ArticlePDF Available

Effect of acid-electrolyzed water on bacteria of upper respiratory tract infections

Authors:

Abstract and Figures

People are aware of the importance of health, especially the effect of electrolyzed water. So the market for electrolyzed water-related equipment has increased recently. People only know the importance of alkaline-electrolyzed water to health, but the effects of acid-electrolyzed water are not as well known. In this study, we evaluated the characteristics and functions of acid-electrolyzed water obtained from tap water by home use of an electrolyzed water machine. The pH and oxidation reduction potential (ORP) were greatly changed after electrolysis. Four different pH values (with different ORPs) of acid-electrolyzed water (pH 6.2, ORP = 55 mV; pH 5.9, OPR = 72 mV; pH 5.4, OPR = 100 mV; and pH 3.8, OPR = 190 mV) were used to evaluate the effect on various bacteria from the upper respiratory tract ( including Escherichia coli, Streptococcus pneumoniae, Staphylococcus aureus, Pseudomonas aeruginosa, Klebsiella pneumoniae, and Beta-Streptococcus) . Results showed that acid-electrolyzed water significantly suppressed the survival of all bacteria, and the survival of bacteria showed negative correlations with ORP (r = -0.7158 to -0.9982) and time (r = -0.8688 to -1.0000). For practical use, clinical applications of acid-electrolyzed water are required in the future.
Content may be subject to copyright.
42 王進崑
Nutr Sci J, 2011, Vol. 36, No. 2, pp.42~49
前言
由於水質污染問題日益嚴重,導致飲用水需要
經過更多的消毒跟處理才能使用。因此市面上出現
各式淨水器,如逆滲透 RO)機、電解水機等。
近年來國人的健康意識提高,所以電解水儀器的市
場也逐年增加,電解水又分成鹼性電解水和酸性電
解水1-3,其功能在許多方面已經被證實,如經鹼
性電解水則發現有效清除自由基的功效4,而酸性
電解水處理後可降低番茄和蘋果表面微生物的生長
5,6,以及有助傷口的清潔與癒合7等效果。
然而大多數人只知道鹼性電解水對人體有所幫
助,往往忽略電解水中酸性水的利用價值。因此本
酸性電解水對上呼吸道感染細菌影響之研究
邱慧芳1沈祐成2張智傑3王進崑3
Effect of Acid-Electrolyzed Water on Bacteria of Upper
Respiratory Tract Infections
Hui-Fang Chiu1, You-Cheng Shen2, Chih-Chieh Chang3, and Chin-Kun Wang3
1Department of Integrated Chinese and Western Medicine, Chung Shan Medical University Hospital,
Taichung, Taiwan
2School of Health Diet and Industry Management, Chung Shan Medical University, Taichung, Taiwan
3School of Nutrition, Chung Shan Medical University, Taichung, Taiwan
ABSTRACT People are aware of the importance of health, especially the effect of electrolyzed
water. So the market for electrolyzed water-related equipment has increased recently. People only
know the importance of alkaline-electrolyzed water to health, but the effects of acid-electrolyzed water
are not as well known. In this study, we evaluated the characteristics and functions of acid-electrolyzed
water obtained from tap water by home use of an electrolyzed water machine. The pH and oxidation
reduction potentialORPwere greatly changed after electrolysis. Four different pH valueswith dif-
ferent ORPsof acid-electrolyzed waterpH 6.2, ORP = 55 mV; pH 5.9, OPR = 72 mV; pH 5.4,
OPR = 100 mV; and pH 3.8, OPR = 190 mVwere used to evaluate the effect on various bacteria
from the upper respiratory tractincluding
. Results showed
that acid-electrolyzed water significantly suppressed the survival of all bacteria, and the survival of
bacteria showed negative correlations with ORP= -0.7158 to -0.9982and time= -0.8688 to
-1.0000. For practical use, clinical applications of acid-electrolyzed water are required in the future.
* Corresponding author: Chin-Kun Wang, School of Nutrition, Chung
Shan Medical University, 110, Sec. 1, Jianguo North Road, Taichung
40201, Taiwan Tel: 886-4-24730022 ext. 11010; Fax: 886-4-24714143;
E-mail: wck@csmu.edu.tw
43
酸性電解水對上呼吸道感染細菌影響之研究
研究以市售家用電解水機所獲得的四種酸性電解
水,探討其特性與功能性。電解水是以電解的方
式,使水之 pH 質與氧化還原電位改變,並分解產
O2H28。一般來說,在自然界中能讓自由能
增加的化學反應是不存在的,因此水在自然狀態下
是不能分解產生 O2H2,但是若在水中加入陰極和
陽極,再通上電流後,即發生電解反應。水經電解
後,電解水的組成、離子的濃度、pH值、氧化還原
電位及導電度,皆會因原水的水質不同而有差異
性。
酸性電解水之特性為 i)有較低的 pH 值,依
電解程度會有所不同(最低可達 pH2左右),
ii)有較高的氧化還原電位,可高達 1000 mV
上, iii)含有高濃度的氯離子 Cl ),離子濃
度依所額外添加劑量的多寡、電解程度會有所差異
9。由於酸性電解水具有低 pH 值、高氧化還原電
位,遠超過一般微生物所能生長的範圍,所以當微
生物接觸到酸性電解水時,微生物體就會因平衡失
調而崩塌,最後導致微生物喪失正常機能而死亡
10。近來許多研究報告指出,酸性電解水具有抑
菌作用11,因此酸性電解水常被加以應用在食品
加工方面,如水果、蔬菜、及餐具清洗12-16、雞蛋
病原抑制17,18等。酸性電解水在密閉環境下,能維
2-3 穩定性,並具有瞬間殺菌之效果19,但
在一般開放環境下,酸性水在作用後會迅速還原為
通水,基於此特性,酸性水不致殘留或是環
染等問題。
醫院內肺炎感染多為革蘭氏陰性菌所引起
包括肺炎桿菌、綠膿桿菌、流感嗜血桿菌、大腸桿
菌等為需氧菌,在人體免疫力減損發病
20,21住院病人使用機械呼吸化器、化器和
各種導管亦染。此外,染可能
成菌血症致病菌傳播肺部
本研究以市售家用電解水機所獲得之酸性電解
水,探討酸性電解水的特性與功能性。外,
酸性電解水對人體上呼吸菌之生長進行
討,研究用(大腸桿菌、肺炎鏈球菌、金黃色葡
萄球菌、綠膿桿菌、克雷白氏肺炎桿菌及 型溶血
鏈球菌)等常之上呼吸菌。
材料與方法
一、電解水之製備
本實用的酸性電解水由 Ange Saitama,
Japan公司出產之家用電解水生成器所製造,電
解過程分為有五個階段階段為淨水(
解水),第二階段至第五階段製造酸性電解水,
同時也一併收集供水水源做試驗之用。原水來
中市南區自來水。
本研究所用之品特性如表一所
所生成之電解水 non-electrolyzed water; NE
pH 值與氧化還原電位為 7.60 -22 mV),而
二至第五階段所生成之酸性電解水其 pH 值與氧化
還原電位會隨著電解程度而變化 AC1AC4)之
pH 值與 ORP pH 6.20 ORP = 55 mV)、pH
5.90 OPR = 72 mV)、pH 5.40 OPR=100 mV
pH 3.80 OPR = 190 mV)同時也一併收集供
解之水自來水 tap water; Tap),其 pH值與 ORP
7.69 -27 mV),共六種水作為本研究之試驗
表一 酸性電解水特性
Properties of the acid-electrolyzed water
Sample Redox potential ORP; mVpH
Tap -27.66 ± 1.53e7.69 ± 0.04a
NE -21.33 ± 1.53e7.60 ± 0.01a
AC 1 55.00 ± 4.36d6.20 ± 0.04b
AC 2 72.00 ± 4.36c5.90 ± 0.04c
AC 3 99.67 ± 4.73b5.40 ± 0.03d
AC 4 190.33 ± 4.73a3.80 ± 0.03e
Data are expressed as the mean ± standard deviation.
Data in a column with different superscript letters significantly differ p< 0.05.
ORP, oxidation reduction potential; Tap, tap water; NE, non-electrolyzed water; AC 14, acid-electrolyzed water 14.
44 王進崑
品。
二、實驗菌株
本實之菌由中山醫學大學附設醫院細
包括腸桿菌(Escherichia coli)、
炎鏈球菌(Streptococcus pneumoniae)、金黃色葡
萄球菌(Staphylococcus aureus)、綠膿桿
Pseudomonas aeruginosa)、克雷白氏肺炎桿
Klebsiella pneumoniae)及 型溶血鏈球菌(Beta-
Streptococcus)等常之上呼吸進行試
三、實驗設計
得實驗樣品,分階段所生成之
解水 non-electrolyzed water)和第二至第五階段
生成之酸性電解水 AC1AC4),同時也一併收
集供電解之水自來水 tap water)。分對各種
不同的量,並確定稀釋菌量在同可接
之範圍。100 L稀釋,加上不同的進行
處理不同的濃度比例+離子水1+0mL,
0.8 + 0.2 mL, 0.5 + 0.5 mL和各種不同的菌進行
作用。接在不同的時5, 15, 30, 60, 90 min)分
別取100 L作用菌均勻培養培養
培養 48 時後,使用菌落計數器,計算數。
四、細菌培養
1. 腸桿菌(gram-negative strains, E. coli
腸桿菌可以培養瓊脂培養基上生長 beef
extract 3.0 g + peptone 5.0 g + agar 15.0 g + distilled
water 1 L),本實37 環境下培養 48 時後
進行數菌。
2. 肺炎鏈球菌(gram-positive strains, Str. Pneu-
moniae:肺炎鏈球必須在含血或血清的培養
才能生長,於 37 環境下培養 48時後進行數菌。
3. 金黃色葡萄球菌(gram-positive strains, Sta.
aureus接種於血液瓊脂板培養,於 37 18
時後,可見光滑圓形凸起並發之菌。但其
溶血色素之產生,則須幾的時間培養時,
室溫情況下,含 7.5% NaCl。因為在此環境,
了金黃色葡萄球菌可繼續生長外,其他細菌會死
亡。本實37 環境下培養 48時後進行數菌。
4. 綠膿桿菌(gram-negative strains, Pse. Aer-
uginosa:綠膿桿菌對分的需求很簡單,會分解
利用多種有機物也和簡單當作
分。綠膿桿菌可以生長於初次分離氧菌的培養
基,其菌落呈扁平狀而邊緣則,會產生藍綠
色色素,在血液瓊脂培養基上可觀察到其產生溶血
的現。最合生長度為 2537 ,生存的酸鹼
度範圍為 pH 59,本實37環境下培養 48
時後進行數菌。
5. 克雷白氏肺炎桿菌(gram-negative strains, K.
pneumoniae:克雷白氏肺炎桿菌可以培養
瓊脂培養基上生長 tryptone 15.0 g + soytone 5.0 g+
NaCl 5.0 g + agar 15.0 g + distilled water 1 L),本實
37環境下培養 48 時後進行數菌。
6. 型溶血鏈球菌(gram-positive strains, Beta-
Streptococcus型溶血鏈球必須在含血或血
培養基才能生長,本實37 環境下培養 48
時後進行數菌。
五、統計分析
本研究所獲得之果,以 SPSS 12.0 統計軟
one-way ANOVA 檢定多組之差異,當有差異
時再Duncan's multiple test 做事較。並
利用 Pearson’s correlation coefficient進行。所有
統計結果以 p0.05p< 0.05)為具有統計
上之差異。本中之研究數以平值加減標準偏
差(
mean ± standard deviation)表
結果與討論
一、酸性電解水對大腸桿菌存活之影響
腸桿菌分AC1AC4 酸性電解水
處理 5153060 90 後(
1mlAC1
AC4
+ 0 ml Tap, 0.8 ml AC1AC4+ 0.2 ml Tap, 0.5 ml
AC1AC4 + 0.5 ml Tap),再進行 48 培養
一是取未稀釋酸性電解水所得果,酸性電解
水有抑制大腸桿菌生長的作用,抑制跟與
處理時間呈相關。表 則是最高 ORP
AC4)之不同劑量酸性電解水與大腸桿合處
理不同時後之培養情形,當酸性電解水之劑量提
高時,對大腸桿菌生長之抑制效果也之變
二、酸性電解水對肺炎鏈球菌存活之影響
取肺炎鏈球菌分AC1AC4 酸性電解水
45
酸性電解水對上呼吸道感染細菌影響之研究
合處理 5153060 90 後(
1mlAC1
AC4+0mlTap,0.8mlAC1
AC4 + 0.2 ml Tap, 0.5
ml AC1AC4 + 0.5 ml Tap,再進行 48
圖二取未稀釋酸性電解水所得果,酸性
電解水有抑制肺炎鏈球菌生長的作用,抑制
合處理時間呈相關。接著取最高 ORP值之不
同劑量酸性電解水與肺炎鏈球合處理不同時
後之培養情形,當酸性電解水之劑量提高時,對
炎鏈球菌生長之抑制效果(表)。
三、酸性電解水對金黃色葡萄球菌存活之影響
取金黃色葡萄球菌分AC1AC4 酸性電解
合處理 5153060 90 後(
1ml
AC1AC4+0mlTap,0.8mlAC1
AC4 + 0.2 ml
Tap, 0.5 ml AC1AC4 + 0.5 ml Tap),再進行 48
培養圖三取未稀釋酸性電解水所得果,
表二 酸性電解水 AC4 對各種上呼吸道細菌存活之影響
Effect of acid-electrolyzed waterAC4on bacteria of upper respiratory tract infections
Bacteria Sample 5 min 15 min 30 min 60 min 90 min ra
Escherichia coli 1 mL AC4 + 0 mL deionized water 711 644 589 429 304 -0.9982
cfu/agar plate0.8 mL AC4 + 0.2 mL deionized water 801 722 651 531 477 -0.9757
0.5 mL AC4 + 0.5 mL deionized water 899 821 734 611 503 -0.9912
rb-0.9959 -0.9989 -0.9995 -0.9830 -0.8688
Streptococcus
pneumoniae 1 mL AC4 + 0 mL deionized water 124 82 46 19 0 -0.9342
cfu/agar plate0.8 mL AC4 + 0.2 mL deionized water 168 124 83 42 1 -0.9735
0.5 mL AC4 + 0.5 mL deionized water 228 151 96 56 3 -0.9470
rb-0.9997 -0.9714 -0.9267 -0.9678 -0.9972
Staphylococcus
aureus 1 mL AC4 + 0 mL deionized water 1138 1056 943 756 622 -0.9942
cfu/agar plate0.8 mL AC4 + 0.2 mL deionized water 1287 1101 1042 944 801 -0.9547
0.5 mL AC4 + 0.5 mL deionized water 1368 1277 1189 1064 935 -0.9917
rb-0.9599 -0.9770 -1.0000 -0.9709 -0.9805
Pseudomonas
aeruginosa 1 mL AC4 + 0 mL deionized water 885 751 622 487 325 -0.9826
cfu/agar plate0.8 mL AC4 + 0.2 mL deionized water 955 861 754 633 507 -0.9872
0.5 mL AC4 + 0.5 mL deionized water 1023 973 903 807 678 -0.9978
rb-0.9924 -0.9940 -0.9968 -0.9979 -0.9912
Klebsiella
pneumoniae 1 mL AC4 + 0 mL deionized water 801 734 622 503 377 -0.9917
cfu/agar plate0.8 mL AC4 + 0.2 mL deionized water 864 801 742 649 577 -0.9884
0.5 mL AC4 + 0.5 mL deionized water 913 877 810 726 661 -0.9914
rb-0.9826 -0.9969 -0.9629 -0.9577 -0.9406
Beta-Streptococ-
cus 1mLAC4+0mLdeionizedwater124000-0.7158
cfu/agar plate0.8mLAC4+0.2mLdeionizedwater157000-0.7551
0.5 mL AC4 + 0.5 mL deionized water 23 11 1 0 0 -0.7768
rb-0.9900 -0.9995 -0.9177 - -
ra, The correlation between time and survival of bacteria; rb, The correlation between the oxidation reduction potential and survival of bac-
teria; cfu, colony-forming units.
46 王進崑
酸性電解水有抑制金黃色葡萄球菌生長的作用,
抑制跟與合處理時間呈相關。接著取最高
ORP值之不同劑量酸性電解水與金黃色葡萄球
合處理不同時後之培養情形,當酸性電解水之劑
量提高時,對金黃色葡萄球菌生長之抑制效果也
(表)。
四、酸性電解水對綠膿桿菌存活之影響
取綠膿桿菌分與與 AC1AC4 酸性電解水
合處理 5153060 90 後(
1mlAC1
AC4+0mlTap,0.8mlAC1
AC4 + 0.2 ml Tap, 0.5
ml AC1AC4 + 0.5 ml Tap,再進行 48
四則是取未稀釋酸性電解水所得果,酸
性電解水有抑制綠膿桿菌生長的作用,抑制
合處理時間呈相關。接著取最高 ORP值之不
同劑量酸性電解水與綠膿桿合處理不同時
培養情形,當酸性電解水之劑量提高時,對綠膿
菌生長之抑制效果跟(表)。
五、酸性電解水對克雷白氏肺炎桿菌存活之影
取克雷白氏肺炎桿菌分AC1AC4 酸性電
解水合處理 5153060 90 後(1ml
AC1AC4 + 0 ml Tap, 0.8 ml AC1AC4 + 0.2 ml
Tap, 0.5 ml AC1AC4 + 0.5 ml Tap),再進行 48
培養圖五則是取未稀釋酸性電解水所得
果,酸性電解水有抑制克雷白氏肺炎桿菌生長的作
用,抑制跟與合處理時間呈相關。接著取
最高 ORP值之不同劑量酸性電解水與克雷白氏肺炎
合處理不同時後之培養情形,當酸性電解
水之劑量提高時,對克雷白氏肺炎桿菌生長之抑制
效果跟(表)。
六、酸性水對 型溶血鏈球菌存活之影響
型溶血鏈球菌分AC1AC4 酸性電解
合處理 5153060 90 後(
1ml
AC1AC4 + 0 ml Tap, 0.8 ml AC1AC4 + 0.2 ml
Tap, 0.5 ml AC1AC4 + 0.5 ml Tap),再進行 48
培養圖六則是取未稀釋酸性電解水所得
果,酸性電解水有抑制 型溶血鏈球菌生長的作用,
抑制跟與合處理時間呈相關。接著取最高
ORP 值之不同劑量酸性電解水與 型溶血鏈球
合處理不同時後之培養情形,當酸性電解水之劑
圖一 酸性電解水對大腸桿菌存活之影響
Fig. 1. Effect of acid-electrolyzed water on the survival of
.
Values are expressed as mean ± SD, values within the same
group bearing different letters (a, b) were significantly differ-
ent ( <0.05).
圖二 酸性電解水對肺炎鏈球菌存活之影響
Fig. 2. Effect of acid-electrolyzed water on the survival of
.
Values are expressed as mean ± SD, values within the same
group bearing different letters (a, b) were significantly differ-
ent ( <0.05).
圖三 酸性電解水對金黃色葡萄球菌存活之影響
Fig. 3. Effect of acid-electrolyzed water on the survival of
.
Values are expressed as mean ± SD, values within the same
group bearing different letters (a, b) were significantly differ-
ent ( <0.05).
47
酸性電解水對上呼吸道感染細菌影響之研究
量提高時,對 型溶血鏈球菌生長之抑制效果也
。由以上顯示酸性電解水有抑制各種上
呼吸菌生長的作用,當酸性電解水之劑量提高
時,對各種上呼吸菌生長之抑制效果也之變
抑制效果與處理時間呈相關
本研究對酸性電解水對各種上呼吸相關細
研究,發現在大腸桿菌、肺炎鏈球菌、
黃色葡萄球菌、綠膿桿菌、克雷白氏肺炎桿菌和
溶血鏈球菌與酸性電解水作用下,菌存活率隨著
酸性電解水的氧化還原電位高抑制率越好,並
菌存活率與處理時間呈負相關。但綠膿桿菌和
雷白氏肺炎桿菌與經儀器但電解的水作用下,發
現會促進細菌之生長(四、)。但在 型溶血鏈
菌,經儀器而但電解的水作用下,發現有抑制
效果(圖六)。合以上果,發現酸性電解水有
抑制上呼吸菌的效果,氧化電位及時
菌的存負相關;但經儀器電解的水,則需要
做進的研究觀察促進或是抑制上呼吸
菌。酸性電解水對抑制上呼吸菌有效,而
其對菌的生理變化是作用途徑值得往後的
研究繼續探討。來可以應用酸性電解水在人體口
腔漱口上,觀察其是能抑制口腔細菌生長和上
菌生長。此外,本實所使用的電解水機為
庭型電解水生成器,為多儀器中的一,而
酸性電解水的 ORP和所提水的來也有差異性。
因此,來也可對各家廠牌和各
的研究,觀察和各家儀器對上呼吸
菌抑制效果是相似效果。一方面,由於酸性
電解水的存時並不長,因此存方式加以
研究,若能增加酸性電解水的存時可讓酸
性電解水和菌作用時增長以達到抑制菌生長
的效果,也可增加酸性電水的利用性。
參考文獻
1. Nelson D. Newer technologies for endoscope disinfection:
electrolyzed acid water and disposable-component
endoscope systems. Gastrointest Endosc Clin N Am.
圖四 酸性電解水對綠膿桿菌存活之影響
Fig. 4. Effect of acid-electrolyzed water on the survival of
.
Values are expressed as mean ± SD, values within the same
group bearing different letters (a, b) were significantly differ-
ent ( < 0.05).
圖五 酸性電解水對克雷白氏肺炎桿菌存活之影響
Fig. 5. Effect of acid-electrolyzed water on the survival of
.
Values are expressed as mean ± SD, values within the same
group bearing different letters (a, b) were significantly differ-
ent ( <0.05).
圖六 酸性電解水對 型溶血鏈球菌存活之影響
Fig. 6. Effect of acid-electrolyzed water on the survival of ~(15)
Beta-Streptococcus.
Values are expressed as mean ± SD, values within the same
group bearing different letters (a, b) were significantly differ-
ent ( <0.05).
48 王進崑
2000;10:319-28.
2. Abbasi P. A. Lazarovits G. Effect of acidic electrolyzed
water on the viability of bacterial and fungal plant
pathogens and on bacterial spot disease of tomato.
Can J Microbiol. 2006;52:915-23.
3. Koseki M., Tanaka Y., Noguchi H. Nishikawa T. Effect
of pH on the taste of alkaline electrolyzed water. J
Food Sci. 2007;72:S298-302.
4. Hanaoka K., Sun D., Lawrence R., Kamitani Y. Fernandes
G. The mechanism of the enhanced antioxidant effects
against superoxide anion radicals of reduced water
produced by electrolysis. Biophysical chemistry. 2004;
107:71-82.
5. Deza M. A., Araujo M. Garrido M. J. Inactivation of
O157:H7,
on the surface of tomatoes by neutral
electrolyzed water. Lett Appl Microbiol. 2003;37:482-7.
6. Venkitanarayanan K. S., Lin C. M., Bailey H. Doyle M.
P. Inactivation of ~(15)Escherichia coli O157:H7,
on
apples, oranges, and tomatoes by lactic acid with
hydrogen peroxide. J Food Prot. 2002;65:100-5.
7. Yahagi N., Kono M., Kitahara M., Ohmura A., Sumita O.,
Hashimoto T., Hori K., Ning-Juan C., Woodson P., Kubota
S., Murakami A. Takamoto S. Effect of electrolyzed
water on wound healing. Artif Organs. 2000;24:984-7.
8. Hanaoka K., Sun D., Lawrence R., Kamitani Y. Fernandes
G. The mechanism of the enhanced antioxidant effects
against superoxide anion radicals of reduced water
produced by electrolysis. Biophys Chem. 2004;107:71-82.
9. Kim C., Hung Y. C. Brackett R. E. Roles of oxidation-
reduction potential in electrolyzed oxidizing and chemically
modified water for the inactivation of food-related pat-
hogens. J Food Prot. 2000;63:19-24.
10. Nan S., Yongyu L. I., Baoming L. I., Wang C., Cui X.
Cao W. Effect of slightly acidic electrolyzed water for
inactivating O157:H7 and
analyzed by transmission electron microscopy. J
Food Prot. 2010;73:2211-6.
11. Sakashita M., Iwasawa A. Nakamura Y. Antimicrobial
effects and efficacy on habitually hand-washing of
strong acidic electrolyzed water--a comparative study
of alcoholic antiseptics and soap and tap water. Kan-
senshogaku Zasshi. 2002;76:373-7.
12. Park E. J., Alexander E., Taylor G. A., Costa R. Kang
D. H. The decontaminative effects of acidic electrolyzed
water for O157:H7, ~(15)Salmonella
typhimurium, and on green onions
and tomatoes with differing organic demands. Food
Microbiol. 2009;26:386-90.
13. Venkitanarayanan K. S., Ezeike G. O., Hung Y. C. Doyle
M. P. Efficacy of electrolyzed oxidizing water for
inactivating O157:H7, ,
and . Appl Environ Microbiol.
1999;65:4276-9.
14. Rahman S. M., Jin Y. G. Oh D. H. Combined effects of
alkaline electrolyzed water and citric acid with mild heat
to control microorganisms on cabbage. J Food Sci. 2010;
75:M111-5.
15. Keskinen L. A., Burke A. Annous B. A. Efficacy of
chlorine, acidic electrolyzed water and aqueous chlorine
dioxide solutions to decontaminate O157:
H7 from lettuce leaves. Int J Food Microbiol. 2009;132:
134-40.
16. Stopforth J. D., Mai T., Kottapalli B. Samadpour M.
Effect of acidified sodium chlorite, chlorine, and acidic
electrolyzed water on O157:H7,
inoculated onto leafy greens.
J Food Prot. 2008;71:625-8.
17. Kim C., Hung Y. C., Brackett R. E. Lin C. S. Efficacy
of electrolyzed oxidizing water in inactivating
on alfalfa seeds and sprouts. J Food Prot. 2003;66:208-14.
18.CaoW.,ZhuZ.W.,ShiZ.X.,WangC.Y.LiB.M.
Efficiency of slightly acidic electrolyzed water for
inactivation of and its contaminated
shell eggs. Int J Food Microbiol. 2009;130:88-93.
19. Kiura H., Sano K., Morimatsu S., Nakano T., Morita C.,
Yamaguchi M., Maeda T. Katsuoka Y. Bactericidal activity
of electrolyzed acid water from solution containing
sodium chloride at low concentration, in comparison with
that at high concentration. J Microbiol Methods. 2002;
49:285-93.
20. Navon-Venezia S., Ben-Ami R. Carmeli Y. Update on
Pseudomonas aeruginosa and
infections in the healthcare setting. Curr Opin Infect
Dis. 2005;18:306-13.
21. VERGHESE A. BERK S. L. Bacterial pneumonia in the
elderly. Medicine. 1983;62:271.
49
酸性電解水對上呼吸道感染細菌影響之研究
酸性電解水對上呼吸道感染細菌影響之研究
邱慧芳1沈祐成2張智傑3王進崑3
1中山醫學大學附設醫院中西整合醫療科
2中山醫學大學健康餐飲暨產業管理學系
3中山醫學大學營養學系
(收稿日期:99 10 4日。接受日期:100 71日)
摘要 近年來國人的健康意識提高,對於電解水的功效越來越重視,所以電解水儀器的市場也逐
年增加,然而許多人只知道電解水中的鹼性水對人體有幫助,往往忽略電解水中酸性水的利用價
值。本研究以市售家用電解水機所獲得之酸性電解水,探討酸性電解水的特性與功能性。自來水
經家用電解水儀器後,pH 值與氧化還原電位(ORP)會因為電壓之改變而發生顯著的改變。本研
究針對四種不同 pH 值、不同氧化還原電位(pH 6.2,ORP = 55 mV; pH 5.9,OPR = 72 mV; pH
5.4, OPR = 100 mV; pH 3.8,OPR = 190 mV)之酸性電解水對人體上呼吸道感染細菌之生長進行
探討。本研究採用大腸桿菌、肺炎鏈球菌、金黃色葡萄球菌、綠膿桿菌、克雷白氏肺炎桿菌及
溶血鏈球菌等常見之上呼吸道感染細菌進行試驗。結果顯示,酸性電解水有抑制上呼吸道細菌增
生的效果,氧化電位(r= -0.7158 to -0.9982)及處理時間(r= -0.8688 to -1.0000)對細菌的存
活呈負相關。細菌存活率隨著酸性電解水的氧化還原電位越高及處理時間越久,其抑制率越好。
未來有必要進一步評估酸性電解水於臨床上實際利用之功效。
關鍵詞:酸性電解水、上呼吸道感染細菌、氧化還原電位
*王進崑
通訊地址:中山醫學大學營養學系
... and time (r = −0.8688~−1.0000) [45]. Comparing the disinfective effects of WAEW (ACC 33 mg/L, pH 6.4, ORP 834.9 mV), NaClO (ACC 30 mg/L, pH 10.83, ORP 304.7 mV) and 0.1% HCl (pH 1.93) on Staphylococcus aureus [25], it was found that the disinfective effect of WAEW treatment (reduction of 5.8 log CFU/mL) was significantly higher (p < 0.05) than that of the treatment with NaClO (reduction of 3.26 log CFU/mL) and HCl (reduction of 2.73 log CFU/mL), while its antibacterial effect is even better than AEW [46]. ...
Article
Full-text available
Electrolyzed water (EW) is a new type of cleaning and disinfecting agent obtained by means of electrolysis with a dilute sodium chloride solution. It has low cost and harm to the human body and is also friendly to the environment. The anode produces acidic electrolyzed water (AEW), which is mainly used to inhibit bacterial growth and disinfect. The cathode provides basic electro-lyzed water (BEW), which is implemented to promote human health. EW is a powerful multifunc-tional antibacterial agent with a wide range of applications in the medicine, agriculture, and food industry. Studies in vitro and in vivo show that it has an inhibitory effect on pathogenic bacteria and viruses. Therefore, EW is used to prevent chronic diseases, while it has been found to be effective against various kinds of infectious viruses. Animal experiments and clinical trials clearly showed that it accelerates wound healing, and has positive effects in oral health care, anti-obesity, lowering blood sugar, anti-cancer and anti-infectious viral diseases. This review article summarizes the application of EW in treating bacteria and viruses, the prevention of chronic diseases, and health promotion.
Article
Full-text available
The use of different available chlorine concentrations (ACCs) of slightly acidic electrolyzed water (SAEW; 0.5 to 30 mg/liter), different treatment times, and different temperatures for inactivating Escherichia coli O157:H7 and Staphylococcus aureus was evaluated. The morphology of both pathogens also was analyzed with transmission electron microscopy. A 3-min treatment with SAEW (pH 6.0 to 6.5) at ACCs of 2 mg/liter for E. coli O157:H7 and 8 mg/liter for S. aureus resulted in 100% inactivation of two cultures (7.92- to 8.75-log reduction) at 25°C. The bactericidal activity of SAEW was independent of the treatment time and temperature at a higher ACC (P > 0.05). E. coli O157:H7 was much more sensitive than S. aureus to SAEW. The morphological damage to E. coli O157:H7 cells by SAEW was significantly greater than that to S. aureus cells. At an ACC as high as 30 mg/liter, E. coli O157:H7 cells were damaged, but S. aureus cells retained their structure and no cell wall damage or shrinkage was observed. SAEW with a near neutral pH may be a promising disinfectant for inactivation of foodborne pathogens.
Article
Full-text available
Effects of alkaline electrolyzed water (AlEW), acidic electrolyzed water (AcEW), 100 ppm sodium hypochlorite (NaClO), deionized water (DIW), 1% citric acid (CA) alone, and combinations of AlEW with 1% CA (AlEW + CA), in reducing the populations of spoilage bacteria and foodborne pathogens on cabbage were investigated at various dipping times (3, 5, and 10 min) with different dipping temperatures (1, 20, 40, and 50 degrees C). Inhibitory effect of the selected optimal treatment against Listeria monocytogenes and Escherichia coli O157 : H7 on cabbage were also evaluated. Compared to the untreated control, AlEW treatment most effectively reduced the numbers of total bacteria, yeast, and mold, followed by AcEW and 100-ppm NaClO treatments. All treatments dip washed for 5 min significantly reduced the numbers of total bacteria, yeast, and mold on cabbage. With increasing dipping temperature from 1 to 50 degrees C, the reductions of total bacteria, yeast, and mold were significantly increased from 0.19 to 1.12 log CFU/g in the DIW wash treatment (P < 0.05). Combined 1% CA with AlEW treatment at 50 degrees C showed the reduction of around 3.98 and 3.45 log CFU/g on the total count, and yeast and mold, effective reduction of L. monocytogenes (3.99 log CFU/g), and E. coli O157 : H7 (4.19 log CFU/g) on cabbage. The results suggest that combining AlEW with CA could be a possible method to control foodborne pathogens and spoilage bacteria effectively on produce.
Article
Full-text available
This study investigates the properties of electrolyzed oxidizing (EO) water for the inactivation of pathogen and to evaluate the chemically modified solutions possessing properties similar to EO water in killing Escherichia coli O157:H7. A five-strain cocktail (10(10) CFU/ml) of E. coli O157:H7 was subjected to deionized water (control), EO water with 10 mg/liter residual chlorine (J.A.W-EO water), EO water with 56 mg/liter residual chlorine (ROX-EO water), and chemically modified solutions. Inactivation (8.88 log10 CFU/ml reduction) of E. coli O157:H7 occurred within 30 s after application of EO water and chemically modified solutions containing chlorine and 1% bromine. Iron was added to EO or chemically modified solutions to reduce oxidation-reduction potential (ORP) readings and neutralizing buffer was added to neutralize chlorine. J.A.W-EO water with 100 mg/liter iron, acetic acid solution, and chemically modified solutions containing neutralizing buffer or 100 mg/liter iron were ineffective in reducing the bacteria population. ROX-EO water with 100 mg/liter iron was the only solution still effective in inactivation of E. coli O157:H7 and having high ORP readings regardless of residual chlorine. These results suggest that it is possible to simulate EO water by chemically modifying deionized water and ORP of the solution may be the primary factor affecting microbial inactivation.
Article
Full-text available
Electrolyzed water accelerated the healing of full-thickness cutaneous wounds in rats, but only anode chamber water (acid pH or neutralized) was effective. Hypochlorous acid (HOCl), also produced by electrolysis, was ineffective, suggesting that these types of electrolyzed water enhance wound healing by a mechanism unrelated to the well-known antibacterial action of HOCl. One possibility is that reactive oxygen species, shown to be electron spin resonance spectra present in anode chamber water, might trigger early wound healing through fibroblast migration and proliferation.
Article
This study compared the efficacy of chlorine (20-200 ppm), acidic electrolyzed water (50 ppm chlorine, pH 2.6), acidified sodium chlorite (20-200 ppm chlorite ion concentration, Sanova), and aqueous chlorine dioxide (20-200 ppm chlorite ion concentration, TriNova) washes in reducing populations of Escherichia coli O157:H7 on artificially inoculated lettuce. Fresh-cut leaves of Romaine or Iceberg lettuce were inoculated by immersion in water containing E. coli O157:H7 (8 log CFU/ml) for 5 min and dried in a salad spinner. Leaves (25 g) were then washed for 2 min, immediately or following 24 h of storage at 4 degrees C. The washing treatments containing chlorite ion concentrations of 100 and 200 ppm were the most effective against E. coli O157:H7 populations on Iceberg lettuce, with log reductions as high as 1.25 log CFU/g and 1.05 log CFU/g for TriNova and Sanova wash treatments, respectively. All other wash treatments resulted in population reductions of less than 1 log CFU/g. Chlorine (200 ppm), TriNova, Sanova, and acidic electrolyzed water were all equally effective against E. coli O157:H7 on Romaine, with log reductions of approximately 1 log CFU/g. The 20 ppm chlorine wash was as effective as the deionized water wash in reducing populations of E. coli O157:H7 on Romaine and Iceberg lettuce. Scanning electron microscopy indicated that E. coli O157:H7 that was incorporated into biofilms or located in damage lettuce tissue remained on the lettuce leaf, while individual cells on undamaged leaf surfaces were more likely to be washed away.
Article
Acidic electrolyzed water (AC-EW) has strong bactericidal activity against foodborne pathogens on fresh vegetables. However, the efficacy of AC-EW is influenced by soil or other organic materials present. This study examined the bactericidal activity of AC-EW in the presence of organic matter, in the form of bovine serum against foodborne pathogens on the surfaces of green onions and tomatoes. Green onions and tomatoes were inoculated with a culture cocktail of Escherichia coli O157:H7, Salmonella typhimurium, and Listeria monocytogenes. Treatment of these organisms with AC-EW containing bovine serum concentrations of 5, 10, 15, and 20 ml/l was performed for 15s, 30s, 1 min, 3 min and 5 min. The total residual chlorine concentrations of AC-EW decreased proportional to the addition of serum. The bactericidal activity of AC-EW also decreased with increasing bovine serum concentration, whereas unamended AC-EW treatment reduced levels of cells to below the detection limit (0.7 logCFU/g) within 3 min.
Article
The efficiency of slightly acidic electrolyzed water (SAEW) at different temperatures (4, 20 and 45 degrees C) for inactivation of Salmonella enteritidis and it on the surface of shell eggs was evaluated. The bactericidal activity of SAEW, sodium hypochlorite solution (NaClO) and acidic electrolyzed water (AEW) to inactivate S. enteritidis was also compared. SAEW with a pH value of 6.0-6.5 used was generated by the electrolysis of a dilute hydrochloric acid (2.4 mM) in a chamber without a membrane. Although the pH value of SAEW was greatly higher than that of AEW (pH2.6-2.7), SAEW had a comparative powerful bactericidal activity at the same available chlorine concentrations. The efficiency of SAEW for inactivation of pure S. enteritidis cultures increased with increasing the available chlorine concentration and treatment time at the three different temperatures. The S. enteritidis counts decreased to less than 1.0 log(10) CFU/ml at available chlorine of 2 mg/l and 100% inactivation (reduction of 8.2 log(10) CFU/ml) was resulted in using SAEW with available chlorine more than 4 mg/l at 4, 20 and 45 degrees C after 2 min treatment, whereas no reduction was observed in the control samples. Moreover, SAEW was also effective for inactivating the S. enteritidis inoculated on the surface of shell eggs. A reduction of 6.5 log(10) CFU/g of S. enteritidis on shell eggs was achieved by SAEW containing 15 mg/l available chlorine for 3 min, but only a reduction of 0.9-1.2 log(10) CFU/g for the control samples. No survival of S. enteritidis was recovered in waste wash SAEW after treatment. The findings of this study indicate that SAEW may be a promising disinfectant agent for the shell egg washing processing without environmental pollution.
Article
Bacterial pneumonia in the elderly is common, and causes more morbidity and mortality than in the younger adult. As patients live longer with more underlying disease and more iatrogenic disease, the incidence of nosocomial pneumonia will probably rise. Adequate sterilization of inhalation therapy equipment can reduce the risk of gram-negative nosocomial pneumonia. Methods to prevent colonization and microaspiration need to be investigated. The development of a gram-negative vaccine using Salmonella RE or E. coli J5 mutant would augur well for the future. Most important, the elderly patient with pneumonia should be managed promptly and aggressively in an attempt to determine the specific etiology of the pneumonia. The practice of antibiotic "shotgunning" of the elderly patient is to be avoided. Transtracheal aspiration or sheathed bronchoscopy can be performed if the patient is not able to produce sputum, or Gram stain is difficult to interpret. Morbidity and mortality can be reduced by early appropriate antibiotic therapy directed by Gram stain.
Article
Novel technologies have been designed to improve or replace more conventional methods of endoscope disinfection. Electrolyzed acid water has the potential to decrease the time, toxicity, and cost of endoscope disinfection. Disposable-component endoscope systems have the potential to improve the ease of cleaning and disinfection, or eliminate the need altogether.