ArticlePDF Available

Treatment of a ridge atrophy and two peri-implant defects with equine bone and an equine pericardium membrane: clinical and histological outcome

Authors:
1
Published on: Stomatolog, 2013, 19 (1): pg.32-37
Treatment of a ridge atrophy and two peri-implant defects with equine bone and an
equine pericardium membrane: clinical and histological outcome.
Danilo Alessio Di Stefano*
*Private practice, Milan, Italy and Department of Dentistry, Vita e Salute San Raffaele
University, Milan, Italy
Corresponding Author:
Danilo Alessio Di Stefano , Via Civitali 40, 20148 Milano, Italy
Fax +39 02 48705638
e-mail: distefano@centrocivitali.it
Word count: 2866
Number of figures: 9 (19)
Number of tables: 0
Running title: Clinical and histological results using equine bone substitutes and membranes.
Summary: Treatment of a ridge atrophy two and peri-implant dehiscences in the upper
maxilla with equine bone and an equine pericardium membrane, along with results of
histological analysis of a bone core taken from the augmentation site after four months of
healing.
2
Abstract
Objective: While deproteinized bovine bone and bovine membranes have been well studied
and can yield good results when used to treat bone defects and peri-implant dehiscences,
enzymatically deantigenated equine bone and equine membranes has emerged as possible
alternative biomaterials. The objective of this study is the clinical and histological assessment
of such materials. Methods: Enzymatically deantigenated equine bone and an equine
pericardium membrane were used to restore peri-implant defects remaining after the
placement of two osseointegrated implants in the upper maxilla and a concomitant ridge
atrophy. All defects were grafted with a mixture of autogenous and equine bone and covered
with an equine pericardium membrane. After four months a bone core sample was obtained
from the grafted site. Results: Four months after implant placement a good bone regeneration
could be observed. A prosthesis was delivered three months later providing functional and
aesthetic rehabilitation. Peri-implant bone levels were maintained over the four years follow
up. Histological analysis of the bone core revealed that the graft material had undergone
nearly complete remodelling, and a fair amount of newly formed vital bone was present at the
time of sample collection. Conclusions: The deantigenated equine bone and pericardium
membrane acted as effective graft and barrier for guided bone regeneration to perform a
vertical and horizontal bone augmentation of an atrophic ridge and of two peri-implant
defects, leading to a more than satisfactory aesthetic outcome.
Key Words: bone grafting, peri-implant defect, bone regeneration, biocompatible
biomaterials
3
Introduction
Implant rehabilitation has become over years a standard approach to the partially or fully
edentulous patient. As implant placement is spreading, also an increasing demand for long-
term highly aesthetic results is being observed. Consequently, an augmented knowledge and
awareness of all the factors1 that contribute to the long term successful management of soft
tissues, namely gingiva and papillae, has highlighted the importance of a correct management
of the underlying bone levels2. This calls for bone grafting also of apparently small defects as
limited loss of bone height and implant threads exposure3 in one-step implant placement
surgeries.
As far as the grafting material is concerned the properties of autogenous bone have long led it
to be considered the gold standard for bone regeneration. An additional surgical procedure,
though, with increased morbidity,4 is always required to obtain the graft, and there may be
insufficient quantities of autogenous bone for grafting large or multiple defects.5 As an
alternative, homologous bone, heterologous bone, and alloplastic materials, have been used
alone or in combination.6-15
Anorganic bovine bone particles have good osteoconductive properties but may also have a
low resorption capacity.16 Recently, an enzymatically deantigenated form of equine bone was
introduced for use as a scaffold in bone regeneration of different bone defects.17-20 The
enzymatic process used to clean this material preserves type I bone collagen component in its
native, non-denatured, state, and this should allow an improved bone-regeneration process,
given the well-known biological properties of this molecule.21-28
When osteoclasts were cultured over such equine, enzymatically deantigenated and collagen-
preserving bone substitutes,29 their adhesion and activity was significantly higher than that
found for osteoclasts grown over deproteinized bovine bone.30
When sites augmented with equine bone alone were compared to others augmented with the
4
same material added with autogenous bone, immunohistochemical tests showed no
differences between the two as far as the expression of some markers of bone regeneration
(NOS1, NOS2 and VEGF) were concerned.31
At the present time no published data are available about the use of enzyme-deantigenated
equine bone for the treatment of peri-implant defects. We decided therefore to present a case
of a patient showing partial implant threads exposure after placement and a significant ridge
atrophy, which were treated by grafting enzymatically deantigenated equine bone, containing
native type I collagen, in association with an equine pericardium membrane. A bone biopsy
was also collected and underwent histological and histomorphometric analysis to assess the
bone substitute remodelling quality and extent. Controls followed up to four years after
surgery.
5
Materials and methods
Dental implant surgery
The patient was a healthy but smoking 37-year-old woman who presented missing teeth at
positions 12 - 14 and a vertical and horizontal bone atrophy at the same positions, the vertical
one being particularly marked at position 12 (Figures 1 and 2). Tooth 11 should have been
extracted to get the proper ridge bone peak level, but the patients refused to.
A one-step treatment plan was therefore developed that called for the placement of two
osseointegrated implants and the restoration of the bone deficit by grafting a bone substitute
and protecting the grafted site with a guided bone regeneration membrane. The plan called
also for an artificial papilla being placed at element 11, according to the patient’s will, who
provided informed consent.
Antibiotic prophylaxis (Amoxicillin/Clavulanic acid, Augmentin, Glaxo-SmithKline, Verona,
Italy), 2 g, 1 hour before surgery and then every 12 hours for 7–9 days, was initiated and the
patient was subjected to mouth rinses with Chlorhexidine 0.2% (Corsodyl, Glaxo-
SmithKline). Also Nimesulide (Aulin, Roche, Milano, Italy) 100 mg was administered, 1
hour before surgery and then twice a day for 5 days. Local anaesthetic was administered by
means of an infiltration with 1% Articaine with adrenaline 1:100000.
A full-thickness trapezoidal mucoperiosteal flap was detached to expose the bone ridge. After
preparing a proper template, two osseointegrated titanium implants (Prime®, Prodent, Milan,
Italy) were placed. Autogenous bone was then collected from the exposed ridge, with a bone
scraper (Safescraper® Twist, Meta, Reggio Emilia, Italy) and mixed with equine enzyme-
deantigenated bone granules (Osteoxenon® Mix Bone Granules, Bioteck, Arcugnano, Italy)
in a 30:70 (autogenous : heterologous) ratio. The peri-implant gaps and the atrophic bone
were then grafted with the mixture. A resorbable pericardium membrane (Heart®, Bioteck,
6
Arcugnano, Italy) was then shaped with scissors and positioned to cover the graft site.
Finally, complete flap closure was achieved (Fig. 3a-e).
Soft tissues healed uneventfully (Fig 4) and sutures were removed at 10 days. The patient
healed uneventfully (Fig. 5a). Four months later, after antibiotic prophylaxis as already
described, a new full-thickness trapezoidal flap was elevated to allow a careful clinical
inspection of the alveolar ridge and a biopsy sample was taken at the regenerated site, using a
trephine with an external diameter of 3 mm (Fig. 5b). Healing screws were positioned (Fig.
5c). After soft tissue conditioning (Fig 6a-b) provisional restoration was placed, and three
months later the final prostheses was delivered, comprising the artificial papilla at position 11
(Fig. 7a-b), achieving final patient rehabilitation. The patient was recalled each year for the
following four years for follow up controls.
Histological analysis
The bone biopsy was fixed in 4% formalin and decalcified for 21 days in a solution
containing Sodium Formiate 0.76 M and Formic Acid 1.6 M (Panreac Quimica, Barcelona,
Spain). Subsequently, the sample was dehydrated in graded ethanol, and embedded in
paraffin. This procedure allowed a rapid infiltration of the tissue and the achievement of the
right softness for cutting, with only minimal artifactual shrinking, thus providing a tissue
morphology which is representative of the in vivo bone features. 5 μm thick sections were
achieved, mounted on slides and haematoxylin-eosin stained and observed at 3.5x
magnification.
7
Results
Clinical outcome
The patient did not present any clinical symptoms during follow up controls. At the moment
of bone core collection the bone ridge volume appeared fully augmented, and no volume loss
was observed, with respect to the one grafted four months before (Fig. 5b). All follow-up
radiographs taken up to 4 years after implant placement showed complete maintenance of the
peri-implant bone levels (Fig. 9).
Histological results
A quite extended bone structure could be observed. Bone substitute residual particles could
be identified as areas, even not showing marked basophilia, in which bone lacunae were
devoid of osteocytes. The bone substitute residual particles were in close contact, with no
gaps, with the alive bone tissue (eosin-stained and osteocytes-rich). A small amount of
connective tissue was observed. Neither cartilage-like tissue nor inflammatory reactions were
observed. (Fig. 8).
8
Discussion
Both the bone atrophy and the peri-implant defects were regenerated effectively by grafting
the equine bone substitutes and the equine pericardium membrane. Histological findings
showed that the biomaterials grafted were biocompatible, as confirmed by the absence of any
inflammatory cell, and by the fact that bone graft particles were always contacting closely
newly-formed bone areas. This indicates also a good osseointegration of the bone graft
particles with the newly formed bone. The absence of cartilage tissue was consistent with a
direct ossification mechanism.
These results are consistent with previous published data showing the remodelling of these
equine bone substitutes to occur at a physiological rate, and allowing for implant insertion in
newly-formed bone only, or in newly-formed bone containing only a small amount of
residual particles.17,20,31 This behaviour, different from the one observed when bovine
deproteinized bone had been used, where slow or nearly absent remodelling is observed,
confirms what already observed in earlier studies.32-34 This could be explained by the
different processing anorganic bovine bone and enzyme-deantigenated equine bone are
subjected to be made deantigenic. Anorganic bovine bone, in fact, is thermally-treated at a
temperature greater than 600°C that eliminates type I bone collagen, while enzymatic
deantigenation occurs in physiologic conditions (37°C), thus preserving type I bone collagen
unaltered. This could possibly explain why osteoclast adhesion is somewhat impaired on
thermally-treated bovine bone, while it is not on enzyme-treated bone tissue.29-30
Our data show that, at four months from the graft surgery, a fair amount of the bone graft had
been replaced by autogenous, newly-formed bone. This condition, unlike bone regeneration
with anorganic bovine bone where graft particles are still present after years, mimics more
closely the native bone state and could represent a clinical benefit since, theoretically, could
allow to perform early implant placement and early implant loading,
9
Conclusions
Equine enzyme deantigenated bone substitutes and equine pericardium membranes are
biocompatible and allowed an effective management of a maxillary bone atrophy and two
peri-implant dehiscences, leading to a more than satisfactory aesthetic outcome.
10
References
1. D'Addona A, Ghassemian M, Raffaelli L, Manicone PF. Soft and hard tissue
management in implant therapy-part I: surgical concepts.Int J Biomater. 2012;Epub
2012 Jul 8.
2. Gita VB, Chandrasekaran SC. Hard and soft tissue augmentation to enhance implant
predictability and esthetics: 'The perio-esthetic approach'.J Indian Soc Periodontol.
2011 Jan;15(1):59-63
3. Jovanovic SA. Bone rehabilitation to achieve optimal aesthetics. Pract Proced Aesthet
Dent. 2007 Oct;19(9):569-76.
4. Chiapasco M, Casentini P, Zaniboni M. Bone augmentation procedures in implant
dentistry.Int J Oral Maxillofac Implants. 2009;24 Suppl:237-59.
5. Li J, Wang HL. Common implant-related advanced bone grafting complications:
classification, etiology, and management.Implant Dent. 2008 Dec;17(4):389-401.
6. Horowitz I, Bodner L Use of xenograft bone with aspirated bone marrow for
treatment of cystic defect of the jaws. Head Neck 11:516, 1989
7. Mitchell R: An evaluation of bone healing in cavities in the jaws implanted with a
collagen matrix. Br J Oral Maxillofac Surg 30:180, 1992
8. Ducheyne P, Schepers EJG: The application of bioactive glass particles of narrow size
range as a filler material for bone lesions: A 24 month animal experiment.
Bioceramics 6:401, 1993
9. Moskow B, Gold S, Gottsegen R: Effects of scleral collagen upon the healing of
experimental osseous wounds. J Oral Maxillofac Surg 47:596, 1976
10. Debalso AM, Adrian JC: Collagen gel in osseous defects: A preliminary report. Oral
Surg Oral Med Oral Pathol 42:562, 1976
11. Bodner L: Effect of decalcified freeze-dried bone allograft on the healing of the jaw
defects after cyst enucleation. J Oral Maxillofac Surg 54:1282, 1996
12. Bodner L: Osseous regeneration in the jaws using demineralized allogenic bone
implants. J Craniomaxillofac Surg 26:116, 1998
13. Schepers EJ, Ducheyne P, Barbier L, et al: Bioactive glass particles of narrow size
range: A new material for the repair of bone defects. Implant Dent 2:151, 1993
14. Marx RE, Kline SN, Johnson RP, et al: The use of freeze-dried allogenic bone in oral
and maxillofacial surgery. J Oral Surg 39:264, 1981
15. Spengos MN: Irradiated allogeneic bone grafts in the treatment of odontogenic cysts.
J Oral Surg 32:674, 1974
16. Zitzmann NU, Scharer P, Marinello CP, Schupbach P, Berglundh T. Alveolar ridge
augmentation with Bio-Oss: a histologic study in humans. Int J Periodontics
Restotorative Dent 2001;21:288-295
17. Di Stefano DA, Artese L, Iezzi G, et al. Alveolar ridge regeneration with equine
spongy bone: a clinical, histological, and immunohistochemical case series. Clin
Implant Dent Relat Res 2009;11(2):90-100
18. Pistilli R, Checchi V, Iezzi G, Nisii A, Pecora CN, Felice P. Incremento di un
mascellare superiore atrofico con innesti a blocco di osso eterologo di origine equina
per riabilitazione con protesi fissa su impianti: un caso clinico. Rivista Italiana di
11
Stomatologia (RIS) 2011(1):52-61.
19. L. Artese, D.A. Di Stefano, G. Iezzi, M. Piccirilli, S. Pagnutti, G. di Gregorio, V.
Perrotti. Treatment of mandibular atrophy by an equine bone substitute: an
immunohistochemical study in man Original Research Article. Italian Oral Surgery
(2012). Epub ahead of print.
20. D.A. Di Stefano, M. Andreasi Bassi, M. Ludovichetti, S. Pagnutti Maxillary sinus lift
with a collagenic equine heterologous bone substitute. Histomorphometric analysis.
Original Research Article. Italian Oral Surgery (2011). Epub ahead of print.
21. Baslé MF, Lesourd M, Grizon F, Pascaretti C, Chappard D. Type I collagen in
xenogenic bone material regulates attachment and spreading of osteoblasts over the
beta1 integrin subunit. Orthopade 1998 Feb;27(2):136-142.
22. Green J, Schotland S, Stauber DJ, Kleeman CR, Clemens TL. Cell-matrix interaction
in bone: type I collagen modulates signal transduction in osteoblast-like cells. Am J
Physiol 1995;268(5 Pt 1):C1090-103.
23. Mizuno M, Fujisawa R, Kuboki Y. Type I collagen-induced osteoblastic
differentiation of bone-marrow cells mediated by collagen-alpha2beta1 integrin
interaction. J Cell Physiol 2000 Aug;184(2):207-213.
24. Liu G, Hu YY, Zhao JN, Wu SJ, Xiong Z, Lu R. Effect of type I collagen on the
adhesion, proliferation, and osteoblastic gene expression of bone marrow-derived
mesenchymal stem cells. Chin J Traumatol 2004;7(6):358-362.
25. Gungormus M, Kaya O. Evaluation of the effect of heterologous type I collagen on
healing of bone defects. J Oral Maxillofac Surg 2002;60(5):541-545.
26. Gungormus M. The effect on osteogenesis of type I collagen applied to experimental
bone defects. Dent Traumatol 2004;20(6):334-337.
27. Regazzoni C, Winterhalter KH, Rohrer L. Type I collagen induces expression of bone
morphogenetic protein receptor type II. Biochem Biophys Res Commun
2001;283(2):316-322.
28. Toroian D, Lim JE, Price PA. The size exclusion characteristics of type I collagen:
implications for the role of noncollagenous bone constituents in mineralization. J Biol
Chem 2007;282(31):22437-22447.
29. Perrotti V, Nicholls B, Piattelli A. Human osteclast formation and activity on an
equine spongy bone substitute. Clin Oral Impl Res 2009;20(1):17-23.
30. Perrotti V, Nicholls BM, Horton MA, Piattelli A. Human osteoclast formation and
activity on a xenogenous bone mineral. J Biomed Mater Res A 2009;90(1):238-246.
31. Artese L, Piattelli A, Di Stefano DA, et al. Sinus lift with autologous bone alone or in
addition to equine bone: an immunohistochemical study in man. Implant Dent
2011;20(5):383-388.
32. Rothamel D, Schwarz F, Herten M, et al. Vertical ridge augmentation using
xenogenous bone blocks: a histomorphometric study in dogs. Int J Oral Maxillofac
Implants 2009; 24:243-250.
33. Simion M, Rocchietta I, Kim D, Nevins M, Fiorellini J. Vertical ridge augmentation
by means of deproteinized bovine bone block and recombinant human platelet-
derived growth factor-BB: a histologic study in a dog model. Int J Periodontics
Restorative Dent 2006; 26:415-423.
12
34. Araújo MG, Sonohara M, Hayacibara R, Caldaropoli G, Lindhe J. Lateral ridge
augmentation by the use of grafts comprised of autologous bone or a biomaterial. An
experiment in the dog. J Clin Periodontol 2002;29:1122-1131.
13
Figures
Fig. 1a-b: Panoramic radiograph and TC before surgery. Teeth from 12 to 14 are lost and
both a vertical and a horizontal bone loss are present.
Fig. 2: Pre-surgical intra-oral view.
Fig. 3: Implant placement and grafting surgery. A mixture of autogenous and equine bone
(Osteoxenon Mix Granules, Bioteck, Italy) is grafted and then covered with a pericardium
membrane (Heart, Bioteck, Italy).
14
Fig. 4: Suture healing.
Fig. 5: Soft tissues healing; site inspection showing the position where the bone core had
been collected and cover screws placed.
Fig. 6: Soft tissue and papillae conditioning.
15
Fig. 7: Final restoration. Even if an artificial papilla had to be placed according to the will of
the patient, the final aesthetic result can be regarded as satisfactory.
Fig. 8. (3,5 x;): Hematoxylin-eosin staining of the whole sample. A large amount of of
newly-formed bone and only small graft residuals can be observed.
Fig 9. Four-year follow up, intra-oral X- ray, showing the preservation of peri-implant bone
levels.
1
Pubblicato su: Stomatolog, 2013, 19 (1): pg.32-37
Trattamento di un caso di atrofia crestale e due difetti peri-implantari mediante l’utilizzo di
sostituti ossei e di una membrana in pericardio di origine equina: risultato clinico ed
istologico.
Danilo Alessio Di Stefano*
*Libero professionista, Milano, Italia - Dipartimento di Odontoiatria, Università Vita e Salute San
Raffaele, Milano, Italia.
Contatti autore:
Danilo Alessio Di Stefano, via Civitali 40, 20148 Milano, Italia
Fax: +39 02 48705638
e-mail: distefano@centrocivitali.it
Parole: 1789
Numero di figure: 9 (19)
Numero di tabelle: 0
Titolo breve: Risultati clinici ed istologici nell’utilizzo di sostituti ossei e membrane di origine
equina.
Sommario: Trattamento di un caso di atrofia crestale e di due deiscenze peri-implantari nel
mascellare superiore mediante l’utilizzo di un sostituto osseo e una membrana di pericardio
entrambi di origine equina. Analisi istologica di una biopsia ossea prelevata dal sito aumentato dopo
quattro mesi dall’innesto.
2
Riassunto
Obiettivo: L’osso deproteinizzato e le membrane di origine bovina sono entrambi ampiamente
studiati e possono portare a buoni risultati nel trattamento di difetti ossei e di deiscenze peri-
implantari. Recentemente l’osso deantigenato per via enzimatica e le membrane di origine equina
sono emersi come possibili biomateriali alternativi. Obiettivo di questo studio è la valutazione
clinica ed istologica di tali materiali. Metodi: Osso equino deantigenato per via enzimatica e una
membrana in pericardio equino sono stati utilizzati per il trattamento di un’atrofia crestale e di
alcuni difetti peri-implantari a seguito del posizionamento di due impianti osteointegrati nel
mascellare superiore. Tutti i difetti sono stati innestati con una miscela di osso autologo ed
eterologo e protetti con una membrana in pericardio equino. Dopo quattro mesi è stato prelevato un
campione osseo dal sito di innesto. Risultati: Quattro mesi dopo il posizionamento implantare si è
osservata una buona rigenerazione ossea. La protesi definitiva è stata consegnata tre mesi dopo al
fine di ottenere la riabilitazione estetica e funzionale. Il livello osseo peri-implantare è rimasto
costante nel corso dei quattro anni di follow-up. Le analisi istologiche dei campioni ossei prelevati
hanno evidenziato come il materiale innestato sia stato soggetto ad un rimodellamento pressoché
totale, e come al tempo del prelievo fosse presente una buona quantità di osso vitale neoformato.
Conclusioni: L’osso equino deantigenato e le membrane in pericardio equino sono risultati essere,
rispettivamente, innesti e barriere efficienti nella rigenerazione ossea guidata nell’ambito
dell’incremento osseo orizzontale e verticale di una cresta atrofica e di due difetti peri-implantari,
portando ad un risultato estetico più che soddisfacente.
Parole chiave: innesti ossei, difetti peri-implantari, rigenerazione ossea, biomateriali biocompatibili
3
Introduzione
Negli anni la riabilitazione implantare è divenuta l’approccio standard nei pazienti con edentulie
parziali o totali. Parallelamente al diffondersi del posizionamento implantare, si è osservato un
aumento nelle richieste di risultati estetici a lungo termine. Conseguentemente a ciò si è diffusa una
maggiore conoscenza ed attenzione nei confronti di tutti i fattori1 che contribuiscono al successo a
lungo termine dell’estetica dei tessuti molli (gengiva e papille), evidenziando l’importanza di una
corretta gestione dei livelli ossei sottostanti2. Questa consapevolezza ha portato ad una richiesta di
innesti ossei anche per difetti apparentemente di piccole dimensioni come diminuzioni contenute di
livelli ossei e deiscenze implantari3 nelle chirurgie di posizionamento implantare one-step.
Per quanto concerne il materiale da innesto, le proprietà dell’osso autologo l’hanno portato ad
essere a lungo considerato il “golden standard” della rigenerazione ossea. Il suo impiego richiede
sempre un’ulteriore chirurgia, con conseguente aumento di morbilità 4, e vi è sempre la possibilità
di non riuscire ad ottenere una quantità di osso autologo sufficiente per il suo impiego in difetti
ampi o multipli. Come alternativa sono stati utilizzati, da soli o in combinazione, osso omologo,
osso eterologo e materiali alloplastici6-15.
I granuli di osso bovino inorganico possiedono buone capacità osteoconduttive ma possono
presentare una bassa capacità di riassorbimento16. Recentemente l’osso equino deantigenato per via
enzimatica è stato introdotto come supporto (scaffold) per la rigenerazione ossea di diverse
tipologie di difetti ossei17-20. Il processo enzimatico utilizzato per eliminare le componenti
antigeniche da questo materiale lascia inalterato il collagene di tipo I nella sua forma nativa, non
denaturata. Questa molecola, viste le sue ben note proprietà biologiche 21-28, dovrebbe stimolare il
processo di rigenerazione ossea.
Di fatto, l’adesione e l’attività cellulare di osteoclasti coltivati su sostituti ossei equini deantigenati
enzimaticamente e a collagene preservato29 sono risultate significativamente più elevate rispetto a
quelle di osteoclasti cresciuti su osso bovino deproteinizzato30.
4
Inoltre, paragonando siti aumentati mediante l’utilizzo di solo osso equino con siti aumentati con lo
stesso materiale miscelato ad osso autologo, analisi immunoistochimiche non hanno evidenziato
differenze nell’espressione di alcuni marker per la rigenerazione ossea (NOS1, NOS2, e VEGF)31.
Ad oggi non sono noti dati pubblicati sull’utilizzo di osso equino deantigenato enzimaticamente nel
trattamento di difetti peri-implantari. Abbiamo quindi deciso di presentare il caso di una paziente
che presentava una deiscenza implantare e una significativa atrofia crestale. Entrambi i difetti sono
stati innestati con osso equino deantigenato per via enzimatica e a collagene I preservato, in
combinazione con una membrana in pericardio equino. Sono state inoltre effettuate analisi
istologiche ed istomorfometriche su una biopsia ossea al fine di valutare la qualità e l’entità del
rimodellamento del sostituto osseo utilizzato. Sono stati eseguiti controlli di follow-up fino ai
quattro anni successivi all’intervento.
Materiali e metodi
Chirurgia implantare
La paziente, una donna sana di 37 anni, fumatrice, presentava edentulia e atrofia crestale, verticale
ed orizzontale, nelle posizioni 12-14. L’atrofia verticale era particolarmente pronunciata in
posizione 12 (Figura 1 e 2). Si sarebbe dovuto estrarre il dente in posizione 11 per ottenere un
livello adeguato di picco osseo crestale, ma la paziente ha rifiutato questa opzione.
È stato quindi sviluppato un piano one-step per il posizionamento di due impianti osteointegrati ed
il trattamento dei deficit ossei mediante l’innesto di sostituti ossei e una membrana per
rigenerazione ossea guidata. Il piano prevedeva inoltre il posizionamento di una papilla artificiale in
posizione 11, in accordo col volere della paziente, la quale ha fornito il consenso informato.
La profilassi antibiotica con Amoxicillina/Acido Clavulanico (Augmentin, Glaxo-SmithKline,
Verona, Italia), 2 g è iniziata 1 ora prima dell’intervento ed è successivamente proseguita ogni 12
ore per 7-9 giorni. Prima dell’inizio dell’intervento, la paziente ha eseguito uno sciacquo orale con
Clorexidina 0,2% (Corsodyl, Glaxo-SmithKline, Verona, Italia). Sono stati somministrati 100 mg di
5
Nimesulide (Aulin, Roche, Milano, Italia) 1 ora prima dell’intervento e poi due volte al giorno per 5
giorni. L’anestesia locale è stata effettuata mediante infiltrazione di Articaina 1% con Adrenalina
1:100000.
È stato eseguito un lembo trapezoidale a pieno spessore per esporre la cresta ossea. Dopo la
preparazione di una apposita mascherina sono stati posizionati due impianti (Prime®, Prodent,
Milano, Italia). Tramite raschietto osseo (Safescraper® Twist, Meta, Reggio Emila, Italia) è stato
raccolto dell’osso autologo dalla cresta esposta, poi miscelato in rapporto 30:70
(autologo:eterologo) con granuli di osso equino deantigenati per via enzimatica (Osteoxenon® Mix,
Bioteck, Arcugnano, Italia). I difetti sono quindi stati innestati con la miscela. A copertura del sito
innestato è stata posizionata una membrana riassorbibile in pericardio (Heart®, Bioteck, Arcugnano,
Italia) dopo averla preventivamente sagomata. Infine si è proceduto alla chiusura dei lembi (Figura
3 a-e).
I tessuti molli sono guariti senza complicazioni (Figura 4) e le suture sono state rimosse dopo 10
giorni dall’intervento. Non si sono osservate complicanze durante il periodo di guarigione (Figura
5a). Quattro mesi dopo, seguendo una profilassi antibiotica come quella sopra descritta, è stato
eseguito un nuovo lembo a pieno spessore per permettere un’attenta ispezione clinica della cresta
alveolare. Tramite una fresa carotatrice con diametro esterno di 3 mm (Figura 5b) è stato prelevato
un campione osseo dal sito rigenerato. Sono state quindi posizionate le viti di guarigione (Figura
5c). Dopo il condizionamento dei tessuti molli (Figura 6 a-b) è stata posizionata una protesi
temporanea, e tre mesi dopo è stata consegnata la definitiva, comprensiva della papilla artificiale in
posizione 11 (Figura 7 a-b), ottenendo dunque la riabilitazione finale della paziente. Per i seguenti
quattro anni la paziente è stata richiamata una volta all’anno per i controlli di follow-up.
Analisi istologica
Il campione è stato fissato in Formalina al 4% e decalcificato per 21 giorni in una soluzione
contenente Formiato di Sodio 0,76 M e Acido Formico 1,6 M (Panreac Quimica, Barcellona,
Spagna). Successivamente il campione è stato disidratato in Etanolo a concentrazioni crescenti ed
6
incluso in Paraffina. Questa procedura ha permesso una rapida infiltrazione dei tessuti e
l’ottenimento della consistenza ottimale per il taglio, minimizzando gli artefatti e fornendo una
morfologia rappresentativa delle caratteristiche dell’osso in vivo. Sono state ottenute sezioni dello
spessore di 5 μm che, dopo essere state montate su vetrino, sono state colorate con Ematossina-
Eosina e osservate ad un ingrandimento di 3,5x.
Risultati
Esito clinico
Durante il follow up post-operatorio immediato la paziente non ha presentato alcuna sintomatologia
rilevante. Al momento del prelievo osseo la cresta ossea appariva completamente rigenerata, e non
si è osservata alcuna perdita volumetrica rispetto a quanto innestato quattro mesi prima (Figura 5b).
Tutte le radiografie di follow-up effettuate durante i quattro anni successivi all’inserimento
implantare hanno confermato il mantenimento del livello osseo peri-implantare (Figura 9).
Risultati istologici
È stata osservata una struttura ossea piuttosto estesa. Le particelle residue del sostituto osseo,
sebbene non spiccatamente basofile, sono state individuate come aree caratterizzate da lacune ossee
prive di osteociti, a stretto contatto col tessuto osseo vitale (marcato dall’Eosina e ricco in
osteociti). È stata individuata una piccola quantità di tessuto connettivo. Non sono stati osservati né
tessuti simil-cartilaginei né infiltrati infiammatori (Figura 8).
Discussione
Sia l’atrofia ossea che i difetti peri-implantari sono stati rigenerati efficacemente innestando
sostituti ossei e una membrana in pericardio di origine equina. Le analisi istologiche hanno
evidenziato l’assenza di cellule infiammatorie e lo stretto contatto tra le particelle di sostituto osseo
ed il tessuto osseo neoformato, indicando come questi materiali siano perfettamente biocompatibili.
7
Si evidenzia inoltre buona osteointegrazione tra le particelle di sostituto osseo e l’osso neoformato.
L’assenza di tessuti cartilaginei è coerente con un meccanismo di ossificazione diretta.
Questi risultati sono in accordo con quanto precedentemente pubblicato ed evidenziano come il
rimodellamento di questi sostituti ossei avvenga in tempi fisiologici, permettendo così l’inserimento
implantare nel solo osso neoformato o al limite caratterizzato da una piccola quantità di particelle
residue17, 20, 31. Questo comportamento conferma quanto già osservato in studi preliminari e si
differenzia notevolmente da quanto evidenziato nel caso dell’utilizzo di osso bovino
deproteinizzato, dove il rimodellamento è risultato lento o quasi assente32-34. Questo fenomeno
potrebbe spiegarsi col diverso metodo di deantigenazione utilizzato per l’osso bovino inorganico e
l’osso equino deantigenato enzimaticamente. L’osso bovino inorganico, essendo trattato per via
termica a temperature superiori ai 600°C, è infatti interamente privo di collagene di tipo I. Il
trattamento di deantigenazione enzimatica avviene invece in condizioni fisiologiche (37°C),
permettendo di preservare inalterata questa molecola. Tutto ciò potrebbe spiegare perché l’adesione
osteoclastica sull’osso bovino trattato termicamente sia in qualche modo compromessa, mentre non
lo sia sul tessuto osseo trattato enzimaticamente29-30.
I nostri dati mostrano come, a quattro mesi dalla chirurgia, un’elevata quantità di innesto osseo sia
stata sostituita da osso autologo neoformato. Questa condizione, a differenza della rigenerazione
ossea che si ottiene con osso bovino inorganico dove particelle di biomateriale sono ancora presenti
dopo anni, mima da vicino lo stato dell’osso nativo e potrebbe rappresentare un reale beneficio
clinico permettendo, in linea teorica, di procedere ad inserimenti e carichi implantari anticipati.
Conclusioni
I sostituti ossei di origine equina deantigenati enzimaticamente e le membrane in pericardio equino
si sono dimostrati biocompatibili e hanno permesso la gestione efficace di un’atrofia ossea
mascellare e di due deiscenze peri-implantari, portando ad un risultato estetico più che
soddisfacente.
8
Bibliografia
1. D'Addona A, Ghassemian M, Raffaelli L, Manicone PF. Soft and hard tissue management in
implant therapy-part I: surgical concepts.Int J Biomater. 2012;Epub 2012 Jul 8.
2. Gita VB, Chandrasekaran SC. Hard and soft tissue augmentation to enhance implant
predictability and esthetics: 'The perio-esthetic approach'.J Indian Soc Periodontol. 2011
Jan;15(1):59-63
3. Jovanovic SA. Bone rehabilitation to achieve optimal aesthetics. Pract Proced Aesthet Dent.
2007 Oct;19(9):569-76.
4. Chiapasco M, Casentini P, Zaniboni M. Bone augmentation procedures in implant
dentistry.Int J Oral Maxillofac Implants. 2009;24 Suppl:237-59.
5. Li J, Wang HL. Common implant-related advanced bone grafting complications:
classification, etiology, and management.Implant Dent. 2008 Dec;17(4):389-401.
6. Horowitz I, Bodner L Use of xenograft bone with aspirated bone marrow for treatment of
cystic defect of the jaws. Head Neck 11:516, 1989
7. Mitchell R: An evaluation of bone healing in cavities in the jaws implanted with a collagen
matrix. Br J Oral Maxillofac Surg 30:180, 1992
8. Ducheyne P, Schepers EJG: The application of bioactive glass particles of narrow size range
as a filler material for bone lesions: A 24 month animal experiment. Bioceramics 6:401,
1993
9. Moskow B, Gold S, Gottsegen R: Effects of scleral collagen upon the healing of
experimental osseous wounds. J Oral Maxillofac Surg 47:596, 1976
10. Debalso AM, Adrian JC: Collagen gel in osseous defects: A preliminary report. Oral Surg
Oral Med Oral Pathol 42:562, 1976
11. Bodner L: Effect of decalcified freeze-dried bone allograft on the healing of the jaw defects
after cyst enucleation. J Oral Maxillofac Surg 54:1282, 1996
12. Bodner L: Osseous regeneration in the jaws using demineralized allogenic bone implants. J
Craniomaxillofac Surg 26:116, 1998
13. Schepers EJ, Ducheyne P, Barbier L, et al: Bioactive glass particles of narrow size range: A
new material for the repair of bone defects. Implant Dent 2:151, 1993
14. Marx RE, Kline SN, Johnson RP, et al: The use of freeze-dried allogenic bone in oral and
maxillofacial surgery. J Oral Surg 39:264, 1981
15. Spengos MN: Irradiated allogeneic bone grafts in the treatment of odontogenic cysts. J Oral
Surg 32:674, 1974
16. Zitzmann NU, Scharer P, Marinello CP, Schupbach P, Berglundh T. Alveolar ridge
augmentation with Bio-Oss: a histologic study in humans. Int J Periodontics Restotorative
Dent 2001;21:288-295
17. Di Stefano DA, Artese L, Iezzi G, et al. Alveolar ridge regeneration with equine spongy
bone: a clinical, histological, and immunohistochemical case series. Clin Implant Dent Relat
Res 2009;11(2):90-100
18. Pistilli R, Checchi V, Iezzi G, Nisii A, Pecora CN, Felice P. Incremento di un mascellare
superiore atrofico con innesti a blocco di osso eterologo di origine equina per riabilitazione
con protesi fissa su impianti: un caso clinico. Rivista Italiana di Stomatologia (RIS)
2011(1):52-61.
19. L. Artese, D.A. Di Stefano, G. Iezzi, M. Piccirilli, S. Pagnutti, G. di Gregorio, V. Perrotti.
Treatment of mandibular atrophy by an equine bone substitute: an immunohistochemical
9
study in man Original Research Article. Italian Oral Surgery (2012). Epub ahead of print.
20. D.A. Di Stefano, M. Andreasi Bassi, M. Ludovichetti, S. Pagnutti Maxillary sinus lift with a
collagenic equine heterologous bone substitute. Histomorphometric analysis. Original
Research Article. Italian Oral Surgery (2011). Epub ahead of print.
21. Baslé MF, Lesourd M, Grizon F, Pascaretti C, Chappard D. Type I collagen in xenogenic
bone material regulates attachment and spreading of osteoblasts over the beta1 integrin
subunit. Orthopade 1998 Feb;27(2):136-142.
22. Green J, Schotland S, Stauber DJ, Kleeman CR, Clemens TL. Cell-matrix interaction in
bone: type I collagen modulates signal transduction in osteoblast-like cells. Am J Physiol
1995;268(5 Pt 1):C1090-103.
23. Mizuno M, Fujisawa R, Kuboki Y. Type I collagen-induced osteoblastic differentiation of
bone-marrow cells mediated by collagen-alpha2beta1 integrin interaction. J Cell Physiol
2000 Aug;184(2):207-213.
24. Liu G, Hu YY, Zhao JN, Wu SJ, Xiong Z, Lu R. Effect of type I collagen on the adhesion,
proliferation, and osteoblastic gene expression of bone marrow-derived mesenchymal stem
cells. Chin J Traumatol 2004;7(6):358-362.
25. Gungormus M, Kaya O. Evaluation of the effect of heterologous type I collagen on healing
of bone defects. J Oral Maxillofac Surg 2002;60(5):541-545.
26. Gungormus M. The effect on osteogenesis of type I collagen applied to experimental bone
defects. Dent Traumatol 2004;20(6):334-337.
27. Regazzoni C, Winterhalter KH, Rohrer L. Type I collagen induces expression of bone
morphogenetic protein receptor type II. Biochem Biophys Res Commun 2001;283(2):316-
322.
28. Toroian D, Lim JE, Price PA. The size exclusion characteristics of type I collagen:
implications for the role of noncollagenous bone constituents in mineralization. J Biol Chem
2007;282(31):22437-22447.
29. Perrotti V, Nicholls B, Piattelli A. Human osteclast formation and activity on an equine
spongy bone substitute. Clin Oral Impl Res 2009;20(1):17-23.
30. Perrotti V, Nicholls BM, Horton MA, Piattelli A. Human osteoclast formation and activity
on a xenogenous bone mineral. J Biomed Mater Res A 2009;90(1):238-246.
31. Artese L, Piattelli A, Di Stefano DA, et al. Sinus lift with autologous bone alone or in
addition to equine bone: an immunohistochemical study in man. Implant Dent
2011;20(5):383-388.
32. Rothamel D, Schwarz F, Herten M, et al. Vertical ridge augmentation using xenogenous
bone blocks: a histomorphometric study in dogs. Int J Oral Maxillofac Implants 2009;
24:243-250.
33. Simion M, Rocchietta I, Kim D, Nevins M, Fiorellini J. Vertical ridge augmentation by
means of deproteinized bovine bone block and recombinant human platelet-derived growth
factor-BB: a histologic study in a dog model. Int J Periodontics Restorative Dent 2006;
26:415-423.
34. Araújo MG, Sonohara M, Hayacibara R, Caldaropoli G, Lindhe J. Lateral ridge
augmentation by the use of grafts comprised of autologous bone or a biomaterial. An
experiment in the dog. J Clin Periodontol 2002;29:1122-1131.
10
Figure
Fig. 1a-b: Radiografia panoramica e TC pre-intervento. I denti in posizione da 12 a 14 sono
mancanti ed è presente una perdita ossea sia orizzontale che verticale.
Fig. 2: Situazione pre-intervento.
Fig. 3: Posizionamento implantare ed esecuzione dell’innesto. Una miscela di osso autologo e di
osso equino (Osteoxenon Mix Granuli, Bioteck, Italy) è stata innestata e quindi protetta con una
membrana in pericardio (Heart, Bioteck, Italy).
11
Fig. 4: Guarigione delle suture.
Fig. 5: Guarigione dei tessuti molli; l’ispezione del sito permette di osservare il punto in cui è stato
prelevato il campione osseo e le viti tappo in posizione.
Fig. 6: Condizionamento dei tessuti molli e delle papille.
12
Fig. 7: Riabilitazione definitiva. Sebbene sia stato necessario posizionare una papilla artificiale, in
accordo col volere della paziente, il risultato estetico finale può considerarsi soddisfacente.
Fig. 8. (3,5 x;): Colorazione con Ematossina-Eosina dell’intero campione. Si può osservare una
grande quantità di osso neoformato e solo piccoli residui del materiale innestato.
Fig 9. Il follow-up a 4 anni, effettuato mediante radiografia endo-orale, mostra il mantenimento dei
livelli ossei peri-implantari.
... It is well known that bone grafting reduces the resorption process occurring after tooth extraction [12], however, it is not yet clear which biomaterial is the most suitable for socket preservation; allografts, xenografts, and synthetic particulate materials have been extensively used and documented [13][14][15][16]. In this scenario, enzymatically-deantigenated equine bone has proven to be extremely biocompatible with new blood vessels in-growth during healing and is reported to be re-absorbed and replaced by newly formed bone a few months after insertion [17,18]. In addition, some studies have demonstrated that the combined use of biomaterials and membrane has achieved better results on postextraction alveolar preservation [13]. ...
... Interestingly, the presence of cells (probably osteoblasts in the active phase) was found near the newly formed bone during the mineralization and grafting process, highlighting BPs role in bone remodeling, which involves the inhibition of osteoclast activity and activation of osteoblast function [42]. The histological analysis of our sample confirmed that the healing obtained with the socket preservation technique by using enzymatically-deantigenated equine bone and equine pericardium membrane is comparable to the healing obtained in patients who do not use bisphosphonates [17,18]. ...
Article
Full-text available
The aim of the present study is to assess the clinical and histological healing of a post-extractive alveolus following the procedure for socket preservation, in a patient receiving oral bisphosphonates for more than 6 years. After the extraction, enzymatically-deantigenated horse bone granules and an equine pericardium membrane were used to preserve the tooth socket. The patient was placed on a monthly follow-up in order to monitor the healing process. A 3 mm trephine bur was used to drill the bone for implant site preparation and to collect the bone sample. No signs and symptoms related to osteonecrosis of the jaws were reported. Histological data showed that, after 5 months, the mean percentages of trabecular bone, bone marrow and residual bone graft were respectively 45.74 ± 0.09%, 48.09 ± 0.08%, and 6.16 ± 0.01%. The residual graft material appeared to be osteointegrated and none of the particles appeared to be encapsulated. The present case report supports the guidelines that assume that patients undergoing oral bisphosphonate therapy can be eligible for surgical therapy. More clinical studies with larger sample sizes are needed to support this clinical evidence.
Conference Paper
Full-text available
Introduction: The aim of the present study was to perform a comparative histological and immunohistochemical evaluation of microvessel density (MVD), vascular endothelial growth factor (VEGF) and nitric oxide synthase (NOS) expression in sinus augmentation using autologous bone alone or in combination to equine bone. Material and Method: Sixteen patients underwent sinus augmentation with autologous bone and a 50:50 mixture of autologous and equine bone. Control cores were harvested from pre-existing non-augmented bone under the sinus floor. The specimens were processed for immunohistochemistry. Results: The greatest values of MVD were found in the sites grafted with autologous bone with significant differences between control vs autologous group (P < 0.01) and control vs autologous + equine group (P < 0.01). The higher and lower intensities of VEGF and NOS3 expression were prevalent in the sites grafted with autologous bone with significant differences with the controls (P < 0.05). No significant differences (P > 0.05) were found in the NOS1 expression among the groups. Conclusions:The results obtained showed that the mixture of autologous and equine bone was biocompatible, and its use was associated with new blood vessels ingrowth during healing, which has been found to be extremely important for bone formation
Article
Full-text available
Implant therapy has become a reliable and predictable treatment alternative for the replacement of missing teeth with conventional removable and fixed partial dentures. Recently though, in the pursuit for improved esthetics, the literature has dedicated a considerable amount of its research on the successful maintenance and regeneration of the surrounding gingiva and bone, which are lost following extraction of a tooth. Thoroughly analyzing the anatomic situation and well-planned treatment has become a requirement, because incorrectly planned and positioned implants may jeopardize long-term esthetic and functional prognosis. In addition, many types of biocompatible materials, autogenous hard and soft tissue grafts, and different surgical techniques have been developed, and their viability has been investigated. As a result, implant specialists have gained a greater understanding of the dynamics and anatomical and biological concepts of the periodontium and peri-implant tissues both at the surgical and prosthetic phases of treatment, which contributes to better soft and hard tissue management (SHTM). This may further contribute to achieving a superior final result which is obtained by having a harmonious soft tissue profile, a correctly placed and contoured final restoration, and the reestablishment of masticatory function and phonetics.
Article
Full-text available
Dental implants are being increasingly applied in the restoration of partial and completely edentulous patients. Often, in these patients, soft and hard tissue defects result from a variety of causes, such as, periodontal infection, trauma, and tooth loss. These create an anatomically less favourable foundation for ideal implant placement. For prosthetic-driven dental implant therapy, reconstruction of the alveolar bone, through a variety of regenerative surgical procedures has become predictable. This article documents the soft and hard tissue treatment management of a patient with Generalized Chronic Periodontitis, who required hard and soft tissue augmentation of the ridge, prior to implant placement. We augmented the height and width of the ridge (Seibert's Class III ridge deficiency) using an Autogenous J-shaped graft involving the chin and lower border of the mandible, followed by soft tissue augmentation of the ridge with a subepithelial connective tissue graft. A significant increase in the ridge dimensions was achieved.
Article
Full-text available
This review evaluated (1) the success of different surgical techniques for the reconstruction of edentulous deficient alveolar ridges and (2) the survival/success rates of implants placed in the augmented areas. Clinical investigations published in English involving more than 10 consecutively treated patients and mean follow-up of at least 12 months after commencement of prosthetic loading were included. The following procedures were considered: onlay bone grafts, sinus floor elevation via a lateral approach, Le Fort I osteotomy with interpositional grafts, split ridge/ridge expansion techniques, and alveolar distraction osteogenesis. Full-text articles were identified using computerized and hand searches by key words. Success and related morbidity of augmentation procedures and survival/success rates of implants placed in the augmented sites were analyzed. A wide range of surgical procedures were identified. However, it was difficult to demonstrate that one surgical procedure offered better outcomes than another. Moreover, it is not yet known if some surgical procedures, eg, reconstruction of atrophic edentulous mandibles with onlay autogenous bone grafts or maxillary sinus grafting procedures in case of limited/moderate sinus pneumatization, improve long-term implant survival. Every surgical procedure presents advantages and disadvantages. Priority should be given to those procedures which are simpler and less invasive, involve less risk of complications, and reach their goals within the shortest time frame. The main limit encountered in this literature review was the overall poor methodological quality of the published articles. Larger well-designed long-term trials are needed.
Article
Objective To perform an immunohistochemical evaluation of microvessel density (MVD), vascular endothelial growth factor (VEGF) and nitric oxide synthase (NOS) expression in mandibular ridge regeneration using an equine-derived bone substitute.Materials and methodsRidge augmentations were performed in six patients using equine bone. After a six-month healing period, four bone cores from no augmented (control) and four from augmented sites (test) were retrieved and processed for immunohistochemistry.ResultsStatistically, significant differences were found in the MVD expression between control and test sites (p < 0.05). The high and low intensities of VEGF, NOS1 and NOS3 were mainly expressed in test samples with statistical differences with control (p < 0.05).Conclusions Within the limits of the small sample size, the present study indicated that equine bone is able to support neovascularization when used as a grafting material.RiassuntoObiettivoValutazione immunoistochimica dell’espressione della densità microvascolare (MVD), del fattore di crescita dell’endotelio vascolare (VEGF) e dell’ossido nitrico sintetasi (NOS) nella rigenerazione delle atrofie mandibolari utilizzando osso di origine equina.Materiali e metodiSono stati eseguiti interventi di aumento di cresta utilizzando innesti di osso equino in sei pazienti. Dopo sei mesi di guarigione, sono state prelevate e processate quattro carote ossee dai siti controllo e quattro dai siti rigenerati (test).RisultatiDifferenze statisticamente significative sono state riscontrate nell’espressione del MVD tra siti controllo e test (p < 0,05). Le alte e basse intensità di VEGF, NOS1 e NOS3 erano principalmente espresse nei campioni test con differenze significative con i controlli (p < 0,05).ConclusioniNonostante il numero esiguo dei campioni, dal presente studio si evince che l’osso equino è in grado di supportare la neoangiogenesi quando utilizzato come materiale da innesto.
Article
Objectives: In this article, the authors describe their use of a heterologous equine collagen bone substitute for a maxillary sinus lift, and they assess the efficacy of this biomaterial when utilized with autologous bone. Materials and methods: Maxillary sinus lift is a common surgical procedure in dentistry practices. A wide array of biomaterials and bone substitutes are available for this purpose. Their efficacy varies in terms of the amount of de novo bone production observed at a given point in time. Nonetheless, histomorphometric analyses are not usually performed during routine clinical practice. The authors performed a sinus lift procedure in a 66-year-old male with the aid of an equine collagen graft. Eight months later, at the time of implant placement, two biopsies were collected for the histomorphometric analysis. Results and conclusions: The histomorphometric analysis revealed spongy bone tissue undergoing remodeling, and 42% of the tissue was newly formed bone. There was no evidence of an inflammatory reaction.
Article
The aim of the present study was to perform a comparative histological and immunohistochemical evaluation of microvessel density, vascular endothelial growth factor, and nitric oxide synthase (NOS) expression in sinus augmentation using autologous bone alone or in combination with equine bone. Sixteen patients underwent sinus augmentation with autologous bone and a 50:50 mixture of autologous and equine bone. Control cores were harvested from preexisting nonaugmented bone under the sinus floor. The specimens were processed for immunohistochemistry. The greatest values of microvessel density were found in the sites grafted with autologous bone with significant differences between control versus autologous group (P < 0.01) and control versus autologous + equine group (P < 0.01). The higher and lower intensities of vascular endothelial growth factor and NOS3 expression were prevalent in the sites grafted with autologous bone with significant differences with the controls (P < 0.05). No significant differences (P > 0.05) were found in the NOS1 expression among the groups. The results obtained showed that the mixture of autologous and equine bone was biocompatible, and its use was associated with new blood vessels ingrowth during healing, which has been found to be extremely important for bone formation.
Article
Treatment involving oral implants has established a high success rate, including implant survival on a long-term basis. The challenge facing the clinicians today is to achieve an optimal long-term aesthetic result. To address this challenge, the volume of the underlying hard and soft tissue must be restored either prior to or simultaneously with the implant placement. The learning objective of this article is to review the critical biologic and clinical criteria essential in achieving a predictable success in aesthetic enhancement of the implant site. The article discusses the five phases of ridge reconstruction, utilization of bone grafts (with or without membranes), and the use of membranes alone. Soft tissue management and augmentation in aesthetic and nonaesthetic regions are differentiated and presented. Surgical complications are recognized as a clinical reality, and exposure of the membranes is evaluated and discussed. Four cases are used to describe and illustrate the clinical procedure.