fatty acids are responsible for the hypocholesterolemic effect exhibited by corn oil. However, supplementing the COTG diet with alpha-tocopherol (alpha-T) at 30 ppm significantly raised the serum TC, LDL-C and TG levels, but did not alter the HDL-C level, indicating that alpha-T is hypercholesterolemic. Supplementing the COTG diet with alpha-T at 81 ppm raised the serum TC level but to a lesser extent as compared to that obtained with 30-ppm alpha-T supplementation. The increased TC, in this case, was reflected mainly by an increased in HDL-C level as the LDL-C level was unchanged. The TG level was also raised but to a lesser extent than that obtained with a lower alpha-T supplementation. The liver HMG CoA reductase (HMGCR) activity was exhibited (56%) by the COTG as compared to CO. Supplementation of alpha-T at 30 ppm to the COTG diet resulted in further inhibition (76%) of the liver HMGCR activity. On the contrary, supplementation of alpha-T at 81 ppm to COTG diet resulted in a highly stimulatory effect (131%) on the liver HMGCR activity. Short-term studies with guinea pigs treated intra-peritoneally with alpha-T showed that at low dosage (5 mg) the HMGCR activity was inhibited by 46% whereas increasing the dosage of alpha-T to 20 mg yielded lesser inhibition (18%) as compared to that of the control. Further increase in the dosage of alpha-T to 50 mg actually resulted in 90% stimulation of the liver HMGCR activity as compared to the control. These results clearly indicate that the effect of alpha-T on HMGCR activity was dose-dependent. Treatment of the guinea pigs with 10 mg of tocotrienols (T3) resulted in 48% inhibition of the liver HMGCR activity. However, treatment with a mixture of 5 mg of alpha-T with 10 mg of T3 resulted in lesser inhibition (13%) of the liver HMGCR activity as compared to that obtained with 10 mg of T3. The above results indicate that the alpha-T is hypercholesterolemic in the hamster and its effect on liver HMGCR is dose-dependent. T3 exhibited inhibitory effect on liver HMGCR and alpha-T attenuated the inhibitory effect of T3 on liver HMGCR.
Article
Tocotrienols exert hypocholesterolemic action in humans and animals. Lovastatin is widely used for that purpose. Both agents work by suppressing the activity of β-hydroxy-β-methylglutaryl coenzyme A reductase through different mechanisms, post-transcriptional vs competitive inhibition. A human study with 28 hypercholesterolemic subjects was carried out in 5 phases of 35 days each, to check the efficacy of tocotrienol-rich fraction (TRF25) of rice bran alone and in combination with lovastatin. After placing subjects on the American Heart Association (AHA) Step-1 diet (phase II), the subjects were divided into two groups, A and B. The AHA Step-1 diet was continued in combination with other treatments during phases III to V. Group A subjects were given 10 mg lovastatin, 10 mg lovastatin plus 50 mg TRF25, 10 mg lovastatin plus 50 mg α-tocopherol per day, in the third, fourth, and fifth phases, respectively. Group B subjects were treated exactly to the same protocol except that in the third phase, they were given 50 mg TRF25 instead of lovastatin.
Article
A study was conducted to evaluate the bioavailability of alpha-, gamma- and delta-tocotrienols administered via oral, intravenous, intramuscular and intraperitoneal routes in rats. Three separate experiments, each conducted according to a two-way crossover design, were carried out to compare intravenous and oral, intramuscular and oral, and intraperitoneal and oral administration. Oral absorption of all three tocotrienols was found to be incomplete. Of the three tocotrienols, alpha-tocotrienol had the highest oral bioavailability, at about 27.7+/-9.2%, compared with gamma- and delta-tocotrienols, which had values of 9.1+/-2.4% and 8.5+/-3.5%, respectively. Such biodiscrimination was also observed in their total clearance rates (estimated from the intravenous data). alpha-Tocotrienol showed the lowest clearance rate at about 0.16 L kg(-1) h(-1), whereas that of delta- and gamma-tocotrienols was quite similar, with values of 0.24 and 0.23 L kg(-1) h(-1), respectively. Interestingly, all three tocotrienols were found to be negligibly absorbed when administered intraperitoneally and intramuscularly. Thus, these two routes of administration should be avoided when evaluating the biological activities of the tocotrienols in whole animal experiments.
Article
We previously showed that alpha- and gamma-tocotrienols accumulate in adipose tissue and skin but not in plasma or other tissues of rats fed a tocotrienol-rich fraction extracted from palm oil containing alpha-tocopherol and alpha- and gamma-tocotrienols. To clarify the nature of tocotrienol metabolism, we studied the distribution of alpha- or gamma-tocotrienol in rats fed alpha- or gamma-tocotrienol without alpha-tocopherol, and the effect of alpha-tocopherol on their distribution. Wistar rats (4-wk-old) were fed a diet with 50 mg alpha-tocotrienol/kg alone or with 50 mg alpha-tocopherol/kg in expt. 1, and a diet with 50 mg gamma-tocotrienol/kg alone or with 50 mg alpha-tocopherol/kg in expt. 2, for 8 wk. alpha-Tocotrienol was detected in various tissues and plasma of the rats fed alpha-tocotrienol alone, and the alpha-tocotrienol concentrations in those tissues and plasma decreased (P < 0.05) by the dietary alpha-tocopherol in the rats fed alpha-tocotrienol with alpha-tocopherol. However, gamma-tocotrienol preferentially accumulated in the adipose tissue and skin of the rats fed gamma-tocotrienol alone, and the dietary alpha-tocopherol failed either to decrease (P >/= 0.05) gamma-tocotrienol concentrations in the adipose tissue and skin or to increase (P >/= 0.05) in the urinary excretion of 2,7,8-trimethyl-2(2'-carboxymethyl)-6-hydroxycroman, a metabolite of gamma-tocotrienol, in the rats fed gamma-tocotrienol with alpha-tocopherol. These data suggest that alpha-tocopherol enhances the alpha-tocotrienol metabolism but not the gamma-tocotrienol metabolism in rats.
Article
The detection of tocotrienols in human plasma has proven elusive, and it is hypothesized that they are rapidly assimilated and redistributed in various mammalian tissues. The primary study objective was to evaluate the postprandial fate of tocotrienols and alpha-tocopherol in human plasma and lipoproteins. Seven healthy volunteers (4 males, 3 females) were administered a single dose of vitamin E [1011 mg palm tocotrienol-rich fraction (TRF) or 1074 mg alpha-tocopherol] after a 7-d conditioning period with a tocotrienol-free diet. Blood was sampled at baseline (fasted) and 2, 4, 5, 6, 8, and 24 h after supplementation. Concentrations of tocopherol and tocotrienol isomers in plasma, triacylglycerol-rich particles (TRPs), LDLs, and HDLs were measured at each interval. After intervention with TRF, plasma tocotrienols peaked at 4 h (4.79 +/- 1.2 microg/mL), whereas alpha-tocopherol peaked at 6 h (13.46 +/- 1.68 microg/mL). Although tocotrienols were similarly detected in TRPs, LDLs, and HDLs, tocotrienol concentrations were significantly lower than alpha-tocopherol concentrations. In comparison, plasma alpha-tocopherol peaked at 8 h (24.3 +/- 5.22 microg/mL) during the alpha-tocopherol treatment and emerged as the major vitamin E isomer detected in plasma and lipoproteins during both the TRF and the alpha-tocopherol treatments. Tocotrienols are detected in postprandial plasma, albeit in significantly lower concentrations than is alpha-tocopherol. This finding confirms previous observations that, in the fasted state, tocotrienols are not detected in plasma. Tocotrienol transport in lipoproteins appears to follow complex biochemically mediated pathways within the lipoprotein cascade.
Article
Tocochromanols encompass a group of compounds with vitamin E activity essential for human nutrition. Structurally, natural vitamin E includes eight chemically distinct molecules: alpha-, beta-, gamma- and delta-tocopherol; and alpha-, beta-, gamma- and delta-tocotrienol. Symptoms caused by alpha-tocopherol deficiency can be alleviated by tocotrienols. Thus, tocotrienols may be viewed as being members of the natural vitamin E family not only structurally but also functionally. Palm oil and rice bran oil represent two major nutritional sources of natural tocotrienol. Taken orally, tocotrienols are bioavailable to all vital organs. The tocotrienol forms of natural vitamin E possesses powerful hypocholesterolemic, anti-cancer and neuroprotective properties that are often not exhibited by tocopherols. Oral tocotrienol protects against stroke-associated brain damage in vivo. Disappointments with outcomes-based clinical studies testing the efficacy of alpha-tocopherol need to be handled with caution and prudence recognizing the untapped opportunities offered by the other forms of natural vitamin E. Although tocotrienols represent half of the natural vitamin E family, work on tocotrienols account for roughly 1% of the total literature on vitamin E. The current state of knowledge warrants strategic investment into investigating the lesser known forms of vitamin E.
A phase I dose-escalation study of the safety, PK, and PD of vitamin E d-tocotrienol administered to subjects with resectable pancreatic exocrine neoplasia
  • G M Springett
  • A Neuger
  • B Centeno
  • J Helm
  • T Hutchinson
Springett GM, Neuger A, Centeno B, Helm J, Hutchinson T, et al. (2011) A phase I dose-escalation study of the safety, PK, and PD of vitamin E d-tocotrienol administered to subjects with resectable pancreatic exocrine neoplasia. In 102 nd Annual Meeting of the American Association for Cancer Research. Orlando, Florida, USA.
The miR- 17-5p microRNA is a key regulator of the G1
  • N Cloonan
  • Mk Brown
  • Al Steptoe
  • S Wani
  • Wl Chan
Cloonan N, Brown MK, Steptoe AL, Wani S, Chan WL, et al. (2008) The miR- 17-5p microRNA is a key regulator of the G1/S phase cell cycle transition.