ArticlePDF Available

Temperate and dissolved oxygen of the Picachos reservoir, Sinaloa, Mexico

Authors:

Abstract and Figures

The Picachos reservoir was completed in 2009 impounding the Presidio river, in the southern part of the state of Sinaloa, Mexico, and is located at a height of 75 m above msnmm. He began filling in July of the same year. A limnological study performed with monthly visits to the reservoir between September 2009 and August 2010 showed that it behaves like a warm monomíctic lake, with complete mixing between December and February and thermal stratification during the rest of the year, and with an anoxic hipolimnion during thermal stratification.
Content may be subject to copyright.
Segunda galera
2 de abril
Notas
93
Vol. 22 No. 1 2012
Comportamiento de la temperatura y el oxígeno disuelto en la presa Picachos, Sinaloa,
México
Temperate and dissolved oxygen of the Picachos reservoir, Sinaloa, Mexico
Rigoberto Beltrán-Álvarez, Juan Pedro Ramírez-Lozano y Jesús Sánchez-Palacios
Laboratorio de Limnología y Pesquerías de agua dulce, FACIMAR, UAS.
Paseo Claussen S/N, Col. Los Pinos, Mazatlán, Sinaloa, 82000. México
e-mail: rigober80@hotmail.com.
Beltrán-Álvarez R., J. P. Ramírez-Lozano y J. Sánchez-Palacios. 2012. Comportamiento de la temperatura y oxígeno disuelto en la presa Picachos, Sinaloa,
México. Hidrobiológica 22(1): 93-97.
RESUMEN
La presa Picachos se localiza en la región sur de Sinaloa, México,
se terminó de construir en 2009 sobre el cauce del río Presidio,
a una altura de 75 msnm, e inició su llenado en julio del mismo
año. Entre septiembre de 2009 y agosto de 2010 se registraron,
con frecuencia mensual en tres sitios del embalse y en toda la co-
lumna de agua, datos de temperatura del agua y oxígeno disuelto.
El embalse registró una mezcla completa entre los meses de di-
ciembre a febrero, y una estratificación térmica el resto del año.
La variación de la temperatura del agua indicó que este cuerpo
de agua se comporta como un lago cálido monomíctico. La anóxia
del hipolimnio coincidió con el periodo de estratificación tér-
mica.
Palabras Claves: Temperatura, oxígeno, presa Picachos, lago
monomíctico.
ABSTRACT
The Picachos reservoir was completed in 2009 impounding the
Presidio river, in the southern part of the state of Sinaloa, Mexico,
and is located at a height of 75 m above msnmm. He began fill-
ing in July of the same year. A limnological study performed with
monthly visits to the reservoir between September 2009 and Au-
gust 2010 showed that it behaves like a warm monomíctic lake,
with complete mixing between December and February and ther-
mal stratification during the rest of the year, and with an anoxic
hipolimnion during thermal stratification.
Key words: Picachos, Reservoir, thermal stratification and oxy-
gen, monomictic lake.
El agua embalsada mediante la construcción de presas tiene
diversos usos tales como la generación de energía eléctrica, el
riego de tierras agrícolas, suministro humano y prevención de
avenidas (Margalef, 1983), y según las aptitudes del nuevo em-
balse, también puede ser utilizado en actividades turísticas, pes-
queras y acuícolas (Kalff, 2002); en cualquiera de los casos, y en
particular para esta última actividad, se requiere conocer las ca-
racterísticas fisicoquímicas del agua, tales como la temperatura
y el oxígeno disuelto.
La importancia de la temperatura y el oxígeno disuelto estri-
ba en que son factores que influye en la mayoría de los procesos
vitales de los organismos así como en variados factores abióticos
del ecosistema (Betancourt et al., 2009). Estas variables físico-
químicas juegan un importante papel en la intensidad de los pro-
cesos fotosintéticos, remineralización de la materia orgánica y
liberación de nutrientes y metales desde los sedimentos (Bostrom
et al., 1988; Harris, 1999). La condición de si las aguas contienen
o carecen de oxígeno, determina la transformación de metales
como el fierro y los compuestos de nitrógeno y fósforo (Bostrom
et al., 1982; Dodds, 2002: Chulgoo et al., 2006), por tales razones se
debe conocer el comportamiento de la concentración de oxígeno
en la columna de agua, ya que son una importante herramienta
para recomendar el uso sustentable de este tipo de ambientes
acuáticos (Santiago & Vignatti, 2009).
La presa Picachos fue puesta en operación en julio de
2009, sobre la cuenca del río Presidio en el municipio de Maza-
tlán, Sinaloa, México, su cortina se ubica sobre las coordenadas
geográficas 23º 28’ 45’’ N y 106º 12’ 19’’ O, a 75 msnm. A su nivel
Hidrobiológica
2012, 22 (1): 93-97
Abril 2012
NOTAS
12.- Beltrán-Álvarez (AMB0711).i93 93 02/04/2012 04:39:59 a.m.
Segunda galera
2 de abril
94
Notas
Hidrobiológica
máximo ordinario, su capacidad de almacenamiento es de 327.7
millones de metros cúbicos, cubriendo una superficie de 2069.4
ha (Fig. 1), con una profundidad máxima de 50 m. Los registros de
parámetros se realizaron con una frecuencia mensual en el perio-
do de septiembre del 2009 a agosto del 2010, en tres estaciones:
(E-1), ubicada cerca de la cortina, (E-2), en la parte central del
embalse y (E-3), en la parte inicial de la presa, por donde penetra
el río Presidio (Fig. 1). La temperatura (±0.1 ºC) y el oxígeno di-
suelto (±0.1 mg/L) se midieron desde la superficie hasta el fondo,
con intervalos de dos metros usando un equipo multiparametrico
Hanna Modelo H9828. En este artículo se analizan los datos de la
estación E-1 porque al ubicarse en la zona más profunda, puede
considerarse representativa de la dinámica hidrológica del em-
balse.
En la Figura 2A, Tabla 1 se presenta el comportamiento de
la temperatura del agua durante el ciclo estudiado. En septiem-
bre del 2009, los registros de temperatura tuvieron un intervalo
de variación entre la superficie y fondo de: 30.3-25.8 ºC, con un
promedio de 27.2 ± 1.4 °C. El mes siguiente se comportó muy si-
milar. En noviembre de 2009, toda la masa de agua registró una
disminución de temperatura (intervalo de variación: 27.2-21.2 ºC;
promedio = 23.8 ± 2.0 ºC), lo que indicó el inicio del proceso de en-
friamiento como consecuencia de la disminución de la tempera-
tura ambiental. Sin embargo, se apreciaron pequeños gradientes
térmicos entre los niveles, que fueron suficientes para mantener
el cuerpo de agua estratificado. Los promedios de temperatura
en la columna de agua durante diciembre de 2009 (22.8 ± 0.79 ºC),
enero de 2010 (22.2 ± 0.44 ºC) y febrero de 2010 (21.5 ± 1.15 ºC),
caracterizaron a estos meses como los más fríos del año. Aunque
se observaron ligeros gradientes térmicos en la parte superficial,
por debajo de los dos metros y hasta los 20 m de profundidad, la
columna de agua se homogeneizó térmicamente. Para marzo de
2010, la temperatura ambiental empezó a elevarse, transfiriendo
mayor calor a las capas superficiales del embalse (25.7 ºC en su-
perficie y 19.2 ºC a los 40 m de profundidad). Entre los 6 y 8 m se
hizo evidente un gradiente térmico de 1.2 ºC y la diferencia de
temperatura en la columna de agua fue de 6.5 ºC; indicando que
en marzo se inicia el proceso de estratificación térmica. En los
siguientes meses la temperatura superficial se incrementó y las
Figura 1. Ubicación geográfica del área de estudio.
12.- Beltrán-Álvarez (AMB0711).i94 94 02/04/2012 04:39:59 a.m.
Segunda galera
2 de abril
Notas
95
Vol. 22 No. 1 • 2012
Tabla 2. Valores puntuales de oxígeno disuelto (mg/L) de septiembre del 2009 a agosto del 2010 en la estación 1 en la presa Picachos.
Prof. (m) S O N D E F M A M J J A
0 11.9 4.1 2 1.5 5.9 1.1 8.1 3.2 3.1 7.7 7.4 3.2
2 11.5 4.1 1.5 2 4.9 0.8 8 3.2 3 7.8 7.4 3.1
4 0.8 2.6 1 1.9 3.7 0.7 7.6 3.3 2.9 7.4 7.3 0.6
6 1.1 0.5 0.7 2.4 3.2 0.7 5.8 2.7 2.8 7.2 2.8 0.8
8 0.8 0.4 0.2 2 1.8 0.7 0.8 1.2 2.8 3.7 0.7 1.2
10 2.5 0.2 0 1.9 1.1 0.7 0.7 0.8 1 0 0.2 5.3
12 2.7 0.2 0 1.9 0.7 0.6 0.7 0.5 0.5 0 0.2 5.8
14 3.4 0.5 0 1.8 0.6 0.5 0.2 0.5 0.4 0 0 6.2
16 2.5 0.4 0 1.7 0.5 0.5 0.2 0.4 0.3 0 0 6.3
18 1.6 0.4 0 1.6 0.2 0.3 0.2 0.4 0.3 0 0 6.7
20 1.7 0.3 0.4 1.2 0.2 0.7 0.3 0.4 0.3 0 0 6.3
22 1.9 0.3 0.4 0.9 0.2 0.3 0.3 0.4 0.2 0 0 6
24 2.5 0.3 0.9 0.8 0.2 0.2 0.3 0.4 0.2 0 0 1
26 2.6 0.3 1.1 0.8 0.2 0.1 0.3 0.4 0.2 0 0 0.8
28 3.2 0.3 1.2 0.6 0.2 0 0.3 0.3 0.2 0 0 0.8
30 2.6 0.3 1.1 0.5 0.2 0 0.3 0.3 0.2 0 0 0.8
32 2.6 0.3 1 0.5 0.2 0 0 0.3 0.2 0 0 0.8
34 2.6 0.3 0.9 0.5 0.2 0 0 0.3 0.2 0 0 0.7
36 2.6 0.3 0.5 0.5 0.2 0 0 0.3 0.2 0 0 0.7
38 2.6 0.3 0.6 0.5 0.2 0 0 0.3 0.2 0 0 0.7
40 2.5 0.3 0.7 0.5 0.2 0 0 0.3 0.2 0 0 0.6
Tabla 1. Valores puntuales de temperatura (°C) de septiembre de 2009 a agosto del 2010 en la estación 1 en la presa Picachos.
Prof. (m) S O N D E F M A M J J A
0 30.3 30.8 27.2 24.3 23.5 23.6 25.7 25.5 27.6 29.8 29.9 27.2
2 29.4 30.1 26.3 23.4 22.8 22.1 24 22.9 24.3 28.7 29.4 27
4 28.8 29.7 26.2 23.4 22.7 22 23.8 22.5 22.7 24.9 28.8 26.8
6 28.8 29.6 26.2 23.4 22.7 22 23.7 22.3 22.5 22.6 28.3 26.5
8 28 28.9 26.1 23.4 22.2 22 22.5 22.3 22.3 22.5 27.2 26.2
10 27.5 28.1 25.5 23.4 22.1 22 22.3 22.2 22.7 22.4 24.9 26
12 27.4 27.8 24.8 23.4 22.1 22 22.2 22 22.1 22.2 22.9 25.6
14 26.9 27.5 24 23.4 22 22 22.1 21.9 22 22 22.4 25.4
16 26.5 27.2 23.7 23.3 22 22 22 21.7 21.8 21.6 22.2 25
18 26.3 27.2 23.1 23.3 22 22 21.9 21.4 21.5 21.1 21.6 24.6
20 26.2 27 22.6 22.6 22 21.9 21.8 20.9 21 20.8 21.1 23.9
22 26.1 27 22.2 22.4 22 21.7 21.5 20.6 20.9 20.6 20.8 22.8
24 26.1 26.9 21.9 22.2 22 21.1 21.1 20.3 20.5 20.3 20.5 21.8
26 26.1 26.9 21.7 22 22 20.7 20.5 20 19.9 20.3 20.5 20.4
28 25.9 26.8 21.4 21.8 22 20.2 20 19.6 19.9 20.3 20.5 20.6
30 25.9 26.7 21.3 21.7 21.9 19.6 19.6 20.3 20.5 20.3 20.5 21.8
40 25.8 26.7 21.2 21.6 21.7 18.6 19.2 19.6 19.9 19.8 19.8 20.4
12.- Beltrán-Álvarez (AMB0711).i95 95 02/04/2012 04:40:00 a.m.
Segunda galera
2 de abril
96
Notas
Hidrobiológica
diferencias entre superficie y fondo se hicieron cada vez mayores
volviendo la estratificación térmica cada vez más estable. Lewis
(2000) describe que en embalses tropicales, la entrada de agua
fría proveniente de los ríos tributarios, puede modificar el patrón
de estratificación del cuerpo de agua. De acuerdo a la evolución
de la temperatura del agua durante el periodo estudiado, la Presa
Picachos se comportó como un lago cálido monomíctico (Lewis,
1982).
Los registros de oxígeno en la columna de agua se presentan
en la Figura 2B y Tabla 2, observándose que en superficie alcanzó
su máxima concentración de 11.9 mg/L en el mes de septiembre
de 2009, en marzo, junio y julio del 2010 los registros indican valo-
res de 8.1, 7.7 y 7.4 mg/L respectivamente. De enero a marzo son
los meses considerados como los más fríos del año, en los cuales
la capa oxigenada se extiende entre superficie y 6 m en el primero
y alcanza los 10 m en el segundo, en tanto que correspondió a fe-
brero ser el mes en el cual se registra la menor concentración de
oxígeno tanto en superficie (1.1 mg/L) como en toda la columna de
agua. Este comportamiento podría explicarse por el hecho de que
la mezcla pone en suspensión materiales disueltos y suspendidos
que utilizan este elemento para su oxidación (Wetzel, 2001). Lewis
(1983), reporta la presencia de este fenómeno en el lago Valencia
en Venezuela. Los meses en los cuales el oxígeno superficial fue
más bajo fueron abril (3.2 mg/L), mayo (3.1 mg/L) y agosto (3.2 mg/
L). En noviembre de 2009, este gas registró concentraciones de
2.0 mg/L en la superficie, disminuyendo en los niveles inferiores
para luego volver a elevarse y alcanzar su máximo valor de 1.2
mg/L a los 28 m. En agosto de 2010 dicho fenómeno se presen-
tó de nuevo con la concentración de oxígeno en la superficie de
3.2 mg/L, apreciándose una tendencia a disminuir hacia el fon-
do, detectándose una capa oxigenada entre los diez y 22 m. Este
fenómeno es señalado por Margalef (1983), quien establece que
las corrientes de los ríos al penetrar a los embalses, lo hacen a
manera de cuña que se identifica por registrar una temperatura y
concentración de oxígeno diferente al agua subyacente. Umaña
(2006) reportó un efecto similar en el embalse el Arenal en Cos-
ta Rica. Sin embargo, lo anterior no se había observado en otros
embalses de la región, como las presas El Salto y Gustavo Díaz
Ordaz, en el estado de Sinaloa, México, lo que quizás se deba a
que las características morfométricas del estos embalses difie-
ren a los de la presa Picachos (Beltrán et al., 1995; Beltrán et al.,
2006).
AGRADECIMIENTOS
A los revisores anónimos y de manera especial al M. en C. José
Luis García Calderón y al Dr. Domenico Voltolina por las correc-
ciones realizadas al manuscrito.
REFERENCIAS
Beltrán, A. r., G. A. M. Arroyo & P. J. Sánchez. 1995. Estudio limnológi-
co de la presa El Salto, Sin. México. I. Comportamiento hidrológico.
Anales de la Escuela Nacional de Ciencias biológicas, México 41:
211-223.
Beltrán-A. r., J. Sánchez-PAlAcioS & J. P. rAMírez-lozAno. 2006. Morfome-
tria y características físicas y químicas del agua del embalse Gusta-
vo Díaz Ordaz, Sinaloa, México. Ciencias del Mar 18: 41-46.
BetAncourt, c., r. SuArez & l. toledo. 2009. Patrones de distribución tem-
poral de algunas variables físicas y química en el embalse Paso Bo-
nito, Cienfuegos, Cuba. Limnética 28 (1): 23-34.
BoStroM, B., M. JAnSSon & c. ForSBerG. 1982. Phosphorus release from
lake sediment. Archiv für Hydrobiologie Beiheft Ergebnisse der Lim-
nologie18: 5-59.
BoStroM, B., J. A. AnderSen, S. FleScher & M. JAnSSon. 1988. Exchange
of phosphorus across the sediment-water interface. Hidrobiología
179: 229-244.
Figura 2. Comportamiento de la temperatura (A) y oxigeno di-
suelto (B).
12.- Beltrán-Álvarez (AMB0711).i96 96 02/04/2012 04:40:01 a.m.
Segunda galera
2 de abril
Notas
97
Vol. 22 No. 1 • 2012
chulGoo, K., y. niShiMurA & t. nAGAtA. 2006. Role of dissolved organic ma-
tter in hypolimnetic mineralization of carbon and nitrogen in large,
monomíctico lake. Limnology and Oceanography 5 (1): 70-78.
doddS, K. W. 2002. Freshwater Ecology. Concepts and Environmental
Application. Academic Press, 569 p.
González, e., cArrillo V. & c. PeñA-herrerA. 2004. Características físicas y
químicas del embalse Agua Fría (Parque nacional Macarao, estado
de Miranda, Venezuela). Acta Científica Venezolana 55: 225-236.
hArriS, G. P. 1999. Comparison of the biogeochemistry of lakes and es-
tuaries: ecosystem processes, functional groups, hysteresis effects
and interaction between macro- and microbiology. Journal of Mari-
ne Freswaters Research 50: 791-811.
KAlFF, J. 2002. Limnology. Inland Water System. Prentice Hall. 592 p.
leWiS, W. 1982. Causes for the higth frecuency of nitrogen limitation in
tropical lakes. Verhandlungen der Internationalen Verein Limnologie
28: 210-213.
leWiS, W. 2000. Basis for the protection and management of tropical lakes.
Lakes and Reservoirs. Research and Management 5: 35-48.
MArGAleF, r. 1983. Limnología. Ed. OMEGA, España. 1010 p.
SAntiAGo, e. & A. ViGnAtti. 2009. Determinación del estado trófico y de la
capacidad de carga del embalse Casa de Piedra. BioScribia 2 (1):
41-51. M m
uMAñA, V. G. 2006. Ciclo anual de estratificación y circulación en el em-
balse Arenal, Costa Rica. Revista Biología Tropical 54 (Suppl. 1):
257-263.
Wetzel, G. r. 2001. Limnology. Lake and river ecosystems. Academic
Press, 1016 p.
Recibido: 27 de mayo de 2011.
Aceptado: 21 de septiembre de 2011.
12.- Beltrán-Álvarez (AMB0711).i97 97 02/04/2012 04:40:01 a.m.
... Unlike other semiarid rivers along the Sinaloa coast that dry up completely, the Presidio River always presents water that drains slowly, even in the dry season (CONAGUA, 2015). Additionally, the Picachos dam is relatively smaller (Beltrán-Álvarez et al., 2012) compared with other hydroelectric dams (Valderrama-Landeros and Flores-de-Santiago, 2019). ...
Article
The interactions between local tides and river discharges are crucial in the processes related to the recruitment of mangrove propagules in estuarine systems. This investigation aimed to determine the causes of the recent natural recruitment and expansion of Laguncularia racemosa in mudflats within an ephemeral inlet in Mexico. We conducted a fluvial and coastal geomorphology assessment with spaceborne and UAV-based images. We deployed and recorded continuous data loggers in the estuarine system to assess water level and salinity. Depending on the available data, we used a combination of cloud-computing Google Earth Engine, UAV-Digital Surface Models, LiDAR, Google Earth images, and biophysical variables to monitor mangrove forests from 2005 to 2022. When the inlet is open, the estuarine system presents a full tidal range (~1–1.5 m) with a strong salinity gradient (0–35 mS/cm), in contrast to the strong freshwater influence and minimal water level variability (<10 cm) that prevails for three months when the inlet is closed. Once the mouth of the river closes, there is considerable sediment accumulation, creating mudflat areas adjacent to the mangrove forests where Laguncularia racemosa propagules begin to establish under minimal water level variability and oligohaline conditions. After 16 years, the new forest expanded by 12.3 ha, presenting a very high density (10000 stems/ha), a considerable basal area (54–63 m2/ha), and a maximum canopy height of 15.8 m, which largely surpasses that of other semiarid Laguncularia racemosa forests within permanent open-inlet systems or even in ephemeral inlets with different hydrological conditions. Our study will help to understand the causes of natural Laguncularia racemosa recruitment in extremely dynamic systems.
... Second, from our experience sampling rivers in the SMO for more than 20 years and from discussions with local inhabitants working near the rivers, there is no evidence of sea-run movement. Third, and perhaps the strongest argument, is that Mexican native trout live in high-altitude streams of different drainage basins (Hendrickson et al. 2006; this study) that function as isolated islands and are separated by uninhabitable lowland stretches of rivers with water temperatures above their tolerance (~24°C; Holguín et al. 2006;Beltrán-Alvarez et al. 2012). An alternative hypothesis to explain the high genetic differentiation is that reservoirs in the lower parts of the basins (Fig. 1) prevent the run to the sea and lead to the fragmentation of trout in each basin (recent genetic differentiation). ...
Article
Full-text available
In the remote high-elevation streams and rivers in the northwest of Mexico, there is an endemic and highly diverse group of native trout related to the rainbow trout lineage (Oncorhynchus mykiss). Currently, only two species have been formally described from this trout complex, the Mexican golden trout, O. chrysogaster, and the San Pedro Mártir rainbow trout, O. m. nelsoni, but only the former occurs in the Sierra Madre Occidental (SMO). South and north of the O. chrysogaster range, there are other undescribed trout that have been recently discovered. Given the various human impacts on aquatic systems occupied by these Mexican native trout, the lack of taxonomic descriptions and the imminent risk of losing populations without their even being documented, we sought to infer a hierarchical population structure of the Mexican native trout, determine the geographic patterns of genetic diversity and gene flow among them, and identify evolutionarily significant units for a prompt conservation strategy. The allelic diversity across eleven microsatellite loci was used to assess genetic divergences of wild trout collected throughout its range in Mexico. Our results reject the old hypothesis that many of the trout in Mexico are introduced or translocated hatchery-reared rainbow trout and strongly support the new hypothesis of distinct genetic populations and lineages in the northwest of Mexico. According to the different statistical analysis of the genetic data, we distinguish between species and subspecies (O. chrysogaster, O. mykiss, and O. m. nelsoni) of the other regional lineages of undescribed trout (northern and southern) inhabiting the SMO. We also found a strong genetic substructure within these large clusters. We propose the presence of seven Evolutionarily Significant Units in the drainage basins of the SMO (two occur in the northern region, four in the southern, and one for the area of distribution of O. chrysogaster) and one in north-western Baja California. Based in microsatellite data a minimum gene flow among populations is evidenced, resulting the presence the highly divergent populations.
... Wastes from past mining activities have the potential to impact soils with metals and metalloids (Thornton 1996) because of the allocation of pollutants through atmospheric transportation and mine drainage (Chopin and Alloway 2007;López et al. 2008). The Basin of Presidio River drains into this water body where depth can reach 50 m and surficial water temperature ranges from 23.5°C in January to 30.8°C in October (Beltrán-Álvarez et al. 2012). The weather of the region is catalogued as dry with rains during the summer and a mean annual temperature of 25°C (García 1973). ...
Article
Full-text available
Uptake of mercury (Hg) through fish consumption is one of the key aspects of the Hg cycle in the aquatic ecosystems. In tropical latitudes, biomonitoring of Hg in freshwater reservoirs is scarce. The objectives of the study were to determine Hg distribution in muscle, liver, and kidney of blue tilapia Oreochromis aureus from a dam located in a mining region of northwest Mexico, to define temporal variations of Hg concentrations in fish collected during the dry and rainy seasons, and to estimate the percentage weekly intake (PWI) of Hg through fish consumption considering the individual weekly intake of fish in Mexico and the provisional tolerable weekly intake of Hg (5 μg kg(-1) body weight). The sequence of Hg concentrations was liver > kidney > muscle during the rainy season and kidney > liver > muscle during the dry season. Levels of Hg were significantly higher (p < 0.001) in muscle (0.36 μg g(-1)) and kidney (0.65 μg g(-1)) of specimens collected during the dry season in comparison to individuals collected during the rainy season; accordingly, average PWI in the dry season (5.41) was higher than in the rainy season (1.80). Though collected fish were adults, Hg levels in the edible portion are not harmful to consumers, even during the dry season that Hg levels were higher.
Article
Full-text available
A study is presented on the pH, redox potential (Eh), dissolved oxygen (DO), and temperature (T) in the Paso Bonito reservoir, used as a source of drinking water supply for the Cienfuegos City. This reservoir has its basin located mainly in a mountain area, affected by the organic, physical, and residue pollution from an old pyrite mine. From September 2006 through November 2007 samples were collected at meter intervals from the surface to bottom near water withdrawal site. The reservoir was polymictic during wet summers, and monomictic during dry summers. During thermal stratification it had a clinograde oxygen distribution pattern, a pH between 7.0 and 8.1 and a negative hypolimnetic Eh during thermal stratification. We derived an empiric model relating Eh, DO and T. The correlations between the studied indicators were also determined. These results will facilitate the interpretation of highly complex phenomena such as the release of nutrients, metals, and organic matter from the sediments.
Article
Full-text available
This paper reviews the biogeochemistry of carbon, nitrogen, phosphorus and their associated minor elements (iron and sulfur) in rivers, lakes and estuaries. The biogeochemistry of these elements can be explained by the physiology and stoichiometry of the major functional groups of micro- and macro-biota in these ecosystems. Furthermore, the global patterns of nitrogen and phosphorus limitation in freshwater and marine systems are explicable in terms of evolutionary differences between the major functional groups in freshwater and marine ecosystems, and their physiology and stoichiometry, as well as the interactions of carbon, iron, water residence times and ionic strength as the water flows from catchments to the sea. The highly non-linear responses of aquatic ecosystems to changing catchment loads of major and minor elements are explained by the interactions of the major functional groups and by competition between the pelagic and the benthos for nutrients and light.
Article
Full-text available
Monitoring a reservoir water quality is fundamental to plan its administration and management. For this planning, nutrient concentrations (phosphorus and nitrogen) are some of the factors to consider because they are responsible of the trophic state. Fish culture releases nutrients, so it might increase the trophic state. The carrying capacity is the fish biomass that can be maintained without surpassing certain trophic state. Since 2005, rainbow trout breeding cages were introduced in Casa de Piedra reservoir. The objectives of this contribution are to present the trophic state of this oligo=mesotrophic reservoir and to compare it with previous years. We also calculated the carrying capacity based on data taken from the river and the reservoir in October of 2007. The amount of nutrients in the river and the reservoir, nutrient retention, trophic state and water transparency in the reservoir have not changed since the year 2000. Since the phosphorus mass in the water was 48,8 tons, we estimated that an increase to 174,78 tons would be necessary to enter an eutrophic state. Therefore, a carrying capacity of 9874,5 tons of trouts would be necessary to eutrophy the reservoir in only one year. We suggest that in order to minimize the impact, this trout biomass should be distributed in a bigger time frame.
Article
Physical and chemical features were determined in the high mountain reservoir Agua Fría (Miranda State, Venezuela). Monthly samples were taken from January - December 2001 at 3 localities: E1, in the deepest region of the reservoir, near the dam, and in E2 and E3, located at the entrance of tributaries into the water body. Water transparency was high (mean value of 6.5 m), due to the low quantities of organic and inorganic matter in the water, which allowed light penetration throughout the water column during almost the entire study period. A stable thermal stratification was well established throughout the study period, which permits classification of the reservoir as meromictic with a warm monomictic tendency, according to the Lewis criteria (1983) for tropical lakes. Anoxic conditions prevailed in the hypolimnion of the reservoir during the May - October period. Water salinity was low, as suggestd by the low conductivity values (< 500 μS/cm). The water was slightly alkaline (pH > 7.0). Nutrient concentrations, especially phosphorus, were low, thus corresponding to a ultraoligotrophic reservoir, according to the Salas and Martinó's criteria (1991) for tropical lakes.
Article
We tested the hypothesis that dissolved organic matter (DOM) is delivered to deep layers by convective mixing in winter, where it contributes to the mineralization of C, N, and P in the oxygenated hypolimnion of large (surface area 674 km2, maximum depth 104 m), monomictic Lake Biwa. Basin-scale, seasonal measurements of DOM concentrations revealed that dissolved organic carbon (DOC) and nitrogen (DON) accumulated in the epilimnion during warm seasons and were redistributed into the deeper layer during winter overturn. Hypolimnetic DOC and DON decreased in concentration over the stratification period, indicating mineralization; the contributions of DOM to the total mineralization of C and N were 8% and 30%, respectively. Higher contribution of N relative to C suggests that the N-rich DOM was mineralized at depth. We failed to detect a significant contribution of dissolved organic phosphorus to P mineralization in the hypolimnion, which could be explained by substantial depletion in P relative to C and N of DOM; C:P and N:P ratios were 1,978 and 147, respectively. The data suggest that convective mixing in this monomictic basin delivers DOM to hypolimnetic depths, where it is mineralized during subsequent periods of stratification. © 2006, by the American Society of Limnology and Oceanography, Inc.
Article
In this article, principles of phosphorus retention and phosphorus release at the sediment-water interface in lakes are reviewed. New results and hypotheses are discussed in relation to older models of phosphorus exchange between sediments and water. The fractional composition of sedimentary phosphorus is discussed as a tool for interpretation of different retention mechanisms. Special emphasis is given to the impact of biological, particularly microbial, processes on phosphorus exchange across the sediment-water interface and to the significance of biologically induced CaCO3 precipitation to phosphorus retention in calcareous lakes.