ArticlePDF Available

Astudy of the evolution of the Pleistocene Cave Bear by a morphometric analysis of the lower carnassial

Authors:

Abstract

Abstract : In this contribution a morphometric study of the lower carnassial of the Cave Bear (Ursus deningeri and Ursus spelaeus) from several populations of diverse European localities and also different ages is carried out. This study includes a morphological analysis of the deployment of dental cusps and metric comparisons focused on general size and convergence of the cusps. The morphologic study (by cluster analysis) presents a grouping trend of the populations according to their geographi position first, then to the chronology. This indicates that the expansion of the cave bear happened at a very early time, and that later did not exist great migratory movements that returned to put in contact remote populations. As for the metric analysis, differences in the degree of convergence of the cusps in the talonid and trigonid are only observed between the oldest sites (more convergent, smaller occlusal surface) and the modern ones (less convergent, larger occlusal surface) independently of their geographic location.
83
ORYCTOS, Vol. 5 : 83 - 94, Décembre 2004
A STUDY OFTHE EVOLUTION OF THE PLEISTOCENE CAVE BEAR BY
A MORPHOMETRIC ANALYSIS OF THE LOWER CARNASSIAL
Aurora GRANDAL-D’ANGLADE & Fernando LÓPEZ-GONZÁLEZ
Instituto Universitario de Xeoloxía. Universidade da Coruña
Campus da Zapateira s/n. E-15071 ACORUÑA. SPAIN
E-mail xeaurora@udc.es
Abstract : In this contribution a morphometric study of the lower carnassial of the Cave Bear (Ursus deningeri and
Ursus spelaeus) from several populations of diverse European localities and also different ages is carried out. This
study includes a morphological analysis of the deployment of dental cusps and metric comparisons focused on general
size and convergence of the cusps.
The morphologic study (by cluster analysis) presents a grouping trend of the populations according to their geo-
graphic position first, then to the chronology. This indicates that the expansion of the cave bear happened at a very
early time, and that later did not exist great migratory movements that returned to put in contact remote populations.
As for the metric analysis, differences in the degree of convergence of the cusps in the talonid and trigonid are only
observed between the oldest sites (more convergent, smaller occlusal surface) and the modern ones (less convergent,
larger occlusal surface) independently of their geographic location.
Key words: cave bear, lower carnassial, morphometry, evolution, Pleistocene, Europe
Résumé : Dans cette contribution une étude morphométrique de la première molaire inférieure de l’ours des cavernes
(Ursus deningeri et Ursus spelaeus) de plusieurs populations de diverses localités européennes et d’âges différents,
est effectuée. Cette étude inclut une analyse morphologique du déploiement des cuspides dentaires et des comparaisons
métriques centrées sur la taille générale et la convergence des cuspides. Le résultat de l’étude morphologique
(effectué par analyse de clade) présente une tendance groupant des populations selon leur position géographique
d’abord, et selon leur chronologie ensuite. Ceci indique que l’expansion de l’ours des cavernes s’est produite très
tôt, et que plus tard n’ont pas existé de grands mouvements migrateurs mettant en contact des populations eloignées.
D’après l’analyse métrique, on observe seulement des différences du degré de convergence des cuspides du talonide
et du trigonide entre les sites les plus anciens (plus convergents, plus petite surface masticatrice) et les récents
(moins convergents, plus grande surface masticatrice), indépendamment de leur emplacement géographique.
Mots clés : Ours des cavernes, étude morphométrique, première molaire inférieure, évolution, Pléistocène, Europe
84
ORYCTOS, Vol.5, 2004
INTRODUCTION
The phylogenetic origin of the cave bear is at the
moment under study. If traditionally it was considered
arisen from Ursus etruscus CUVIER 1823 in the
Upper Pliocene (Erdbrink, 1953; Thenius, 1959;
Kurtén, 1968; Ficcarelli, 1979; Torres Pérez-Hidalgo,
1992), some authors attribute a more delayed origin,
from the European lineage of brown bear (Ursus arc-
tos LINNEUS 1758), at the end of the Lower
Pleistocene (Mazza & Rustioni, 1994). Nevertheless,
the recent studies based on DNA sequencing seem to
demonstrate that the appearance of this species could
have happened before the divergence between both
lineages, European and Asian, of brown bear, that
happened 850 Ky BP ago, (Hänni et al., 1994), that is
to say, approximately 1,2 million years ago (Loreille
et al., 2001).
The cave bear lineage is formed by two species,
U. deningeri VON REICHENAU 1906 and U.
spelaeus ROSENMÜLLER 1794, anteceded by a
more primitive form, usually named Ursus savini
ANDREWS 1922 (Kurtén, 1968), that sometimes is
considered as a variety or subspecies of U. deningeri
(Kurtén, 1969a; Bishop, 1982; Mazza & Rustioni,
1994). These three species are chronospecies. Unlike
biological species, chronospecies are arbitrary divi-
sions of a single evolutionary lineage, defined on the
basis of morphological change. According to
Simpson (1961) the morphologic differences
between species should be at least as large as those
between living species of the same taxonomic group.
The morphological difference between U.
deningeri and U. spelaeus is defined by the variation
of some continuous features, like the progressive
reinforcement and doming of the skull and the jaw, or
discrete ones, like the loss of the three anterior upper
and lower premolars.
However, the variability of size and morphology
is a constant in U. deningeri and U. spelaeus, even
into the same population. This intraspecific variabili-
ty in increased due to sex dimorphism or the exis-
tence of dwart forms, like in high alpine populations.
Moreover, some sites from the middle Pleistocene
show intermediate forms between both specie
(Altuna, 1972; Rabeder & Tsoukala, 1990; Argant,
1991 ; Auguste, 1992). In occasions, these intermedi-
ate forms receive subspecifical names, such as Ursus
spelaeus deningeroides MOTTL 1947 from Repolust,
Austria (Mottl, 1947) and Azé, France (Argant, 1991;
2001).
The discrete features could be more conclusive.
But the study of the jaws of the Savini’s bear from
Bacton reveals the lack of the first, second and third
premolar as a general feature. And concerning U.
deningeri, even some skulls and jaws from Mosbach’s
(the type- locality) present a long diastema with no
anterior premolars. These ones are seldom present
and, when present, the percent varies from one popu-
lation to another (for a review, see Bishop, 1982).
Concerning the dentition, it was extensively
described in the literature (see Kurtén, 1976 for a
review) that the evolutionary trend in these species
favors the appearance of cheek teeth with cusps more
and more blunt and splitted into smaller ones, and
progressively broader occlusal surfaces, produced by
the smaller convergence of cusps, which is related to
the herbivore type of feeding of this species.
This tendency was quantitatively studied under
different approaches by some authors (Rabeder,
1983; 1999; Torres Pérez-Hidalgo, 1988a; Argant,
1995), although it is not well known if this process
took place at the same rate in all the populations, or
wether there are geographic or chronological dif-
ferences.
In this work we try to such a study of this process
in different European populations, separated in the
time and/or the space, based on the lower carnassial
(first lower molar), being the dental piece that,
according to our previous work, better characterizes
each population (Grandal d’Anglade, 1993a; 1993b).
THE CAVE BEAR DENTITION
The cave bear displays a particular dental mor-
phology with broad crushing surfaces, and muscular
insertions in the skull and the jaw that reflect a great
chewing power, reason why a basically herbivore diet
is attributed to him (Kurtén, 1968; 1976). In the last
years several approaches to the reconstruction of the
diet of this species by means of the stable isotope
analysis have been made, (generally 13C and 15N),
preferably in bone collagen and dentine collagen and
hydroxylapatite (Bocherens et al., 1994; Bocherens
et al., 1997, Fernández Mosquera, 1998; Nelson et
85
al., 1998; Lidén & Angerbjörn, 1999; Vila Taboada et
al., 1999; Fernández Mosquera et al., 2001).
According the results of these studies, the cave
bear was an herbivore feeding basically on C3 plants.
The cheek teeth presents blunt and unfolded cusps,
and broad occlusal surfaces, often covered by tuber-
cles and smal cusplets that increase the chewing surface
in damage of the sharp function that the teeth of
other carnivores have, or its predecessor Ursavus
(fig 1).
GRANDAL D’ANGLADE & LOPEZ-GONZALEZ - A STUDY OF THE EVOLUTIONOF THE PLEISTOCENE CAVE BEAR
Ursus spelaeus
Ursavus sp. M
PPPP
PPPP123 4
1234M
M
M
M
123
12
M
P4M
12
P4MM
M123
Figure 1. Schematic dental rows (rigth, lingual view) of Ursavus sp.
(from the specimens MB.Ma.29323, MB.Ma.29321-1 and
MB.Ma.29321-2 in the Museum für Naturkunde, Berlin) and Ursus
spelaeus (from the specimen LXL-E-T-2708, in the Laboratorio
Xeolóxico de Laxe, ACoruña)
Figure 1. Lignes dentaires schématiques (droite, vue linguale) de
Ursavus sp. (spécimens MB.Ma.29323, MB.Ma.29321-1 et
MB.Ma.29321-2 du Museum für Naturkunde, Berlin) et de Ursus
spelaeus (spécimen LXL-E-T-2708, du Laboratorio Xeolóxico de
Laxe, A Coruña).
Previous studies on the evolution in the cave
bear lineage (Torres Pérez-Hidalgo, 1988a; Argant,
1995) focused on the morphology of the lower car-
nassial as a good criteria to distinguish between the
species that form this lineage, and also to distinguish
between Ursus deningeri and Ursus spelaeus, or to
establish the evolutionary level reached by a given
cave bear population. This is due to the very constant
morphology that are observed in this piece, and to
the delay in the loss of the carnivorous characteris-
tics, in comparison with the rest of cheek teeth. It
could be assumed, then, that in the cave bear lineage
the lower carnassial, more markedly than the other
cheek teeth, underwent a process of reduction of the
carnivorous character, that leads to an increase of the
occlusal surface due to a widening of the tooth, and to
the diminution of the convergence between the labial
and lingual cusps, as well as a progressive deployment
or splitting of these cusps (fig 2).
hy en
pr me
pr me
1
2
AB C
hy en
metaconid entoconid
hypoconid
protoconid
paraconid
trigonid talonid
hypoconulid
Figure 2.- a, Morphological sketch of the cave bear lower carnassial
and denomination of the cusps (Lingual view, anterior part to the
left); and b, Hypothetic section of the trigonid (A) and the talonid
(B), and theoretical splitting of the cusps (C) in the lower carnassial
of an “old” cave bear (1) and a “modern” one (2)
Figure 2.- a, Schéma morphologique de la première molaire infé-
rieure d’ours des cavernes et de la dénomination des cuspides (vue
linguale, partie antérieure vers la gauche). b, Section hypothétique
du trigonide (A) et du talonide (B), et déploiement théorique des
cuspides (C) dans la première molaire inférieure d’un ours des
cavernes type “ancien” (1) et de type “moderne” (2)
86
ORYCTOS, Vol.5, 2004
MATERIAL
The material used for this morphometric study
consists of 316 first lower molars (lower carnassials)
of cave bears from different sites (Fig. 3). The studied
collections are enumerated in Table I, together with
the number of pieces studied in each one of them and
their chronology when known, most relevant references
and the institutions where the collections are kept.
In addition, two populations of the Iberian
Peninsula have been included, whose data (both mor-
phological and metrical) come from the bibliogra-
phy: Reguerillo (Madrid), 90 to 60 ka BP (Reinhard
et al., 1996) and Cueva Mayor of Atapuerca (Burgos),
320 ka BP (Bischoff et al., 1997).
L
E
CEk
Ei
Hu
Ga
Ru
Li
Ni
Cu
Re
0 300 600 Km
Ba
We
Lo
CM
Ar
Tr
Od
To
M
e
d
i
t
e
r
r
a
n
e
a
n
S
e
a
B
l
a
c
k
S
e
a
A
t
l
a
n
t
i
c
O
c
e
a
n
E
U
R
O
P
E
Mo
Rp
50°
0°
Figure 3.- Map of situation of the studied sites. White points repre-
sent “old” populations, black points, the “modern” ones.
Figure 3.- Carte de situation des sites étudiés. Les points blancs
représentent les populations “anciennes”, les points noirs, les
“modernes”:
IBERIAN PENINSULA: E, Eirós; C, A Ceza; L, Liñares; Ar,
Arrikrutz; Tr, Troskaeta; Ek, Ekain; To, Toll; Re, Reguerillo; CM,
Atapuerca (Cueva Mayor). BRITISH ISLANDS: Ba, Bacton;
We,Westbury. CENTRAL EUROPE: Ei, Einhornhöhle (Scharzfeld);
Ru, Rubeland; Ga, Gailenreuther (Zoolithenhöhle); Hu, Hundsheim;
Ni, Nixloch; Li, Lieglloch; Cu, Cunturines. EAST: Lo, Loutraki
(Greece); Od, Odessa (Ukrania).
MORPHOLOGICALANALYSIS
For the study of the morphological variability of
the lower carnassial, certain morphotypes for each
cusps have been predetermined, based on Torres
Pérez-Hidalgo (1988b), Torres Pérez-Hidalgo et al.
(1991) and Grandal d’Anglade (1993c). These mor-
photypes reflect a progressive deployment of the
cusps (Fig. 4). However, we avoided to assign a
polarity to these morphotypes, because of the lack of
data concerning the sequence of their appearance in
time, if any. The percentage of appearance of the
morphotypes in each one of the studied populations
was calculated. On the obtained data matrix (Table
II) a cluster analysis (UPGMA, similarity index is
Euclidean distance) was performed (Fig.5).
First of all, the data obtained allow us to reject a
clear polarity in the proposed morphotypes.
Otherwhise, the dendrogram should present a grouping
trend according to the age of the populations. In turn,
in the obtained dendrogram the grouping of the popu-
lations is clearly related to their geographic situation.
Two main groups are clearly emphasized: one
formed by the populations of the Iberian Peninsula
and a second one composed by the Central European
populations, including those ones from the East
(Loutraki and Odessa), and the British populations.
Finally, two ancient populations from Central
Europe lay appart from the others: Mosbach and
Repolust, of Middle Pleistocene age.
In the table II the main differences between both
geographic groups can be observed with detail.
The Iberian populations display very low per-
centages of acute paraconids (morphotype 1), whilst
in the central European sites the incidence of this
feature is higher, more markedly in the older ones
(except Bacton).
In the case of the protoconid, there is a remark-
able difference between the Iberian groups, in wich
there are high percents of protoconids with smooth
posterior edge (morph. 4) that is almost absent in the
Central European sites, independently of the age.
The metaconid is a cusp that can present a high
variability, even locally. In the Iberian populations
the metaconid vary from single with one cusplet
(morph. 8), double (morph. 9), double with several
cusplets (morph. 11) or triple (morph. 12), whilst the
Central European sites the metaconids are less splitted,
87
1
2
3
4
5
6
7
8
9
10
13
14
15
16
17
18
11
12
DEFINITION OF THE M1 MORPHOTYPES PARACONID
1.- acute
2.- straight
3.- obtuse
PROTOCONID
4.- smooth posterior edge
5.- rough posterior edge
6.- with posterior secondary cusplet
METACONID
7.- single
8.- single with cusplet
9.- double
10.-double with cusplet
11.-double with some cusplets
12.-triple
ENTOCONID
13.-single with preceding cusplets
14.-double with cusplet
15.-double with several cusplets
HYPOCONID
16.-single
17.-with internal cusplet
18.-with internal cusplet and hypoconulid
GRANDAL D’ANGLADE & LOPEZ-GONZALEZ - A STUDY OF THE EVOLUTIONOF THE PLEISTOCENE CAVE BEAR
Cueva Mayor
Troskaeta
El Toll
Reguerillo
Liñares
Ekain
Arrikrutz
Eirós
A Ceza
Einhornhöhle
Hundsheim
Nixloch
Odessa
Gailenreuther
Rübeland
Loutraki
Lieglloch
Cunturines
Westbury
Bacton
Mosbach
Repolust
+-------------------+-------------------+-------------------+-------------------+-------------------+
0.00 50.00
Figure 5.- Results of the Cluster analysis based on the percentage of
presence of each one of the morphotypes.
Figure 5. - Résultats de l’analyse cluster basée sur les pourcentages
de présence de chacun des morphotypes.
Figure 4.- Definition of the morphotypes of the Lower Carnassial.
Figure 4. - Définition des morphotypes de la première molaire inférieure.
ORYCTOS, Vol.5, 2004
with a predominance of morphotypes 9 (double) and
10 (double with one cusplet) for the Upper
Pleistocene sites and even more simple ones for the
Middle Pleistocene populations.
Concerning the entoconid, the Iberian popula-
tions present high percentages of morphotype 15
(double with several cusplets), whilst the Central
European sites from Upper Pleistocene show less
splitted entoconids (morph. 14, double with one cus-
plet, is predominant). The morphotype 13 (single
cusp preceded by two cusplets descending in size),
considered as a typical feature of Ursus deningeri
(Schütt, 1968; Bishop, 1982; Torres Pérez-Hidalgo,
1988a; Argant, 1991;1995), is present in high per-
cents in the ancient populations, basically in
Mosbach, Repolust, Bacton and Westbury, although
in the dendrogram its importance seems to be masked
by the other morphological features.
Finally, the hypoconid shows a quite homoge-
neous trend. The morphotype 18 (with inner cusp and
hypoconulid) is the most abundant in all the sites.
Only some of the old populations from Central
Europe and isolated cases in the other group show a
minor incidence of hypoconids reinforced by an inner
cusp but lacking hypoconulid (morph. 17).
The sites from the East (Loutraki and Odessa) are
similar in all the features to those from the Upper
Pleistocene of Central Europe, as is reflected in the
cladogram. The British ones, in spite of the differ-
ences found between them, are also grouped together
into the Central E uropean group. Finally, the separa-
tion between all the sites considered and the bears
from Repolust and Mosbach seems to be caused by
the exlusive presence in the later of single meta-
conids with preceding cusplets (morph. 13), the
typical “deningeri” morphology that however is not
predominant in other Middle Pleistocene populations.
METRIC ANALYSIS
For the metric study, some measurements related
to the size of the teeth and the convergence of the
cusps were taken (fig 6): 1, total length (TL); 2, trigo-
nid length (TrdL); 3, trigonid breadth (TrdB); 4,
talonid breadth (TadB); 5, distance protoconid-para-
conid (Pr-Pa); 6, distance protoconid-metaconid (Pr-
Me); and 7, distance hypoconid-entoconid (Hy-En).
1
pr me hy en
4
57
3
anterior posterior
lingual
oclusal
6
3
2
4
567
prd hyd
pad med end
Figure 6.- Measurements of the Lower carnassial for the metric
study.
Figure 6. - Mesures de la première molaire inférieure pour l’étude
métrique.
Besides these measurements, three index of
convergence were calculated, for the paraconid
(PadCI), the trigonid cusps (TrdCI) and the talonid
ones (TadCI):
PadCI = Pr-PA* 100
TrDL
TrdCI = Pr-Me* 100
TrdB
TadCI = Hy-En* 100
TadB
With this we try to compare the degree of con-
vergence of the cusps with the purpose of observing
wether the old populations display greater conver-
gence than the modern ones, as it is to hope. Metric
data are presented in Table III, and a selection of
them in Figure 7.
Figure 7a shows the maximum measurements of
the lower carnassial: average of total length plotted
against the average of the maximum breadth (that of
the talonid) from each site. Concerning the absolute
length, the range is from 25.5 to 31.7 mm. Taking
into account the age, the range of the Middle
Pleistocene sites is from 25.5 to 29.2 mm; whilst
Upper Pleistocene populations present a range of
88
89
GRANDAL D’ANGLADE & LOPEZ-GONZALEZ - A STUDY OF THE EVOLUTIONOF THE PLEISTOCENE CAVE BEAR
29.8 to 31.7 mm, except two ones that reach to small-
er sizes. One is Troskaeta, where the small subspecies
U. spelaeus parvilatipedis TORRES 1991 was
described (Torres Pérez-Hidalgo et al., 1991), with
no radiometric age. The second is Cunturines, a high
alpine dwarf form recently considered, because of
some morphologic and metric features, as a tardive
subspecies of Ursus deningeri (Rabeder & Nagel,
2001).
As for the talonid breadth, the range varies from
12.3 to 15.2 mm. The Middle Pleistocene bears range
from 12.3 to 14.2 mm. Repolust presents a very
broad talonid in comparison with the other Middle
Pleistocene populations. Modern populations range
from 14.0 to 15.2 mm. Again, Troskaeta and
Conturines reach the smallest talonid breadths.
60
55
50
45
24 26 28 30 32 34
Trigonid convergence index
Total length (1)
Ba
CM Hu
We
Ei
Tr To
Ar C
Od
Cu
Ek
Re
Ru
Ni
Li E
L
Ga
Mo
Rp
75
70
65
60
55
50
45
24 26 28 30 32 34
Talonid convergence index
Total length (1)
Ba
CM HuWe Ei
Tr
To
Ar COd
Cu
Ek
Re
Ru
Ni Li EL
Ga
Mo
Rp
16
15
14
13
12 24 26 28 30 32 34
Talonid Breadth (4)
Total length (1)
Ba
CM
Hu
We Ei
Tr To
Ar COd
Cu
Ek
Re
Ru
Ni
LiE
L
Ga
Mo
Rp
52,5
50
47,5
45
42,5
24 26 28 30 32 34
Paraconid convergence index
Ba
CM
Hu
We
Ei
Tr To
Ar
C
Od
Cu
Ek
Re
Ru
Ni
Li E
L
Ga
Mo
Rp
Total length (1)
ab
cd
Lo
Lo
Lo
Lo
Figure 7.- Total length of the carnassial plotted against the Talonid breadth (a) and Convergence Index of the Paraconid (b), Trigonid (c) and
Talonid (d).
Figure 7.- Longueur totale de la première molaire inférieure par rapport à la contre largeur du talonide (a) et indice de convergence du para-
conide (b), du trigonide (c) et du talonide (d).
90
ORYCTOS, Vol.5, 2004
The average values of the absolute length of the
carnassial are plotted against the averages of
Paraconid Convergence Index (7b), Trigonid conver-
gence Index (7c) and Talonid Convergence Index
(7d) of each site.
It can be observed clearly that, in general, the
convergence of the cusps is more marked in the old-
est populations than in the recent ones. This phe-
nomenon, however, is not parallel in the three index
considered.
As for the convergence of the paraconid (Fig.
7b), several levels of convergence can be distin-
guished: maximum, with most of the Middle
Pleistocene populations; medium, with Bacton,
Atapuerca, and two recent ones (Arrikrutz and
Odessa); and a minimum degree of convergence in
the rest of the Upper Pleistocene populations. The
grouping in this last level, however, is loose.
Surprisingly, the oldest population, Bacton, does not
present highly convergent paraconids. It seems that
the higher or lower degree of convergence of this cusp
is not well defined, and could reflect the variability in
their morphology.
The Figure 7c shows the distribution of the popu-
lations according to the convergence of the trigonid
cusps. Here the pattern is more logical, with three
levels: the oldest populations show very convergent
cusps; a central group is formed by some other Middle
Pleistocene sites, and finally the modern populations
share a low degree of convergence.
The same pattern is clearly seen in the Figure 7d,
concerning the convergence of the talonid cusps. The
three levels are well separated; decreasing in degree
of convergence, Bacton is first, then all Middle
Pleistocene populations and finally the group of the
modern ones.
DISCUSSION
The morphologic analysis suggests that, after a
wide diffusion of the species across Europe at early
time, the populations were isolated, by diverse geo-
graphic barriers or simply the distance. The fact that
the oldest populations are grouped next to more
recent ones from the same geographical area, that is
to say, next in the space but not in the time, reflects
the fact that the expansion of the cave bear happened
at a very early time, and that later did not exist great
migratory movements that returned to put in contact
remote populations. This fact caused probably a paral-
lel evolution and the consequent appearance of geo-
graphic types more or less defined.
The increasing size of the lower carnassial along
the cave bear lineage is clear. However, the metric
differences observed along the lineage don’t show
any discontinuity except the above mentioned of
Repolust. With our data, we cannot give a good
explanation for this phenomenon, that probably has a
parallelism in other cheek teeth and should be inves-
tigated with more detail.
Taking into account the definition of chro-
nospecies only clear morphological differences
between two groups from a single lineage are con-
cluding to establish different species. The strati-
graphic position of the bone remains gives not
enough evidence to make a separation.
Our results allow us to reject a well defined sepa-
ration of both species. All the Middle Pleistocene
populations here considered (including those sub-
species described such as U. spelaeus var. hercynica
from Einhornhöhle (Rode, 1935), U. deningeri savini
from Bacton (Kurtén, 1969a), U. deningeri hund-
sheimensis (Zapfe, 1946), Ursus deningeri n. ssp.
from Cunturines (Rabeder & Nagel, 2001) show a
higher affinity to their geographically closer modern
relatives than among them. Also, the grouping does
not reflect the differences observed in some Upper
Pleistocene sites by several authors that named dif-
ferent subspecies such as U. spelaeus parvilatipedis
from Troskaeta (Torres Pérez-Hidalgo et al., 1991),
or U. spelaeus odessanus from Odessa (Von
Nordmann, 1858). Thus, the morphological differences
between the lower carnassial of both species are not
well defined.
Concerning the convergence of the cusps, it is
possible to affirm that the Middle Pleistocene popu-
lations present more convergent cusps than the Upper
Pleistocene ones (with the exception of the para-
conid). The Convergence indexes here considered
could be good indicators of the degree of evolution
attained by a population. However we do not think
they could be used to differenciate both species, since
the sample is scarce and much more populations of
intermediate age should be included in order to see if
the difference is well defined or not.
91
CONCLUSIONS
The Cave Bear had a wide geographic distribu-
tion, not specially conditioned by the biotope.
Although basically herbivore, it could withstand sea-
sonal cold with no need to make great migratory
movements thanks to its capacity to enter in dormancy.
It is a polymorphic and polytypic species, which
is increased by the abundance of findings in the
European karstic systems. According to our results,
the lower carnassial of the cave bear has undergone
an increase in the size and the occlusal surface
throughout the Pleistocene. Nevertheless, noticeable
differences of chronological origin are not observed
in their morphology, but their geographic realm has
more importance to establish the similarities and dif-
ferences between sites. The passage of more primi-
tive forms (U. deningeri) to the more modern (U.
spelaeus) took place gradually and independently in
different areas, and therefore it cannot be established
chronologically for all Europe in a generalized way.
According to the morphology of the lower car-
nassial it is not possible, in our opinion, to affirm that
U. deningeri and U. spelaeus are different species.
This is not a new idea; in fact, it is found in many
papers concerning the phylogeny of cave bears, such
as Ehrenberg (1928), Erdbrink (1953), Kurtén (1976)
and Mazza & Rustioni (1994). In our opinion, only
more detailed studies on other cheek teeth and
postcranial skeleton are necessary to establish a reliable
difference between both species, in case they exist.
ACKNOWLEDGEMENTS
The authors would like to thank: Juan Ramón
Vidal Romaní (A Coruña), Jesús Altuna & Koro
Mariezkurrena (San Sebastián), Julio Gómez Alba &
Jaume Gallemí (Barcelona), Gernot Rabeder (Wien),
Andy Currant (London), Mikael Fortelius (Helsinki),
Evangelia Tsoukala (Thessaloniki) and Karl-Heinz
Fischer (Berlin) for the facilities given for the study of
the collections used in this paper, and more specially to
E. Tsoukala for the unpublished metric data from
Loutraki. We also thank T. Torres Pérez-Hidalgo and A.
Argant for their constructive review of an earlier ver-
sion of the manuscript. This paper is a contribution to
the Research Project XUGA PGIDT 00 PXI16201PR.
REFERENCES
ALTUNA, J. 1972. Fauna de mamíferos de los yacimientos pre-
históricos de Guipúzcoa. Munibe, 24: 1-461.
ARGANT, A. 1991. Carnivores quaternaires de Bourgogne.
Documents des Laboratoires de Géologie Lyon, 115: 1-301.
ARGANT, A. 1995. Un essai de biochronologie à partir de l’évolu-
tion dentaire de l’ours des cavernes. Datation du site de La
Balme à Collomb (Entremont-le-Vieux, Savoie, France).
Quaternaire, 6: 139-149.
ARGANT, A. 2001. Cave Bear ancestors. Cadernos do Laboratorio
Xeolóxico de Laxe, 26: 341-348.
AUGUSTE, P. 1992. Etude archéozoologique des grands mammi-
fères du site Pleistocène Moyen de Biache-Saint-Vaast (Pas-de-
Calais,France): apports biostratigraphiques et paléoethnogra-
phiques. L’Antropologie, 9: 49-70.
BISCHOFF, J. L.; FITZPATRICK, J.; FALGUÈRES, C.; BAHAIN,
J. & BULLEN, T. 1997. Geology and preliminary dating of the
Sima de los Huesos chamber, Cueva Mayor de Atapuerca,
Burgos. Journal of Human Evolution, 33: 129-154.
BISHOP, M.J. 1982. The mammal fauna of the Early Middle
Pleistocene cavern infill site of Westbury-Sub-Mendip,
Somerset. Special Papers in Palaeontology, 28:1-108.
BOCHERENS, H.; BILLIOU, D.; PATOU-MATHIS, M.; BON-
JEAN, D.; OTTE, M. & MARIOTTI, A. 1997. Paleobiological
implications of the isotopic signatures (13C, 15N) of fossil mam-
mal collagen in Scladina Cave (Sclayn,Belgium). Quaternary
Research, 48: 370-380.
BOCHERENS, H., FIZET, M. & MARIOTTI, A. 1994. Diet, phy-
siology and ecology of fossil mammals as inferred from stable
carbon and nitrogen isotope biogeochemistry: implications for
Pleistocene bears. Palaeogeography, Palaeoclimatology,
Palaeoecology, 107: 213-225.
DONNER, J.J. & KURTÉN, B. 1958. The floral and faunal succe-
sion of “Cueva del Toll”, Spain. Eiszeitalter und Gegenwart, 9:
72-81.
EHRENBERG, K. 1928. Ursus deningeri und Ursus spelaeus.
Akademie der Wissenschaft in Wien. Akademik Anzeiger, 10: 1-4.
ERDBRINK D.P. 1953. A review of fossil and recent bears of the Old
World with remarks on their phylogeny based upon their denti-
tion. Amsterdam: Jan de Lange Ed. 597 pp.
FERNÁNDEZ MOSQUERA, D. 1998. Isotopic biogeochemistry
(d13C, d15N) of cave bear, Ursus spelaeus, from Cova Eirós
site, Lugo. Cadernos do Laboratorio Xeolóxico de Laxe, 23:
237-249.
FERNANDEZ MOSQUERA, D.; VILA TABOADA, M. & GRAN-
DAL d`ANGLADE, A. 2001. Stable isotopes data (delta C13,
delta N15) from the cave bear (Ursus spelaeus): a new approach
to its palaeoenviront and dormacy. Proceedings of the Royal
Society of London B, 268 (1472): 1159-1164.
FICCARELLI, G. 1979. Observazione sull’evoluzione del genre
Ursus. Bulletino della Societá Paleontologica Italiana, 18 (2):
166-172.
GRANDAL D’ANGLADE, A. 1993a. El Oso de las Cavernas en
Galicia: el yacimiento de Cova Eirós. Nova Terra, 8. A Coruña:
Laboratorio Xeolóxico de Laxe. 246 pp.
GRANDAL D’ANGLADE & LOPEZ-GONZALEZ - A STUDY OF THE EVOLUTIONOF THE PLEISTOCENE CAVE BEAR
92
ORYCTOS, Vol.5, 2004
GRANDAL D’ANGLADE A.1993b. Sexual dimorphism and inter-
populational variability in the lower carnassial of the cave bear,
Ursus spelaeus Ros.-Hein. Cadernos do Laboratorio Xeolóxico
de Laxe, 18: 231-239.
GRANDAL D’ANGLADE, A. 1993c. Estudio morfológico de los
molariformes de Oso de las Cavernas (Ursus spelaeus
ROSENMÜLLER-HEINROTH) de varias poblaciones euro-
peas. Cadernos do Laboratorio Xeolóxico de Laxe, 18: 241-256.
GRANDAL D’ANGLADE, A. & VIDAL ROMANÍ, J.R. 1997. A
populational study on the cave bear (Ursus spelaeus ROS.-
HEIN.) from Cova Eirós (Triacastela, Galicia, Spain). Geobios,
30 (5): 723-731.
GRANDAL D’ANGLADE A. & LÓPEZ GONZÁLEZ, F. 1998. A
population study on the Cave Bears (Ursus spelaeus
Rosenmüller-Heinroth) from Galician caves, NW of Iberian
Peninsula. Cadernos do Laboratorio Xeolóxico de Laxe, 23:
215-224.
HÄNNI, C.; LAUDET, V.; STÉHELIN, D. & TABERLET, P. 1994.
Tracking the origins of the cave bear (Ursus spelaeus) by mito-
chondrial DNA sequencing. Proceedings of the National
Academy of Sciences USA, 91: 12336-12340.
KURTEN, B. 1968. Pleistocene Mammals of Europe. London:
Weindenfeld & Nicholson. 317 pp.
KURTÉN B. 1969a. Die Carnivoren- Reste aus den Kiesen von
Süssenborn bei Weimar. Paläontologische Abhandlungen A
(Paläozoologie), III (3/4): 735-756.
KURTÉN B. 1969b. A radiocarbon date for the cave bear remains
(Ursus spelaeus) from Odessa. Commentationes Biologicae, 31
(6): 1-3.
KURTÉN, B. 1976. The Cave Bear Story. Life and Death of a
Vanished Animal. New York: Columbia University Press. 163 pp.
LIDÉN, K. & ANGERBJÖRN, A. 1999. Dietary change and stable
isotopes: a model of growth and dormancy in cave bears.
Proceedings of the Royal Society of London B, 266: 1779-1783.
LOREILLE, O.; ORLANDO, L.; PATOU-MATHIS, M.; PHILIPPE,
M.; TABERLET, M. & HÄNNI, C. 2001. Ancient DNA analysis
reveals divergence of the cave bear, Ursus spelaeus, and brown
bear, Ursus arctos, lineages. Current Biology, 11 (3): 200-203.
MAZZA, P. & RUSTIONI, M. 1994. On the phylogeny of Eurasian
bears. Palaeontographica Abteilung A, 230 (1-3): 1-38.
MOTTL, M. 1947. Die Repolusthöhle, eine Protoaurignacienstation
bei Peggau in der Steiermark. Verhandlungen der geologischen
Bundesanstalt, 1947: 200-205.
NELSON, D.E., ANGERBJÖRN, A., LidéN, K. & TURK, I. 1998.
Stable isotopes and the metabolism of the european cave bear.
Oecologia, 116: 177-181.
RABEDER, G. 1983. Neues vom Höhlenbären: zur Morphogenetik
der Backenzähne. Die Höhle, 2(34): 67-85.
RABEDER, G. 1997 Ursiden-Chronologie der österreichischen
Höhlenfaunen. Geologische Blatt NO-Bayern, 47 (1-4): 225-
238.
RABEDER, G. 1999. Die Evolution des Höhlenbärengebisses.
Mitteilungen der Kommission für Quartärforschung der Öster-
reichischen Akademie der Wissenschaften, 11: 1-102.
RABEDER, G. & TSOUKALA, E. 1990. Morphodynamic analysis
of some cave bear teeth from Petralona cave (Chalkidiki, North
Greece). Beiträge zur Paläontologie von Österreich, 16: 103-
109.
RABEDER G. & NAGEL, D. 2001. Phylogenetic problems of the
Alpine Cave-Bears. Cadernos do Laboratorio Xeolóxico de
Laxe, 26: 359-364.
REINHARD, E., TORRES, T. & O’NEIL, J. 1996. 18O/16O ratios
of cave bear tooth enamel: a record of climate variability during
the Pleistocene. Palaeogeography, Palaeoclimatology,
Palaeoecology, 126: 45-59.
RODE, K. 1935. Untersuchungen über das Gebiss der Bären.
Monographie Geologie Paläontologie, 7: 1-162.
SIMPSON, G.G. 1961. Principles of Animal Taxonomy. New York.
Columbia University Press. 247 pp.
SCHÜTT, G. 1968. Die cromerzeitlichen Bären aus der
Einhornhöhle bei Scharzfeld. Mitteilungen aus dem
Geologischen Institut der Technischen Hochschule Hannover,
Heft 7: 1-121.
THENIUS, E. 1959. Ursidenphylogenese und Biostratigraphie.
Zeitschrift für Saugetierkunde, 24: 78-84.
TORRES PÉREZ-HIDALGO, T. 1984. El oso de las cavernas
(Ursus spelaeus Ros.) de los niveles X y IX de Ekain. Pp. 297-
316. In: J. ALTUNA y J. M. MERINO (eds.), El yacimiento pre-
histórico de la cueva de Ekain (Deba, Guipuzcoa) San Sebastián.
Sociedad de Estudios Vascos.
TORRES PÉREZ-HIDALGO, T. 1988a. Evolución de la carnicera
inferior en los géneros Ursavus y Ursus (Carnivora, Mammalia).
Paleontologia y Evolució, 22: 41-50.
TORRES PÉREZ-HIDALGO, T. 1988b. Osos (Mammalia,
Carnivora, Ursidae) del Pleistoceno de la Península Ibérica.
Madrid. Publicaciones Especiales del Boletín Geológico y
Minero. 316 pp.
TORRES PÉREZ-HIDALGO, T. 1992. The european descendents of
Ursus etruscus CUVIER (Mammalia, Carnivora, Ursidae).
Boletín Geológico y Minero, 99 (6): 886-940.
TORRES PÉREZ-HIDALGO, T., COBO RAYÁN, R. & SALA-
ZAR RINCÓN, A. 1991. La población de oso de las cavernas
(Ursus spelaeus parvilatipedis n. ssp.) de Troskaeta’ko kobea
(Ataún, Guipúzcoa). Munibe, 43: 3-85.
VILA TABOADA, M., FERNÁNDEZ MOSQUERA, D., LÓPEZ
GONZÁLEZ, F., GRANDAL D’ANGLADE, A. & VIDAL
ROMANÍ, J.R. 1999. Paleoecological implications inferred from
stable isotopic signatures (d13C, d15N) in bone collagen of
Ursus spelaeus ROS.-HEIN. Cadernos do Laboratorio
Xeolóxico de Laxe, 24: 73-87.
VON NORDMANN, A. 1858. Palaeontologie Suedrusslands, I.
Ursus spelaeus (Odessanus). Finnischen Societät der
Wissenschaften, XII:1-110.
WEINSTOCK, J. 2001. Age structure and sex ratio of Cave Bears in
the Zoolithenhöhle, Southern Germany. Cadernos do
Laboratorio Xeolóxico de Laxe, 26: 289-299.
ZAPFE, H. 1946. Die Altpleistozänen Bären von Hundsheim in
Niederösterreich. Jahrbuch der geologischen Bundesanstalt,
3/4: 95-164.
93
GRANDAL D’ANGLADE & LOPEZ-GONZALEZ - A STUDY OF THE EVOLUTIONOF THE PLEISTOCENE CAVE BEAR
SITE
Eirós
A Ceza
Liñares
Troskaeta
Ekain
El Toll
Arrikrutz
Westbury
Bacton
Rubeland
Gailenreuther
Einhornhöhle
Mosbach
Repolust
Hundsheim
Nixloch
Lieglloch
Cunturines
Loutraki
Odessa
Age
24 Ky BP
35 Ky BP
35 Ky BP
Upper Pleistocene
Upper Pleistocene
Upper Pleistocene
Upper Pleistocene
Middle Pleistocene
Lower Pleistocene
Upper Pleistocene
Upper Pleistocene
Middle Pleistocene
Middle Pleistocene
Middle Pleistocene
Middle Pleistocene
18 Ky BP
28 Ky BP
42-47 Ky BP
30-35 Ky BP
26,9 Ky BP
Reference
Grandal & Vidal 1997
Grandal & López 1998
Grandal & López 1998
Torres et al. 1991
Torres 1984
Donner & Kurtén 1958
Torres 1988b
Bishop 1982
Kurtén 1969a, Bishop 1982
Fischer 1995
Weinstock 2001
Rode 1935, Schütt 1968
Zapfe 1946, Kahlke 1961
Mottl 1947, Temmel 1996
Zapfe 1946, Kurtén 1969a
Rabeder 1997
Fernández et al. 2001
Rabeder & Nagel, 2001
Tsoukala & Rabeder, pers. com.
Kurtén, 1969b
n
35
11
10
9
23
8
16
7
6
15
21
8
2
3
8
20
14
30
40
30
deposited in
Laboratorio Xeolóxico
de Laxe-Spain
Sociedad de Ciencias
Aranzadi-Spain
Natural History Museum.
London
Institut für Paläontologie.
Humboldt Universität Berlin
Institut für Paläontologie
der Universität Wien
University of Thessaloniki
University of Helsinki
IBERIAN PENINSULA
BRITISH ISLANDS
CENTRAL EUROPE
EAST
Table I.- Some data of the studied sites.
Table I.- Quelques données des sites étudiés.
Table II.- Percentages of appearance of the defined morphotypes of the Lower carnassial in the studied sites. All data are original except
Atapuerca and Reguerillo (Torres Pérez-Hidalgo et al., 1991).
Table II.- Pourcentages de la présence des morphotypes définis de la première molaire inférieure dans les sites étudiés.Toutes les données
sont des auteurs sauf Atapuerca et Reguerillo (Torres Pérez-Hidalgo et al., 1991).
94
ORYCTOS, Vol.5, 2004
Eirós 31.2 18.2 12.7 14.8 9.8 7.2 10.0 51.8 56.7 67.6
A Ceza 31.2 19.0 13.0 15.2 9.9 7.2 9.6 52.0 55.5 63.6
Liñares Sur 31.7 19.0 12.8 15.2 9.4 7.0 10.4 49.5 54.9 68.3
Troskaeta 29.2 18.0 11.9 14.1 8.8 6.8 9.4 48.9 57.9 66.8
Ekain 30.8 19.0 12.3 14.5 9.6 7.2 10.1 50.2 58.3 69.6
El Toll 30.6 18.7 12.1 14.4 9.1 6.9 8.9 48.7 57.3 62.3
Arrikrutz 30.4 19.1 12.3 14.9 8.8 6.6 9.4 46.1 55.0 64.0
Reguerillo 30.1 18.2 11.6 14.0 9.4 6.7 9.4 51.6 58.0 69.0
Atapuerca 26,6 17.0 10.4 12.3 7.8 5.4 7.8 45.9 52.0 58.0
Bacton 25.5 15.8 10.2 12.8 7.5 4.5 6.4 47.5 44.7 49.9
Westbury 28.5 17.2 10.8 13.8 7.4 5.7 7.9 43.2 52.7 57.1
Rübeland 29.8 18.3 11.6 14.3 9.1 6.8 9.7 49.9 58.5 67.9
Gailenreuther 30.8 19.3 12.4 14.9 9.7 6.9 9.7 50.3 55.7 65.4
Einhornhöhle 29.2 18.1 11.4 13.9 9.1 5.5 7.9 50.0 47.8 57.2
Mosbach 26.7 17.4 10.0 13.0 8.3 4.4 8.3 42.6 44.3 59.9
Repolust 26.6 18.2 11.3 14.2 7.9 5.3 8.4 43.1 47.1 55.5
Hundsheim 28.0 17.6 10.9 13.2 7.7 5.6 7.6 43.6 51.4 57.5
Nixloch 29.9 18.4 11.9 14.5 9.3 7.0 9.6 50.3 58.7 66.0
Lieglloch 30.5 18.6 12.5 14.9 9.6 7.1 10.0 51.5 56.5 67.0
Cunturines 28.0 17.2 11.5 13.5 8.3 6.5 8.8 48.4 56.1 65.0
Loutraki 30.6 18.7 11.8 15.0 8.9 6.8 9.8 47.5 57.5 65.4
Odessa 31.6 19.5 12.5 15.3 9.2 7.3 9.7 46.8 58.2 63.4
TrdL TrdB TadB Pr-Pa Pr-Me Hy-En PadCI TrdCI TadCI
Iberian Peninsular
Brit.
Isl.
Centr. Europe
East
SITE TL
Table III.- Metrical data of the Lower carnassial from in the studied sites. All data are original except Atapuerca and Reguerillo (Torres Pérez-
Hidalgo, 1988b).
Table III.- Données métriques de la première molaire inférieure des sites étudiés. Toutes les données sont des auteurs sauf Atapuerca et
Reguerillo (Torres Pérez-Hidalgo, 1988b).
... To gain a comprehensive understanding of the origin of these bone accumulations, it is necessary to combine quantitative taphonomic observations with paleobiological information. While bear remains are the primary component of these accumulations, other carnivore remains such as large felids or hyenas may also be present, although in smaller quantities (Altuna et al., 1982;Altuna and Mariezkurrena, 1984;Torres Pérez Hidalgo et al., 1991;Torres et al., 2014;Pinto Llona and Andrews, 2002;Grandal d'Anglade and López-González, 2004;Villaluenga et al., 2012Villaluenga et al., , 2014. The analysis of these carnivores can offer additional insights since they were the primary bone accumulators in Pleistocene caves. ...
Conference Paper
Full-text available
In this work the teeth and the metapodia from Grotta del Bandito (Cuneo Province, Piedmont region, North Italy) were studied. From the morphometry studied with univariate and multivariate analysis of the teeth the most important observation is that no differences are noted between the different species of cave bears of Middle to Late Pleistocene in Europe and the denture (premolars and molars) of the Grotta del Bandito bears. Globally, the population of the Grotta del Bandito is homogenous. As already observed in other bears from the Italian caves the morphology of the P4/4 is simple and resembles in many cases that of U. deningeri. Also considering the analyses of the metapodia we arrive to the same conclusions already advanced for the teeth, notwithstanding the fact that in a cladogram which relates all the metapodia: the Grotta del Bandito bears are very close to the U. s. eremus from Ramesch, but very far from Conturines (U. s. ladinicus) and Gamssulzen (U. ingressus). The similarity in some cases to U. s. eremus or U. s. ladinicus seems consistent within the Italian scenario.
Article
Valsolda is located in Lombardy (N. Italy) near the border with Switzerland, and from the Buco della Noga cave bear remains have been gathered. In this study the first lower molar (m1) is morphometrically and morphodynamically examined. With these data it is difficult to indicate the taxon, and therefore prudentially this population is inserted in a generic Ursus gr. spelaeus, and the presence of U. ingressus is not proven. In the PCA analysis the position of some of the Italian caves (Conturines, Valsolda, Grotta del Bandito, Mount Fenera) is very clear and reflect the morphometrical features of the bears belonging to two or more different taxa.
Conference Paper
Full-text available
Valsolda is located in Lombardy (N. Italy) near the border with Switzerland, and from the Buco della Noga cave bear remains have been gathered. In this study the first lower molar (m1) is morphometrically and morphodynamically examined. With these data it is difficult to indicate the taxon, and therefore prudentially this population is inserted in a generic Ursus gr. spelaeus, and the presence of U. ingressus is not proven. In the PCA analysis the position of some of the Italian caves (Conturines, Valsolda, Grotta del Bandito, Mount Fenera) is very clear and reflect the morphometrical features of the bears belonging to two or more different taxa.
Article
Bears exhibit marked evolution for Pleistocene Europe. Both lineages are thought to have arisen from etruscan bear U. etruscus in the Early Pleistocene, however their high degree of polymorphism has prevented the establishment of an accepted evolutionary scenario. Isotopic analysis and tooth morphology of fossil brown bear U. arctos suggests that it was an omnivorous opportunist. The deningeri bear U. deningeri represents the spelaean bear of the Middle Pleistocene, sharing certain morphological affinities with brown bear U. arctos (frontal bulge and face; occlusal surface of jugular teeth). Within U. deningeri, several subspecies have been distinguished as evolutionary stages leading to the speciation of the cave bear U. spelaeus, the typical spelaean bear of the Late Pleistocene, which dominates cave fossil deposits. The speloïd lineage might serve as a good chronological marker for Pleistocene stratigraphic levels. There are several morphologically distinct lineages within U. spelaeus "sensu lato", of controversial taxonomic status. Herbivorous feeding habits for U. spelaeus "s.l." have been inferred from morphology (tooth, skull, jaw), demographics, and stable isotope analysis. This dietary difference between brown bears and cave bears shows that ecological competition was probably limited between both types. Paleo-genetic studies suggest that cave bears gradually lowered their reproductive rate (between 52,800 and 27,800 y BP) which led to their extinction at the onset of the last glacial maximum. Climatic changes are the main suggested causes responsible for the extinction of U. spelaeus. Les ours présentent une évolution marquée pour l'Europe du Pléistocène. On pense que les deux lignées sont issues de l'ours étrusque U. etruscus au Pléistocène inférieur, mais leur degré élevé de polymorphisme a empêché l'établissement d'un scénario évolutif accepté. L'analyse isotopique et la morphologie des dents de l'ours brun fossile U. arctos suggèrent qu'il s'agissait d'un omnivore opportuniste. L'ours de Deninger U. deningeri représente l'ours spéléen du Pléistocène moyen, partageant certaines affi-nités morphologiques avec l'ours brun U. arctos (renflement frontal et face; surface occlusale des dents jugales). Au sein d'Ursus deningeri, plusieurs sous-espèces ont été distinguées comme des stades évolutifs conduisant à la spéciation de l'ours des cavernes U. spelaeus, l'ours spéléen typique du Pléistocène supérieur, qui domine les dépôts fossiles des cavernes. La lignée spéloïde pourrait servir de bon marqueur chronologique pour les niveaux stratigraphiques du Pléistocène. Il existe plusieurs lignées morphologique-ment distinctes au sein de U. spelaeus «sensu lato», de statut taxonomique controversé. Des habitudes alimentaires herbivores de l'U. spelaeus «s.l.» ont été déduits par la morphologie (dent, crâne, mâchoire), la démographie et l'analyse des isotopes stables. Cette différence alimentaire entre les ours bruns et les ours des cavernes montre que la concurrence écologique était probablement limitée entre les deux types. Des études paléogénétiques suggèrent que les ours des cavernes ont progressivement abaissé leur taux de reproduction (entre 52800 et 27800 ans BP), ce qui a conduit à leur extinction au début du dernier maximum glaciaire. Il est suggéré que les changements climatiques sont les causes principales de l'extinction de l'U. spelaeus.
Chapter
Full-text available
La Vall del Têt és coneguda en el món de l'espeleologia per la gran quantitat de galeries subterrànies que es troben repartides en el complex de cavitats càrstiques format per Gorner, Fullà-Canaletes i Lachambre (Cornellà de Conflent, Occitània, França). Des del moment que un equip d'espeleòlegs i paleontòlegs de la Federació Catalana d’Espeleologia, l’ Institut Català de Paleontologia Miquel Crusafont i el Conflent Spéléo Club de Prades, va posar de manifest l'any 2011 el potencial paleontològic d'aquesta vall, s'han pogut realitzar sis excavacions sistemàtiques a la Grotte de la Carrière. Aquesta cavitat és una de les coves secundàries de Lachambre situada a Vilafranca del Conflent, d'on s'han recuperat fins a 10.000 restes fòssils, entre les quals en destaquen les troballes de l'espècie d'úrsid Ursus deningeri i del lleó de les estepes Panthera fossilis. El jaciment mostra un interval cronològic que ocupa des del Pleistocè mitjà fins al Pleistocè superior i es troba en un dels pocs passos naturals de fauna que connectà la península Ibèrica amb la resta d'Europa meridional. Aquest jaciment pot oferir molta informació sobre les dinàmiques de les associacions faunístiques vers les fluctuacions climàtiques del Quaternari als Pirineus.
Thesis
An important debate amongst cave bear researchers is the diet and ecoethology of these animals. A great controversy surrounds the phylogenetic resolution of the cave bear lineage. Previous investigations have focussed on teeth, skull and mandibular bones. This study focuses on the morphology of metapodia as an alternative, and for the first time 3D digital methods have been applied on these elements. This study involved 3D scanning of metacarpals and metatarsals belonging to Ursus spelaeus, Ursus arctos and U. deningeri, followed by landmarks assignment onto the surface of virtual bones...
Article
Full-text available
This article gives a perspective of several years of morphological and morphometrical studies of the paleontological collection of Ursus spelaeus’s remains founds in the Pocala cave, kept in the Civic Museum of Natural History of Trieste. The aim of this research is to develop a new metrical approach for the study of the skull and dentition of Ursus spelaeus, based on previous morphological and morphometrical studies. Goal of the present paper is an easy sexing of the remains and giving a hint of the homogeneity of the population researched.
Thesis
Full-text available
A database of Neanderthal raw material transports and fauna from assemblages across Europe has been compiled with the aim to explore the evolution of the Neanderthals’ mobility behaviour with regard to the environment from the beginning of the Late Saalian (191 ka BP) to the demise of Neanderthals (40 ka BP). Mobility, as observed from the lithic transports in the Palaeolithic, is often interpreted as mirroring the social organisation of a group. As the study of Neanderthal mobility normally focuses on the maximum transport distances of lithics, such a methodology is seen as inadequate because three equifinal processes (subsistence activity, social transactions, and semi-random lithic scavenging) can account for these distances. Here, two different indicators of Neanderthal mobility are created based on the transport distances, quantities, and number of utilised raw material sources. The first one is the overall mobility, which represents the sum of the effort made to acquire all lithics from all sources. The second indicator is the mean effort per raw material, which quantifies the average effort made to acquire the different raw materials present in that assemblage. By analysing Neanderthal mobility in terms of these two variables, it is shown that Neanderthal social organisation evolves from the Saalian to the Early and Late Weichselian. This change is interpreted as reflecting diversification of their subsistence behaviour and as reflecting a tendency to optimise their foraging behaviour through decision making. In subsequent statistical analyses, it is demonstrated that there are no real differences in Neanderthal mobility between the east and the west, and that Neanderthals appear to have preferred semi-open landscapes, but somewhat avoided montane regions. The presence of the Mammoth Steppe was not noted as having either a negative or a positive impact on Neanderthals’ level of mobility. The apparent preference for semi-open landscapes and the variation in the different environments implies that they were top carnivores that may have exercised encounter-based hunting, which may explain their body type and injury patterns identified previously.
Article
Full-text available
Recent genetic studies have shed light on the phylogeography of cave bears; however, their paleoecology and their diet are still debated, and data from southeastern Europe are still scarce. Magura Cave, in northwest Bulgaria, has delivered rich faunal assemblages from the Late Pleistocene. The chronology of the excavated area spans from ca. 35 kya to more than 50 kya; the oldest stratigraphic layers being associated with final Middle Palaeolithic tools. The fauna comprises herbivores and carnivores, and potentially different taxa of cave bears, the dental remains of which also showed different tooth morphotypes, suggesting the coexistence of different dietary adaptations. We investigated the mitochondrial DNA (mtDNA) lineages of the cave bears from Magura Cave as well as the stable carbon and nitrogen isotope composition of the faunal assemblage. Our data revealed that, regardless of the tooth morphotypes, only maternal lineages of Ursus ingressus were present in Magura Cave. Interestingly, one specimen with Ursus arctos mtDNA was also found, showing a clear carnivore diet. In contrast, the U. ingressus specimens had a predominantly herbivorous diet. The tooth morphotypes were associated with significantly different δ 13 C values, suggesting different dietary adaptations.
Article
Full-text available
A morphometric study of the lower carnassial (M1 of Ursus spelaeus from three European populations has been carried out. Multivariate statistical methods have been used for this purpose. It has been proved that the variability caused by the sexual dimorphism interferes to an important degree in the supposed interpopulational differences. Once the intrapopulational variability has been put aside, significant differences between the analysed populations have been found. These differences are well-marked in the degree of development of the cusps, and especially in the metaconid. -Author
Article
Full-text available
Article
The lineage of the cave bear Ursus deningeri --> U. spelaeus is well known, but to draw a limit in this evolution is not easy. The real difficulty is met when this cave bear lineage has to be linked to its ancestors... Dating physical methods, paleoclimatic and paleo environmental data, works on teeth and bones morphology, progress in paleogenetics are means our disposal to give essential information to phylogeny. A large collaboration is needed. Practical information are given about a possible discussion group.
Article
Se estudia una abundante colección de restos óseos de oso de las cavernas (Ursus spelaeus parvilatipedis n.ssp.) procedente de dos campañas de excavación paleontológica (1987 y 1988) llevadas a cabo en la cueva de Troskaeta (Gipuzkoa). El material es analizado métrica, taxonómica, morfológica y tafonómicamente. El trabajo incluye datos geomorfológicos sobre la cavidad.
Article
The metric and morphological characteristics of 23 alpine cave bear fauna are been studied and compared with the normal lowland form. The phylogenetic conclusions are drawn: 3 new subspecies?