Content uploaded by René Steiger
Author content
All content in this area was uploaded by René Steiger on Dec 15, 2015
Content may be subject to copyright.
45
Designoftimbermemberssubjectedto
axialcompressionorcombinedaxial
compressionandbendingbasedon2nd
ordertheory
AndreaFrangi,ETHZurich,InstituteofStructuralEngineeringIBK,Zurich,Switzerland
RenéSteiger,Empa,MaterialsScienceandTechnology,StructuralEngineering
ResearchLaboratory,Dübendorf,Switzerland
MatthiasTheiler,dspIngenieure&PlanerAG,Greifensee,Switzerland
Keywords:Timberstructures,columns,compressionparalleltothegrain,stability,
globalbuckling,P‐deltaeffect,2ndorderstructuralanalysis
1 Introduction
Axialcompressionorcombinedaxialcompressionandbendingareencounteredin
manytypesoftimbermemberssuchascolumns,framestructuresorcompression
membersoftrussgirders.Thebehaviourofthesestructuralmembersisprimarily
characterisedbythenon‐linearincreaseofthedeformationduetotheincreasing
eccentricityoftheaxialload(P‐deltaeffect).Inadditiontothisgeometricnon‐linear
behaviour,thenon‐linearmaterialbehaviouroftimbermemberssubjectedto
compressionparalleltothegrainhastobeaccountedfor.TheinfluenceoftheP‐
deltaeffectontheload‐bearingcapacityoftimbermemberssubjectedtoaxial
compressionwasinvestigatedfirstbyTetmajer(1896).Tetmajer’sstudiessetupthe
basisforthedesignoftimbermemberssubjectedtoaxialcompressionforalong
time.TestsperformedbyLarsenandPedersen(1975)confirmedtheresultsobtained
byTetmajer.Theexperimentalinvestigationshowedthegreatinfluenceofvarying
materialpropertiesontheload‐bearingcapacity.Inordertoaccountforthese
variationsandhence,toestimatetheresistanceofgluedlaminatedtimbermembers
subjectedtocompressionmoreaccurately,Blaß(1987and1991)performedMonte
Carlosimulations.Thebucklingcurvesgivenindifferentdesigncodes(SIA265:2012,
EN1995‐1‐1:2004andDIN1052:2008)werederivedfromtheseinvestigations.
INTER / 48 - 02 - 02
46
Fortimbermemberssubjectedtocombinedaxialcompressionandbending,
Buchanan(1984and1985)developedanumericalmodelcapableofinvestigatingthe
influenceofthenon‐linearmaterialbehaviouronthemoment–axialforce
interaction.InadditionBuchananinvestigatedtheinfluenceofthesizeofthe
member.CurrentdesigncodessuchasEurocode5(EN1995‐1‐1:2004),theSwiss
nationalcodeforthedesignoftimberstructures(SIA265:2012)orthewithdrawn
Germancode(DIN1052:2008)providetwodifferentapproachesforthedesignof
centricallyandeccentricallyloadedtimbercolumns:
–asimplifiedcalculationmodelbasedontheEffectiveLengthMethod(ELM),
–2ndorderanalysisofthestructure.
InELM,thebucklingproblemofastructuralsystemisreducedtothatofan
equivalentsimplysupported(pinned)column.The2ndorderanalysisofthestructure
isamethodwhichtakesintoaccountthenon‐linearitybystudyingtheequilibriumof
thedeformedstructuralsystem.Ingeneral,non‐linearitycausedbytheincreasing
eccentricityoftheexternalloadaswellasnon‐linearitycausedbythenon‐linear
materialbehaviouroftimbersubjectedtocompressionshouldbeconsidered.
However,the2ndorderanalysisisoftenunderstoodasatheorybasedonlinear
elasticmaterialbehaviourandtheeffectscausedbythenon‐linearityofthematerial
areneglected.Eventhedesigncodes(SIA265:2012,EN1995‐1‐1:2004andDIN
1052:2008)onlyproviderulesforthis2ndorderlinearelasticanalysisofthestructure.
Inthispaper,acleardistinctionbetweenthe2ndorderlinearelasticanalysisandthe
generalised2ndorderanalysisismade.
Thetwoapproaches(ELMand2ndorderlinearelasticanalysisofthestructure)given
inthecodesarenotconsistentandcanleadtodifferentresults.Thissituationledto
controversialdiscussionsinthescientificcommunity(Kesseletal.2005and2006;
Möller2007;Köhleretal.2008).Thediscussioninparticularshowedthatthereare
inconsistenciesconcerningtheconsiderationoftheeffectofmoisturecontent(MC)
anddurationofload(DOL)aswellasinconsistenciesconcerningtheimplementation
ofthe2ndorderlinearelasticanalysisinthedesigncodes.Whilerecentresearchon
theload‐bearingbehaviouroftimbermemberssubjectedtoaxialcompressionor
combinedaxialcompressionandbendingwasmainlyfocusedonMCandDOL(Kessel
etal.2005and2006;Möller2007,BeckerandRautenstrauch2001,Hartnacketal.
2002)thispaperdealswiththeinfluenceofthenon‐linearmaterialbehaviourand
withtheimplementationof2ndorderlinearelasticanalysisinthedesigncodessuch
thatthereareonlyminordifferencesbetween2ndorderlinearelasticanalysisandthe
EffectiveLengthMethod.Theresultspresentedhereareonlyvalidforshort‐term
responseunderloadatconstantinteriorclimate.Infact,MCandDOLandin
particularthecreepbehaviourandtheclimatetakeamajorimpactontheload‐
bearingbehaviouroftimbercolumnsandshouldalsobeconsideredforthedesignof
timbermemberssubjectedtocompressionorcombinedcompressionandbending
(Hartnack2004,HartnackandRautenstrauch2005,Becker2002).
INTER / 48 - 02 - 02
47
2 Designoftimbermembersincompression
paralleltothegrain
Ingeneral,theEffectiveLengthMethodisusedforsimpledesignsituations(e.g.
verificationofstabilityofsinglemembers)whilethe2ndorderlinearelasticanalysisof
thestructureprovidessomeadvantagesformorecomplexdesignsituations(e.g.
impactofstiffnessofmembersandconnectionsontheforcedistributionintrussand
framestructures,designofbracing).
2.1 EffectiveLengthMethod(ELM)
ThesimplifiedcalculationmodelisbasedontheEffectiveLengthMethod(ELM).The
bucklingproblemofastructuralsystemisreducedtothatofanequivalentsimply
supported(pinned)column(Blass,1995).Forthedesign,theinternalforcesand
momentsarecalculatedbasedonasimple1storderanalysisandthenon‐linearP‐
deltaeffectistakenintoaccountbymeansofabucklingfactorkc.Thisfactor
describestheratiobetweentheaxialstressatbucklingfailureofamembersubjected
toaxialcompressionanditscompressivestrengthparalleltothegrain.kcdependson
theeffectivelengthofthestructuralsystemwhichcanbeexpressedbythe
slendernessratio
.
Thebucklingfactorkcasgivenindifferentdesigncodes(EN1995‐1‐1:2004,SIA
265:2012andDIN1052:2008)isbasedonextensiveinvestigationsperformedbyBlaß
(1987).Inordertodeterminethecharacteristicvalue(i.e.5thpercentile)oftheload‐
bearingcapacityoftimbercolumnsBlassperformedMonteCarlosimulations.The
numericalmodelandtheparameterstudyconsideredtheP‐deltaeffect,the
variabilityofthestrengthandthestiffnesspropertieswithinthetimbermembers,
thegeometricimperfectionofthetimbermembersandthenon‐linearmaterial
behaviouroftimberwhensubjectedtocompressionparalleltothegrainand
bending.
Fortheultimatelimitstateanalysis,thedesigncodes(EN1995‐1‐1:2004,SIA
265:2012andDIN1052:2008)recommendusingalinearinteractionmodelfor
combinedaxialcompressionandbending.Inthisinteractionmodel,thebuckling
factorkcisusedtoreducethecompressivestrengthparalleltothegrainofthe
timbermemberinordertoaccountforbuckling.
2.2 2ndorderlinearelasticanalysis
AsanalternativetothecalculationmodelbasedontheELM,timbermembers
subjectedtoaxialcompressionorcombinedaxialcompressionandbendingcanbe
designedbyperforminga2ndorderlinearelasticanalysis.The2ndorderlinearelastic
analysisisamethodwhichtakesintoaccountthegeometricnon‐linearitybystudying
theequilibriumofthedeformedstructuralmember.Aninitialdeformationis
introducedintothecalculationinordertoaccountforthegeometricimperfectionof
thememberase.g.deviationfromaperfectlystraightshape.
INTER / 48 - 02 - 02
48
Forasimplysupported,axiallyloadedcolumnthe2ndorderlinearelasticanalysiscan
easilybeperformed,assumingsinusoidaldistributedinitialdeformations.Theinitial
deformationincombinationwiththeaxialloadleadstoaninitialbendingmoment
MI.TheP‐deltaeffectcausesamagnifiedmomentMII.MIIcanbecalculatedby
multiplyingtheinitialbendingmomentMIwithamagnificationfactor
(Bazantand
Cedolin1991):
III MM
(1)
Euler
N
N
1
1
and2
2
cr
Euler
EI
N
(2)
With
MII: magnifiedbendingmoment(2ndorderlinearelastictheory,deformedstructure)
MI: initialbendingmoment(1stordertheory,undeformedstructure)
: magnificationfactor
N: normalforceactingonthecolumn
NEuler:Eulerbucklingload
E: modulusofelasticity(MOE)
I: 2ndmomentofinertia
cr: effectivelength
Timbermemberssubjectedtocombinedaxialcompressionandbendingtendto
developnon‐lineardeformationsofthecompressionzonebeforefailureoccurs.This
non‐linearityleadstoacurvedshapeofthemoment–axialforceinteractiondiagram
dependingontheratiobetweenthetensilestrengthft,m,0andthecompressive
strengthfc,m,0paralleltothegrain(Buchanan1985,SteigerandFontana2005).For
theultimatelimitstateanalysisoftimbercolumnsthedesigncodes(SIA265:2012,
EN1995‐1‐1:2004andDIN1052:2008)considerthisnon‐linearinteractionbehaviour
bysquaringthecompressionpartintheinteractionmodel(Eq.(3)).However,the
non‐linearmaterialbehaviouralsoinfluencesthedeformationsofthestructural
system,andasaconsequence,alsothemagnifiedmomentMIIisinfluencedbythe
non‐linearmaterialbehaviour.However,theseeffectsareneglectedwhen
performinga2ndorderlinearelasticanalysis.
0.1
,
,,
2
,0,
,0,
dm
dIIm
dc
dc
ff
(3)
With
c,0,d:designvalueoftheactingcompressivestressparalleltothegrain
fc,0,d:designcompressivestrengthparalleltothegrain
m,II,d:designvalueoftheactingbendingstressfroma2ndorderstructuralanalysis
fm,d:designbendingstrength
INTER / 48 - 02 - 02
49
3 Strain‐basedmodel
Inordertopredicttheglobalbucklingbehaviouroftimbercolumns,anumerical
strain‐basedmodelhasbeenimplemented.Strain‐basedmodelsarewidelyusedin
thedesignofstructuralmembersmadefromotherconstructionmaterialsthan
timber.E.g.forreinforcedconcretecolumns,astrain‐basedmodelissuggestedin
CEB/FIPManual(1978).Duetothefailuremechanismintimberbeinginfluencedby
thedistinctnonlinearstress‐strainrelationshipandleadingtoamorecomplex
calculationprocedure,uptonow,onlyafewapplicationsofthesemodelstotimber
structuresarereportedinliterature(Buchanan1984,Hörsting2008).
Figure1showsthecalculationprocedureofthestrain‐basedmodel.Onthelefthand
side,thecalculationoftheinternalforceNiandbendingmomentMiisillustrated.
Thecalculationstartswithselectingvaluesforthestrain
0atthemasscentreofthe
cross‐sectionandforthecurvature
y.Thesetwoparametersdefinethestrain
distributionwithinthewholecross‐section,whenassumingthatplanesections
remainplane.Basedonthestraindistribution,thestressdistributioniscalculated
usingtherelationshipgivenbythestress‐straincurve.Anyshapeofstress‐strain
curvecanbeappliedinthecalculation.Finally,theinternalforceNiandmomentMi
areestimatedbyintegratingthestressesoverthewholecross‐section.Theright
handsideofFigure1showsthecalculationoftheexternalforceNeandbending
momentMe.TheexternalbendingmomentMedependsontheexternalforceNeas
wellasonthedeformationofthecolumnduetotheinitialimperfectionsandtheP‐
deltaeffect.Sincethecurvatureisequaltothe2ndderivationofthedeflectioncurve,
themaximaldeflectioneIIofthecolumnduetotheP‐deltaeffectcanbecalculatedas
afunctionofthecurvature
y.BoththeinternalmomentMiandtheexternal
momentMedependonthecurvature
y.Hence,equilibriumbetweeninternaland
externalforcesandmomentscanbeobtainediteratively.
Figure1.Calculationprocedureinthestrain‐basedmodel(Theileretal.2013)
INTER / 48 - 02 - 02
50
Thestrain‐basedmodelhasbeenusedforstudyingtheinfluenceofvarious
parameters.E.g.itcanbeshownthattheplasticbehaviouroftimberwhensubjected
tocompressionparalleltothegrainconsiderablyinfluencesthebucklingbehaviourof
columns(Theileretal.2013).Therefore,theapplicationofanadequatematerial
model(stress‐strainrelation)isessentialwhenmodellingthebehaviouroftimber
memberssubjectedtocompression.Inthepresentstudy,themodelproposedby
Glos(1978)hasbeenused,sinceitappearstobemoresuitablethanothermaterial
modelsbecauseitisbasedonextensiveexperimentalinvestigationsonsolidtimber
boards.Inaddition,Glos(1981)developedthemodelfortimbermemberssubjected
tocompressionandbendingwhileothermodelsaremainlyfocusedontimber
memberssubjectedtopurebending.Glos’smodelaccountsforthereductionof
stiffnessbeforereachingtheultimatecompressionstrengthaswellasforthe
subsequentsoftening.Figure2qualitativelyshowsthestress‐strainrelationship
proposedbyGlos.Thedescriptionofthefullcurveinamathematicalformasksforsix
parameters(Figure2right).
Figure2.Qualitativerepresentationofthestress‐strainrelationshipinthematerialmodelproposed
byGlos(1978).
4 Experiments
Anexperimentalcampaignongluedlaminatedtimbermemberssubjectedto
eccentriccompressionhasbeenperformedatETHZurich(TheilerandFrangi2015).
Theaimoftheexperimentalinvestigationswastocreateadatabase,whichcouldbe
usedtovalidatetheoreticalcalculationmodelsandtoassesstheaccuratenessofthe
designapproachesgivenincodesforthedesignoftimberstructures.Thespecimens
wereproducedusinglamellasmadeofNorwayspruce(piceaabies)grownin
Switzerland.Atotalof336lamellaswereavailable.Inthefirststep,non‐destructive
testsonthelamellaswereperformed.Thesetestsaimedatcollectingdatainorderto
characterisetherawmaterial.Inthesecondstep,thelamellaswerestrengthgraded.
Theaimofthegradingprocesswastoselecttwoclassesoflamellasforthe
productionofthetestspecimens.Thelamellaswereselectedsothattheywere
suitabletoproducegluedlaminatedtimberofstrengthclassesGL24handGL32h.
INTER / 48 - 02 - 02
51
Withinthegradingprocess,visualgradingcriteriaaswellasmachinegradingcriteria
(dynamicMOE)wereused.Specimensforfivetestsserieswereproduced,three
seriesofgluedlaminatedtimberGL24handtwoseriesofgluedlaminatedtimber
GL32h(Table1).Eachofthetestseriesconsistedoftenspecimens.Thelengthofthe
timbermemberswasvariedbetweenthedifferenttestseries:L=1’400mm,L=
2’300mmandL=3’200mm.Thecross‐sectionwas140mmx160mm.
Table1.Overviewoftestseriesongluedlaminatedtimbermemberssubjectedtoeccentric
compressionperformedatETHZurich(TheilerandFrangi2015)
Test
series
Number
oftests
Strength
class
Cross‐section
[mm]
LengthL
(Slenderness)
Meanvalueofaxialstress
atfailure(COV)
110GL24h140x1601'400mm(30.3)25.6N/mm2(0.07)
210GL24h140x1603'200mm(69.3)15.3N/mm2(0.11)
310GL24h140x1602'300mm(49.8)20.3N/mm2(0.12)
410GL32h140x1601'400mm(30.3)31.1N/mm2(0.09)
510GL32h140x1603'200mm(69.3)18.1N/mm2(0.10)
Duringtheglulamproduction,thesetupofthetestspecimenswasrecorded.Hence,
thepositionandtheorientationofeverylamellawithineachtestspecimenwere
documented.Finally,thegluedlaminatedtimbermembersweresubjectedto
bucklingtests.Thetestspecimenswereloadedwithaneccentric(15mm)
compressionforceuptofailure.Duringthetests,theappliedloadsaswellas
horizontalandverticaldeformationswererecorded.Forasubsampleof20test
specimens,additionallocaldeformationmeasurementswereperformedusingan
opticalmeasurementsystem.
Figure3.Measuredload‐bearingcapacityforalltestsperformedincomparisonwiththeassumed
lognormaldistributionestimatedfromthetestresults(Theiler2014).
INTER / 48 - 02 - 02
52
ThegraphsinFigure3showtheresultsofalltestsperformedincomparisonwiththe
assumedlognormaldistributionestimatedfromthetests.Agoodagreement
betweentestresultsandestimatedlognormaldistributioncanbeseen.The
coefficientofvariation(COV)wasintherangeof10%foralltestseries(Table1).All
detailsofthetestsarepresentedinatestreport(TheilerandFrangi2015).The
resultsofthetestshavebeenusedforthevalidationofthestrain‐basedmodel.
5 Numericalsimulations
Inordertoaccountforthevariationinmaterialproperties,MonteCarlosimulations
wereperformed.Columnsofdifferentslendernessanddifferentstrengthgrades
weremodelledwiththestrain‐basedmodelbyassigningthemrandomlyselected
materialproperties.Sixdifferentparametersareneededtodescribethefullstress‐
strainrelationship(Figure2).Thedistributionsofthepropertiesintermsof
probabilitydensityfunctionPDFaswellasthecorrelationbetweenthedifferent
propertieshavetobetakenintoaccount.Thestudywasperformedfortwodifferent
gradesofsolidtimber(C24andC30)andgluedlaminatedtimber(GL24handGL32h).
CharacteristicvaluesgiveninEN338:2009andEN14080:2013wereconsidered.
However,thecharacteristicvaluesarenotsufficientforthestochasticmodelling.
Furtherinformationonthevariabilityofthemechanicalpropertiesisrequiredthat
forexamplecanbefoundintheJCSSProbabilisticModelCode(2007).Inaddition,
Glos(1978)investigatedvariabilityandcorrelationofthemodelparameters.Using
theseinvestigationsandthecharacteristicvaluesasabasis,foreachmaterial
propertyameanvalue,astandarddeviationandaprobabilisticdensityfunctionwas
estimated(Table2).
Table 2. Mean value, standard deviation and probability distribution function PDF used for the
numericalsimulations(seefigure2forthedefinitionofthematerialproperties)(Theiler2014)
Materialproperty C24C30GL24hGL32h
Et,0,Ec,0[N/mm2]
Meanvalue11’00012’00011’50014’200
Standarddeviation2’2002’4001’5001’850
PDFLognormalLognormal
ft,m,0[N/mm2]
Meanvalue38.848.634.045.5
Standarddeviation9.712.25.16.8
PDFLognormalLognormal
fc,m,0[N/mm2]
Meanvalue29.932.630.440.2
Standarddeviation5.35.63.95.2
PDFLognormalLognormal
εc,0[‐]
Meanvalue3.40*10‐33.40*10‐33.27*10‐33.51*10‐3
Standarddeviation6.80*10‐46.80*10‐44.25*10‐44.57*10‐4
PDFLognormalLognormal
fc,m,u,0[N/mm2]
Meanvalue25.427.725.633.9
Standarddeviation3.84.22.63.4
PDFLognormalLognormal
INTER / 48 - 02 - 02
53
Startingfromthestochasticallymodelledmaterialproperties,2ndordersimulations
werecarriedoutwiththestrain‐basedmodel.Foreachtimbergradeandslenderness
ratio10’000simulationswereperformedallowinganaccurateestimationofthe
meanvalueandthe5%fractilevalueoftheload‐carryingcapacity.Altogether,about
twomillionsimulationswereperformedinthisresearchproject.
Figure4.Comparisonbetweenexperimentaldataandnumericalsimulationsforgluedlaminated
timberofstrengthclassesGL24andGL32h(Theiler2014).
Figure4showstheresultsofthenumericalsimulationsperformedfortheanalysisof
thetestresultsforgluedlaminatedtimberofstrengthclassesGL24handGL32h.It
canbeseenthatthevariationinthenumericalpredictionislargerforstockycolumns
thanforslenderones.Thiscanbeexplainedbythevariationoftheinputparameters.
Theload‐bearingcapacityofstockycolumnsisgovernedbythecompressionstrength
paralleltothegrainwhiletheload‐bearingcapacityofslendercolumnsisgoverned
bythemodulusofelasticityMOE.Therefore,thevariationinthenumericalprediction
isadirectconsequenceofthevariationoftheseparameters.Forcolumnsof
intermediateslendernessvariousmaterialpropertiesaswellastheinitialdeflection
influencetheload‐bearingcapacity.
6 AssessmentandimprovementoftheEurocode5
designapproach
TheMonteCarlosimulationsperformedallowcheckingtheaccuratenessofthe
designapproachesgiveninEurocode5.InFigure5theresultsofthenumerical
simulationsusingasinputparametersthevaluesgiveninTable2arecomparedto
analyticalcalculationsbymeansofELMand2ndorderlinearelasticanalysisforglued
INTER / 48 - 02 - 02
54
laminatedtimberGL24handGL32h.Resultsofthenumericalsimulationsforsolid
timberC24andC30canbefoundinTheiler(2014).
Figure5.ComparisonbetweenELM,2ndorderlinearelasticanalysisandnumericalsimulationsfor
gluedlaminatedtimberGL24handGL32h.DesignequationstakenfromEurocode5.
Itcanbeseenthatthe2ndorderlinearelasticanalysismayleadtoanoverestimation
oftheload‐bearingcapacityespeciallyforcolumnsofintermediateandhigh
slenderness(
>50).Forslendercolumns(
>100),thecharacteristicvalues
obtainedfrom2ndorderlinearelasticanalysisareintherangeofthe25thpercentile
ratherthanintherangeofthe5thpercentile.Thisindicatesthatthedesignrulesfor
the2ndorderlinearelasticanalysisgiveninEurocode5donotensureanaccurate
designoftimbermemberssubjectedtocompressionandthereforeshouldbe
modified.However,thisconclusionisonlyvalidforsimplysupportedcolumns.
InEurocode5andotherdesigncodesthe2ndorderlinearelasticanalysisisbasedon
theassumptionoflinearelasticmaterialbehaviour,whichmeansthatthereduction
instiffnesscausedbythenon‐linearmaterialbehaviourisneglectedandtheload‐
bearingcapacityisoverestimated.Inordertoreachabetteragreementacorrection
factorhastobeintroducedinthedesignequation.Possibilitiestomodifythedesign
approacharetoenlargetheinitialdeformationsortoreducethedesignstiffness.
Inparticular,thereductionofthedesignstiffnessseemstobeapracticablesolution,
sinceitdescribesthephysicalphenomenaaccurately.In1889Engesserintroduced
thedesignconceptofreductioninstiffnessforsteelcolumnsandsuggestedtousea
tangentmodulusinsteadoftheMOE.Engesser’stheorywasfirstquestionedbyother
scientistsbutShanleyshowedin1947,thatEngesser’smethodwasavaluable
possibilitytoaccountfornon‐lineardeformationsinthecompressionzone.
INTER / 48 - 02 - 02
55
Basedontheresultsoftheresearchproject(Theiler2014)averygoodagreement
between2ndorderlinearelasticanalysisandnumericalsimulationsisobtainedwhen
usingabucklingmodulusdefinedasfollows:
M
dk
E
T
05,0
,for 5.0
0,,0,
dcdc f
(5)
T
dc
dc
M
dk f
E
T
121
,0,
,0,05,0
,for 5.0
0,,0,
dcdc f
(6)
With 0.3
T
forsolidtimberand 0.4
T
forgluedlaminatedtimber.
Figure6.Comparisonbetween2ndorderlinearelasticanalysisbasedonabucklingmoduslusTk,dand
numericalsimulationsforgluedlaminatedtimberofstrengthclassesGL24handGL32h.
AsimilarapproachwasalreadyproposedbyRošandBrunner(1931)andusedinthe
previousstandardSIA164:1981(Dubas1981).Theinvestigationshaveshownthat
thestrength‐dependentreductionofthestiffness(Eq.(5)and(6))leadstoavery
goodagreementbetweenthe2ndorderlinearelasticanalysisandthenumerical
simulations(Figure6).Ontheotherhand,thestrength‐dependentreductionofthe
stiffnessforhighloadlevelsleadstomorelaboriousdesignprocedure.Thebuckling
modulushastobedeterminedbymeansofiterationandcanbedifferentfor
differentdesignsituation.Additionalcalculationshaveshownthatforpracticaldesign
theestimationofthebucklingmodulusTk,daccordingtoEquation5isareasonable
solutionevenforhighloadlevels(
c,0,d
f
c,0d
0.5
)makingthedesigneasierforthe
engineersasnoiterationisneeded.
Thisstudyconcentratesonthebehaviourofsimplysupportedtimbercolumns.For
structuralsystemssuchasframestructuresthebehaviourisdifferentduetothe
distributionoftheaxialloadinthesinglemembers.Sincetheaxialloadinfluencesthe
INTER / 48 - 02 - 02
56
reductionofthestiffnessduetotheplasticdeformations,thebucklingbehaviour
dependsonthedistributionoftheaxialloadand,asaconsequence,theresults
obtainedwiththeELMortheadjusted2ndorderlinearelasticanalysis(Eq.(5)and
(6))wouldbetoosafeasshowninareliabilityassessmentperformedinaprevious
analysis(Köhleretal.2008).
7 Conclusions
Whendesigningtimbermemberssubjectedtosimultaneouslyactingaxial
compressionandbendingmoment,theincreaseofthebendingmomentduetothe
eccentricityoftheaxialforceandduetothenon‐linearmaterialbehaviouroftimber
subjectedtocompressivestresshastobetakenintoaccount.Thecurrentdesign
codesprovidetwodifferentapproachesforthedesignofrespectivemembers
(simplifiedanalysisbasedontheEffectiveLengthMethodand2ndorderlinearelastic
analysisofthestructure).However,thetwodesignapproachesarenotconsistent
andcanleadtodifferentresults.Basedontheinvestigationsperformed,the
followingconclusionscanbedrawn:
Theload‐bearingcapacityofstockycolumns(
<20)isgovernedbythe
compressionstrengthparalleltothegrain.Forslendercolumns(
>100)the
modulusofelasticity(MOE)isthedominantmaterialproperty.Forcolumnsof
intermediateslendernessratio(50<
<100),thecompressionstrengthparallelto
thegrain,theMOEandthenon‐linearmaterialbehaviourimpacttheload‐bearing
capacity.
Whenperforminga2ndorderlinearelasticanalysis,thenon‐linearmaterial
behaviouroftimbercannotbetakenintoaccount.Consequently,anadjustmentof
theresultsobtainedwiththismethodisrequired.Thiscanbedonebyreducingthe
designstiffnessofthestructuralmember.Theuseofabucklingmodulusfor
columnsappearstobeanappropriatesolution.
Whendesigningsinglecolumnsorbeam‐columnsusinga2ndorderlinearelastic
analysis,thecalculationofthedesignvalueofthebucklingmodulusTk,dshouldbe
basedon5thpercentilevaluesofthemodulusofelasticityE0,05.Theinvestigations
haveshownthatthestrength‐dependentreductionofthestiffness(Eq.(5)and(6))
leadstoaverygoodagreementbetweenthe2ndorderlinearelasticanalysisand
thenumericalsimulations.However,theestimationofthebucklingmodulusTk,d
accordingtoEquation5isareasonablesolutionevenforhighloadlevels
(
c,0,d
f
c,0d
0.5
)makingthedesigneasierfortheengineersasnoiterationis
needed.
Whendesigningstructuralsystemsusinga2ndorderlinearelasticanalysis,the
calculationofthedesignvalueofthebucklingmodulusTk,dshouldbebasedon
meanvaluesofthemodulusofelasticityE0,mean,astheuseof5thpercentilevalues
wouldleadtotoosaferesults.
INTER / 48 - 02 - 02
57
8 References
BazantZ.P.,CedolinL.(1991).Stabilityofstructures:elastic,inelastic,fracture,anddamage
theories.OxfordUniversityPress,NewYork.
BeckerP.,RautenstrauchK.(2001).Time‐dependentmaterialbehaviorappliedtotimber
columnsundercombinedloading.PartII:Creep‐buckling.HolzalsRoh‐undWerkstoff
59(6):491–5.
BeckerP.(2002).Modellierungdeszeit‐undfeuchteabhängigenMaterialverhaltenszur
UntersuchungdesLangzeittragverhaltensvonDruckstäbenausHolz.Dissertation.
Bauhaus‐UniversitätWeimar,Weimar.
BlaßH.J.(1987).TragfähigkeitvonDruckstäbenausBrettschichtholzunterBerücksichtigung
streuenderEinflussgrössen.Dissertation,UniversitätFridericianaKarlsruhe,Karlsruhe.
BlaßH.J.(1991).Designofcolumns.In:Proceedingsofthe1991internationaltimber
engineeringconference,vol.1.London:TRADA.p.1.75–1.81.
BlaßH.J.(1995).Bucklinglength.In:Timberengineering,STEP1.Almere,Netherlands:
CentrumHout.
BuchananAH.(1984).Strengthmodelanddesignmethodsforbendingandaxialload
interactionintimbermembers.Dissertation,UniversityofBritishColumbia,Vancouver.
BuchananAH.,JohnsKC.,MadsenB.(1985).Columndesignmethodsfortimber
engineering.CanJCivilEng12(4):731–44.
CEB/FIP(1978).Manualofbucklingandinstability.ComitéEuro‐InternationalduBétonand
FédérationInternationaledelaPrécontrainte;TheConstructionPressLtd;Lancaster.
DIN1052(2008).Entwurf,BerechnungundBemessungvonHolzbauwerken–Allgemeine
BemessungsregelnundBemessungsregelnfürdenHochbau.DeutschesInstitutfür
Normunge.V.,Berlin.
DubasP.(1981).Stabilitätsprobleme.In:EinführungindieNormSIA164(1981)–Holzbau,
LehrstuhlfürBaustatikundStahlbau,ETHZurich,Zurich.119–154.
EN338(2009).BauholzfürtragendeZwecke‐Festigkeitsklassen.EuropäischesKomiteefür
Normung,Brüssel.
EN1995‐1‐1(2004)+AC:2006+A1:2008+A2:2014.Eurocode5:Bemessungund
KonstruktionvonHolzbauten–Teil1‐1:Allgemeines–AllgemeineRegelnundRegelnfür
denHochbau.EuropäischesKomiteefürNormung,Brüssel.
EN14080(2013).Holzbauwerke‐BrettschichtholzundBalkenschichtholz‐Anforderungen.
EuropäischesKomiteefürNormung,Brüssel.
EngesserF.(1889).ÜberdieKnickfestigkeitgeraderStäbe.ZeitschriftdesArchitekten‐und
Ingenieur‐VereinszuHannover,35.455–462.
GlosP.(1978).ZurBestimmungdesFestigkeitsverhaltensvonBrettschichtholzbei
DruckbeanspruchungausWerkstoff‐undEinwirkungskenngrössen,Dissertation,TU
München.Munich.
GlosP.(1981).ZurModellierungdesFestigkeitsverhaltensvonBauholzbeiDruck‐,Zug‐und
Biegebeanspruchung.Sonderforschungsbereich96&Laboratoriumfürdenkonstruktiven
Ingenieurbau–TUMünchen,Munich.
INTER / 48 - 02 - 02
58
HartnackR.,SchoberK‐U.,RautenstrauchK.(2002).Computersimulationsonthereliability
oftimbercolumnsregardinghygrothermaleffects.In:ProceedingsofCIB‐W18meeting
35:PaperNo.35‐2‐1.Kyoto,Japan.
HartnackR.(2004).LangzeitverhaltenvondruckbeanspruchtenBauteilenausHolz.
Dissertation.Bauhaus‐UniversitätWeimar,Weimar.
HartnackR.,RautenstrauchK.(2005).Long‐termloadbearingofwoodencolumns
influencedbyclimate–viewoncode.In:ProceedingsofCIB‐W18meeting38:PaperNo.
38‐2‐1.Karlsruhe,Germany.
HörstingO.P.(2008).ZumTragverhaltendruck‐undbiegebeanspruchterHolzbauteile.
Dissertation;TUBraunschweig;Braunschweig.
JointCommitteeonStructuralSafety(2007).ProbabilisticModelCode;JCSSJoint
CommitteeonStructuralSafety;www.jcss.byg.dtu.dk.
KesselMH.,SchönhoffT.,HörstingP.(2005).ZumNachweisvondruckbeanspruchten
BauteilennachDIN1052:2004–08,Teil1.BauenmitHolz107(12):88–96.
KesselMH.,SchönhoffT.,HörstingP.(2006).ZumNachweisvondruckbeanspruchten
BauteilennachDIN1052:2004–08,Teil2.BauenmitHolz108(1):41–4.
KöhlerJ.,FrangiA.,SteigerR.(2008).Ontheroleofstiffnesspropertiesforultimatelimit
statedesignofslendercolumns.In:ProceedingsofCIB‐W18Meeting41,PaperNo.41‐1‐
1,St.Andrews.
LarsenHJ.,PedersenSS.(1975).Testswithcentrallyloadedtimbercolumns.In:Proceedings
ofCIB‐W18meeting4:PaperNo.4‐2‐1.Paris.
MöllerG.(2007).ZurTraglastermittlungvonDruckstäbenimHolzbau.Bautechnik
84(5):329–34.
RošM.,BrunnerJ.(1931).DieKnickfestigkeitderBauhölzer.In:Kongressdes
internationalenVerbandesfürMaterialprüfung,Zurich.
ShanleyF.(1947).Inelasticcolumntheory.JournaloftheAeronauticalSciences,14(5).261–
268.
SIA164(1981).Holzbau.SchweizerischerIngenieur‐undArchitektenverein,Zurich.
SIA265(2012).Holzbau.SchweizerischerIngenieur‐undArchitektenverein,Zurich.
SteigerR.,FontanaM.(2005).Bendingmomentandaxialforceinteractingonsolidtimber
beams.MaterialsandStructures,38(279).507–513.
TetmajerL.(1896).DieGesetzederKnickungs‐undderzusammengesetztenDruckfestigkeit
dertechnischwichtigstenBaustoffe.Materialprüfungs‐AnstaltamSchweiz.
PolytechnikumZurich.Zurich.
TheilerM.,FrangiA.,SteigerR.(2013).Strain‐basedcalculationmodelforcentricallyand
eccentricallyloadedtimbercolumns.EngineeringStructures,56.1103–1116.
TheilerM.(2014).StabilitätvonaxialaufDruckbeanspruchtenBauteilenausVollholzund
Brettschichtholz.DissertationNo.22062,ETHZurich,Zurich.
TheilerM.,FrangiA.(2015).KnickversuchemitBrettschichtholzstützenunterexzentrischer
Normalkraftbeanspruchung.IBK‐BerichtNo.361,InstituteofStructuralEngineeringIBK,
ETHZurich,Zurich.
INTER / 48 - 02 - 02