Article
To read the full-text of this research, you can request a copy directly from the authors.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

... Further research is required to elucidate how frequently GAA is present in freshwater cyanobacteria species and strains. Moreover, it was demonstrated that some non-CYN producing strains of C. raciborskii revealed the presence of unknown toxic compound(s) that partially mimic the allelopathic CYN action through up-regulation of alkaline phosphatase in phytoplankton [9,62,63]. One could therefore hypothesize that the CYN biosynthesis pathway may be initiated in these strains but terminated at some earlier step, and that resulting CYN intermediates are responsible for the reported effect. ...
... However, further studies are necessary to understand the exact events that influenced the observed distribution of CYN genes in C. raciborskii. Nevertheless, despite the Europe-wide distribution of C. raciborskii and extensive research conducted over the years [53,62], to date no CYN-producing strain has been identified on this continent [62]. Although one report associated CYN occurrence in Lake Aleksandrovac in Serbia with a C. raciborskii dominated bloom, investigations were not performed on the isolated strain [17] while another study found C. raciborskii from the same reservoir to be toxic but CYN-negative [67]. ...
... However, further studies are necessary to understand the exact events that influenced the observed distribution of CYN genes in C. raciborskii. Nevertheless, despite the Europe-wide distribution of C. raciborskii and extensive research conducted over the years [53,62], to date no CYN-producing strain has been identified on this continent [62]. Although one report associated CYN occurrence in Lake Aleksandrovac in Serbia with a C. raciborskii dominated bloom, investigations were not performed on the isolated strain [17] while another study found C. raciborskii from the same reservoir to be toxic but CYN-negative [67]. ...
Article
Aphanizomenon gracile and Cylindrospermopsis raciborskii are extensively studied Nostocales of wide geographical distribution and have potential to produce toxins. However, a number of knowledge gaps regarding their toxicity and related health risks in certain locations, including Europe, exists. The present study applied a polyphasic approach to screen the toxicity of different strains of C. raciborskii (LBY-Cr, LBO-Cr and LKM-Cr) and A. gracile (LBY-Ag, LBN-Ag and LWI-Ag) isolated from five freshwater lakes of Western Poland. The following investigations were carried out: (i) in vitro toxicological studies employing human cells isolated from healthy donors; (ii) analytical screening for the presence of cylindrospermopsin (CYN), guanidineacetate (GAA; initial CYN precursor and postulated general cyanobacterial metabolite), three microcystin (MC) analogues, β-N-methylamino-L-alanine (BMAA) and its isomer α-γ,-diaminobutyric acid (DAB), anatoxin-a (ATX) and ten saxitoxin (STX) analogues; and (iii) molecular studies of genes involved in CYN, GAA, MCs and ATX biosynthesis. Extracts of C. raciborskii LBY-Cr and A. gracile LBN-Ag caused a significant increase in the intracellular reactive oxygen content in human neutrophils during short-term (1 h) exposure and also led to lipid peroxidation and cell death. No cytotoxic effects were noted for the other tested strains. None of the toxin genes (cyrA, cyrJ, anaF and mcyE) and toxins (CYN, GAA, MCs, BMAA, ATX and STX) were detected. The only exception was DAB found at a concentration below 1.0 µg g-1 dw in A. gracile LWI-Ag. It is the first time that cyanobacterial DAB producer has been identified in the Central European region. The study points to the production of as yet unknown metabolite(s) that may pose a relevant threat to human health through strains of C. raciborskii and A. gracile isolated from two Polish lakes, and adds to the general understanding of the toxicity of European strains of both species.
... Therefore, it was not possible to assess species toxicity changes in response to temperature. For example, invasive C. raciborskii spread in Africa, Asia, Australia and Europe but despite wide distribution in the latter continent no CYN-producing strains have been detected [61]. Likely, our studied alien species toxin production was not assessed and could be expected to increase in the future due to rise in temperature. ...
Article
Full-text available
In response to global warming, an increase in cyanobacterial blooms is expected. In this work, the response of two native species of Planktothrix agardhii and Aphanizomenon gracile, as well as the response of two species alien to Europe-Chrysosporum bergii and Sphaerospermopsis aphanizomenoides-to gradual temperature increase was tested. The northernmost point of alien species distribution in the European continent was recorded. The tested strains of native species were favoured at 20-28 • C. Alien species acted differently along temperature gradient and their growth rate was higher than native species. Temperature range of optimal growth rate for S. aphanizomenoides was similar to native species, while C. bergii was favoured at 26-30 • C but sensitive at 18-20 • C. Under all tested temperatures, non-toxic strains of the native cyanobacteria species prevailed over the toxic ones. In P. agardhii, the decrease in concentration of microcystins and other oligopeptides with the increasing temperature was related to higher growth rate. However, changes in saxitoxin concentration in A. gracile under different temperatures were not detected. Accommodating climate change perspectives, the current work showed a high necessity of further studies of temperature effect on distribution and toxicity of both native and alien cyanobacterial species. Key Contribution: Temperature had an impact on growth rate of all tested cyanobacteria (Planktothrix agardhii, Aphanizomenon gracile, Chrysosporum bergii, Sphaerospermopsis aphanizomenoides) and affected toxins and oligopeptides production in strains of native species in different ways. The higher biomass of alien species compared with native is expected to be under increase of temperature. The growth of toxic strains of native species were less sensitive to temperature changes than non-toxic ones.
... However, CYN was later confirmed to be produced by a number of other freshwater filamentous species belonging to the Nostocales and Oscillatoriales orders [3]. More recently, the terrestrial Hormoscilla pringsheimi was identified to be capable of CYN production [72,73]. To date, four other naturally occurring analogues have been identified in cyanobacteria: 7-epi-CYN, 7-deoxy-CYN, 7-deoxy-sulfate-CYN, and -deoxy-desulfo-12-CYN [74,75], with CYN being the most toxic. ...
Article
Full-text available
Cyanobacterial metabolites are increasingly studied, in regards to their biosynthesis, ecological role, toxicity, and potential biomedical applications. However, the history of cyanotoxins prior to the last few decades is virtually unknown. Only a few paleolimnological studies have been undertaken to date, and these have focused exclusively on microcystins and cylindrospermopsins, both successfully identified in lake sediments up to 200 and 4700 years old, respectively. In this paper, we review direct extraction, quantification, and application of cyanotoxins in sediment cores, and put forward future research prospects in this field. Cyanobacterial toxin research is also compared to other paleo-cyanobacteria tools, such as sedimentary pigments, akinetes, and ancient DNA isolation, to identify the role of each tool in reproducing the history of cyanobacteria. Such investigations may also be beneficial for further elucidation of the biological role of cyanotoxins, particularly if coupled with analyses of other abiotic and biotic sedimentary features. In addition, we identify current limitations as well as future directions for applications in the field of paleolimnological studies on cyanotoxins. Key Contribution: This review provides updated information on paleolimnological studies of cyanotoxins and highlights their value for the understanding of the history and occurrence of toxic cyanobacteria, as well as understanding the potential environmental drivers of cyanotoxin production.
Article
Cylindrospermopsin (CYN) is a widely distributed cyanobacterial toxin in water bodies and is considered to pose growing threats to human and environmental health. Although its potential toxicity has been reported, its effects on the vascular system are poorly understood. In this study, we examined the toxic effects of CYN on vascular development and the possible mechanism of vascular toxicity induced by CYN using zebrafish embryos and human umbilical vein endothelial cells (HUVECs). CYN exposure induced abnormal vascular development and led to an increase in the growth of common cardinal vein (CCV), in which CCV remodeling was delayed as reflected by the larger CCV area and wider ventral diameter. CYN decreased HUVECs viability, inhibited HUVECs migration, promoted HUVECs apoptosis, destroyed cytoskeleton, and increased intracellular ROS levels. Additionally, CYN could promote the expression of Bax, Bcl-2, and MLC-1 and inhibit the expression of ITGB1, Rho, ROCK, and VIM-1. Taken together, CYN may induce cytoskeleton damage and promote vascular endothelial cell apoptosis by the Rho/ROCK signaling pathway, leading to abnormal vascular development. The current results provide potential insight into the mechanism of CYN toxicity in angiocardiopathy and are beneficial for understanding the environmental risks of CYN for aquatic organisms and human health.
Article
Cylindrospermopsin (CYN) is a naturally occurring alkaloid produced by a variety of cyanobacteria and known to induce oxidative stress-mediated toxicity in eukaryotic cells. Despite extensive research on the mechanism of CYN toxicity, an understanding of the structural features responsible for this toxicity and the mechanism by which it can enter the cell are still not clear. It was established that the presence of both the uracil and guanidine groups is essential in biological activity of CYN whilst not much is known in this regard on the role of tether that separates them and the attached hydroxyl group. Therefore, in the present study we have prepared three synthetic analogues possessing uracil and guanidine groups separated by a variable length tether (4–6 carbons) and containing a hydroxyl function in a position orientation to CYN, together with a tetracyclic analogue of CYN lacking the hydroxyl group at C-7. The toxicity of these compounds was then compared with CYN and guanidinoacetate (GAA; the primary substrate in CYN biosynthesis) in an in vitro model using human neutrophils isolated from healthy subjects. The lowest activity measured by means of reactive oxygen species generation, lipid peroxidation and cell death was observed for GAA and the tetracyclic analogue. The greatest toxicity was found in an analogue with a 6-carbon tether, but all three analogues and CYN caused rapid onset of redox imbalance. These results add to the general understanding of CYN toxicity and preliminary suggest that the –OH group at C-7 may be significant for the cellular transport of CYN and/or be involved in its toxic activity inside the cell, a hypothesis which requires further testing.
Article
Full-text available
Cylindrospermopsin (CYN) is a cytotoxic alkaloid produced by cyanobacteria. The distribution of this toxin is expanding around the world and the number of cyanobacteria species producing this toxin is also increasing. CYN was detected for the first time in Turkey during the summer months of 2013. The responsible species were identified as Dolichospermum (Anabaena) mendotae and Chrysosporum (Aphanizomenon) ovalisporum. The D. mendotae increased in May, however, C. ovalisporum formed a prolonged bloom in August. CYN concentrations were measured by LC-MS/MS and ranged from 0.12 µg· mg −1 to 4.92 µg· mg −1 as dry weight, respectively. Both species were the only cyanobacteria actively growing and CYN production was attributed solely to these species. Despite CYN production by C. ovalisporum being a well-known phenomenon, to our knowledge, this is the first report of CYN found in D. mendotae bloom.
Article
Full-text available
As the biosynthesis of cylindrospermopsin (CYN) is assumed to depend on nitrogen availability, this study investigated the impact of nitrogen availability on intra- and extracellular CYN and deoxy-CYN (D-CYN) contents in three Aphanizomenon strains from temperate waters. Nitrogen deficient (-N) cultures showed a prolonged growth phase and intracellular toxin accumulation by a factor of 2-6. In contrast, cultures with additional nitrate supply (+N) did not accumulate CYN within the cells. Instead, the maximum conceivable CYN release estimated for dead cells (identified by SYTOX® Green staining) was much lower than the concentrations of dissolved CYN actually observed, suggesting these cultures actively release CYN from intact cells. Furthermore, we found remarkably altered proportions of CYN to D-CYN: as batch cultures grew, the proportion of D-CYN increased by up to 40% in +N medium, whereas D-CYN remained constant or decreased slightly in -N medium. Since +N cultures showed similar toxin patterns as -P cultures with increased extracellular CYNs and higher proportion of D-CYN we conclude that nitrogen limitation may affect the way the cells economize resources, especially the yield from phosphorus pools, and that this has an impact on CYN production and release. For water management, these result imply that nutrient availability not only determines the abundance of potentially CYN-producing cyanobacteria, but also the amount of extracellular CYNs (challenging drinking-water treatment) as well as the ratio of D-CYN to CYN (affecting toxicity).
Article
Full-text available
Cylindrospermopsin is a powerful hepatotoxin produced by the cyanobacterium Cylindrospermopsis raciborskii. It is considered a potential threat to livestock, wildlife, and humans, and is the suspected cause of an outbreak of hepatoenteritis on Palm Island, Queensland, Australia, and various stock poisoning incidents around Australia. In this study, the stability of cylindrospermopsin was investigated using different parameters, including visible and UV light, sunlight, temperature and pH. Cylindrospermopsin decomposes rapidly (half-life of 1.5 h) when exposed to sunlight in an algal extract solution; however, no decomposition was recorded in pure cylindrospermopsin and Milli-Q water solutions. Cylindrospermopsin decomposes slowly in temperatures ranging from 4 to 50°C at pH 7. After 10 weeks at 50°C, cylindrospermopsin had degraded to 57% of the original concentration. This degradation was accompanied by an increase in another compound which is believed to be structurally related to cylindrospermopsin. Boiling does not cause a significant degradation of cylindrospermopsin within 15 min. Initial investigations indicate that cylindrospermopsin is degraded slowly under artificial light ranging from 42, 29, and 9 μE m−1 s−1 and in darkness. Degradation of cylindrospermopsin was not affected by changes in pH. Experiments were performed in sterile conditions. ©1999 John Wiley & Sons, Inc. Environ Toxicol 14: 155–161, 1999
Article
Full-text available
The hepatotoxin cylindrospermopsin (CYN) produced by certain cyanobacteria, including Aphanizomenon ovalisporum (hereafter Aphanizomenon) [1], seriously affects lake water quality [2], but its biological role is not known. Strong correlation between Aphanizomenon abundance in Lake Kinneret, Israel, and alkaline phosphatase (APase) activity suggests that inorganic phosphate (Pi) limitation induces the PHO regulon and APase secretion [3]. Staining lake samples with DAPI [4] revealed a high level of polyphosphate bodies (PPB) in Aphanizomenon. Application of enzyme-labeled fluorescence (ELF-APase) [5] showed APase in various organisms, but not in Aphanizomenon. ELF-APase signals and extracellular APase activity in Aphanizomenon were detected only after exploiting PPB under prolonged Pi deprivation in cultures or toward the end of its autumn bloom. Pi deprivation of Aphanizomenon induces CYN production, high-affinity Pi uptake, and an internal, not external, APase. Addition of Aphanizomenon spent media or CYN to various phytoplanktons, including Chlamydomonas reinhardtii, induced genes typically upregulated under Pi limitation and a rise in extracellular APase activity, despite ample surrounding Pi. Coculturing Aphanizomenon with Chlamydomonas or with Debarya sp. showed positive ELF-APase signals, but not in Aphanizomenon. CYN producers promote Pi supply by inducing APase secretion by other phytoplanktons, possibly explaining their increased abundance despite reduced Pi supply from watersheds.
Article
Cylindrospermopsin is a powerful hepatotoxin produced by the cyanobacterium Cylindrospermopsis raciborskii . It is considered a potential threat to livestock, wildlife, and humans, and is the suspected cause of an outbreak of hepatoenteritis on Palm Island, Queensland, Australia, and various stock poisoning incidents around Australia. In this study, the stability of cylindrospermopsin was investigated using different parameters, including visible and UV light, sunlight, temperature and pH. Cylindrospermopsin decomposes rapidly (half‐life of 1.5 h) when exposed to sunlight in an algal extract solution; however, no decomposition was recorded in pure cylindrospermopsin and Milli‐Q water solutions. Cylindrospermopsin decomposes slowly in temperatures ranging from 4 to 50°C at pH 7. After 10 weeks at 50°C, cylindrospermopsin had degraded to 57% of the original concentration. This degradation was accompanied by an increase in another compound which is believed to be structurally related to cylindrospermopsin. Boiling does not cause a significant degradation of cylindrospermopsin within 15 min. Initial investigations indicate that cylindrospermopsin is degraded slowly under artificial light ranging from 42, 29, and 9 μE m⁻¹ s⁻¹ and in darkness. Degradation of cylindrospermopsin was not affected by changes in pH. Experiments were performed in sterile conditions. ©1999 John Wiley & Sons, Inc. Environ Toxicol 14: 155–161, 1999
Article
Members of the morphologically unusual cyanobacterial family Gomontiellaceae were studied using a polyphasic approach. Cultured strains of Hormoscilla pringsheimii, Starria zimbabweënsis, Crinalium magnum, and Crinalium epipsammum were thoroughly examined, and the type specimen of the family, Gomontiella subtubulosa, was investigated. The results of morphological observations using both light microscopy and transmission electron microscopy were consistent with previous reports and provided evidence for the unique morphological and ultrastructural traits of this family. Analysis of the 16S rRNA gene confirmed the monophyletic origin of non-marine representatives of genera traditionally classified into this family. The family was phylogenetically placed among other groups of filamentous cyanobacterial taxa. The presence of cellulose in the cell wall was analyzed and confirmed in all cultured Gomontiellaceae members using Fourier transform infrared spectroscopy and fluorescence microscopy. Evaluation of toxins produced by the studied strains revealed the hepatotoxin cylindrospermopsin (CYN) in available strains of the genus Hormoscilla. Production of this compound in both Hormoscilla strains was detected using HPLC-HRMS and confirmed by positive PCR amplification of the cyrJ gene from the CYN biosynthetic cluster. To our knowledge, this is the first report of CYN production by soil cyanobacteria, establishing a previously unreported CYN-producing lineage. The present study indicates that cyanobacteria of the family Gomontiellaceae form a separate but coherent cluster defined by numerous intriguing morphological, ultrastructural, and biochemical features, and exhibiting a toxic potential worthy of further investigation.This article is protected by copyright. All rights reserved.
Article
Cylindrospermopsin (CYN) is known to induce cytotoxic effects in eukaryotic cells although the exact mechanism underlying these alterations is not fully explained. Given that CYN was previously found to decrease the proliferation of human lymphocytes through DNA damage and cell cycle arrest followed by an increase in the apoptotic rate, the present study evaluated the possible involvement of reactive oxygen species (ROS) and oxidative stress in these cytopathic responses. The status of enzymatic antioxidants: superoxide dismutase (SOD), glutathione peroxidase (GPx) and catalase (CAT) and lipid peroxidation (LO) under CYN influence in human lymphocytes was also studied. It was found that CYN exposure (0.01-1.0 μg/ml) induces a concentration-dependent increase in H2O2 content within a time as short as 0.5 h, reaching its maximum level after 3 and 6 h. The highest H2O2 content was accompanied by a significant decrease of SOD and CAT activity and an elevated level of GPx. Moreover, CYN treatment resulted in a detectable increase in LO. We conclude that ROS and the products of LO play an essential role in CYN-induced toxicity in human lymphocytes. Our study helps to elucidate the sequence of events caused by CYN in eukaryotic cells and explain the background for previously observed cytopathic responses. Copyright © 2015. Published by Elsevier Ltd.
Article
Toxic cyanobacterial blooms are documented worldwide as an emerging environmental concern. Recent studies support the hypothesis that microcystin-LR (MC-LR) and cylindrospermopsin (CYN) produce toxic effects in crop plants. Lettuce (Lactuca sativa L.) is an important commercial leafy vegetable that supplies essential elements for human nutrition; thus, the study of its sensitivity to MC-LR, CYN and a MC-LR/CYN mixture is of major relevance. This study aimed to assess the effects of environmentally relevant concentrations (1, 10 and 100µg/L) of MC-LR, CYN and a MC-LR/CYN mixture on growth, antioxidant defense system and mineral content in lettuce plants. In almost all treatments, an increase in root fresh weight was obtained; however, the fresh weight of leaves was significantly decreased in plants exposed to 100µg/L concentrations of each toxin and the toxin mixture. Overall, GST activity was significantly increased in roots, contrary to GPx activity, which decreased in roots and leaves. The mineral content in lettuce leaves changed due to its exposure to cyanotoxins; in general, the mineral content decreased with MC-LR and increased with CYN, and apparently these effects are time and concentration-dependent. The effects of the MC-LR/CYN mixture were almost always similar to the single cyanotoxins, although MC-LR seems to be more toxic than CYN. Our results suggest that lettuce plants in non-early stages of development are able to cope with lower concentrations of MC-LR, CYN and the MC-LR/CYN mixture; however, higher concentrations (100µg/L) can affect both lettuce yield and nutritional quality. Copyright © 2015 Elsevier Inc. All rights reserved.
Article
Hepatotoxic microcystins (MCs) are the most frequently detected group of cyanobacterial toxins. This study investigated the degradation of common MC variants in water, MC-LR, MC-RR, MC-YR and MC-LA, by UV-254 nm-based processes, UV only, UV/H2O2, UV/S2O8(2-) and UV/HSO5(-). Limited direct photolysis of MCs was observed, while the addition of an oxidant significantly improved the degradation efficiency with an order of UV/S2O8(2-) > UV/HSO5(-) > UV/H2O2 at the same initial molar concentration of the oxidant. The removal of MC-LR by UV/H2O2 appeared to be faster than another cyanotoxin, cylindrospermopsin, at either the same initial molar concentration or the same initial organic carbon concentration of the toxin. It suggested a faster reaction of MC-LR with hydroxyl radical, which was further supported by the determined second-order rate constant of MCs with hydroxyl radical. Both isomerization and photohydration byproducts were observed in UV only process for all four MCs; while in UV/H2O2, hydroxylation and diene-Adda double bond cleavage byproducts were detected. The presence of a tyrosine in the structure of MC-YR significantly promoted the formation of monohydroxylation byproduct m/z 1061; while the presence of a second arginine in MC-RR led to the elimination of a guanidine group and the absence of double bond cleavage byproducts. It was therefore demonstrated in this study that the variable amino acids in the structure of MCs influenced not only the degradation kinetics but also the preferable reaction mechanisms. Copyright © 2015 Elsevier Ltd. All rights reserved.
Article
Despite a significant interest in cyanotoxins over recent decades, their biological role is still poorly elucidated. Cylindrospermopsin (CYN) is a cyanobacterial metabolite that is globally identified in surface fresh- and brackish waters and whose producers are observed to spread throughout different climate zones. This paper provides a comprehensive review of the characteristics and global distribution of CYN-producing species, the variety of their chemotypes and the occurrence of strains which, while incapable of toxin synthesis, are able to produce other bioactive compounds including those that are hitherto unknown and yet to be identified. Environmental conditions that can trigger CYN production and promote growth of CYN-producers in aquatic ecosystems are also discussed. Finally, on the basis of existing experimental evidence, potential ecological role(s) of CYN are indicated. It is eventually concluded that CYN can be at least partially responsible for the ecological success of certain cyanobacteria species.
Article
Cyanobacteria (blue-green algae) are considered an important water quality problem, since several genera can produce toxins, called cyanotoxins that are harmful to human health. Cylindrospermopsin (CYN) is an alkaloid-like potent cyanotoxin that has been reported in water reservoirs and lakes worldwide. In this paper the removal of CYN from water by UV-A, solar and visible light photocatalysis was investigated. Two different commercially available TiO2 photocatalysts were used, i.e., Degussa P25 and Kronos-vlp7000. Complete degradation of CYN was achieved with both photocatalysts in 15 and 40min under UV-A and 40 and 120min under solar light irradiation, for Degussa P25 and Kronos vlp-7000 respectively. Experiments in the absence of photocatalysts showed that direct photolysis was negligible. Under visible light irradiation only the Kronos vlp-7000 which is a visible light activated catalyst was able to degrade CYN. A number of intermediates were identified and a complete degradation pathway is proposed, leading to the conclusion that hydroxyl radical attack is the main mechanism followed. TOC and inorganic ions (NO2(-), NO3(-), SO4(2-) and NH4(+)) determinations suggested that complete mineralization of CYN was achieved under UV-A in the presence of Degussa P25.
Article
The biological role of cyanobacteria secondary metabolites is relatively unknown although several possible hypotheses have been discussed. In the following study the effect of cylindrospermopsin (CYN) and metabolites of non-CYN producing Cylindrospermopsis raciborskii strain on growth, alkaline phosphatase (ALP) activity and microcystin-LR (MC-LR) production in Microcystis aeruginosa was evaluated. Higher concentrations of CYN (10 and 50 μg L−1) induced toxicity effects demonstrated by significant growth inhibition and M. aeruginosa cell necrosis. Lower concentrations of CYN (1 and 5 μg L−1) slightly decreased growth rates but significantly up-regulated ALP activity. Moreover, under all studied CYN concentrations MC-LR production strongly decreased. Spent C. raciborskii medium mimicked the CYN action by inducing strong inhibition of M. aeruginosa growth and MC-LR production and through up-regulation of ALP activity. On the other hand, spent M. aeruginosa medium did not affect C. raciborskii growth and no alterations in ALP activity were observed. Co-culturing of these two species resulted in an increase of C. raciborskii contribution at the expense of M. aeruginosa. From the results we conclude that CYN can be involved in interspecific competition in cyanobacteria and that non-CYN producing C. raciborskii strains may produce a hitherto unknown bioactive compound(s) which can mimic CYN action.
Article
The influence of light and temperature on the cylindrospermopsin (CYN) production of two Aphanizomenon flos-aquae strains, isolated from North-eastern German lakes, was investigated with semi-continuously growing cultures. A light gradient from 10 to 60μEm−2s−1 in combination with temperatures of 16, 20, and 25°C was tested.CYN concentrations varied by a maximum factor of 2.7 in strain 10E9 with a significant decrease with increasing temperature. Strain 22D11 showed less pronounced changes, i.e. by a factor of 1.6, and without clear relationship to temperature.Reaction patterns of CYN production to changing light intensities are different at different temperatures. In both strains CYN concentrations increase significantly at 20°C between 10 and 60μEm−2s−1, whereas they decrease significantly at 25°C in the same light gradient. The amount of synthesised CYN is not reflected by growth rates of the strains in a uniform manner. Nonetheless several temperature–light combinations which constitute physiological stress seem to trigger CYN production and particularly CYN release from cells. The lowest growth rate observed at 16°C and 60μEm−2s−1 of strain 22D11 may reflect photoinhibition due to the lower temperature and related limited CO2-fixation. Under these conditions, extracellular CYN concentrations increased to 58% of total CYN, while the share of extracellular CYN of all other light and temperature regimes was 11–26%. From the results and the experimental design we conclude an active release of the toxin into medium to be more likely than mere leakage from cells.
Article
Cylindrospermopsin (CYN) is a secondary metabolite produced by several cyanobacteria species. Its potential effect on human health includes liver, kidneys, lungs, spleen and intestine injuries. CYN can be cyto- and genotoxic to a variety of cell types. Occurrence and expansion of species able to synthesize CYN in European water bodies has been recently reported and raised awareness of potential harm to human health. Therefore, surface water of different human use should be monitored for the presence of toxic species of blue-green algae. This paper aims to describe the distribution of CYN producers in Europe and the potential effects of the toxin on human health according to the current state of knowledge.
Article
Microcystins (MC) and cylindrospermopsin (CYN) are potent toxins produced by diverse cyanobacterial genera found in waterbodies throughout the world. In the present study, and in order to achieve a better understanding of the fate of cyanobacterial toxins in the environment, we assessed the photodegradation of MC and CYN along the water column and by different radiation bands of the natural solar spectrum: photosynthetic active radiation (PAR), UV-A, and UV-B. Photodegradation of CYN seemed to be highly dependent on UV-A and was very low under natural conditions. This fact could be one of the reasons explaining the high extracellular CYN concentration found in diverse waterbodies. Microcystin photodegradation was higher, all three radiation bands (PAR, UV-A, and UV-B) being responsible for its degradation, although PAR and UV-A were more efficient because of their high natural irradiance. Modeling of MC photodegradation along the watercolumn was performed, using specific MC breakdown rates for the different radiation bands and including calculated attenuation coefficients for these bands. As a result, we suggest that rapid and efficient MC photodegradation may be expected in shallow systems or thin mixed layers.
Article
Cylindrospermopsin (CYN) is a hepatotoxin isolated from the blue-green alga Cylindrospermopsis raciborskii. The role of both glutathione (GSH) and the cytochrome P450 enzyme system (P450) in the mechanism of toxicity of CYN has been previously investigated in in vitro systems. We have investigated the role of GSH and P450 in vivo in mice. Mice pre-treated with buthionine sulphoximine and diethyl maleate to deplete hepatic GSH prior to dosing with 0.2mg/kg CYN showed a seven-day survival rate of 5/13 while the control group rate was 9/14. Dosing mice with 0.2mg/kg CYN produced a small decrease in hepatic GSH with a characteristic rebound effect at 24h. The magnitude of this effect is however small and combined with the non-significant difference in survival rates after GSH depletion suggest depletion of GSH by CYN could not be a primary mechanism for CYN toxicity. Conversely, pre-treatment with piperonyl butoxide, a P450 inhibitor, protected mice against CYN toxicity giving a survival rate of 10/10 compared with 4/10 in the control group (p < 0.05 Chi squared) and was protective at doses up to 0.8 mg/kg, suggesting activation of CYN by P450 is of primary importance in the mechanism of action.
Article
The blue-green algal toxin cylindrospermopsin (CYN) occurs in public water supplies. CYN was hepatotoxic when administered orally to mice, and cytotoxic and genotoxic to human cell lines. To determine the effects of CYN on primary human IVF-derived granulosa cells, 0-1 microg/ml CYN was added to cells for 2, 4 or 6h+/-hCG (n=6), or for 24, 48 and 72 h (n=6). Cytotoxicity was evaluated by MTT assay, and secreted progesterone or estrogen quantified by radioimmunoassay. 24h exposure to 1 microg/ml CYN was cytotoxic (p<0.05), whereas 0.0625 microg/ml CYN did not cause cytotoxicity or affect estrogen production, but did inhibit basal progesterone production (p<0.01). Similarly, 6h exposure to 1 microg/ml CYN did not affect cytotoxicity or hCG-stimulated estrogen production, but did inhibit hCG-stimulated progesterone production (p<0.01). In this in vitro assay, CYN inhibited progesterone production and therefore has the potential to be an endocrine disrupter by changing the progesterone:estrogen ratio in women.
Ob osnovnych principach sistemy Cyanophyceae
  • Elenkin
Elenkin, A. A. 1934. Ob osnovnych principach sistemy Cyanophyceae. Sov. Bot. 5:51-83.