Article

3D shape and texture measurements on the micro and nano-scales using a new dual-technology optical sensor head

Authors:
To read the full-text of this research, you can request a copy directly from the authors.

Abstract

New material applications and novel manufacturing processes are driving a systematic rise in market demands concerning surface inspection methods and the performance of non-contact profilers. However, analysis of the specifications and application notes of commercial optical profilers shows that no single system is able to offer all the features a general purpose user would like simultaneously. In this paper we introduce a new dual-technology (confocal & interferometer) illumination hardware setup. With this new sensor head it is possible to choose between standard microscope imaging, confocal imaging, confocal profiling, Phase Shift interferometers and white light interferomeiry, by simply placing the right objective on the revolving nosepiece.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

ResearchGate has not been able to resolve any citations for this publication.
Article
One of the objectives of surface metrology is to obtain a better and faster assessment of the micro- or nanogeometry of component surfaces. In this way the innovative concept of the profiler is changing towards non-contact modular computer- controlled systems for measuring and analyzing shape and texture of a surface. In this paper we present a new instrument which is based on the concept of confocal microscopy. In this instrument (which may be used for measurements on smooth and rough surfaces) a pattern of slits is imaged by a very high numerical aperture optical system on the surface of the sample to be measured. The reflected or diffused light is observed with a CCD array and analyzed with different digital image processing algorithms. In addition to the replacement of the existing stylus systems there are also important new potential applications for this type of instrument. We present the results obtained in micro- or nanomeasurements of high precision optical surfaces, texture assessment of non-homogeneous liquid depositions and metrology of microstructures such as master gratings and certified calibration standards. The obtained results show that the confocal profiler is robust enough to provide a surface topography with spatial resolution lower than 0.5 micrometer and uncertainty of about 10 nm.
Article
One of the applications, which is considered to be very difficult to carry out with most optical imaging profilers, is the shape and texture measurements of structured surfaces obtained from the superposition of various micro or sub-micrometric layers of dissimilar materials. Typical examples are the architectures of microelectronics samples made up of Si, SiO2, Si3N4, photoresists and metal layers. Because of the very different values of the index of refraction of the involved materials, visible light is reflected in the various interfaces. As a result, some reflected wavefronts are superposed giving rise to interference patterns, which are difficult to understand in terms of surface topography and layer thickness. In this paper we introduce a new method based on non-contact confocal techniques to measure the shape of structured samples. The method is based on the comparison of the axial responses obtained in areas of the surface where there is a layer and in other areas where there is just the substrate. To our knowledge, this approach enables the confocal profilers to measure the thickness of layers on the sub-micrometric scale for the first time.
Article
The surface metrology market toady is moving towards non- contact modular computer-controlled system for measuring and analyzing roughness, contour and topography. In this paper we present a new optical instrument based on the concept of confocal microscopy. In this instrument, which is especially suitable for measurements on smooth surfaces, either a pinhole or a structured light pattern in imaged by a very high numerical aperture optical system on the surface of the sample to be measured. The reflected light is observed wit a CCD array and analyzed with different image data processing algorithms. Two different experimental prototypes were developed to allow the measurement not only of surfaces with good accessibility but also of those with intricate geometries, difficult access and small dimensions. Various samples such as high precision optical surfaces, master gratings, and diamond drawing dies were measured. All the results obtained show that the confocal optical profiler is robust enough to provide a surface topography with spatial resolution lower than 1 micrometers and uncertainty about 10 nm. In addition to the replacement of the existing stylus system, there are also important new potential applications for this kind of instrument.
Laser profiler based on the depth from focus principle
  • F Laguarta
  • I Al-Khatib
Laguarta, F., Al-Khatib, I., and Artigas, R.: Laser profiler based on the depth from focus principle. Journal of Optics 29 (1998) pp. 236-240.