ArticlePDF Available

Analyzing the Impact of Using Interactive Animations in Teaching

Authors:
  • Subotica Tech - College of Applied Sciences / Visoka tehnička škola strukovnih studija

Abstract and Figures

This study intends to measure the impact of interactive animations on the students' performance. Two courses from Subotica Tech were included, the subjects "Analog and Digital Electronics" and "Microcontrollers". The experiment lasted over a period of tree years, and it involved the formation of two groups in every academic. Both groups' members participated in traditional frontal teaching, but the experimental group could use interactive Flash animations built from selected parts of those courses as supplementary tool. At the end of the semester, the exam marks were analyzed with a Two-Sample T-Test. The results show that learning with properly created interactive animations could have positive effects on most students' academic performance.
Content may be subject to copyright.
Int. J. of Computers, Communications & Control, ISSN 1841-9836, E-ISSN 1841-9844
Vol. VII (2012), No. 1 (March), pp. 147-162
Analyzing the Impact of Using Interactive Animations in
Teaching
R. Pinter, D. Radosav, S.M. Cisar
Robert Pinter
Subotica Tech-College of Applied Sciences
Serbia, 24000 Subotica, Marka Oreškovića 16
E-mail: probi@vts.su.ac.rs
Dragica Radosav
University of Novi Sad, Technical faculty "Mihajlo Pupin" Zrenjanin
Serbia, 23000 Zrenjanin, Djure Djakovica bb
E-mail: radosav@tfzr.uns.ac.rs
Sanja Maravić Čisar
Subotica Tech-College of Applied Sciences
Serbia, 24000 Subotica, Marka Oreškovića 16
E-mail: sanjam@vts.su.ac.rs
Abstract: This study intends to measure the impact of interactive animations
on the students’ performance. Two courses from Subotica Tech were included,
the subjects “ Analog and Digital Electronics” and “Microcontrollers”. The ex-
periment lasted over a period of tree years, and it involved the formation of
two groups in every academic. Both groups’ members participated in tradi-
tional frontal teaching, but the experimental group could use interactive Flash
animations built from selected parts of those courses as supplementary tool.
At the end of the semester, the exam marks were analyzed with a Two-Sample
T-Test. The results show that learning with properly created interactive ani-
mations could have positive effects on most students’ academic performance.
Keywords: distance education and telelearning, improving classroom teach-
ing, interactive learning environments, simulations, media in education.
1 Introduction
In the era of modernization in the teaching process, when the use of novel information tech-
nologies aims to achieve easier, faster and more efficient knowledge transfer in education, the
application of interactive animations has become more and more important. The questions arises
as to what the reasons are which have made interactive animations a vital part of modern e-
curricula, and whether there is empirical evidence to support claims that using multimedia and
interactivity in e-curriculum has positive impact to cognitive development and academic achieve-
ment at students. In the first part of this paper, authors analyze characteristics of the interactive
animations. The second part presents some research done with interactive animations developed
at Subotica Tech. The e-contents are compiled from selected parts of the course "Analog and
Digital Electronics" and "Microcontrollers" at Subotica Tech.
The thorough investigation by Sekular and Blake [1] into how students take in information,
how they learn pointed out that the learning process takes place primarily by way of sight, and
since it is the most vital of our senses, it is also the most highly-developed one. It enables a person
to gather information from one’s surroundings, analyze these and then decide how to process
based on the deduced data. In terms of teaching, it is by seeing that students will best grasp
a complicated string of steps as it helps transform a vague idea into an image in their brains.
Copyright c
2006-2012 by CCC Publications
148 R. Pinter, D. Radosav, S.M. Cisar
Kraidy [2] started that, if the aim is to increase the amount of information to be processed by
students within a set time frame, then giving them visual information to work with will help
them reach this goal.
Graphical representations are defined as visual aids that act as supplement to any other
textual information and will concentrate learners’ attention [3]. Such representations will have
maximum effect when accompanying some learning material that is (relatively) new to the learner
[4]. This is especially the case with computer animation that is designed to aid long-term learning
in the form of focusing learners on certain objects in the beginning.
The research of Rieber [5] portrayed that abstractions connected with time transitions in a
process can be decreased by implementing animations to convey ideas and processes that change
over time. Dual-coding theory by Paivio, [6] [7] offers an explanation as to why graphics are so
effective: retaining memory over a long time is made easier if a combination of verbal and visual
cues is used. This makes animations a distinctively significant support of visualizing material
for long-term memorization. Animation and narration further support dual-coding [8].
What makes animations stand out is movement, as opposed to static, still images, and this
demonstrates the various relationships within and along a certain process. By Goldstein, Chance,
Hoisington and Buescher [9] movement will be remembered longer than static images. According
to Gordin and Pea [10] and also Brodie, Carpenter, Earnshaw, Gallop, Hubbold, Mumford,
Osland, Quarendon [11] visualization is a vital part in the acquisition of scientific topics, since
important relationships between concepts will be pointed out for learners.
It was demonstrated by research results that animations are more effective learning tools
that static images, and this was further supported by lesson plans incorporating lectures as well
as different learning inputs [12]. Based on the dual-coding theory [7] it may be asserted that
learning will be the most effective if there are lectures alongside animations, since they together
form a base of reference that will help learners fully understand the knowledge that was conveyed
through the animations. Lectures will cue the students, but actual studying happens through
the animations [13].
2 Interactive Animations
One of the tendencies in education is the continually growing amount of learning content
which must be acquired by the student. Almost every generation’s curricula are extended by
a certain amount of new, updated or revised material. With this swelling of learning contents,
another issue arises, namely that the time which is intended for learning these amount of contents
is growing ever shorter for each subsequent generation. Besides that, students are no longer
interested in the foundations of some complex system, and how it is compiled, but rather, they
want to know how the system works and how it can be managed. In accordance with these
tendencies the educators have been searching for learning tools which can help the students
acquire knowledge.
As animation are able to unambiguously portray changes over time (temporal changes), they
are extremely suitable for using them in process and procedure teaching. Animations are applied
to show dynamic content, and they reflect alterations in position (translation), as well as form
(transformation) which form the basis of learning this kind of topic [14].
Unlike static pictures, temporal changes are shown in animations directly (instead of indi-
rectly by some awkward auxiliary markings including arrows and motion lines). The application
of animations, as opposed to static graphics, makes these extra markings unnecessary, thus strip-
ping down the displays and making them attractive, lively and easily understandable [15]. Fur-
thermore, there is no need for the learner to process these auxiliary markings and what changes
they try indicate. Interpreting the markings and the inferences may actually surpass the level
Analyzing the Impact of Using Interactive Animations in Teaching 149
of graphical skills that the learner possesses. Yet with animations, these displays immediately
show all information concerning the changes, thus no extra mental depiction is required.
Learning can be facilitated by animations in two ways. On the one hand, their function is
to affect the learner, raise their interest and keep up motivation. The entertainment industry
implements this same function in their animations. On the other hand, though, animations
also have the function to facilitate comprehension and memorization of a given content. The
knowledge-building process is thus supported and this cognitive function is essential to effective
learning.
Superficially, it may seem that animations are the perfect candidates to be applied in present-
ing dynamic content. Nevertheless, there is no unambiguous research evidence supporting this.
Some researchers have conducted comparisons of how effective static and animated displays are
in education by using a number of content domains. Although there have been positive results
where animations have proven to be rather effective, these results have been countered by other
investigations that have found no positive, and even negative effects of using animations. On the
whole it is safe to say that animations are not by definition more effective than static graphics.
Instead, the specific features of certain animations and their method of application is crucial in
what kind of effect they will have on knowledge acquisition.
2.1 Do Animations Make Learning Faster?
Animations play an important role in computer-based learning environments. So far, however,
it has not been sufficiently resolved under which conditions and in which respect animations do
actually lead to better learning outcome. Well-designed animations are likely to be a real asset to
the teacher. They will speed up the learning process and make it easier to grasp and memorize
the material. It especially comes in handy when the teacher is trying to explain a difficult
subject. The question arises: Why is a subject perceived as difficult? It may either be because it
requires a certain amount of imagination. For example, in our animations we visualized a clock
signals, a values and shapes of the input and output voltage signals, a states and changes of the
microcontroller internal registers etc. With the help of computer animations both the teaching
and learning process will be made less difficult, it will take less time and it will be livelier.
However, what then explains the fact that sometimes animations are not educationally ef-
fective as one would expect them to be? A possible answer would be that students are unable
to "compute" the information seen in the animation adequately. If a complex subject is to be
presented with animation, it may result in an equally complex animation, thus leaving students
feeling overwhelmed. This is supported by the role of visual perception and cognition in human
information processing. The perceptual and cognitive systems of humans have their limits for
information processing. Once the presented animation reaches or oversteps the learners’ infor-
mation processing limits, the learning process may no longer be effective. Also negative effects
come forward if the new information being presented in animations is faster than the speed of
how fast the learner is capable of processing that effectively.
Replacing current static graphics with animations without careful consideration is not likely
to result in improved learning; instead animations should be accompanied by textual explana-
tions, and let the learner have control over the speed of the animation. Such user-controllable
animations will enable learners to "customize" the animations by varying the playing speed and
direction, labels and audio commentary to suit their own personality. The controllable animation
can be realized with interactive animation. The interactivity within the animation could mean
the own playing speed and walk-through, different amount of auxiliary explanations etc.
Besides the visualization of the curriculum, this kind of animation offers another advantage:
the possibility of modeling and simulating systems. This means that knowledge acquisition can
150 R. Pinter, D. Radosav, S.M. Cisar
take place also by changing the model’s parameters, or otherwise experimenting with the system.
So, when using interactive simulations besides the previously mentioned advantages, some new
ones can be defined:
The model offers the possibility for analyzing and doing experiments with those systems,
which cannot be done in real life.
The models enables studying of certain fast occurrences in a much slower mode, or time-
consuming events in a much shorter time span than in reality.
The model makes it possible to focus on the vital characteristics of the learning content
being taught.
The model offers the users the freedom of experimentation without any consequences.
2.2 The Advantages of Flash Animations
The developing environment provided by the packet Adobe Flash CS3 (and its prior versions)
was used by the authors as the tool of choice for creating these interactive animations. In a
simplified form, this software tool is an application for creating vector sketches and animation,
with the option of adding this interactive feature. Naturally, the Flash developing environment
offers many more options, but it also includes very straight-forward ways of creating animations.
The fact that it is rather easy to create interactive animations is a crucial aspect, as in such a case
it is not a pre-requisite for the subject teacher to be highly educated in information technologies.
This type of animation can be used for presenting the material in theoretical classes, but also
for creating a fully electronic curriculum for consolidating the material previously taught in
practices, as well as for independent work outside the classes.
Practice shows that creating effective interactive animations still requires the close coopera-
tion of the teacher and the expert for Flash technologies. Successful acceptance of the animations
by the students primarily depends on the course teacher. It is their task to determine the fol-
lowing:
Goals that are to be achieved with this animation,
The content that is to be shown,
Which elements of the learning material are to be represented statically (with an image),
and which will take the forms of animation or interactive animation (simulation),
Guidelines (design of the outlook, which controls are to be used, the user’s options within
the system, etc.) based on which the application will be developed.
The task of the "Flash expert" is to realize the requirements of the teacher as best as pos-
sible. The programmability of the animation thus comes in really handy for the expert. When
developing the Flash application of the programs that may be used is Action Script (the current
version is 4), an object-oriented programming language. With the help of this language every
element of the animation (lines, colors, sound, etc.) can be controlled, calculations can be made
using the entered parameters, and finally, the results can be presented, and actually used to draw
new objects or their trajectories, as well as communicate with the server, among others.
It is safe to say there is no such task in creating an animation that an experienced Flash
programmer cannot solve. In fact, this is the real advantage of this tool, as it can meet all
the requirements irrespective of school age or learning material. Besides the listed advantages
Analyzing the Impact of Using Interactive Animations in Teaching 151
of a Flash animation, it is also rather easy to distribute this application. There are two most
commonly used formats for saving this animations: the executive (*.EXE) format, which starts
in its in-built player; and the standard (*.SWF) format for playing in a web browser or in the
FlashPlayer player (it can be downloaded easily from the Internet). What is characteristic of
these two formats is the small file size, which is a vital factor when distributing the application
via the Internet. Another benefit of the Flash animation is that it is a single file, there are no
separate sound files, and the images do not comprise a separate module. All this ensures that
there is no special installation procedure, only the file to be saved and started, which makes it
an accessible program for even the somewhat computer-wary users.
Besides the so-called technical advantages, with the use of adequate design techniques, the
Flash-type animation could gain further benefits. One of those benefits is the result of how a
Flash animation is developed: most often the parts of a Flash animation are drawn, and there
is little use of images from the real world. The advantage of drawing, i.e. of creating vector
objects for animation is that the drawn objects are represented in a simpler form, with less
detail than, for example, if they were shown in a bitmap format. This means once the educator
has abstracted the material for the students there is yet another simplification of the learning
material. But there are other design techniques which could lead to more effective learning
process, for example:
Using the "Inserting and removing fragments" technique. The complexity and information
load of the animation interface can be regulated by inserting or removing objects or pieces
of information form it.
Using the "Dimming fragments" technique. With this technique one can differentiate
between important parts of the animation and those which serve as additional information.
The dimmed elements look like as if they are melting into the background.
Using background (blurred) animation to attract and keep user’s attention on the interface.
Also, in these projects the following design aspects were used:
Minimize the number of visual elements, thus making it easy to follow the presented process.
Minimal amount of lateral information used solely for presenting the essence as simply as
possible.
" Data entry by keyboard was not incorporated. The reason for this is that the data entry
option does not always mean an advantage in the learning process: they may cause the
user to be preoccupied with trying to crash the application by entering invalid formats and
values.
As a result of these design techniques, the system will show a straight-forward form, using
only the vital details, leading directly to a better and easier understanding of the model, and
the user cognitive load is kept on adequate (i.e. low) level.
Are these the only reasons why the animation should be used in teaching? No, they are not.
There are problems which occur in educational communication called information barriers, and
the Flash animation will yield some solutions to this problem. Some of these barriers can be
classified in the following way:
perceptual barriers – each subject in the communication process feels and interprets events
occurring to them differently, depending on their psychological, cultural and social status,
152 R. Pinter, D. Radosav, S.M. Cisar
psychological barriers – the same word or event will have a different meaning for different
persons,
social barriers – these barriers become apparent by the different social statuses of the
subjects in the educational communication,
cultural barriers – these arise in communication due to the different cultural backgrounds
of the subjects participating in the communication process,
semantic barriers – barriers of this type appear when interpreting written contents, speeches,
images, and other, thus the way the message is read will change the content itself,
media barriers – this information barrier occurs when the there are different communication
media used on educational communication. It is well-known fact that each carrier has their
own markings, which may be helpful as well as distracting in communication,
physical barriers - informational barriers come up in educational communication when
transferring the message, i.e. in the channels of connection.
How and where do information barriers occur when there are PCs used in the teaching
process? Some of possible sources of problems are described below:
experience shows that old programs which exclusively use the keyboard for interaction will
be accepted to a lesser extent due to the fact that using the keyboard is more complicated
than using the mouse,
programs (simulations) designed using too much detail will be harder to accept because
first the users have to make out what is on the screen and only then move on to the
explanation of the modeling system,
if there are too many options for simulation set up, result saving, parameter input, etc,
where the users might ‘become disoriented’, then, according to Murphy ’s Law, they prob-
ably will.
3 Practical Applications
The following section describes interactive animations which have been successfully in use as
an auxiliary teaching tool at Subotica Tech - College of Applied Sciences [16]. Unfortunately,
the advantages of the animations as described before are difficult to transfer to paper only with
the help of images. The applications have been designed as interactive tutorials for presenting
the functioning of some of the basic systems of analogue and digital electronics (Figure 1.) and
microcontrollers (Figure 9. and 10.). For the Microcontrollers course two e-contents (interactive
Flash simulation) were developed. They presents exercises for three out of fourteen lessons, but
these three lessons count as "difficult", for example they cover the following themes: using the
microcontrollers built in timer/counter in different modes, setting and using interrupts, com-
munication through serial port, controlling analog to digital signal (and vice versa) conversion
etc. The e-content for the Analogue and Digital Electronics there are altogether 19 simulations
classified into 5 groups/exercises. Through these simulations the students can practice approx-
imately about 40% of curriculum’s theory. For example, "Exercise 1" contains simulations on
the topics: Sources of alternating signals, Voltage splitter, Passive voltage adder, RC low-pass
filter, RC high-pass filter. Figure 1. shows the screenshot of Exercise 3 and the accompanying
simulation entitled "Pojačavač sa zajedničkim" (Common emitter amplifier). The design of the
Analyzing the Impact of Using Interactive Animations in Teaching 153
Figure 1: Representation of the exercise “Common emitter amplifier”
application shown in this image is followed through in the rest of the simulations, as well: the
upper left corner contains the sketch of the system, below are the system parameters which can
be altered in the simulation, while the "oscilloscope" is situated in the right side of the screen,
showing the change of the signal over time. In this part of the application, by clicking on the
link labeled "Objašnjenje" (Explanation) the theoretical background comes up in text form.
Below is a detailed description of the content and functions of the elements on the screen:
1. Links for transition to the next/other simulation within this exercise.
2. Sketch to be simulated. The parameters listed next to the components are changing de-
pending on values of the checkboxes under the sketch.
3. Representation of the shape of voltage signal at the input and output. Part of the image
marked with the arrow 3 shows the shape of output voltage, while the one marked 4 shows
the input voltage. These shapes of signals are constantly redrawn. The lighter point on
the line shows the current voltage value. The break in the line is the consequence of the
change in RC components on the sketch during the simulation.
4. Buttons for starting and stopping the simulation.
5. The button for calling up the background explanation for how the sketch functions.
6. The list of equations used for calculating the necessary parameters of the sketch and the
results of the calculation/estimation.
7. The return button leading to the introductory page where the exercises can be chosen.
8. Values of the sketch components. These parameters can be changed by choosing values
from the checkboxes. Each change has affects the listing of calculated values based on
the new parameters and the change of signal shape at the output (“upper canal of the
oscilloscope”).
The following image (Figure 2) shows the simulation “Decade counter” with the help of which
students can learn the logic of the synchronous counter.
All simulations in this application are entirely controlled by mouse. Changing the parameters
is done with the help of combo boxes and the predefined values they contain. In this way the
154 R. Pinter, D. Radosav, S.M. Cisar
Figure 2: Representation of the exercise “Decade counter”
application is protected from irregular data. It is important to mention the following advantages
of these simulations:
it is not necessary to really ‘create’ an electric circuit in order to see how it works,
changing the components in the system only takes a few clicks in the checkbox,
it is possible to show the state of important values in continuity, as done by an oscilloscope.
The following few paragraphs present some ActionScript (version 2) programming code, which
shows how one can input data from the combo box, calculate the output voltage, and draw the
form of voltage signal like it is done on a real oscilloscope. The combo box is presented as an
object on the main animation scene. The next figure shows a combo box, which is used for input
of predefined resistor values:
Figure 3: Input option via combo box
The following code was attached to the combo box:
Figure 4: Source code for combo box’s onClipEvent event
When the user selects a value from the "r" combo box’s list, the code is executed . The first
line of the code assigns the currently selected item’s label (currently it is a "50k" string) to the
’r1’ variable. The ’r1’ variable is the label in the scheme (see Figure 5, dashed line rectangle,
right from the R resistor). So changes in the values in the combo box are displayed also on the
scheme. The second line of the code assigns the value (numerical value: 50000) associated with
the item currently selected ("50k" string) to the "r" variable. The scheme has its own action
script code, which uses the "r" variable for calculating the new output value of the voltage.
Because this code changes several global variables, other movie clips on the scene which also use
those variables are affected with it. In this way, for example the changes in the resistor value
Analyzing the Impact of Using Interactive Animations in Teaching 155
Figure 5: Scheme of the RC low–pass filter
Figure 6: Source code attached to the RC low–pass filter schema
affects the movie clip which represents the oscilloscope function, and the new form of the output
signal is displayed. Drawing the form of voltage signal on the oscilloscope is done by moving
a special movie clip on the coordinates which are determined in the code above. In the movie
clip which presents the current output value one yellow circle changes to a smaller and orange
colored circle. This animation of the movie clip with 4 picture out of 10 is presented in Figure
7. When drawing the output signal this movie clip is moving on the screen, and with its own
Figure 7: Movie clip of the oscilloscope drawing beam
animation the effect preented on the Figure 8 is achieved. Figure 9 shows one of a series of
seven interactive simulations that are part of the e-curriculum which had been developed for
the Microcontrollers course. The simulations present the i8051 microcontroller’s timer/counter
hardware, the setting and use of interrupts, and the application of the special forms of the ADD
and MOV instructions.
Figure 10 presents one of the four interactive simulations created specifically for the Micro-
controllers course. The simulations refer to the practical use of the i8051 microcontroller.
4 Experiments and Analysis
For the purpose of this study the following research questions were specified: what is the
impact of interactivity of the animations on learning? The null hypothesis is defined as follows:
Interactive animations have no significant positive impacts on studying "Microcontroller"
and "Analog and Digital Electronics" courses.
156 R. Pinter, D. Radosav, S.M. Cisar
Figure 8: Appearance of the drawing beam in the oscilloscope movie clip
Figure 9: Representation of the exercise “Timer0 in mode 1”
Figure 10: Representation of the exercise “Microcontroller with A/D”
Analyzing the Impact of Using Interactive Animations in Teaching 157
In order to obtain answers to the research questions, the authors compared the final exam
score standard deviation at "Analog and Digital Electronics" and "Microcontrollers" courses
independently, where the animations were used as supplementary tools for learning and practicing
after class.
4.1 Participants and Data Collecting Method
The data acquisition was done at Subotica Tech - College of Applied Sciences over a three-
year period. It involved the second year students from two undergraduate programs the Electro-
technical Engineering major (EE) where these two courses were obligatory and the Computer
Science major (CS) where these courses were optional. The number of participants for the
first course (Analog and Digital Electronics) over the period of 3 years is 441 students, 56 female
(12.7%) and 385 male (87.3%) students. The second course’s participants (Microcontrollers) were
the same students from EE major, and from the CS major there were some old students and some
new ones (those who did not select the first course). The composition of this group was: 464
participants, 58 females (12.5%) and 406 males (87.5%) See Table 1. Most participants, 98.5%,
were between 18 and 20 years old; the remaining percentage is represented by a few students
whose age were between 20 and 30. In these 3 years at the beginning of the semesters (the first
course was in the fall and the second in the spring semester), the students were divided in two
equal-sized groups, the control and the experimental group. The group members were chosen
randomly, and only one condition had to be satisfied for the experimental group members: to
have possibility of accessing the web application and the simulations from home. If this condition
was not satisfied, that student automatically becomes the member of control group.
After forming the groups accessing the web application was enabled only for the experimental
group. There was no additional motivation for the students. All participants visited face to face
(f2f) classes of these two courses, which were taught by the same lecturer presenting identical
material. This further strengthens the consistency of comparisons.
The web application collected the following data from the users:
1. How many time did he/she logged on to the system to use the e-content,
2. How many time did he/she spent using the particular simulation.
Students who logged on only few times and spent less time that the authors foresaw are
assumed to be not using the system in an adequate mode, and they are not taken as members of
the experimental group, so they were transferred to the control group (for details see Table 1).
Ineligibility meant that the number of loggings is less than half of the available exercises, and
the time spent in the system is less than 2 minutes per exercise
The authors took as null hypothesis that the two groups would have the same mark average
at both courses. The alternative hypothesis claims that the control group will achieve better
result at both courses. The data was analyzed with one-sided, t-test, assuming that the variances
of the two samples are different. Because one course was in the fall semester and the second
one in the spring semester, the analysis was done twice a year at the end of the semesters and
independently for both courses.
158 R. Pinter, D. Radosav, S.M. Cisar
Courses 2007 school year 2008 school year 2009 school year
Experiment.
group
Control
group
Experiment.
group
Control
group
Experiment.
group
Control
group
Analog&Digital
Electronics 61 83 72 80 69 76
Microelectronics 75 86 74 81 73 75
Table 1 –The number of participants in the groups
4.2 Student Survey
At the end of each semester and before the final exam, the control group members were asked
to fill out a questionnaire with 5 questions. From the answers (marks from 1 to 5 and comments)
the authors received feedback about generally how students were satisfied with simulation, how
did it help or not in the learning process and what would they like to see done in a different way.
These data were collected in order to perform further improvement of the teaching materials in
the way that would lead to a widely accepted e-curriculum.
5 Results and Discussion
The t-test applied to our two sample groups (main and control group) allows us to compare
the means of the final exam marks of both groups. The following table presents these values.
2007 Microcontrollers course
nSS Mean MeanE-MeanC df tobs
Experimental group 75 121.9467 7.973 0.438 159 2.16
Controll group 86 139.3953 7.534
2008 Microcontrollers course
nSS Mean MeanE-MeanC df tobs
Experimental group 71 105.098 7.887 0.420 144 2.06
Controll group 75 110.666 7.466
Analyzing the Impact of Using Interactive Animations in Teaching 159
2009 Microcontrollers course
nSS Mean MeanE-MeanC df tobs
Experimental group 73 99.780 8.054 0.375 146 1.93
Controll group 75 104.32 7.680
2007 Analog and Digital Electronics course
nSS Mean MeanE-MeanC df tobs
Experimental group 61 57.147 8.540 0.457 142 2.48
Controll group 83 124.409 8.084
2008 Analog and Digital Electronics course
nSS Mean MeanE-MeanC df tobs
Experimental group 72 110.611 8.139 0.451 150 2.18
Controll group 80 135.187 7.687
2009 Analog and Digital Electronics course
nSS Mean MeanE-MeanC df tobs
Experimental group 69 104.289 8.232 0.403 143 1.97
Controll group 76 110.776 7.829
Table 2 – Students’ score distribution
Where the notations in the table are:
n - number of participants,
SS - sum of squared deviates,
MeanE/MeanC - mean for of experimental/controll group,
df - degrees of freedom,
tobs- observed values of t-distribution.
6 Conclusions and Future Works
The authors compared the observed value of t with the t from the table of critical values
that pertain to df > 140, and the results are shown in Table 3:
160 R. Pinter, D. Radosav, S.M. Cisar
Courses
Significance of the Difference
between the Variances of the Two
Samples
M2007 t95%<tobs <t99% 1.98<2.16<2.61
M2008 t95%<tobs <t99% 1.98<2.06<2.61
M2009 tobs<t95% 1.93<1.98
AD2007 t95%<tobs <t99% 1.98<2.48<2.61
AD2008 t95%<tobs <t99% 1.98<2.18<2.61
AD2009 tobs<t99% 1.97<1.98
Table 3 – Significance differences between two groups
From the presented data, the following conclusions can be drawn:
In 4 cases out of 6 we can reject the null hypothesis, and we can say with probability
of 95%, that those experimental groups achieved better results on exam than the control
groups.
In two cases there are no reasons to reject the null hypothesis.
The results show evidence that interactive simulation contents can be very effective tools in the
learning process. It can deliver information in a very attractive way, which also can be advanta-
geous in assembling curricula for the students who have different skill levels and learning styles.
Besides that, it can help learners to understand scientific topics, with presenting important con-
ceptual relationships. It is also important that simulations enable students to become acquainted
with the shown system and make changes in the parameters with no additional costs or risks.
But only well-designed animations may help to ease and shorten the learning process, and only
with them, through play and experimentation can the learning process become more interesting
[17] [18]. The students’ answers from the questionnaires show that not every simulation is
accepted in the same manner. For example, the third e-content (Figure 10) was given lower
grades/worse comments than the other two. The reasons for this could be the themes which
were presented with the simulation, because it does not contain spectacular and experimenting
options. The design/the look of the animation also received worse marks from the students.
Some future researches should also investigate how effective the interactive animations are when
the users have different learning styles
Various researches focusing on the effectiveness of learning with the help of visualization
point out that in order for the animation to be well accepted, by the [19] [20] [21] the following
have to be kept in mind :
positive effects in learning can only be achieved in topics that are dynamic in character,
an exaggerated multitude of colors in the animation will have the exact opposite effect,
it is important for the application to contain an optimal amount of information.
Due to the lack of a standard in creating successful visual applications [22], experiences gained
from well-accepted electronic materials may serve as guidelines for defining a methodology, which,
if applied in the design of animations and simulations, will lead to greater effect and efficiency
in the learning process [23].
However, results also show that there is a tendency of decreasing the difference between
those learners who had used the animation and those who had not. Is this because there is
an increasing number of such and similar e-curricula available to students, and this kind of
Analyzing the Impact of Using Interactive Animations in Teaching 161
attractive multimedia presentations are no longer motivate students as they used to before; or
was is simply the case of students of the control group getting hold of the animations and using
them in their learning process. Unfortunately, the questionnaire filled in by the students at the
end of the semester failed to provide definitive answers to this question. The questionnaires show
that students were on the whole satisfied with the applications.
A number of studies indicate that the user’s performance is much better if the teaching
methods are matched to the user’s learning style [24]. Designing the animation’s interface and
contents to match the students’ preferred learning style could lead to a more effective learning
process. For example, according to the Felder–Silverman [25] learning style model, the animations
containing a lot of visual elements, such as pictures, diagrams, flow charts etc. are preferred for
the visual learning profile, while written and auditory explanations are effective with the verbal
type of student. And to mention another example: students with an active profile prefer the
simulation (interactive animation) which allows experimenting with the system parameters.
Bibliography
[1] Sekular, R., and Blake, R., Perception, Second Ed., New York, McGraw-Hill, 1990
[2] Kraidy, U., Digital Media and Education: cognitive impact of information visualization. Jour-
nal of Educational Media, 27(3),95-106., 2002
[3] Richard E. Mayer, Systematic Thinking Fostered by Illustrations in Scientific Text, Journal
of Educational Psychology, 1989, Vol. 81, NTo. 2, 240-246
[4] Mayer, R.E., Gallini, J.K., When is an illustration worth ten thousand words?, Journal of
Educational Psychology, 1990, Vol. 82, No. 4,715-726
[5] Rieber, L.P., Computers, graphics, and learning. Madison, Wisconsin: Brown & Benchmark,
1994
[6] Allan Paivio, Imagery and Verbal Processes, Lawrence erlbaum associates, publishers, Hills-
dale, New Jersey, 1979
[7] Paivio, A. Dual coding theory: retrospect and current status. Can. J. Psychol. 45,255 -287.
[8] Mayer, R.E., and Anderson, R.B., Animations need narrations: an experimental test of a
dual-coding hypothesis. J. Educ. Psychol. 83,484-490
[9] Goldstein, A., Chance, J., Hoisington, M., and Buescher, K., Recognition memory for pic-
tures: dynamic vs. static stimuli. Bull. Psychonomic Soc. 20,37 -40
[10] Gordin, D.N., and Pea, R.D., Prospects for scientific visualization as an educational tech-
nology. J. Learn. Sci. 4,249 -279.
[11] Brodie, K.W., Carpenter, L.A., Earnshaw, R.A., Gallop, J.R., Hubbold,R.J., Mumford,
A.M., Osland, C.D., and Quarendon, P.Scientific Visualization, Berlin: Springer-Verlag,
1992.
[12] Rieber, L.P. Using animation in science instruction with young children. J. Ed. Psychol.
82,135 -140, 1990.
[13] Phillip McClean, Christina Johnson, Roxanne Rogers, Lisa Daniels: Molecular and Cellular
Biology Animations: Development and Impact on Student Learning, Cell Biol Educ 4(2):
169-179 2005, DOI: 10.1187/cbe.04-07-047.
162 R. Pinter, D. Radosav, S.M. Cisar
[14] Gabriela Moise, A Formal Description of the Systemic Theory based e-Learning, Interna-
tional Journal of Computers, Communications & Control, Vol. III (2008), No. 1, pp. 90-102
[15] R. Pinter, D. Radosav, S. Maravic Cisar,Interactive Animation in Developing e-Learning
Contents, 33rd International Convention on Information and Communication Technology,
Electronics and Microelectronics - MIPRO 2010, May 24 - 28, 2010, Opatija, Croatia, ISSN
1847-3938, ISBN 978-953-233-054-0, pp. 251-254
[16] Pinter Robert, Sanja Maravic Cisar, The Application Of Flash Animation In The Devel-
opmnet Of E-Learning , Simpozijum o racunarskim naukama i tehnologijama, Kopaonik,
10-14.03.2003, Serbia and Montenegro
[17] Jan L. Plass, Bruce D., Homer, Elizabeth O. Hayward: Design factors for educationally
effective animations and simulations, Journal of Computing in Higher Education, (2009)
21:31-61, DOI 10.1007/s12528-009-9011-x
[18] Moreno, R., & Mayer, R., Interactive multimodal learning environments: Special issue on
interactive learning environments: Contemporary issues and trends, Educational Psychology
Review. Special Issue: Interactive Learning Environments: Contemporary Issues and Trends,
19(3), 309–326, 2007
[19] Moreno, R., Optimising learning from animations by minimising cognitive load: Cognitive
and affective consequences of signaling and segmentation methods, Applied Cognitive Psy-
chology, 21,765–781, 2007.
[20] Weiss, R. E., Knowlton, D. S., & Morrison, G. R., Principles for using animation in com-
puterbased instruction: Theoretical heuristics for effective design, Computers in Human Be-
havior, 18, 465–477, 2002.
[21] Um, E., Song, H., & Plass, J. L., The effect of positive emotions on multimedia learn-
ing, Paper presented at the World Conference on Educational Multimedia, Hypermedia &
Telecommunications( D-MEDIA 2007) in Vancouver, Canada, June 25–29, 2007.
[22] Maria D. A. Suarez, Cayetano G. Artal, Francisco M. T. Hernandez E-learning multimedia
applications: Towards an engineering of content creation Int. J. of Computers, Communica-
tions & Control, ISSN 1841-9836, E-ISSN 1841-9844, Vol. III (2008), No. 2, pp. 116-124
[23] Rieber, L. P., Effects of visual grouping strategies of computer-animated presentations on
selective attention in science, Educational Technology Research and Development, 39, 5–15,
1991.
[24] Chen S., Macredie R.,Cognitive Styles and Hypermedia Navigation: Development of a Learn-
ing Model, Journal of the American Society for Information Science and Technology, 53(1):3
15, (2002)
[25] Richar F., Rebeca B.,Understanding Student Differences, Journal of Engineering Education,
94 (1), 57-72 (2005)
... Computer (interactive) animations may help concretise abstract, complex concepts and phenomena in science education, thus helping students to learn more easily and more effectively (Akpinar, 2013). The questions arises as to what the reasons are which have made interactive animations a vital part of modern ecurricula, and whether there is empirical evidence to support claims that using multimedia and interactivity in e-curriculum has positive impact to cognitive development and academic achievement at students (Pinter et al., 2012). Part of study of Informatics and Information technologies in higher education, in addition to programming is eg. ...
... Such representations will have maximum effect when accompanying some learning material that is (relatively) new to the learner (Mayer and Gallini, 1990). This is especially the case with computer animation that is designed to aid long-term learning in the form of focusing learners on certain objects in the beginning (Pinter et al., 2012). ...
... It can deliver information in a very attractive way, which also can be advantageous in assembling curricula for the students who have different skill levels and learning styles. Besides that, it can help learners to understand scientific topics, with presenting important conceptual relationships (Pinter et al., 2012). In case of implementing interactive animations into the study material we obtain not only attractive form of providing the knowledge to the students, but also the possibility to determine the way the students use to work with this material. ...
Article
Full-text available
Authors in their contribution deal with modeling the behavior of user in e-learning course based on the use of interactive animations. Nowadays, E-learning courses form a standard part of educational process. However, it is not so easy to determine the way students work with study material, whether they make use of it in order to increase didactic effectiveness of e-course. In the contribution authors point to the non-traditional method of recording student’ activities and reverse transition to previous lessons using interactive animations, which have been implemented into the study material. The method of recording student’ activities was implemented in the academic years 2009/2010 through 2013/2014. Students were divided into two groups – experimental and reference ones. The reference group did not use interactive animations, while in the experimental group interactive animations were implemented into the study material.
... Teachers are constantly looking for ways to integrate theory and practice by using new technology, thus helping students to experience innovative, more attractive and effective forms of learning. [20,21] Using methods such as animations, phenomena that might be difficult to visualise can be illustrated, with the possible added advantage of depicting dynamic information explicitly. [20][21][22][23] Computer animations can be used effectively in medical education by illustrating dynamic changes over time and location, while facilitating understanding of complex concepts, systems, or structures, thus allowing visualisation of relationships among component parts. ...
... [20,21] Using methods such as animations, phenomena that might be difficult to visualise can be illustrated, with the possible added advantage of depicting dynamic information explicitly. [20][21][22][23] Computer animations can be used effectively in medical education by illustrating dynamic changes over time and location, while facilitating understanding of complex concepts, systems, or structures, thus allowing visualisation of relationships among component parts. [20] The use of animations in teaching and learning contributes to what Ruiz et al. [23] refer to as cognitive theory of multimedia learning, which purports that 'people receive and process information via two separate but interdependent pathways, one for verbal (words) inputs and another for visual (images) inputs' . ...
... [20][21][22][23] Computer animations can be used effectively in medical education by illustrating dynamic changes over time and location, while facilitating understanding of complex concepts, systems, or structures, thus allowing visualisation of relationships among component parts. [20] The use of animations in teaching and learning contributes to what Ruiz et al. [23] refer to as cognitive theory of multimedia learning, which purports that 'people receive and process information via two separate but interdependent pathways, one for verbal (words) inputs and another for visual (images) inputs' . Consequently, learning can be more effective when information is received via visual and verbal inputs. ...
Article
Full-text available
Background. Since the 1990s, studies have reported the inability of medical schools to equip students with knowledge and skills to interpret an electrocardiogram (ECG). This has also been the case at the School of Medicine, University of the Free State, Bloemfontein, South Africa, with external examiners in the final examinations repeatedly commenting on the poor performance of students with regard to interpreting ECGs. Subsequently, the Department of Internal Medicine designed small-group tutorials using animations and analogies as methods to improve the ECG interpretation skills of students. Objectives. To improve students’ ability to interpret ECGs and assess their perceptions of the tutorials. Methods. A questionnaire was administered to 67 final-year medical students after their internal medicine rotation in 2012. The objective of the questionnaire was to obtain feedback on students’ experiences and perceptions of ECG tutorials. Results. Although the results do not provide evidence that the abovementioned methods improved the students’ competency to interpret ECGs, the limited findings from their perceptions might assist in the further use and improvement of such an approach to facilitate learning. Conclusion. This article highlights the responsive efforts and willingness of registrars in the Department of Internal Medicine to improve the teaching of a major and frequently used investigation such as the ECG, and how registrars formalised these two methods into tutorials.
... Computer (interactive) animations may help concretise abstract, complex concepts and phenomena in science education, thus helping students to learn more easily and more effectively (Akpinar, 2013). The questions arises as to what the reasons are which have made interactive animations a vital part of modern ecurricula, and whether there is empirical evidence to support claims that using multimedia and interactivity in e-curriculum has positive impact to cognitive development and academic achievement at students (Pinter et al., 2012). Part of study of Informatics and Information technologies in higher education, in addition to programming is eg. ...
... Such representations will have maximum effect when accompanying some learning material that is (relatively) new to the learner (Mayer and Gallini, 1990). This is especially the case with computer animation that is designed to aid long-term learning in the form of focusing learners on certain objects in the beginning (Pinter et al., 2012). ...
... It can deliver information in a very attractive way, which also can be advantageous in assembling curricula for the students who have different skill levels and learning styles. Besides that, it can help learners to understand scientific topics, with presenting important conceptual relationships (Pinter et al., 2012). In case of implementing interactive animations into the study material we obtain not only attractive form of providing the knowledge to the students, but also the possibility to determine the way the students use to work with this material. ...
Article
Full-text available
In programming, one problem can usually be solved using different logics and constructs but still producing the same output. Sometimes students get marked down inappropriately if their solutions do not follow the answer scheme. In addition, lab exercises and programming assignments are not necessary graded by the instructors but most of the time by the teaching assistants or lab demonstrators. This results in grading inconsistencies in terms of the marks awarded when the same solution is being graded by different person. To address this issue, a set of assessment rubric is necessary in order to provide flexibility for critical and creative solutions among students as well as to improve grading consistencies among instructors and teaching assistants or demonstrators. This paper reports the development of assessment rubric for each domain in computer programming courses; cognitive, psychomotor, and affective. The rubrics were then implemented for one academic semester consisting of 14 weeks. An interrater reliability analysis based on Kappa statistic was performed to determine the consistency in using the rubrics among instructors The weighted kappa is 0.810, therefore, the strength of agreement or the reliability of the rubric can be considered to be ‘very good’. This indicates that the scoring categories in the rubrics are well-defined and the differences between the score categories are clear.
... Media pembelajaran yang menarik berguna untuk mengatasi keterbatasan ruang dan daya indera (Lisanti et al., 2020). Media pembelajaran berbasis animasi interaktif merupakan media pembelajaran yang efektif dalam meningkatkan prestasi siswa karena siswa akan tertarik dalam pembela-jaran (Pinter et al., 2012). ...
... Beberapa penelitian menunjukkan bahwa pembelajaran daring membawa sisi positif, namun juga ada hal yang tidak menguntungkan (Taufik, 2019). Penggunaan platform banyak dalam satu kelas pembelajaran akan menyebabkan Overload (Bao, 2020; Leow & Neo, 2014) Penggunaan jaringan internet yang membutuhkan biaya dan kurangnya disiplin siswa menjadikan proses pembelaran tidak berjalan dengan baik (Pinter et al., 2012). Permasalahan lain dalam pembelajaran online yaitu ketika guru melakukan sebuah diskusi, ada yang menjadi silence reader dan respon murid yang tidak bagus (Moorhouse, 2020). ...
Article
Berkembangnya teknologi informasi dan komunikasi android belum dimanfaatkan maksimal untuk menunjang proses pembelajaran. Penelitian ini bertujuan untuk mengembangkan media pembelajaran interaktif melalui mobile learning berbasis android materi sistem kordinasi manusia. Metode penelitian menggunakan pengembangan Reasech & Development (R&D) dengan pendekatan model pengembangan ADDIE. Hasil dari penelitian diperoleh rerata nilai validasi perangkat multi media untuk ahli media nilai rata-rata sebesar 3,88, ahli materi nilai rata-rata sebesar 4.28 dan ahli bahasa nilai rata-rata sebesar 3.79 dengan kategori valid. Hasil respon guru meliputi kedalaman materi, daya tarik media dan penggunaan bahasa didapatkan skor rata-rata sebesar 3.88 menunjukkan bahwa media yang dikembangkan layak untuk digunakan. Hasil uji coba kemenarikan kelompok kecil kepada siswa dengan sampel 15 orang didapatkan rata-rata sebesar 4,28 dan uji kelompok besar dengan 40 siswa didapatkan skor rata-rata sebesar 4,04 yang artinya media sangat layak digunakan dalam pembelajaran. Jadi dapat disimpulkan bahwa media pembelajaran animasi interaktif melalui mobile learning berbasis android yang dikembangkanini layak dan siap diterapkan dalam pembelajaran materi sistem kordinasi manusia disekolah.
... The researchers [4] have analyzed the effects of interactive animations in teaching, based on the student's performance. They have verified the effectiveness of using animations in the classroom by grouping the students, one group with traditional teaching materials, and the second group has benefited from the animations as a supplementary tool. ...
Article
One-dimensional (1-D) demonstrations, e.g., the black-box systems, have become popular in teaching materials for engineering modules due to the high complexity of the system's multidimensional (e.g., 2-D and 3-D) identities. The need for multidimensional explanations on how multiphysics equations and systems work is vital for engineering students, whose learning experience must gain a cognitive process understanding for utilizing such multiphysics-focused equations into a pragmatic dimension. The lack of knowledge and expertise in creating animations for visualizing sequent processes and operations in academia can result in an ineffective learning experience for engineering students. This study explores the benefits of animation, which can eventually improve the teaching and student learning experiences. In this article, the use of computer-aided animation tools is evaluated based on their capabilities. Based on their strengths and weaknesses, the study offered some insights for selecting the investigated tools. To verify the effectiveness of animations in teaching and learning, a survey was conducted for undergraduate and postgraduate cohorts and automotive engineering academics. Based on the survey's data, some analytics and discussion have offered more quantitative results. The historic data (2012-2020) analysis has validated the animations efficacy as achievements of the study, where the average mark of both modules has significantly improved, with the reduced rate of failure.
... The statistically analysis confirmed the fine outcomes in the favor of animation based getting to know that changed into conducted in the shape of animated films. Pinter et al, (2012) intends to degree the effect of interacted animations at the pupil's performance. Two guides were covered; one becomes analog and digital electronics and 2nd turned into microcontrollers. ...
... According to Pinter et al. (2012); Hwang et al. (2012); Riyana (2015); and Sutisna (2016) the implementation of animation media in learning can bring an impressive influence on learners' attention, interest, motivation, etc. Meanwhile, Islam et al. (2014) argue that the implementation of animation media can be utilized as an alternative to increasing learners' interest. ...
Article
Full-text available
Lack of students’ attention and interest to learn influence the learning process within the class. Thus, their learning achievement decreased. This study aims at designing a motion graphic, video animation learning media in Indonesian history subject. This study uses research and development method based on the modified research model developed by Borg and Gall with five stages model namely, needs analysis, media design, product development, evaluation and product trial, and final product. This study reveals that the average pretest score before the implementation of the learning media is 57.60, whereas the average posttest score after the motion graphic, animation video learning media implementation is 79.20. The fitness of the media feedback from the media experts’ score is 88% with very appropriate criteria. In addition, the material expert gives a score of 89% for the media appropriateness with very appropriate criteria, and users’ (students) feedback on the media is 87.9% with very appropriate criteria. It is concluded that the designed motion graphic, animation video learning media for Indonesian history subject positively influences students’ learning achievement and is appropriate to be applied in Indonesian history subject.
... Learning with computers takes place when the main course learnings are mediated and aided by multimedia resources or IT artifacts whereas learning from computers happens when the main course itself is distantly presented in an e-learning platform (Gupta & Bostrom, 2005;Jonassen & Reeves., 2001). The inquiries emerge concerning what the reasons are which have made intelligent activities an indispensable piece of present-day educational programs and whether there is exact proof to help asserts that utilizing sight and sound and intelligence in the e-educational program has a positive effect to intellectual advancement and scholarly accomplishment at understudies (Pinter, Radosav, & Čisar, 2012). In a meta-analysis study, Van der Kleij, Feskens, and Eggen (2015) examined the impacts of feedback in the multimedia learning setting on the learning outcomes of learners. ...
Thesis
Full-text available
Multimedia materials are considered to be an essential component of the educational process. As information technologies evolve, new types of animation-based multimedia learning materials have emerged and taken its place in the educational arena. This study investigates first-year undergraduate students’ perceptions of the animation-based learning of basic concepts of electronics. The case study research was adopted for the study. Twelve students engaged in using multimedia learning materials, which were developed by the researcher, as supplementary to a one-semester course titled “Basic Electronic and Electronic Components.” The in-depth analysis of the data stemming from interviews and survey resulted in six themes: design components of the animation-based multimedia materials, transferring of the multimedia materials to the teaching of basic electronic topics in other subjects, appropriateness of the animation-based multimedia materials, challenges, benefits of using animation-based multimedia materials, and suggestions. Animation-based multimedia materials prove to be beneficial, interactive, and engaging in helping students learn basic concepts about electronics. The findings of the study might have important implications for the instructors, multimedia content developers, and instructional designers.
... .08 . 19 .35 ** .1 .37 ** .46 ...
Article
Full-text available
Augmented reality (AR) is a promising technology for improving the applicative and comprehension skills of students. The ARiSE project developed an Augmented Reality Teaching Platform (ARTP) for secondary schools. A Chemistry learning scenario was implemented that is based on the interaction paradigm "building with guidance". This study aims at assessing the extent to which specific capabilities of the ARTP support the understanding of Chemistry concepts as well as their contribution to the perceived utility. The results of a multiple-regression analysis show that the specific features of the Chemistry scenario enable students to better understand the subject matter with less effort in learning. Overall, the interaction paradigm proved to have a positive influence on the effectiveness and efficiency of the learning process.
Article
In this paper, it was necessary to investigate how we can manage the process of informal learning. Are they considered to be educational institutions, families, peers, the Internet, mass media,...? Whether and to what extent informal learning and specific learning activities to help you 'learn', not even noticing that you are 'learning', have an impact on the level of students' information literacy of?The study was conducted in high schools and vocational schools in the territory of AP Vojvodina, and the survey included 377 fourth grade students. The realization of research, analysis of collected data and interpreting the results obtained, we have come to final conclusions of research: informal learning significantly affects the level of information literacy of students in secondary schools, or by using informal sources of knowledge contributes to increasing levels of IT, digital and multimedia literacy of students.
Article
Full-text available
Students have different levels of motivation, different attitudes about teaching and learning, and different responses to specific classroom environments and instructional practices. The more thoroughly instructors understand the differences, the better chance they have of meeting the diverse learning needs of all of their students. Three categories of diversity that have been shown to have important implications for teaching and learning are differences in students' learning styles (characteristic ways of taking in and processing information), approaches to learning (surface, deep, and strategic), and intellectual development levels (attitudes about the nature of knowledge and how it should be acquired and evaluated). This article reviews models that have been developed for each of these categories, outlines their pedagogical implications, and suggests areas for further study.
Article
Full-text available
In 2 experiments, students who lacked prior knowledge about car mechanics read a passage about vehicle braking systems that either contained labeled illustrations of the systems, illustrations without labels, labels without illustrations, or no labeled illustrations. Students who received passages that contained labeled illustrations of braking systems recalled more explanative than nonexplanative information as compared to control groups, and performed better on problem solving transfer but not on verbatim recognition as compared to control groups. Results support a model of meaningful learning in which illustrations can help readers to focus their attention on explanative information in text and to reorganize the information into useful mental models. (PsycINFO Database Record (c) 2012 APA, all rights reserved)
Article
In 2 experiments, mechanically naive college students viewed an animation depicting the operation of a bicycle tire pump that included a verbal description given before (words-before-pictures) or during (words-with-pictures) the animation. The words-with-pictures group outperformed the words-before-pictures group on tests of creative problem solving that involved reasoning about how the pump works. In a follow-up experiment, students in the words-with-pictures group performed better on the problem-solving test than students who saw the animation without words (pictures only), heard the words without the animation (words only), or received no training (control). Results support a dual-coding hypothesis (Paivio, 1990) that posits two kinds of connections: representational connections between verbal stimuli and verbal representations and between visual stimuli and visual representations and referential connections between visual and verbal representations.
Article
In three experiments, students read expository passages concerning how scientific devices work, which contained either no illustrations (control), static illustrations of the device with labels for each part (parts), static illustrations of the device with labels for each major action (steps), or dynamic illustrations showing the "off" and "on" states of the device along with labels for each part and each major action (parts-and-steps). Results indicated that the parts-and-steps (but not the other) illustrations consistently improved performance on recall of conceptual (but not nonconceptiual) information and creative problem solving (but not verbatim retention), and these results were obtained mainly for the low prior-knowledge (rather than the high prior-knowledge) students. The cognitive conditions for effective illustrations in scientific text include appropriate text, tests, illustrations, and learners.
Article
In 2 experiments, students who lacked prior knowledge about car mechanics read a passage about vehicle braking systems that either contained labeled illustrations of the systems, illustrations without labels, labels without illustrations, or no labeled illustrations. Students who received passages that contained labeled illustrations of braking systems recalled more explanative than nonexplanative information as compared to control groups, and performed better on problem solving transfer but not on verbatim recognition as compared to control groups. Results support a model of meaningful learning in which illustrations can help readers to focus their attention on explanative information in text and to reorganize the information into useful mental models.
Article
In this article I argue that, like other technological innovations, the rise of the digital information age is contributing to shape people's mode of cognition. I review the use of computers in teaching and learning in terms of their impact on our ability to (1) process parallel data, (2) access information in a non-linear order, and (3) visualize information. I analyse some implications for education stressing the importance of focusing on the meaning and interpretation of information rather than on gathering or memorizing data. In addition, I contend that although hypertextuality is perceived to be dynamic for its engagement with multiple dimensions, it is also a highly mediated form of accessing information. The most significant innovation of the computer, however, is the return to a visually based representation of reality. Paradoxically, the digital visualization of information aids the understanding of abstract concepts while simultaneously increasing conceptual abstraction.
Article
The effects of animated presentations and practice were studied in a computer-based science lesson involving fourth-and fifth-grade students. Three levels of visual elaboration (static graphics, animated graphics, and no graphics) were crossed with three levels of practice (behavioral, cognitive, and no practice). Behavioral practice consisted of traditional questioning and cognitive practice consisted of a structured simulation. Animated graphics were superior to static graphics and no graphics so long as practice was provided. Behavioral practice was effective only when paired with lessons containing animated graphics. Cognitive practice was generally superior to the other practice conditions and did not appear dependent on visual elaboration. These results suggest that animated presentations can promote learning under certain conditions, and they also demonstrate a successful application of interactive graphics in the design of cognitively based practice activities.
Article
The effects of animated presentations and practice were studied in a computer-based science lesson involving fourth- and fifth-grade students. Three levels of visual elaboration (static graphics, animated graphics, and no graphics) were crossed with three levels of practice (behavioral, cognitive, and no practice). Behavioral practice consisted of traditional questioning and cognitive practice consisted of a structural simulation. Animated graphics were superior to static graphics and no graphics so long as practice was provided. Behavioral practice was effective only when paired with lessons containing animated graphics. Cognitive practice was generally superior to the other practice conditions and did not appear dependent on visual elaboration. These results suggest that animated presentations can promote learning under certain conditions, and they also demonstrate a successful application of interactive graphics in the design of cognitively based practice activities. (PsycINFO Database Record (c) 2012 APA, all rights reserved)