The ZX-calculus is a convenient formalism for expressing and reasoning about quantum circuits at a low level, whereas the recently-proposed ZH-calculus yields convenient expressions of mid-level quantum gates such as Toffoli and CCZ. In this paper, we will show that the two calculi are linked by Fourier transform. In particular, we will derive new Fourier expansion rules using the ZH-calculus,
... [Show full abstract] and show that we can straightforwardly pass between ZH- and ZX-diagrams using them. Furthermore, we demonstrate that the graphical Fourier expansion of a ZH normal-form corresponds to the standard Fourier transform of a semi-Boolean function. As an illustration of the calculational power of this technique, we then show that several tricks for reducing the T-gate cost of Toffoli circuits, which include for instance quantum adders, can be derived using graphical Fourier theory and straightforwardly generalized to more qubits.