Article

Integrated analysis of biomass co-firing with gaseous fossil fuel. Environmental criteria analysis

Authors:
To read the full-text of this research, you can request a copy directly from the authors.

Abstract

The goal of the research described in the paper is to study co-firing of wood pellets and gaseous fossil fuel, evaluating the influence of co-firing on efficiency, produced energy volumes, and emission production. In order to achieve the set aim and objectives a special pilot device for wood pellets and propane/butane co-firing was constructed in an accredited laboratory. The results of the experimental research allow running a complete analysis of cofiring and evaluating the influence of magnetic field on efficiency, produced heat energy volumes, and emission production. The research has a high practical significance and is aimed to increase the level of wood biomass use for energy production as well as to ensure its effective application.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

Article
Full-text available
The complex experimental research into the combustion dynamics of rene-wable (wood biomass) and fossil (propane) fuel co-fire in a swirling flame flow has been carried out with the aim to achieve clean and effective heat production with reduced carbon emissions. The effect of propane co-fire on the formation of the swirling flame velocity, temperature and composition fields as well as on the combustion efficiency and heat output has been analysed. The results of experimental study show that the propane supply into the wood biomass gasifier provides faster wood fuel gasification with active release of volatiles at the primary stage of swirling flame flow formation, while the swirl-induced recirculation with enhanced mixing of the flame components results in a more complete burnout of wood volatiles downstream of the combustor with reduced mass fraction of polluting impurities in the emissions.
Article
Full-text available
Three commercially available biomass fuels, made of natural and waste wood, were fed in a pilot scale bubbling fluidized bed gasifier having an internal diameter of 0.381 m and a maximum feeding capacity of 100 kg/h. The experimental runs were carried out at about 850°C and under values of the equivalence ratio between 0.20 and 0.30. The fluidized bed was generally made of natural olivine even though some runs utilized beds of dolomite or quartz sand. Measurements taken during each run include the gas composition, the content of tar in the syngas, the mass flow rate and composition of entrained fines collected at the cyclone and the characterization of bed material. The results indicate that the air gasification process is technically feasible with all the biomass tested. The olivine as tar removal bed catalyst provides for different results with waste and natural biomass fuels.
Article
Reduction of the emissions of greenhouses gases, increasing the share of renewable energy sources (RES) in the energy balance, increasing electricity production from renewable energy sources and decreasing energy dependency represent the main goals of all current strategies in Europe. Biomass co-firing in large coal-based thermal power plants provides a considerable opportunity to increase the share of RES in the primary energy balance and the share of electricity from RES in gross electricity consumption in a country. Biomass-coal co-firing means reducing CO2 and SO2, emissions and it may also reduce NOx emissions, and also represents a near-term, low-risk, low-cost and sustainable energy development. Biomass-coal co-firing is the most effective measure to reduce CO2 emissions, because it substitutes coal, which has the most intensive CO2 emissions per kWh electricity production, by biomass, with a zero net emission of CO2. Biomass co-firing experience worldwide are reviewed in this paper. Biomass co-firing has been successfully demonstrated in over 150 installations worldwide for most combinations of fuels and boiler types in the range of 50–700 MWe, although a number of very small plants have also been involved. More than a hundred of these have been in Europe. A key indicator for the assessment of biomass co-firing is intrduced and used to evaluate all available biomass co-firing technologies.
Article
The dynamics of premixed confined swirling flames is investigated by examining their response to incident velocity perturbations. A generalized transfer function designated as the flame describing function (FDF) is determined by sweeping a frequency range extending from 0 to 400 Hz and by changing the root mean square fluctuation level between 0% and 72% of the bulk velocity. The unsteady heat release rate is deduced from the emission intensity of OH* radicals. This global information is complemented by phase conditioned Abel transformed emission images. This processing yields the distribution of light emission. By assuming that the light intensity is proportional to the heat release rate, it is possible to deduce the distribution of unsteady heat release rate in W m−3 and see how it evolves with time during the modulation cycle and for different forcing frequencies. These data can be useful for the determination of regimes of instability but also give clues on the mechanisms which control the swirling flame dynamics. It is found from experiments and demonstrated analytically that a swirler submitted to axial acoustic waves originating from the upstream manifold generates a vorticity wave on its downstream side. The flame is then submitted to a transmitted axial acoustic perturbation which propagates at the speed of sound and to an azimuthal velocity perturbation which is convected at the flow velocity. The net result is that the dynamical response and unsteady heat release rate are determined by the combined effects of these axial and induced azimuthal velocity perturbations. The former disturbance induces a shedding of vortices from the injector lip which roll-up the flame extremity while the latter effectively perturbs the swirl number which results in an angular oscillation of the flame root. This motion is equivalent to that which would be induced by perturbations of the burning velocity. The phase between incident perturbations is controlled by the convective time delay between the swirler and the injector. The constructive or destructive interference between the different perturbations is shown to yield the low and high gains observed for certain frequencies.