THIS PAPER REVIEWS the Charpy V-notch (CVN) impact test and assesses its utility to characterize fracture resistance in applications to modern tough materials in contrast to those encountered prior to the availability of such materials.The origin of the CVN test and its development into a standard for use with metallic materials is discussed, with brief reference also made to application-based standards for use with other engineering materials. Thereafter, the evolution of mechanical and other properties motivated by industry demands is illustrated in regard to strength and toughness.The interpretation of the CVN test in regard to ( 1 ) the force-displacement and compliance response that develops during the test, and (2) factors affecting the energy measured and controlling failure of the CVN specimen, are discussed, including the tup design and the use of sub-size specimens.The utility of CVN testing is illustrated and discussed in the context of pipeline and other applications involving tough steels. Finally, the implications of evolution in material properties is assessed for impact-test practices including ASTM E23 and ISO 148-1, which are specific to the CVN practice, and the drop-weight tear test. It is concluded that where tough materials are involved, alternative testing practices are needed that are better adapted to the specific loading and failure response of the structure of interest.