ArticlePDF Available

Abstract and Figures

In the present work we study possible time dependent effects in Axion Dark Matter searches employing resonant cavities. We find that the width of the resonance, which depends on the axion mean square velocity in the local frame, will show an annual variation due to the motion of the Earth around the sun (modulation). Furthermore, if the experiments become directional, employing suitable resonant cavities, one expects large asymmetries in the observed widths relative to the sun's direction of motion. Due to the rotation of the Earth around its axis, these asymmetries will manifest themselves as a diurnal variation in the observed width.
Content may be subject to copyright.
arXiv:1511.08516v1 [astro-ph.GA] 26 Nov 2015
Modulation and diurnal variation in axionic dark
matter searches
Y. Semertzidis1andJ.D.V ergados1,2
1Center for Axion and Precision Physics Research, IBS, Daejeon 305-701, Republic of
Korea
2Centre for the Subatomic Structure of Matter (CSSM), University of Adelaide, Adelaide
SA 5005, Australia#1
Abstract
In the present work we study possible time dependent effects in Axion Dark
Matter searches employing resonant cavities. We find that the width of the
resonance, which depends on the axion mean square velocity in the local frame,
will show an annual variation due to the motion of the Earth around the sun
(modulation). Furthermore, if the experiments become directional, employing
suitable resonant cavities, one expects large asymmetries in the observed widths
relative to the sun’s direction of motion. Due to the rotation of the Earth around
its axis, these asymmetries will manifest themselves as a diurnal variation in the
observed width.
1. Introduction
In the standard model there is a source of CP violation from the phase in
the Kobayashi-Maskawa mixing matrix. This, however, is not large enough to
explain the baryon asymmetry observed in nature. Another source is the phase
in the interaction between gluons (θ-parameter), expected to be of order unity.
The non observation of elementary electron dipole moment limits its value to
be θ109this has been known as the strong CP problem. A solution to
this problem has been the P-Q (Peccei-Quinn) mechanism. In extensions of the
S-M, e.g. two Higgs doublets, the Lagrangian has a global P-Q chiral symmetry
UP Q(1), which is spontaneously broken, generating a Goldstone boson, the axion
(a). In fact the axion has been proposed a long time ago as a solution to the
strong CP problem [1] resulting to a pseudo Goldstone Boson [2, 3, 4, 5, 6].
QCD effects violate the P-Q symmetry and generate a potential (maa)2/2 for the
#1Theoretical Physics,University of Ioannina, Ioannina, Gr 451 10, Greece.
E-mail:Vergados@uoi.gr
Preprint submitted to Elsevier November 30, 2015
Figure 1.1: The axion decay to photons, axion photon coupling, (a) and the
axion to photon conversion in the presence of a magnetic field, the Primakoff
effect, (b).
axion field a=θfawith axion mass ma = (Λ2
QCD )/fawith minimum at θ= 0.
Axions can be viable if the SSB (spontaneous symmetry breaking) scale is large
fa100 GeV. Thus the axion becomes a pseudo-Goldstone boson An initial
displacement ai=θifaof the axion field causes an oscillation with frequency
ω=ma and energy density ρD= (θifama)2/2 The production mechanism
varies depending on when SSB takes place, in particular whether it takes before
or after inflation.
The axion field is homogeneous over a large de Broglie wavelength, oscillating
in a coherent way, which makes it ideal cold dark matter candidate in the mass
range 106eVma103eV. In fact it has been recognized long time ago as
a prominent dark matter candidate by Sikivie [7], and others, see, e.g, [8]. The
axions are extremely light. So it is impossible to detect dark matter axions via
scattering them off targets. They are detected by their conversion to photons in
the presence of a magnetic field (Primakoff effect), see Fig. 1.1. The produced
photons are detected in a resonance cavity as suggested by Sikivie [7].
In fact various experiments2such as ADMX and ADMX-HF collaborations
[11, 12], [13],[14] are now planned to search for them. In addition, the newly es-
tablished center for axion and physics research (CAPP) has started an ambitious
axion dark matter research program [15], using SQUID and HFET technologies
2Heavier axions with larger mass in the 1eV region produced thermally ( such as via the
aπππ mechanism), e.g. in the sun, are also interesting and are searched by CERN Axion
Solar Telescope (CAST) [9]. Other axion like particles (ALPs), with broken symmetries not
connected to QCD, and dark photons form dark matter candidates called WISPs (Weakly
Interacting Slim Particles) , see, e.g.,[10], are also being searched.
2
[16]. The allowed parameter space has been presented in a nice slide by Raffelt
[17] in the recent Multidark-IBS workshop and, focusing on the axion as dark
matter candidate, by Stern [11] (see Fig. 1.2, derived from Fig. 3 of ref [11]).
maµeV
Figure 1.2: The parameter space relevant for axion as dark matter candidate.
In the present work we will take the view that the axion is non relativistic with
mass in µeV-meV scale moving with an average velocity which is 0.8×103c.
The width of the observed resonance depends on the axion mean square veloc-
ity in the local frame. Thus one expects it to exhibit a time variation due to
the motion of the Earth. Furthermore in directional experiments involving long
cavities, one expects asymmetries with regard to the sun’s direction of motion
as it goes around the center of the galaxy. Due to the rotation of the Earth
around its axis these asymmetries in the width of the resonance will manifest
themselves in their diurnal variation. These two special signatures, expected to
be sizable, may aid the analysis of axion dark searches in discriminating against
possible backgrounds.
2. Brief summary of the formalism
The photon axion interaction is dictated by the Lagrangian:
Laγγ =g γ aE·B, gaγγ =αgγ
πfa
,(2.1)
3
E/N
Figure 1.3: The ratio g2
aγγ
m2
a
, in units ofGeV 2/eV2, as a function of E
N, where
Eis the axion electromagnetic anomaly and Nis the color anomaly number.
where Eand Bare the electric and magnetic fields, fathe axion decay constant
and gγa model dependent constant of order one [11],[18],[19],[20] given by:
gγ=1
2E
N2
3
4 + z
1 + z(2.2)
where zis the ratio of the up and down quark masses, Nis the color axion
anomaly and Nis the axion EM anomaly. The second z-dependent term [20]
is 1.95. In grand unifiable models, like the DFZX axion, E/N is 8/3. In the
case of the KSFZ axion E/N = 0, while in the flavor Peccei-Quin (flavored PQ)
symmetry model to be discussed below, E/N = 112/51. We thus see that the
g2
γrange is given by:
g2
γ=
DFSZ: 0.13
KSVZ: 0.94
Flavored PQ: 0.061
(2.3)
Axion dark matter detectors [18] employ an external magnetic field, BB0in
the previous equation, in which case one of the photons is replaced by a virtual
photon, while the other maintains the energy of the axion, which is its mass
plus a small fraction of kinetic energy.
4
10-8
10-7
10-6
10-5
10-4
0.001
10-27
10-26
10-25
10-24
10-23
10-22
maeV
Figure 1.4: The ratio g2
aγγ
main units of GeV2/eV as a function of ma. The curves
correspond to the current experimental limit (solid line) and three theoretical
predictions extracted from Fig. 3 of ref [21]. The solid, thick solid and dashed
curve correspond to E/N=0, 8/3 and 112/51 resp ectively. The first almost co-
incides with that extracted from experiment, while the last one is proposed as
theoretically favored. It is seen that for ma= 106eV the power produced can
drop by almost two orders of magnitude below the current experimental limit,
if the theoretically favored curve (dashed line).
The power produced, see e.g. [11], is given by:
Pmnp =g2
aγγ
ρa
ma
B2
0V CmnpQL(2.4)
QLis the loaded quality factor of the cavity. Here we have assumed QLis
smaller than the axion width Qa, see below. More generally, QLshould be
substituted by min (QL,Qa). This power depends on the axion particle density
na=ρa/mawith density ρaassumed to be the same with that used for WIMPs
(Weakly Interacting Massive Particles), inferred from the rotational curves, i.e.
the axion particle density is much larger than that expected for WIMPs. In any
case the power produced is pretty much independent of the velocity and the
velocity distribution.
In addition to the axion density in our position, which can somehow be
determined from the rotation curves, it is a function of the theoretical parameter
g2
aγγ /ma. The study of this parameter has been the subject of many theoretical
studies (see e.g. the recent works [18],[19] and references there in). Recently,
5
however, an unconventional but economical extension of the Standard Model of
particle physics has been proposed [21], which attempts to deal with the fermion
mass hierarchy problem and the strong CP problem, in a way that no domain
wall problem arises, in a supersymmetric framework involving the A4×U(1)X
symmetry. The global U(1)Xsymmetry, which can tie the above together is
referred to as flavored Peccei-Quinn (Flvored PQ) symmetry. In this model
the flavon fields, which are responsible for the spontaneous symmetry breaking
of quarks and leptons, charged under U(1)X, connect the various expectation
values. Thus the Peccei-Quinn symmetry is estimated to be located around 1012
GeV through its connection to the fermion masses obtained in the context of
A4. They are thus able to obtain the ratio of g2
aγγ /m2
a, as a function of E/N
(see Eq. (2.3) and Fig. 1.3, based on Fig. 3 of Flavored PQ symmetry [21] ).
From this figure we can extract a relationship between g2
aγγ /maand ma. This
is shown in Fig. 1.4. From this figure we see that the power produced may be
almost two orders of magnitude below the current experimental limit.
Admittedly this A4×U(1)Xsymmetry is introduced ad hoc and especially
the introduction U(1)Xis not particularly otherwise motivated. Furthermore
the fermion masses and paricularly the neutrino mass are not fully understood.
Anyway the experiments may have to live with such a pessimistic prospect and
we may have to explore other signatures of the process. The power spectrum
comes to mind. .
The axion power spectrum, which is of great interest to experiments, is
written as a Breit-Wigner shape [18], [22]:
|A(ω)|2=ρD
m2
a
Γ
(ωωa)2+ (Γ/2)2,Γ = ωa
Qa
(2.5)
with ωa=ma1 + (1/6) υ2magiving the location of the maximum of
the spectrum and Qa= 1/(υ2/3),Γ = ma(υ2/3).
Since in the axion DM search case the cavity detectors have reached such a very
high energy resolution [23, 24], one should try to accurately evaluate the width
of the expected power spectra in various theoretical models.
The width explicitly depends on the average axion velocity squared, υ2.
With respect to the galactic frame υ2takes the usual value of (3/2)υ2
0. In
the laboratory frame, taking the sun’s motion into account, we find υ2=
(5/2)υ2
0, i.e. the width in the laboratory is affected by the sun’s motion. If we
take into account the motion of the Earth around the sun υ2depends on
the phase of the Earth and, correspondingly, the width becomes time dependent
(modulation) as described below (see section 3.2).
The situation becomes more dramatic as soon the experiment is directional. In
this case the width depends strongly on the direction of observation relative
to the sun’s direction of motion. Directional experiments can, in principle, be
performed by changing the orientation of a long cavity [11],[25],[26], provided
that the axion wavelength is not larger than the length of the cylinder, λah.
6
In the ADMX [11] experiment h= 100cm, while from their Fig. 3 one can see
that the relevant for dark matter wavelengths λaare between 1 and 65 cm.
3. Mo dification of the width due to the motion of the Earth and the
sun.
From the above discussion it appears that velocity distribution of axions
may play a role in the experiments.
3.1. The velocity distribution
If the axion is going to be considered as dark matter candidate, its density
should fit the rotational curves. Thus for temperatures Tsuch that ma/T
4×106the velocity distribution can be taken to be analogous to that assumed
for WIMPs. In the present case we will consider only a M-B distribution in the
galactic frame with a characteristic velocity which equals the velocity of the sun
around the center of the galaxy, i.e. υ0220km/s. Other possibilities such as,
e.g., completely phase-mixed DM, dubbed “debris flow” (Kuhlen et al. [30]), and
caustic rings (Sikivie [31],[32][33], Vergados [36] etc are currently under study
and hey will appear elsewhere[37]. So we will employ here the distribution:
f(~υ) = 1
(πυ0)3e
υ2
υ2
0(3.6)
In order to compute the average of the velocity squared entering the power
spectrum we need to find the local velocity distribution by taking into account
the velocity of the Earth around the sun and the velocity of the sun around the
center of the galaxy. The first motion leads to a time dependence of the observed
signal in standard experiments , while the latter motion leads to asymmetries
in directional experiments.
3.2. The annual modulation in non directional experiments
The modification of the velocity distribution in the local frame due to annual
motion of the Earth is expected to affect the detection of axions in a time
dependent way, which, following the terminology of the standard WIMPs, will
be called the modulation effect [27] (the corresponding effect due to the rotation
of the Earth around its own axis is too small to be observed). Periodic signatures
for the detection of cosmic axions were first considered by Turner [28].
So our next task is to transform the velocity distribution from the galactic
to the local frame. The needed equation, see e.g. [29], is:
yy+ ˆυs+δ(sin αˆxcos αcos γˆy+ cos αsin γˆυs), y =υ
υ0
(3.7)
with γπ/6, ˆυsa unit vector in the Sun’s direction of motion, ˆxa unit vector
radially out of the galaxy in our position and ˆy= ˆυs׈x. The last term in the
7
first expression of Eq. (3.7) corresponds to the motion of the Earth around the
Sun with δbeing the ratio of the modulus of the Earth’s velocity around the Sun
divided by the Sun’s velocity around the center of the Galaxy, i.e. υ0220km/s
and δ0.135. The above formula assumes that the motion of both the Sun
around the Galaxy and of the Earth around the Sun are uniformly circular.
The exact orbits are, of course, more complicated but such deviations are not
expected to significantly modify our results. In Eq. (3.7) αis the phase of the
Earth (α= 0 around the beginning of June)3.
The velocity distribution in the local frame is affected by the motion of the
Earth as exhibited in Fig. 3.5 at four characteristic periods. Appropriate in the
y2f(y)
1
2
3
4
0.1
0.2
0.3
0.4
0.5
0.6
0.7
y=υ/υ0
Figure 3.5: The axion velocity distribution in the local frame. It is changing
with time due to the motion of the Earth and the sun. We exhibit here the
distribution in June (solid line), in December (thick solid line) and in September
or March (dotted line). The last curve coincides with that in which the motion
of the Earth is ignored.
analysis of the experiments is the relative modulated width, i.e. the ratio of the
time dependent width divided by the time averaged with, is shown in Fig. 3.6.
The results shown here are for spherically symmetric M-B distribution as well
as an axially symmetric one with asymmetry parameter β= 0.5 with
β= 1 hυ2
ti
2hυ2
ri(3.8)
with υrthe radial, i.e. radially out of the galaxy, and υtthe tangential com-
ponent of the velocity. Essentially similar results are obtained by more exotic
models, like a combination of M-B and Debris flows considered by Spegel and
3One could, of course, make the time dependence of the rates due to the motion of the
Earth more explicit by writing α(6/5)π(2(t/T )1), where t/T is the fraction of the year.
8
collaborators [30]. We see that the effect is small, around 15% difference be-
tween maximum and minimum in the presence of the asymmetry, but still larger
than that expected in ordinary dark matter searches. If we do detect the axion
frequency, then we can determine its width with high accuracy and detect its
modulation as a function of time.
Γ(α)/Γ≻−
1
2
3
4
5
6
0.94
0.96
0.98
1.00
1.02
1.04
1.06
α
Figure 3.6: The ratio of the modulated width divided by the time averaged
width as a function of the phase of the Earth. The solid line corresponds to
the standaed M-B distribution and the dotted line to an axially symmetric M-B
distribution with asymmetry parameter β= 0.5 (see text).
3.3. Asymmetry of the rates in directional experiments
Consideration of the velocity distribution will give an important signature,
if directional experiments become feasible. This can be seen as follows:
The width will depend specified by two angles Θ and Φ.
The angle Θ is the polar angle between the sun’s velocity and the direction
of observation. The angle Φ is measured in a plane perpendicular to the
sun’s velocity, starting from the line coming radially out of the galaxy and
passing through the sun’s location.
The axion velocity, in units of the solar velocity, is given as
y=yˆxp1ξ2cos φ+ ˆyp1ξ2sin φ+ ˆzξ(3.9)
9
Ignore the motion of the Earth around the sun, i.e. δ= 0 Then the ve-
locity distribution in the local frame is obtained by the substitution:
υ2υ2
0y2+ 1 + 2yξcos Θ + p1ξ2sin Θ (cos Φ cos φ+ sin Φ sin φ)
(3.10)
One then can integrate over ξand φ. The results become essentially
independent of Φ, so long as the motion of the Earth around the sun is
ignored4.Thus we obtain υ2from the axion velocity distribution for
various polar angles Θ.
We write the width observed in a directional experiment as:
Γ = r(Θ)Γst (3.11)
where Γst is the width in the standard experiments. Ignoring the motion of
the Earth around the sun the factor rdepends only on Θ. Furthermore, if for
simplicity we ignore the upper velocity bound (cut off) in the M-B distribution,
i.e. the escape velocity υesc = 2.84υ0, we can get the solution in analytic form.
We find:
r(Θ) = 2
5
e1
2ecos2Θ(cos 2Θ + 4) erfc(cos Θ) 2 cos Θ
π,(sense known),
(3.12)
with erfc(z) = 1 erf(z),erf(z) = Rz
0dtet2( error function)
r(Θ) = 2
5
1
2esin2Θ(cos 2Θ + 4),(sense of direction not known),(3.13)
The adoption of an upper cut off has little effect. In Fig. 3.7 we present the exact
results. The above results were obtained with a M-B velocity distribution5.
Our results indicate that the width will exhibit diurnal variation! For a
cylinder of Length Lsuch a variation is expected to be favored [26] in the
regime of maL= 10 25 ×104eV-m. This diurnal variation will be discussed
in the next section.
4. The diurnal variation in directional experiments
The apparatus will be oriented in a direction specified in the local frame,
e.g. by a point in the sky specified, in the equatorial system, by right ascension
4The annual modulation of the expected results due to the motion of the Earth around the
sun will show up in the directional experiments as well, but it is going to be less important
and it will not be discussed here.
5Evaluation of the relevant average velocity squared in some other models [34],[35], which
lead to caustic ring distributions, can also be worked out for axions as above in a fashion
analogous to that of WIMPs [36], but this is not the subject of the present paper
10
r,Φ) = Γdir/Γst
0.5
1.0
1.5
2.0
2.5
3.0
0.5
1.0
1.5
Θradians
Figure 3.7: The ratio of the width expected in a directional experiment divided
by that expected in a standard experiment. The solid line is expected, if the
sense of direction is known, while the dotted will show up, if the sense of direction
is not known.
˜αand inclination ˜
δ6. This will lead to a diurnal variation7of the event rate
[38]. This situation has already been discussed in the case of standard WIMPs
[39, 40]. We will briefly discuss the transformation into the relevant astronomical
coordinates here.
A vector oriented by (˜α, ˜
δ) in the laboratory is given in the galactic frame
by a unit vector with components:
y
x
z
=
0.868 cos ˜αcos ˜
δ0.198 sin ˜αcos ˜
δ+ 0.456 sin ˜
δ
0.055 cos ˜αcos ˜
δ+ 0.873 sin ˜αcos ˜
δ+ 0.4831 sin ˜
δ
0.494 cos ˜αcos ˜
δ0.445 sin ˜αcos ˜
δ+ 0.747 sin ˜
δ
.(4.14)
where ˜αis the right ascension and ˜
δthe inclination.
Due to the Earth’s rotation the unit vector (x, y, z), with a suitable choice of
the initial time, ˜α˜α0= 2π(t/T ), is changing as a function of time
6We have chosen to adopt the notation ˜αand ˜
δinstead of the standard notation αand
δemployed by the astronomers to avoid possible confusion stemming from the fact that αis
usually used to designate the phase of the Earth and δfor the ratio of the rotational velocity
of the Earth around the Sun by the velocity of the sun around the center of the galaxy
7This should not be confused with the diurnal variation expected even in non directional
experiments due to the rotational velocity of the Earth, which is expected to be too small.
11
x= cos γcos ˜
δcos 2πt
Tsin γcos δcos θPsin 2πt
T+ sin ˜
δsin θP,
(4.15)
y= cos (θP) sin ˜
δcos ˜
δsin 2πt
Tsin θP,(4.16)
z= cos 2πt
Tcos ˜
δsin γ+ cos γcos ˜
δcos θPsin 2πt
T+ sin ˜
δsin θP,
(4.17)
where Tis the period of the Earth’s rotation, γ330was given above and
θP= 62.60is the angle the Earth’s north pole forms with the axis of the galaxy.
Thus the angles Θ, which is of interest to us in directional experiments, is given
by
Θ = cos1z, (4.18)
An analogous, albeit a bit more complicated, expression dependent on x, y, z
can be derived for the angle Φ.
The angle Θ scanned by the direction of observation is shown, for various
inclinations ˜
δ, in Fig. 4.8. We see that for negative inclinations, the angle Θ can
take values near π, i.e. opposite to the direction of the sun’s velocity, where the
rate attains its maximum (see Fig. 4.8).
The equipment scans different parts of the galactic sky, i.e. observes different
angles Θ. So the rate will change with time depending on whether the sense of
of observation. We assume that the sense of direction can be distinguished in
the experiment. The total flux is exhibited in Fig. 4.9.
5. Discussion
In the present work we discussed the time variation of the width of of the
axion to photon resonance cavities involved in Axion Dark Matter Searches. We
find two important signatures:
Annual variation due to the motion of the Earth around the sun. We find
that in the relative width, i.e. the width divided by its time average, can
attain differences of about 15% between the maximum expected in June
and the minimum expected six months later. This variation is larger than
the modulation expected in ordinary dark matter of WIMPs. It does not
depend on the geometry of the cavity or other details of the apparatus. It
does not depend strongly on the assumed velocity distribution.
A characteristic diurnal variation in of the width in directional experiments
with most favorable scenario in the range of meL= 1.02.5×103eV m.
This arises from asymmetries of the local axion velocity with respect to the
sun’s direction of motion manifested in a time dependent way due to the
12
Θradians
0.2
0.4
0.6
0.8
1.0
0.5
1.0
1.5
2.0
2.5
3.0
˜α
Figure 4.8: Due to the diurnal motion of the Earth different angles Θ in galactic
coordinates are sampled as the earth rotates. The angle Θ scanned by the
direction of observation is shown for various inclinations ˜
δ. We see that, for
negative inclinations, the angle Θ can take values near π, i.e. opposite to the
direction of the sun’s velocity, where the rate attains its maximum. For an
explanation of the curves see Fig. 4.9
rotation of the Earth around its own axis. Admittedly such experiments
are much harder, but the expected signature persists, even if one cannot
tell the direction of motion of the axion velocity entering in the expression
of the width. Anyway once such a device is operating, data can be taken as
usual. Only one has to bin them according the time they were obtained.
If a potentially useful signal is found, a complete analysis can be done
according the directionality to firmly establish that the signal is due to
the axion.
In conclusion in this work we have elaborated on two signatures that might aid
the analysis of axion dark matter searches.
Acknowledgments: IBS-Korea partially supported this pro ject under sys-
tem code IBS-R017-D1-2014-a00.
References
[1] R. Peccei, H. Quinn, Phys. Rev. Lett 38 (1977) 1440.
[2] S. Weinberg, Phys. Rev. Lett. 40 (1978) 223.
13
[3] F. Wilczek, Phys. Rev. Lett. 40 (1978) 279.
[4] J. Preskill, M. B. Wise, F. Wilczek, Phys. Lett. B120 (1983) 127.
[5] L. F. Abbott, P. Sikivie, Phys. Lett. B120 (1983) 133.
[6] M. Dine, W. Fischler, Phys. Lett. B120 (1983) 137.
[7] P. Sikivie, Phys. Rev. Lett. 51 (1983) 1415.
[8] J. Primack, D. Seckel, B. Sadoulet, Ann. Rev. Nuc. Par. Sc. 38 (1988) 751.
[9] CAST Collaboration], S. Aune et al., Phys. Rev. Lett. 107 (2011) 261302;
arXiv:1106.3919.
[10] A. Arvanitaki, S. Dimopoulos, S. Dubovsky, N. Kaloper, and J. March-
Russell, Phys. Rev. D81, 123530 (2010); arXiv:0905.4720.
[11] I. P. Stern, ArXiv 1403.5332 (2014) physics.ins–det, on behalf of ADMX
and ADMX-HF collaborations, Axion Dark Matter Searches.
[12] G. Rybka, The Axion Dark Matter Experiment, IBS MultiDark Joint Focus
Program WIMPs and Axions, Daejeon, S. Korea October 2014.
[13] S. J. Asztalos, et al., Phys. Rev. Lett. 104 (2010) 041301, the ADMX
Collaboration, arXiv:0910.5914 (astro-ph.CO).
[14] A. Wagner, et al., Phys. Rev. Lett. 105 (2010) 171801, for the ADMX
collaboration; arXiv:1007.3766 (astro-ph.CO).
[15] Center for Axion and Precision Physics research (CAPP), Dae-
jeon 305-701, Republic of Korea. More information is available at
http://capp.ibs.re.kr/html/capp en/.
[16] S. J. Asztalos, et al., Nucl. Instr. Meth. in Phys. Res. A656 (2011) 39,
arXiv:1105.4203 (physics.ins-det).
[17] G. Raffelt, Astrophysical Axion Bounds , IBS MultiDark Joint Focus Pro-
gram WIMPs and Axions, Daejeon, S. Korea October 2014.
[18] J. Hong, J. E. Kim, S. Nam, Y. Semertzidis, arXiv:1403.1576 (2014)
physics.ins–det, calculations of Resonance enhancement factor in axion-
search tube experiments.
[19] J. E. Kim, Phys. Rev. D 58 (1998) 055006.
[20] L. J. Rosenberg and K.A. van Bibber, Physics Reports 325 (2000) 1
[21] Y. H. Ahn, Flavored Peccei-Quinn symetry, arXiv:1410.1634 [hep-pj].
14
[22] L. Krauss, J. Moody, F. Wilczek, D. Morris, Phys. Rev. Lett. 55 (1985)
1797.
[23] L. Duffy, et al., Phys. Rev. Lett. 95 (2005) 09134, for the ADMX Collabo-
ration.
[24] L. Duffy, et al., Phys. Rev. D 74 (2006) 012006, for the ADMX Collabora-
tion.
[25] T. M. Shikair et al, Future Directions in Microwave Search for Dark Matter
Axions, arXiv:1405.3685 [physics.ins-det], (to appear in IJMPA).
[26] I. G. Irastorza, J. A. Garca, JCAP 1210 (2012) 022, arXiv:1007.3766 (astro-
ph.IM).
[27] A. K. Drukier, K. Freese, D. N. Spergel, Phys. Rev. D 33 (1986) 3495.
[28] M. Turner, Phys. Rev. D 42 (1990) 3572.
[29] J. D. Vergados, Phys. Rev. D. 85 (2012) 123502, ; arXiv:1202.3105 (hep-
ph).
[30] M. Kuhlen, M. Lisanti, D. Speregel, Phys. Rev. D 86 (2002) 063505,
arXiv:1202.0007 (astro-ph.GA).
[31] P. Sikivie, Phys. Rev. D 60 (1999) 063501.
[32] P. Sikivie, Phys. Lett. B 432 (1998) 139.
[33] L. D. Duffy, P. Sivie, Phys. Rev. D 78 (2008) 063508.
[34] P. Sikivie, Phys. Lett. B695 (2011) 22.
[35] A. H. Guth , M. P. Hertzberg and C. Prescond-Weistein,arXiv:1412.5930
[astro-ph.CO].
[36] J. D. Vergados, Phys. Rev. D 63 (2001) 063511.
[37] J. D. Vergados, Y. Semertzidis and P. Sikivie, to be published.
[38] S. Ahlen, The case for a directional dark matter detector and the status
of current experimental efforts, cygnus2009Whitepaper, Edited by J. B. R.
Battat, IJMPA 25 (20010) 1; arXiv:0911.0323 (astro-ph.CO).
[39] J. D. Vergados, C. C. Moustakidis, Eur. J. Phys. 9(3) (2011) 628,
arXiv:0912.3121 [astro-ph.CO].
[40] Y. Semertzidis and J. D. Vergados, Nuc. Phys. B 897 (2015) 821.
15
Γ/Γst (sense known)
0.2
0.4
0.6
0.8
1.0
2
4
6
8
t
T
Γ/Γst (sense unknown)
0.2
0.4
0.6
0.8
1.0
0.5
1.0
1.5
2.0
t
T
Figure 4.9: The time dependence (in units of the Earth’s rotation period) of the
ratio of the directional width divided by the non directional width for various in-
clinations ˜
δ, when the sense can be determined (top) or both senses are included
(bottom). In The curves indicated by intermediate thickness solid, the short
dash, thick solid line, long dashed, dashed, fine solid line, and the long-short
dashed correspond to inclination ˜
δ=π/2,3π/10,π/10,0, π /10,3π/10 and
π/2 respectively. We see that, for negative inclinations, the angle Θ can take
values near π, i.e. opposite to the direction of the sun’s velocity, where the
rate attains its maximum if the sense of direction is known. There is no time
variation, of course, when ˜
δ=±π/2.
16
ResearchGate has not been able to resolve any citations for this publication.
Article
Full-text available
In an attempt to uncover any underlying physics in the standard model (SM), we suggest a $\mu$--$\tau$ power law in the lepton sector, such that relatively large 13 mixing angle with bi-large ones can be derived. On the basis of this, we propose a neat and economical model for both the fermion mass hierarchy problem of the SM and a solution to the strong CP problem, in a way that no domain wall problem occurs, based on $A_{4}\times U(1)_{X}$ symmetry in a supersymmetric framework. Here we refer to the global $U(1)_X$ symmetry that can explain the above problems as "flavored Peccei-Quinn symmetry". In the model, a direct coupling of the SM gauge singlet flavon fields responsible for spontaneous symmetry breaking to ordinary quarks and leptons, both of which are charged under $U(1)_X$, comes to pass through Yukawa interactions, and all vacuum expectation values breaking the symmetries are connected each other. So, the scale of Peccei-Quinn symmetry breaking is shown to be roughly located around $10^{12}$ GeV section through its connection to the fermion masses. The model predictions are shown to lie on the testable regions in the very near future through on-going experiments for neutrino oscillation, neutrinoless double beta decay and axion. We examine the model predictions, arisen from the $\mu$--$\tau$ power law, on leptonic $CP$ violation, neutrinoless double beta decay and atmospheric mixing angle, and show that the fermion mass and mixing hierarchies are in good agreement with the present data. Interestingly, we show the model predictions on the axion mass $m_a\simeq2.53\times10^{-5}$ eV and the axion coupling to photon $g_{a\gamma\gamma}\simeq1.33\times10^{-15}~{\rm GeV}^{-1}$. And subsequently the square of the ratio between them is shown to be 1 or 2 orders of magnitude lower than that of the conventional axion model.
Article
Full-text available
It is pointed out that oscillating current density, produced due to the coupling between an external magnetic field and the cosmic axion field, can excite the TM resonant modes inside an open-ended cavity (tube). By systematically solving the field equations of axion-electrodynamics we obtain explicit expressions for the oscillating fields induced inside a cylindrical tube. We calculate the enhancement factor when a resonance condition is met. While the power obtained for TM modes replicates the previous result, we emphasize that the knowledge of explicit field configurations inside a tube opens up new ways to design axion experiments including a recent proposal to detect the induced fields using a superconducting LC circuit. In addition, as an example, we estimate the induced fields in a cylindrical tube in the presence of a static uniform magnetic field applied only to a part of its volume.
Article
Full-text available
We present the case for a dark matter detector with directional sensitivity. This document was developed at the 2009 CYGNUS workshop on directional dark matter detection, and contains contributions from theorists and experimental groups in the field. We describe the need for a dark matter detector with directional sensitivity; each directional dark matter experiment presents their project's status; and we close with a feasibility study for scaling up to a one ton directional detector, which would cost around $150M. Comment: 48 pages, 37 figures, whitepaper on direct dark matter detection with directional sensitivity
Article
We present the case for a dark matter detector with directional sensitivity. This document was developed at the 2009 CYGNUS workshop on directional dark matter detection, and contains contributions from theorists and experimental groups in the field. We describe the need for a dark matter detector with directional sensitivity; each directional dark matter experiment presents their project's status; and we close with a feasibility study for scaling up to a one ton directional detector, which would cost around $150M.
Article
The axion, a hypothetical particle proposed as a solution to the strong CP problem, is also a compelling dark matter candidate. ADMX (Axion Dark Matter Experiment) is a microwave cavity search for axion dark matter. The incarnation of ADMX currently under construction will be the most sensitive yet: able to exclude pessimistic axion couplings even at fractional dark matter halo densities. This is a step closer to the goal of either discovering the axion or excluding it entirely as a dark matter candidate. Recent limits, current progress, and future plans for ADMX will be discussed.
Article
The requirement that P and T be approximately conserved in the color gauge theory of strong interactions without arbitrary adjustment of parameters is analyzed. Several possibilities are identified, including one which would give a remarkable new kind of very light, long-lived pseudoscalar boson.
Article
Experiments are proposed which address the question of the existence of the 'invisible' axion for the whole allowed range of the axion decay constant.These experiments exploit the coupling of the axion to the electromagnetic field, axion emission by the sun, and/or the cosmological abundance and presumed clustering of axions in the halo of our galaxy.
  • R Peccei
  • H Quinn
R. Peccei, H. Quinn, Phys. Rev. Lett 38 (1977) 1440.
  • S Weinberg
S. Weinberg, Phys. Rev. Lett. 40 (1978) 223.
  • J Primack
  • D Seckel
  • B Sadoulet
J. Primack, D. Seckel, B. Sadoulet, Ann. Rev. Nuc. Par. Sc. 38 (1988) 751.