Unipolar reversible resistance switching effects were found in 5 at% Ti-doped polycrystalline Ta2O5 films with the device structure of Pt/Ti–Ta2O5/Pt. Results suggest that the recovery/rupture of the conductive filaments which are involved in the participation of oxygen vacancies and electrons leads to the resistance switching process. Ti-doped Ta2O5 thin films possess higher resistance whether
... [Show full abstract] in low-resistance state or high-resistance state and higher resistance switching ratio than Ta2O5 thin films, where Ti addition plays an important role in the resistance switching process by suppressing the migration of oxygen vacancies via forming an electrically inactive Ti/O–vacancy complex. Excellent retention properties of the high and low resistances under constant stress of applied voltage were obtained.