Content uploaded by Ken H Andersen
Author content
All content in this area was uploaded by Ken H Andersen on Dec 01, 2015
Content may be subject to copyright.
!
1!
The$theoretical$foundations$for$size$spectrum$models$of$fish$
1!
communities$$
2!
Ken!H.!Andersen1,!Nis!S.!Jacobsen1!and!K.!D.!Farnsworth2!3!
!
4!
1Center!for!Ocean!Life,!National!Institute!of!Aquatic!Resources!(DTU-Aqua),!Technical!5!
University!of!Denmark,!Charlottenlund!Castle,!DK-2920,!Charlottenlund,!Denmark!6!
2!Institute!of!Global!Food!Security,!Queens!University!Belfast,!97!Lisburn!Road,!Belfast!7!
BT9!7BL,!Northern!Ireland,!UK!!
8!
!9!
Abstract(
10!
Size!spectrum!models!have!emerged!from!40!years!of!basic!research!on!how!body!size!11!
determines!individual!physiology!and!structures!marine!communities.!They!are!based!12!
on!commonly!accepted!assumptions!and!have!a!low!parameter!set,!which!make!them!
13!
easy!to!deploy!for!strategic!ecosystem!oriented!impact!assessment!of!fisheries.!!We!
14!
describe!the!fundamental!concepts!in!size-based!models!about!food!encounter!and!the!15!
bioenergetics!budget!of!individuals.!Within!the!general!framework!three!model!types!
16!
have!emerged!that!differs!in!their!degree!of!complexity:!the!food-web,!the!trait-based!
17!
and!the!community!model.!We!demonstrate!the!differences!between!the!models!
18!
through!examples!of!their!response!to!fishing!and!their!dynamic!behavior.!We!review!
19!
implementations!of!size!spectrum!models!and!describe!important!variations!concerning!20!
the!functional!response,!whether!growth!is!food-dependent!or!fixed,!and!the!density-
21!
dependence!imposed!on!the!system.!Finally!we!discuss!challenges!and!promising!
22!
directions.!23!
!
24!
Key(words:(Ecosystem!approach,!food-web,!ecosystem!based!fisheries!management! !
25!
!
2!
Introduction$26!
Marine!community!models!range!from!the!original!Lotka-Volterra!differential!equations!
27!
to!extremely!complicated!end-to-end!simulations!(Plagányi!2007;!Fulton!et!al.!2011).!In!
28!
the!middle!of!the!range!we!find!size!spectrum!models.!Size!spectrum!models!use!body!
29!
size!of!individuals!to!represent!the!entire!fish!community!as!a!size!distribution.!The!30!
reliance!of!body!size!simplify!the!description!of!predator-prey!interactions,!individual!31!
physiology!and!vulnerability!to!fishing!gear.!This!paper!highlights!one!of!the!important!32!
advantages!of!the!size!spectrum!approach:!a!well-founded!and!unifying!mechanistic!33!
basis!allowing!for!great!explanatory!power!and!parsimonious!use!of!data.!!34!
!35!
Size spectrum models are relevant to fisheries science in the context of!the!ecosystem!36!
approach!to!fisheries!management!(Pikitch!et!al.!2004).!While!single-species!stock!37!
assessments!and!impact!assessment!will!continue!to!be!important!management!tools,!38!
they!need!to!be!supplemented!by!strategic!impact!assessments!at!the!level!of!the!39!
ecosystem.!Such!impact!assessments!assist!the!development!and!implementation!of!40!
strategic!long-term!management!goals!for!the!ecosystem,!e.g.,!how!should!fishing!
41!
pressure!be!distributed!over!the!entire!ecosystem?!How!do!we!balance!exploitation!of!
42!
competing!fisheries!such!as!forage!fisheries!and!consumer!fisheries?!How!do!we!
43!
maximize!the!yield!(of!biomass!or!wealth)!of!the!entire!ecosystem!while!minimizing!risk!44!
of!failure!or!impoverish!components!of!the!system!under!environmental!change?!To!
45!
answer!these!questions,!we!need!to!quantitatively!understand!the!relationship!between!46!
fishing!practice!(what,!when!and!how!much)!and!the!abundance!of!species!and!sizes!of!47!
organisms!throughout!the!community.!!!
48!
!
49!
Size!spectrum!models!are!especially!suited!to!these!questions!because!they!resolve!the!
50!
most!import!aspects!of!fish!life!history!and!trophic!ecology.!A!key!characteristic!of!fish!is!
51!
that!individuals!grow!through!several!orders!of!magnitude!in!body!size!through!their!52!
!
3!
life.!This,!combined!with!the!strong!relationship!between!body-size!and!trophic!niche!53!
(Barnes!et!al.!2008;!Gilljam!et!al.!2011),!means!that!individuals!change!their!trophic!
54!
niche!throughout!ontogeny!(Werner!and!Gilliam!1984).!Such!ontogenetic!trophic!niche!
55!
shifts!makes!it!difficult!to!apply!the!conventional!food-web!approach,!where!each!
56!
species!is!described!by!a!single!metric!(abundance!or!biomass)!and!a!specific!trophic!57!
level,!to!fish!communities.!The!relation!between!body!size!and!trophic!niche!has!58!
prompted!the!hypothesis!that!individual!body!size!(rather!than!species!identity)!is!the!59!
primary!determinant!of!community!structure!(Jennings!et!al.!2001).!60!
!61!
Size!spectrum!models!are!based!upon!the!long!tradition!in!ecology!of!recognizing!body!62!
size!as!a!central!trait!to!describe!individuals!(Elton!1927;!Haldane!1928;!Andersen!et!al.!63!
2016a)!because!it!correlates!strongly!with:!metabolism!(Kleiber!1932;!Winberg!1956,!64!
Brown!et!al.!2004),!predator-prey!relations!(Ursin!1973;!Barnes!et!al.!2008),!encounter!65!
rates!(Acuña!et!al.!2011),!functional!responses!(Rall!et!al.!2012),!reproductive!effort,!and!66!
other!vital!rates!(Peters!1983).!For!application!to!fisheries,!body!size!furthermore!is!an!67!
excellent!descriptor!of!mesh-size!regulations!and!characterizes!the!value!of!a!catch!
68!
(Andersen!et!al.!2015).!Finally,!distributions!of!abundance!vs.!size!show!a!remarkable!
69!
regularity!(Sheldon!and!Prakash!1972;!Sheldon!et!al.!1977;!Boudreau!and!Dickie!1992)!
70!
and!deviations!from!this!regularity!has!been!used!to!characterize!ecosystem!level!71!
impact!of!fishing!(Rice!and!Gislason!1996;!Daan!et!al.!2005).!The!size!spectrum!
72!
modeling!paradigm!promises!a!“charmingly!simple”!(Pope!et!al.!2006)!set!of!tools!with!a!73!
low!to!intermediate!complexity!that!can!be!readily!deployed!for!a!given!system!and!74!
provide!quantitative!information!about!the!ecosystem!impact!of!fishing!(Collie!et!al.!
75!
2014).!This!makes!it!possible!to!apply!the!models!in!situations!where!more!complex!but!
76!
also!data-demanding!end-to-end!models!cannot!be!employed!either!because!of!lack!of!
77!
data!or!manpower!to!calibrate!and!run!them.!
78!
!79!
!
4!
The!various!types!of!size!spectrum!model!can!be!viewed!as!different!developments!of!80!
the!same!core!concepts.!We!review!the!common!basic!concepts!behind!size!spectrum!
81!
models!focusing!on!models!that!describe!an!entire!fish!community.!Among!them!we!
82!
recognize!three!broad!classes!of!decreasing!levels!of!complexity.!Most!complex!are!the!
83!
‘!""#$%&'’!models,!so!called!because!they!explicitly!represent!individual!populations!84!
with!species-specific!energy!budget!parameters!and!prey!preferences,!thereby!85!
quantifying!a!network!of!trophic!interactions!as!an!explicit!food-web.!These!are!86!
simplified!into!the!‘()*+($'*,&#’!models!by!reducing!differences!among!the!populations!87!
to!a!single!continuous!variable!representing!a!trait!(usually!maturation!size)!and!88!
simplifying!prey!selection!to!a!fixed!predator-prey!body!size!ratio.!Further!simplification!89!
produces!the!-."//01+(2-!size!spectrum!models,!so!called!because!they!ignore!90!
differences!among!populations!thereby!representing!the!community!as!a!single!91!
population!of!interacting!individuals!that!differ!only!in!their!body-size.!We!explain!how!92!
the!simpler!models!can!be!derived!from!the!more!complex,!starting!from!the!food-web!93!
and!ending!with!the!community!model.!Further!we!develop!analytical!“equilibrium”!94!
solutions!to!the!models.!We!illustrate!the!models’!behavior,!in!particular!their!response!
95!
to!fishing,!and!finally!discuss!challenges!and!open!issues!for!further!development.!
96!
Concepts$underlying$size$spectrum$models$
97!
Size!spectrum!models!are!founded!on!three!common!concepts:!First,!biomass!(and!98!
equivalent!energy)!is!conserved,!enabling!accountancy!of!energy!flows!at!the!
99!
community!level!based!on!individual!level!processes.!Second,!trophic!interactions!are!100!
the!main!determinant!of!community!structure!and!these!are!foremost!determined!by!101!
predator-prey!size!ratios.!!Third,!the!energy!budget!of!an!individual!is!allometrically!
102!
linked!to!body!size,!so!that!body!size!can!be!used!as!a!key!identifier!of!organisms!and!
103!
their!interactions!with!the!community.!The!three!main!ecological!processes!for!any!104!
organism!are!growth,!reproduction!and!mortality!and!all!three!can!be!linked!to!body!
105!
!
5!
size!in!this!modeling!framework.!This!simplification!has!great!strategic!value!as!it!106!
enables!ecological!measures!such!as!production!rate!and!size!structure!(which!are!107!
important!for!ecosystem!based!fisheries!management)!to!be!derived!from!relatively!108!
little!and!accessible!data!about!physiology!and!life!history!invariants.!The!equations!for!109!
the!models!used!in!the!examples!to!follow!are!provided!in!Table!1!and!parameters!in!110!
Table!2.!111!
3112!
45&3,+6&3,7&.()0/3113!
The!size!spectrum!represents!abundance!or!biomass!of!individuals!as!a!function!of!their!114!
body!size.!In!this!context!‘body!size’!usually!means!body!mass!because!it!is!the!natural!115!
metric!to!formulate!an!energy!budget.!116!
!117!
Three!size!spectrum!representations!are!common!in!the!literature!(Sprules!and!Barth,!118!
this!issue;!Andersen!and!Beyer!2006;!Rossberg!2012):!the!abundance!density!spectrum,!119!
the!biomass!density!spectrum!and!the!“Sheldon”!biomass!spectrum.!The!abundance!
120!
density!spectrum!!"#$!represents!the!number!of!individuals!in!the!body!mass!range!
121!
from!#%!to!#&!as! ! # '(#
)*
)+,!and!here!it!is!referred!to!as!the!size!spectrum!for!brevity.!
122!
It!can!be!constructed!from!observations!by!dividing!the!total!number!of!individuals!in!a!123!
size!class!by!the!width!of!the!size!class!and!therefore!has!dimensions!of!numbers!per!
124!
mass!(often!referred!to!as!the!“normalized!size!spectrum”;!Sprules!and!Barth,!this!
125!
issue).!The!biomass!density!spectrum!is!constructed!from!the!abundance!density!
126!
spectrum!by!multiplying!with!body!mass!! # #!(dimensions!biomass!per!mass).!The!127!
“Sheldon”!biomass!spectrum!(Sheldon!and!Parsons!1967)!is!the!biomass!in!128!
logarithmically!wide!classes,!i.e.,!the!biomass!in!the!range!#!to!,#!where!,!is!a!constant!
129!
larger!than!one!determining!the!width!of!the!size!class.!For!example,!the!“octave”!bin!
130!
used!by!Sheldon!implies!, - .,!and!normal!log10!base!implies!, - /01!If!we!assume!that!131!
the!abundance!density!spectrum!follows!a!power-law!! # - 2# 3!within!the!class!then!
132!
!
6!
the!biomass!spectrum!can!be!found!as:!133!
!134!
4567 # - ! 8 8'(8
9)
)
- 2 ,&:3 ; /
. < = #&:3 > #&! # ?!135!
!136!
where!8!is!a!dummy!variable!for!the!integration.!All!terms!except!#&:3 !are!independent!137!
of!size,!hence!the!biomass!spectrum!is!proportional!to!the!number!density!spectrum!138!
multiplied!by!the!body!mass!squared.!For!mathematical!analyses!the!density!spectra!are!139!
convenient!because!integrals!over!these!give!the!abundance!and!biomass.!For!140!
presentation!purposes!the!Sheldon!biomass!representation!#&!"#$!is!convenient!141!
because,!at!the!community!level,!it!shows!how!the!biomass!of!prey!is!distributed!with!142!
size!(assuming!that!the!size!range!of!preferred!prey!is!constant),!and!on!a!species!level!it!143!
is!proportional!to!the!cohort!biomass.3144!
33145!
8"1,&)9*(+"13&:0*(+"13146!
The!size!spectrum!is!calculated!by!considering!a!balance!between!mortality!and!growth!
147!
at!all!body!sizes! #.!Individuals!flow!into!size!classes!via!somatic!growth!whilst!some!
148!
are!lost!to!natural!and!fisheries!mortality.!This!balance!is!formalized!by!the!McKendric-
149!
von!Foerster!equation!(see!Silvert!and!Platt!(1978)!for!a!derivation):!150!
!
151!
@!A#
@B <@CA# !A#
@# - ;DA# !A# ?'''''"/$!
152!
!
153!
where!CA#!is!the!growth!rate!(mass!per!time)!and!DA# 'the!mortality!(per!time),!and!154!
!A#!is!the!size!spectrum!of!species!E.!Thus!eq.!(1)!scales!from!individual-level!155!
processes!of!growth!and!mortality!to!the!population-level!size!spectrum.!Recruitment!
156!
from!the!population!flows!into!the!size!spectrum!at!the!smallest!body!size!(typically!the!
157!
egg!size)!#F.!This!is!represented!as!a!boundary!condition:!158!
!
7!
!159!
CA#F!A#F- GA?'''".$!160!
!161!
where!GA!is!the!recruitment!(number!of!recruits!or!eggs!per!time).!The!above!two!162!
equations!are!mathematical!formalizations!of!a!mass!balance,!and!can!be!thought!of!as!163!
the!size-based!version!of!classic!survivor!analysis!used!in!age-based!models.!!164!
!165!
The!following!outlines!the!central!assumptions!in!the!models!about!how!growth!CA,!166!
mortality!DA'and!reproduction!(recruitment)!GA?!are!calculated.!With!the!partial!167!
exception!of!recruitment!these!are!all!calculated!from!individual!level!processes!of!168!
predator-prey!encounter!and!a!bioenergetic!budget!(Figure!1).!169!
!170!
45&3;1#&),&1$<),+13&1."01(&)3/"#&=3171!
The!key!process!in!the!models!is!predator-prey!encounters!between!individuals!172!
governed!by!a!formalization!of!the!general!rule,!bigger!fish!eat!smaller!fish!!(Andersen!
173!
and!Ursin!1977).!Individuals!prefer!prey!a!certain!fraction!smaller!than!themselves!(M1,!
174!
Table!1)!(Ursin!1973).!The!clearance!rate!(dimensions!time-1)!is!an!increasing!function!
175!
of!body!size!(larger!fish!clear!a!larger!volume!of!water!for!prey!per!time!than!small!fish)!176!
(M2).!The!combination!of!preference,!clearance!rate!and!prey!abundance!specifies!the!
177!
food!encounter!rate!(M3,!biomass!per!time).!Intake!upon!encounter!(“satiation”)!is!
178!
represented!with!a!type!II!functional!response!(M5)!as!the!“feeding!level”!H
A#,!i.e.,!the!
179!
ratio!between!consumption!and!maximum!consumption!(M4)!(dimensionless!number!180!
between!0!and!1).!181!
!
182!
>1#+9+#0*=3&1&)?23'0#?&(33
183!
The!energy!budget!describes!how!consumed!food!is!used!for!maintenance,!activity,!184!
growth!and!reproduction.!Consumed!food!is!assimilated!and!first!used!for!standard!
185!
!
8!
metabolism,!widely!recognized!to!be!an!allometric!function!of!body!mass:!IJ#K.!Juvenile!186!
individuals!use!the!remaining!available!energy!for!growth,!while!mature!individuals!187!
apportion!the!energy!between!growth!and!reproduction!(M6-M8).!The!exact!188!
specification!of!allocation!of!energy!between!growth!and!reproduction!is!not!crucial.!189!
The!one!used!here!ensures!that!when!the!feeding!level!is!constant,!size-at-age!curves!190!
resembles!a!von!Bertalanffy!curve!and!the!gonado-somatic!is!independent!of!body!size!191!
(Hartvig!et!al.!2011).3192!
!193!
@&7)"#0.(+"13*1#3)&.)0+(/&1(33194!
Reproduction!and!recruitment!represent!the!reproductive!output!from!the!entire!195!
population.!The!reproductive!output!GL1A!(numbers!per!time;!M9)!is!discounted!by!a!196!
reproductive!efficiency!M!to!represent!losses!due!to!egg!mortality!and!spawning!effort,!197!
and!used!to!calculate!the!recruitment!GA.!Within!this!context,!recruitment!refers!to!the!198!
rate!of!production!of!new!individuals!from!the!fertilized!egg!stage,!but!it!could!be!done!199!
at!a!later!stage!if!properly!discounted!(Andersen!and!Beyer!2015).!Ideally!the!
200!
recruitment!is!equal!to!the!reproductive!output,!but!many!models!apply!a!stock!
201!
recruitment!relationship!(M10).!The!density!dependence!imposed!by!the!stock!
202!
recruitment!relationship!avoids!the!competitive!exclusion!between!species!that!203!
otherwise!tends!to!occur!(Hartvig!and!Andersen!2013).!The!stock-recruitment!
204!
relationship!contains!two!essential!parameters:!the!“slope”!parameter!that!specifies!
205!
recruitment!at!low!population!sizes!and!the!maximum!recruitment!that!specifies!the!
206!
population!carrying!capacity.!The!slope!parameter!is!given!directly!by!the!egg!207!
production!of!the!population!(Andersen!and!Beyer!2015),!but!the!maximum!recruitment!208!
has!to!be!specified!separately.!This!parameter!represents!all!effects!on!the!population!
209!
that!are!not!explicitly!represented!in!the!model,!such!as!limitations!due!to!juvenile!
210!
habitat!size!that!is!known!to!limit!some!marine!populations!(Rijnsdorp!and!Leeuwen!211!
!
9!
1992).!The!maximum!recruitment!and!possibly!the!recruitment!efficiency!are!key!212!
parameters!for!calibrating!a!model!to!data!from!real!fish!stocks!(see!discussion).!213!
!214!
A")(*=+(2!215!
Three!categories!of!mortality!are!recognized.!First,!predation!mortality!(M13)!emerges!216!
from!the!trophic!dynamics!within!the!system;!second,!intrinsic!or!background!mortality!217!
(M12)!is!usually!represented!as!an!allometric!function!of!asymptotic!size!(Brown!et!al.!218!
2004),!though!starvation!mortality!can!be!explicitly!added!(e.g.,!Hartvig!et!al.!2011);!219!
third,!exogenous!sources!of!mortality!(especially!fishing)!are!often!added.!220!
!221!
@&,"0).&3222!
The!resource!spectrum!!N# 'represents!food!other!than!fish.!The!resource!is!needed!223!
for!the!smallest!individuals!who!are!not!yet!large!enough!to!be!piscivorous!but!it!can!224!
represent!any!kind!of!food:!a!single!size-group!of!small!zooplankton!prey!species,!a!size!225!
spectrum!of!zooplankton!prey!(as!in!Fig.!1),!or!a!size!distribution!including!larger!prey!,!
226!
e.g.!benthic!production.!The!resource!can!be!constant,!in!which!case!the!growth!rate!of!
227!
small!fish!is!fixed,!or!it!can!be!modeled!dynamically,!e.g.,!as!a!semi-chemostat!(M14).!The!
228!
semi-chemostat!formulation!is!convenient!because!it!leads!to!a!very!stable!dynamics!of!229!
the!resource.!Using!logistic!growth!results!in!a!more!pronounced!dynamical!response!of!
230!
the!resource!which!translate!into!stronger!dynamics!of!the!fish!part!of!the!model!(de!
231!
Roos!et!al.!2008).!
232!
Models$types$233!
We!now!briefly!describe!how!these!common!concepts!are!used!to!create!size!spectrum!234!
models!at!three!levels!of!complexity!and!demonstrate!an!approximate!analytical!
235!
solution!for!the!equilibrium.!!
236!
!237!
!
10!
B""#$%&'3/"#&=3238!
In!the!food-web!model,!the!processes!M1!–!M15!are!instantiated!with!all!parameters!239!
from!Table!2!being!species!specific!(either!representing!identified!species!or!240!
hypothetical!ones!matching!relevant!criteria),!but!in!practice!some!parameters!are!241!
usually!cross-species!constants,!such!as!the!exponents!O? P!and!Q.!Populations,!thus!242!
identified!as!different!species,!interact!through!predator-prey!relations!with!interaction!243!
strengths!specified!by!an!interaction!matrix,!which!represents!a!combination!of!species-244!
specific!preferences!and!encounter!probabilities.!This!matrix!could!be!populated!with!245!
empirical!interaction!coefficients!derived!from!stomach!content!analyses,!spatial!246!
overlap!(Blanchard!et!al.!2014),!or!it!may!represent!hypothetical!distributions!--!random!247!
and!uniform!(everything!eats!everything!else)!interaction!networks!are!popular!248!
hypotheses.!A!fully!specified!food-web!model!has!14!parameters!for!each!species,!plus!249!
an!interaction!matrix,!so!for!C!species!the!total!is!up!to!R < /SI < I&!parameters.!!250!
!251!
4)*+($'*,/"#&=33
252!
The!trait-based!model!represents!differences!among!species!only!by!the!governing!trait!
253!
of!asymptotic!size!(Pope!et!al.!2006).!This!assumes!that!the!most!important!trait!is!the!
254!
asymptotic!size!(or,!equivalently,!size!at!maturation),!which!embodies!a!trade-off!255!
between!reproductive!output!and!asymptotic!size.!!The!trait-based!model!is!
256!
conceptually!derived!from!the!food-web!model!by!assuming!that!all!parameters!in!Table!
257!
2!are!cross-species!constants!and!by!using!theoretical!arguments!to!determine!GTUV!as!a!
258!
function!of!W!(appendix!A).!Feeding!interaction!are!solely!determined!by!individual!259!
size.!The!solution!is!the!trait!size!spectrum!!"#? W$!(dimensions!numbers!per!mass!per!260!
asymptotic!mass)!describing!the!joint!distribution!of!individual!and!asymptotic!sizes!
261!
(Andersen!and!Beyer!2006).!In!numerical!implementations!the!asymptotic!size!axis!is!
262!
discretized,!typically!into!logarithmic!‘bins’!grouping!species!in!asymptotic!size!classes.!263!
In!practice,!the!results!of!the!trait-based!model!are!effectively!independent!of!the!
264!
!
11!
number!of!simulated!asymptotic!size!classes!once!this!number!is!greater!than!10.!The!265!
trait-based!model!is!specified!with!the!18!parameters!in!Table!2.!!266!
!267!
8"//01+(23/"#&=33268!
The!community!model!ignores!all!differences!between!species!and!only!considers!269!
differences!in!size!(Benoît!and!Rochet!2004).!It!can!be!derived!from!the!trait-based!and!270!
food-web!models!by!integrating!over!all!trait-classes!or!summing!over!species!(Zhang!et!271!
al.!2012):!272!
!273!
!9# - ! #? W '(W
∞
)
- !A"#$
AX%
1!274!
!275!
The!integral!only!runs!from!#!because!asymptotic!size!groups!with!# Y W!does!not!276!
contribute!to!the!community!spectrum!at!size!#.!The!community!model!only!resolves!277!
the!‘community!spectrum’!!9"#$.!Substantial!consequences!arise!because!this!model!is!278!
unable!to!represent!maturation,!reproduction!and!recruitment.!The!energy!budget!(M6-
279!
M8)!is!simplified!such!that!growth!is!solely!available!energy!multiplied!by!an!“average!
280!
growth!efficiency”!derived!from!equilibrium!theory!(M7b;!Appendix!A).!Because!
281!
energetic!losses!to!reproduction!are!not!explicitly!accounted!for,!the!model!will!not!282!
reproduce!von!Bertalanffy!growth.!Further,!most!implementations!in!the!literature!use!
283!
just!a!linear!functional!response,!ignore!standard!metabolism!and!use!a!fixed!resource!
284!
(Table!3),!however,!these!simplifications!are!not!significant!for!the!community!model.!In!
285!
its!most!comprehensive!form,!the!community!model!requires!only!11!parameters!(less!286!
without!the!functional!response!and!with!fixed!resource).!287!
!
288!
D:0+=+')+0/3,"=0(+"1,3
289!
!
12!
Analytical!solutions!to!the!trait-based!model!can!be!derived!under!the!assumption!that!290!
the!feeding!level!is!constant!H # - H
F!and!that!the!spectrum!is!infinitely!long,!i.e.!#F-291!
0!and!Z[\ W -
∞
!(Andersen!and!Beyer!2006;!Hartvig!et!al.!2011).!This!results!in!an!292!
‘equilibrium!community!spectrum’:!293!
!294!
!9# - /
]
H
F
/ ; H
F
^
_#`a&ab '"R$'!295!
!296!
with!] - .cdeb a` f\g'h Q ; O &d&i.$j.!The!scaling!exponent!O ; . ; Q k ;.10l!is!in!297!
accordance!with!observations!(Boudreau!and!Dickie!1992).!The!equilibrium!solution!for!298!
each!species!spectrum!is:!!299!
! #? W > 2W&`abam:n #a`an / ; #
W
%a` ni"%a`$
'"S$3300!
!301!
with!the!“physiological!mortality”!o!given!in!(M17).!This!result!is!used!to!calculate!302!
expected!scaling!solutions!to!predation!mortality,!the!scaling!of!maximum!recruitment!303!
with!asymptotic!size!used!in!the!trait-based!models,!and!the!average!growth!efficiency!
304!
in!the!community!model!(Appendix!A).!Note!that!the!solution!in!eq.!(4)!does!not!fulfill!
305!
the!boundary!condition!(M9);!the!total!reproductive!output!calculated!from!(4)!will!lead!
306!
to!a!life-time!reproductive!output!larger!than!1!and!increasing!with!asymptotic!size!307!
(discussed!in!Hartvig!et!al.!2011!and!Rossberg!2012).!This!discrepancy!has!to!be!
308!
resolved!by!density-dependent!effects!within!each!population!not!accounted!for!in!(4),!
309!
and!it!has!been!used!to!relate!the!slope!parameter!in!stock-recruitments!relationship!to!
310!
asymptotic!size!(Andersen!and!Beyer!2015).!In!the!dynamical!models!the!emergent!311!
physiological!mortality!depends!on!asymptotic!size,!with!smaller!species!having!a!312!
smaller!o!than!larger!(Hartvig!et!al.!2011),!in!accordance!with!empirical!measurements!
313!
of!how!mortality!depends!on!asymptotic!size!(Gislason!et!al.!2010).!Even!though!(4)!is!
314!
!
13!
not!an!exact!solution!of!the!entire!model,!it!is!still!a!useful!approximation,!as!315!
demonstrated!by!its!ability!to!resolve!species!diversity!(Reuman!et!al.!2014).!316!
!317!
The!equilibrium!results!all!rely!on!the!metabolic!assumption!inherent!in!the!functional!318!
response!where!consumption!is!proportional!to!#`.!If!a!functional!response!is!not!used!319!
the!solution!for!the!exponent!of!the!community!spectrum!will!differ!from!eq.!(3).!In!320!
particular!it!will!not!depend!on!the!metabolic!exponent!O,!but!rather!on!the!preferred!321!
predator-prey!mass!ratio!e!(Benoît!and!Rochet!2004;!Datta!et!al.!2010;!Rossberg!2012).!322!
Such!solutions!will!result!in!consumption!rates!that!do!not!follow!metabolic!scaling.!!323!
!324!
E*)*/&(&),3325!
Parameters!are!either!determined!from!knowledge!about!the!specific!species!(for!the!326!
food-web!model),!or!from!cross-species!investigations!of!life-history!invariants!(Table!327!
2;!see!Hartvig!et!al.!(2011),!App!E.!for!a!detailed!discussion).!The!relatively!small!set!of!328!
parameter!facilitates!formal!investigations!of!model!behavior!under!varying!parameter!
329!
values!(Thorpe!et!al.!2015;!Zhang!et!al.!2015).!
330!
!
331!
>/7=&/&1(*(+"13332!
Size!spectrum!models!may!be!simulated!with!“Mizer”,!a!reference!implementation!in!R!
333!
(Scott!et!al.!2014),!or!with!the!matlab!code!(see!online!supplementary).!For!the!food-
334!
web!model!we!have!used!the!parameterization!for!the!North!Sea!(Blanchard!et!al.!2014),!
335!
which!uses'O - .iR!as!is!customary!in!the!fisheries!literature.!For!the!trait-based!and!336!
community!models!we!have!used!O - RiS!to!conform!with!“metabolic”!theory!(West!et!337!
al.!2001).!The!results!are!qualitatively!sensitive!to!the!value!of!O!as!long!as!it!is!changed!
338!
in!all!the!relationships!in!Table!1.!The!community!model!has!been!implemented!as!a!
339!
trait-based!model!with!a!single!trait!group!having!a!very!large!asymptotic!size.!As!the!340!
individuals!in!the!trait!group!mature!their!growth!rate!declines!(Fig.!2d).!In!this!way!the!
341!
!
14!
average!growth!in!the!community!model!corresponds!to!the!average!growth!in!a!trait-342!
based!model.!Our!implementation!avoids!the!need!for!an!additional!senescent!mortality!343!
for!the!largest!individuals!as!is!common!practice!(Law!et!al.!2009;!Rochet!and!Benoît!344!
2012).!!345!
!346!
All!simulations!are!set!up!with!100!logarithmically!spaced!grid!points!on!the!mass!axis,!347!
with!the!first!grid!point!set!to!egg!size!w0.!Each!simulation!was!run!with!a!time!step!of!348!
0.25!year!until!convergence!(Appendix!B).!349!
Example$simulations$350!
All!three!models!predict!size!spectra,!growth!rates!and!mortality!(Figure!2).!In!the!351!
absence!of!fishing!and!top!predators!the!largest!size!groups!(# p /0!kg)!are!352!
superabundant,!i.e.,!that!part!of!the!spectrum!is!greater!than!predicted!by!the!353!
equilibrium!solution.!This!is!most!pronounced!in!the!food-web!model,!and!could!be!354!
changed!by!increasing!the!background!mortality!qF.!The!superabundance!results!in!355!
higher!predation!mortality!on!medium-sized!individuals,!which!triggers!a!trophic!
356!
cascade!and!associated!changes!in!growth!and!mortality!of!smaller!individuals!
357!
(Andersen!and!Pedersen!2010).!!
358!
!359!
@&,7"1,&,3("3!+,5+1?3
360!
The!behavior!of!the!models!is!illustrated!by!examining!the!response!of!the!time-
361!
averaged!solution!to!fishing!and!their!dynamical!behavior.!Fishing!using!size-selective!
362!
gear!is!represented!by!adding!a!fishing!mortality!that!depends!on!body!size,!and!363!
possibly!also!asymptotic!size!or!species.!!We!illustrate!fishing!through!two!scenarios:!a)!364!
community-wide!fishing!on!all!species!with!a!trawl-type!selectivity!pattern!having!50%!
365!
selectivity!at!010lW,!and!b)!a!bottom-up!perturbation!where!forage!fishery!is!removed!
366!
from!scenario!(a)!simulated!by!setting!fishing!mortality!zero!on!all!species!with!W Y367!
!
15!
.00!g!in!the!food-web!and!trait-based!models!and!on!individuals!with!# Y .00!g!in!the!368!
community!model!(Figure!3).!In!scenario!(a)!(community!wide!fishing)!the!reduction!of!369!
large!individuals!induces!a!trophic!cascade!throughout!the!community!seen!as!a!wave!in!370!
the!size!spectrum.!When!forage!fishing!is!removed!(b),!the!food-web!and!trait-based!371!
models!predict!an!increase!of!forage!fish!but!relatively!modest!effects!on!the!rest!of!the!372!
community.!The!forage!fish!have!a!higher!biomass!than!in!the!unfished!situation!due!to!373!
the!partial!release!from!predation!by!higher!trophic!levels!caused!by!fishing.!The!374!
response!of!the!community!model!is!different:!it!predicts!a!decline!in!the!size-range!375!
where!fishing!is!removed,!while!the!effects!on!the!rest!of!the!community!are!weak,!as!in!376!
the!other!models.!This!difference!in!the!community!models!stems!from!its!inability!to!377!
represent!fishing!(or,!in!this!case,!absence!of!fishing)!on!specific!species!or!life!histories,!378!
but!only!on!body!sizes.!!This!result!emphasizes!the!importance!of!representing!379!
individual!populations!in!fisheries!applications.!The!two!scenarios!illustrates!the!380!
relative!importance!of!mortality!and!growth!to!mediate!trophic!cascades:!in!scenario!(a)!381!
the!trophic!cascade!is!mainly!mediated!by!changes!in!predation!mortality,!which!leads!
382!
to!a!strong!cascade.!In!scenario!(b)!increases!in!forage!fish!abundance!has!two!effects!
383!
with!opposite!consequences:!1)!it!increases!growth!rates!of!larger!individuals,!but!2)!it!
384!
also!increases!competition!between!juvenile!individuals!of!larger!species!and!forage!fish!385!
leading!to!decreased!growth!rates.!The!end!result!is!a!modest!trophic!cascade!(Houle!et!
386!
al.!2013;!Jacobsen!et!al.!2015).!The!importance!of!competition!between!forage!fish!and!
387!
juvenile!predatory!fish!in!real!ecosystems!could!be!analyzed!by!comparing!stomach!
388!
contents!of!forage!fish!and!juvenile!predatory!fish.!In!summary:!the!food-web!and!trait-389!
based!models!predict!similar!response!to!selective!fishing,!while!the!community!model!390!
fails!to!resolve!effects!on!different!populations.!
391!
!
392!
F21*/+.3,"=0(+"1,3393!
!
16!
The!community!model!also!differs!from!the!food-web!and!trait-based!model!in!394!
dynamical!behavior,!i.e.,!how!the!solution!varies!over!time.!All!models!tend!to!be!395!
unstable!(oscillate!over!time)!if!the!trophic!overlap!is!small.!The!trophic!overlap!is!396!
determined!by!the!ratio!between!the!width!of!the!size!preference!function,!d,!and!the!397!
predator-prey!size!ratio!rst"e$:!the!smaller!the!value!of!dirst"e$,!the!smaller!the!398!
trophic!overlap,!and!the!more!unstable!the!solution!becomes!(larger!oscillations)!(Datta!399!
et!al.!2011;!Zhang!et!al.!2012)!(Figure!4).!Oscillations!in!the!trait-based!models!are!fairly!400!
modest,!but!the!community!model!is!prone!to!unrealistically!strong!non-linear!401!
dynamics:!the!solution!varies!by!up!to!10!orders!of!magnitude!(Figure!4b!and!d).!This!402!
means!that!some!parts!of!the!spectrum!alternate!between!being!completely!devoid!of!403!
fish!and!being!fully!populated.!It!is!therefore!evident!that!the!non-linear!properties!of!404!
the!community!model!are!fundamentally!different!from!the!models!with!life-history!405!
diversity,!such!as!the!trait-based!models!or!a!food-web!model.!!Even!if!the!community!406!
model!is!made!linearly!stable!with!a!high!trophic!overlap!or!a!diffusion!term!(Datta!et!407!
al.,!2011),!the!strong!dynamical!response!will!still!be!present!if!the!model!is!perturbed!
408!
away!from!the!equilibrium.!This!should!be!kept!in!mind!if!the!model!is!used!to!simulate!
409!
the!dynamical!behavior!of!marine!ecosystems!(Zhang!et!al.!2012;!Rossberg!2013!p.!273).!
410!
Challenges$and$open$issues$411!
Size!spectrum!models!distinguish!themselves!from!unstructured!models!by!resolving!
412!
individual!body!size!as!a!continuous!state!variable!(body!size).!To!what!extent!do!
413!
individual!body!size!and!species!identity!determine!the!ecological!outcomes!of!
414!
community!dynamics?!The!thrust!of!size!spectrum!modeling!has!become!an!emphasis!415!
on!the!former,!whilst!unstructured!models!have!emphasized!the!latter.!Some!size!416!
spectrum!models!represent!species!interactions,!and!some!attempts!have!been!made!to!
417!
find!a!common!understanding!between!the!two!perspectives.!Notably,!a!food-web!model!
418!
with!implicit!representation!of!intra-species!size!structure!was!obtained!(Rossberg!and!419!
!
17!
Farnsworth!2011)!to!(indirectly)!describe!interactions!among!species!of!different!sizes.!420!
The!importance!of!explicitly!resolving!the!size-structure!of!species,!or!where!it!can!421!
safely!be!ignored,!is!context!dependent!so!requires!specific!and!systematic!exploration!422!
(Jacobsen!et!al.!2015;!Woodworth-Jefcoats!et!al.!2015).!!423!
!424!
An!important!difference!between!implementations!of!size!spectrum!models!is!whether!425!
growth!is!fixed!or!food-dependent!(Table!3).!Fixing!growth!simplifies!model!setup!and!426!
calibration.!It!is!justified!by!the!modest!variations!in!growth!observed!in!marine!species.!427!
Fixing!growth,!however,!has!consequences!which!should!be!considered!when!the!model!428!
is!calibrated!and!results!are!interpreted.!A!model!with!fixed!growth!will!still!resolve!429!
trophic!cascades!mediated!by!mortality,!but!it!will!not!resolve!competition,!which!is!430!
crucial!to!describe!the!phenomenon!of!overcompensation!(De!Roos!and!Persson!2002)!431!
and!may!be!important!to!understand!the!response!of!the!spectrum!to,!e.g.!fishing!on!432!
‘forage’!species!(Houle!et!al.!2013;!Jacobsen!et!al.!2015).!More!importantly,!without!433!
food-dependent!growth,!the!mass!balancing!between!growth!and!predation!mortality!is!
434!
broken.!This!requires!that!care!is!taken!in!the!setup!to!ensure!that!predation!mortalities!
435!
are!in!the!correct!range!by!adjusting!the!“other!food”!compartment!(Thorpe!et!al.!2015).!
436!
Having!too!low!predation!mortalities!(as!in!Hall!et!al.!2006;!Worm!et!al.!2009;!Rochet!et!437!
al.!2011)!will!result!in!a!model!that!is!essentially!a!set!of!weakly!coupled!single-species!
438!
models!thus!defying!the!purpose!of!a!multi-species!model.!
439!
!!
440!
Size-based!models!have!been!characterized!as!“highly!unrealistic”!and!being!based!on!441!
“unrealistic!and!even!contradictory!assumptions”!(Froese!et!al.!2015;!Andersen!et!al.!442!
2016b).!We!hope!to!have!made!it!clear!that!the!basic!assumptions!are!realistic!and!
443!
internally!consistent.!Nevertheless,!while!the!size-based!models!have!matured!to!a!
444!
degree!where!they!can!be!applied!to!make!impact!assessments!of!fishing!on!marine!445!
ecosystems,!they!still!face!challenges!related!to!density-dependence,!life-history!trade-
446!
!
18!
offs,!termination!at!the!large!body!sizes!end,!calibration!procedure,!and!numerical!447!
implementation,!which!must!be!confronted:!each!will!be!briefly!discussed.!!448!
!449!
F&1,+(23#&7&1#&1.&3450!
All!food-web!models!of!real!ecosystems,!i.e.!with!specific!species,!require!some!form!of!451!
density!dependent!regulation!of!the!abundance!of!each!species!to!avoid!competitive!452!
exclusion.!Not!much!is!known!about!the!exact!mechanism!of!the!regulation!and!how!453!
different!mechanisms!affect!model!results.!The!size!based!interactions!and!trait!454!
differences!among!species!in!size!spectrum!models!provide!insufficient!niche!455!
differentiation!to!avoid!competitive!exclusion!(Hartvig!and!Andersen!2013).!Additional!456!
niche!differentiation!may!be!represented!by!a!random!species-specific!interaction!457!
matrix,!which!can!support!coexistence!(Hartvig!2011;!Hartvig!et!al.!2011).!Other!458!
commonly!used!mechanisms!are!(Table!3):!stock-recruitment!relationships;!fixed!459!
recruitment;!predator-dependent!functional!responses,!whereby!intake!depends!on!the!460!
density!of!competitors!as!well!as!prey!(also!used!in!Ecosim)!(Abrams!2014);!and!prey!
461!
switching!(Maury!and!Poggiale!2013),!whereby!rare!prey!are!not!attacked!(leading!to!an!
462!
emergent!type!III!functional!response).!Which!of!these!mechanisms!is!the!most!correct!
463!
representation!of!effects!in!real!ecosystem!is!currently!unknown:!stock-recruitment!464!
relations!and!fixed!recruitment!are!in!line!with!standard!practice!in!fisheries!science,!
465!
but!have!little!theoretical!support;!predator-dependent!functional!responses!and!prey!
466!
switching!certainly!occur!to!some!extent,!but!the!understanding!is!currently!too!weak!to!
467!
make!general!statements!of!the!strength!of!the!processes.!Within!structured!models,!468!
such!as!size!spectrum!models,!the!type!of!density!dependent!regulation!may!have!a!469!
profound!impact!on!the!solution,!both!the!size!spectrum!of!the!individual!species!and!
470!
the!relative!abundances!of!species!(compare!Fig.!4!in!Maury!and!Poggiale!(2013)!with!
471!
Figure!2B).!As!an!example,!we!tested!the!prediction!from!the!trait-based!model!against!472!
empirical!observations!by!comparing!the!asymptotic!size!distribution!with!observations!
473!
!
19!
from!three!trawl!surveys!in!the!North!Sea!(Daan!et!al.!2005)!(Figure!5).!Even!though!the!474!
comparison!does!not!reject!the!modeled!distribution,!more!comparisons!with!similar!475!
data!from!other!systems!are!needed!to!build!confidence!in!the!predicted!asymptotic!size!476!
distributions.!477!
!478!
In!addition!to!ensuring!coexistence!of!species,!the!imposed!density!dependence!also!acts!479!
as!a!carrying!capacity.!In!the!food-web!model!the!carrying!capacity!(GTUV$!is!found!by!480!
calibrating!to!observed!biomasses.!The!trait-based!model,!however,!relies!on!theoretical!481!
results!from!the!equilibrium!theory.!That!theory!compares!favorably!to!the!calibrated!482!
results!(Figure!6).!Nevertheless,!the!use!of!a!stock-recruitment!relationship!is!483!
unsatisfactory!as!it!introduces!a!dominating!external!regulation!on!the!biomass!of!484!
species.!This!may!bias!the!response!time!of!community!size!structure!(Fung!et!al.!2013),!485!
which!is!of!interest!in!conservation.!Further,!the!stock-recruitment!relationship!means!486!
that!a!large!amount!of!spawned!biomass!is!simply!lost!to!unspecified!density-dependent!487!
processes.!The!stock-recruitment!relationship!therefore!breaks!the!mass-balancing!
488!
which!is!carefully!observed!in!the!other!processes!in!the!model!(Persson!et!al.!2014).!!
489!
Since!there!is!no!generally!accepted!solution!to!the!problem!of!maintaining!coexistence,!
490!
results!should!be!interpreted!in!light!of!the!assumptions!used!to!represent!density!491!
dependent!regulation.!It!must!be!emphasized!that!this!problem!is!common!to!all!food-
492!
web!models!and!not!unique!to!size!spectrum!models.!
493!
!
494!
4)*+(,3*1#3()*#&$"!!,!495!
The!trait-based!model!assumes!that!the!most!important!trait!is!the!asymptotic!size.!Fish,!496!
however,!vary!in!other!traits!than!asymptotic!size.!The!questions!are!then:!which!other!
497!
trait(s)!should!be!included!in!a!model!to!represent!observed!variation?!And!how!can!
498!
suitable!trade-offs!be!formulated!and!parameterized?!An!obvious!trait!is!activity.!499!
Increased!activity!causes!higher!prey!encounter!rates!(higher!value!of!the!clearance!rate!
500!
!
20!
constant,!_).!On!the!other!hand,!higher!activity!results!in!increased!metabolic!rates!and!501!
increased!vulnerability!due!to!higher!exposure!to!predators.!It!is!possible!that!inclusion!502!
of!an!activity!trait!would!make!it!possible!to!distinguish!sedentary!from!active!species!503!
with!the!same!asymptotic!size,!such!as!anglerfish!and!scombroids.!Such!a!trait!may!not!504!
solve!the!problem!of!competitive!exclusion!because!it!does!not!lead!to!sufficient!niche!505!
differentiation.!A!trait!which!would!lead!to!niche!differentiation!could!be!related!to!506!
habitat!(Hartvig!2011;!Zhang!et!al.!2013),!i.e.,!pelagic!vs.!benthic!(Blanchard!et!al.!2011).!507!
In!both!cases!more!theoretical!investigations!are!needed!but!also!empirical!work!to!508!
establish!and!parameterize!the!trade-offs.!509!
!510!
8=",0)&3"!3(5&3,7&.()0/3*(3=*)?&3'"#23,+6&,3511!
An!overlooked!issue!is!the!termination!(closure)!of!the!model!spectrum!at!the!largest!512!
body!sizes.!Closure!is!usually!achieved!(rather!arbitrarily)!by!choosing!a!maximum!body!513!
size!and!enforcing!some!background!mortality!to!kill!of!the!largest!individuals.!514!
However,!the!size!of!this!mortality!clearly!influences!the!results,!in!particular!in!the!un-
515!
fished!situation.!In!the!simulations!presented!here!(Figure!2),!this!background!mortality!
516!
is!relatively!low,!leading!to!the!superabundance!of!large!individuals!compared!to!the!
517!
equilibrium!solution.!However,!we!do!not!know!the!real!abundance!of!the!largest!518!
individuals!in!an!unfished!system,!because!most!systems!are!heavily!perturbed.!!
519!
Further,!what!is!the!theoretical!largest!size!of!a!fish?!Why!are!teleost!fish!not!larger!than!
520!
a!few!hundred!kg?!There!is!no!physiological!mechanism!in!the!model!to!limit!the!
521!
asymptotic!size,!and!current!theoretical!understanding!can!only!guess!at!an!answer!to!522!
this!question!(Freedman!and!Noakes!2002;!Andersen!et!al.!2008;!Andersen!et!al.!2016a).!523!
A!satisfactory!theoretical!understanding!of!the!factors!limiting!the!upper!size!of!fish!is!
524!
needed!to!bolster!the!consistency!of!the!models.!
525!
!526!
8*=+')*(+"13("3)&*=3,2,(&/,3
527!
!
21!
Size!based!models!can!be!calibrated!to!real!ecosystems,!for!instance!on!the!scale!of!a!528!
continental!shelf!(in!smaller!systems!immigration!/!emigration!violate!the!assumed!529!
population!closure).!!In!the!trait-based!models!calibration!is!achieved!by!varying!some!530!
of!the!crucial!parameters,!such!as!the!growth!rate!parameter!^!and!the!carrying!capacity!531!
of!the!resource!to!reproduce!observed!average!growth!rates!of!individuals!and!eco-532!
system!level!catch!rates!of!the!fishery!(Pope!et!al.!2006;!Kolding!et!al.!2015).!The!next!533!
level!of!sophistication!is!to!match!modeled!species!to!known!species!characteristics!534!
(Jacobsen!et!al.!2015),!and!further!to!include!a!species!interaction!matrix!(Hall!et!al.!535!
2006;!Blanchard!et!al.!2014).!In!these!cases!the!biomass!of!each!species!has!to!be!536!
calibrated!by!adjusting!GTUV.!!Another!important!parameter!that!hitherto!has!been!537!
ignored!is!the!reproductive!efficiency!u.!This!parameter!represents!egg!survival,!which!538!
is!likely!to!vary!substantially!between!species.!Introducing!yet!another!calibration!539!
parameter,!however,!requires!more!data.!Currently,!the!calibration!methods!applied!are!540!
statistically!simple.!A!more!sophisticated!approach!acknowledges!uncertainty!by!541!
creating!an!ensemble!of!plausible!models,!requiring!them!to!fulfill!general!criteria!
542!
(Thorpe!et!al.!2015).!A!possible!future!direction!could!be!introduction!of!a!full!statistical!
543!
framework!where!distributions!of!parameter!values!are!derived!from!observations!of!
544!
biomasses!and!stomach!content!by!maximizing!a!likelihood!function!(Lewy!and!Vinther!545!
2004;!Spence!et!al.!2015).!Finally,!it!should!be!kept!in!mind!that!even!though!a!model!
546!
may!be!well!calibrated!to!current!situations!there!is!no!guarantee!that!it!will!reliably!
547!
predict!the!future.!
548!
!549!
G0/&)+.*=3,"=0(+"137)".�)&3550!
Gains!in!accuracy!and!speed!of!the!numerical!solution!may!be!achieved!by!moving!to!
551!
more!advanced!methods.!The!standard!method!is!a!first-order!semi-implicit!upwind!
552!
scheme!that!is!simple!to!implement!(Appendix!B).!The!drawback!of!this!method!is!that!it!553!
has!numerical!diffusivity,!is!not!very!efficient,!possibly!inaccurate!for!dynamics,!and!is!
554!
!
22!
unable!to!resolve!“cohort!cycles”!(de!Roos!and!Persson!2001)!with!discontinuities!in!the!555!
solution!in!the!form!of!“shocks”.!To!move!forward,!we!recommend!looking!in!the!rich!556!
literature!from!computational!fluid!mechanics!for!inspiration,!in!particular!towards!557!
higher!order!finite-volume!techniques!with!limiters,!which!maintains!positivity!of!the!558!
solution!(Zijlema!1996),!or!spectral!methods!(Rossberg!2012).!Enhancements!to!the!559!
numerical!scheme!could!be!implemented!to!common!benefit!in!the!(open!access)!560!
reference!implementation!“Mizer”!(Scott!et!al.!2014).!!561!
!562!
80))&1(3*1#3!0(0)&3*77=+.*(+"1,3563!
We!have!shown!how!size!spectrum!models!can!be!used!to!simulate!how!fishing!of!one!564!
group!of!species!affects!the!entire!system!and!that!is!very!difficult!to!achieve!with!565!
alternative!models.!Despite!several!open!issues!in!size-based!modeling,!as!discussed!566!
above,!the!model!framework!has!already!shown!its!use!to:!illustrate!how!fishing!drives!567!
trophic!cascades!(Andersen!and!Pedersen!2010),!simulate!the!impact!of!rising!568!
temperatures!(Maury!et!al.!2007;!Pope!et!al.!2009),!explore!the!potential!impacts!of!
569!
climate!change!scenarios!on!fish!production!(Blanchard!et!al.!2012;!Woodworth-Jefcoats!
570!
et!al.!2013;!Barange!et!al.!2014;!Lefort!et!al.!2014),!describe!the!indirect!effect!of!
571!
ecosystem!recovery!strategies!(Andersen!and!Rice!2010),!quantify!the!interaction!572!
between!forage!and!consumer!fishery!fleets!(Engelhard!et!al.!2013;!Houle!et!al.!2013)!or!
573!
between!fisheries!and!marine!mammals!(Houle!et!al.!2015),!evaluate!ecosystem!fishing!
574!
strategies!and!indicators!(Houle!et!al.!2012;!Blanchard!et!al.!2014;!Jennings!and!
575!
Collingridge!2015;!Spence!et!al.!2015;!Thorpe!et!al.!2015),!evaluate!balanced!harvesting!576!
(Rochet!et!al.!2011;!Jacobsen!et!al.!2014;!Law!et!al.!2014)!and!describe!the!ecosystem!577!
level!yield!(Worm!et!al.!2009;!Andersen!et!al.!2015).!Other!obvious!uses!would!be!as!
578!
operating!models!in!management!strategy!evaluations,!as!the!basis!for!bio-economic!
579!
evaluations!of!fishing!on!the!entire!community!(Andersen!et!al.!2015),!and!to!further!580!
developing!our!basic!understanding!of!fish!community!functioning.!In!our!view,!the!
581!
!
23!
community!model!is!best!limited!to!theoretical!work!examining!the!steady-state!582!
solutions.!The!trait-based!model!can!be!quickly!deployed!in!data-poor!situations!and!583!
makes!a!flexible!tool!for!exploration!of!community-level!fishery!interactions.!The!food-584!
web!types!of!models!are!well!suited!to!more!specific!fisheries!questions!where!a!higher!585!
level!of!species!identity!is!needed!than!provided!by!the!trait-based!model.!Besides!these!586!
strategic!applications,!it!is!tempting!to!deploy!size!spectrum!models!for!tactical!587!
ecosystem!based!management,!e.g.,!for!providing!advice!on!specific!species.!We!are!588!
reluctant!to!endorse!such!uses!because!we!find!the!purely!process-oriented!framework!589!
too!rigid!to!provide!precise!quantitative!information!on!the!species!level.!In!conclusion:!590!
the!small!number!of!parameters,!the!low!computational!requirements!and!the!solid!591!
mechanistically!basis!provide!a!framework!of!low!to!intermediate!complexity,!highly!592!
suited!to!the!strategic!impact!assessment!of!pressures!such!as!fishing!and!593!
environmental!change!on!marine!ecosystems.!594!
! !595!
!
24!
!596!
Acknowledgements(597!
We!thank!Julia!L.!Blanchard!and!Axel!Rossberg!for!comments!on!the!manuscript.!This!598!
work!was!supported!by!the!Centre!for!Ocean!Life,!a!VKR!Centre!of!Excellence!supported!599!
by!the!Villum!Foundation.!600!
!601!
References(602!
Abrams, P.A. 2014. Why ratio dependence is (still) a bad model of predation. Biol. 603!
Rev. 90: 794–814. doi: 10.1111/brv.12134. 604!
Acuña, J.L., López-Urutia, Á., and Colin, S. 2011. Faking giants: the evolution of 605!
high prey clearance rates in jellyfishes. Science 333: 1627–1629. 606!
Andersen, K.H., Berge, T., Gonçalves, K.H., Hartvig, M., Heuschele, J., Hylander, S., 607!
Jacobsen, N.S., Lindemann, C., Martens, C., Neuheimer, A.B., Olsson, A.B., 608!
Palacz, A., Prowe, F., Sainmont, J., Traving, S.J., Visser, A.W., Wadhwa, N., 609!
and Kiørboe, T. 2016a. Characteristic sizes of life in the oceans, from bacteria to
610!
whales. Ann. Rev. Mar. Sci. doi: 10.1146/annurev-marine-122414-034144.
611!
Andersen, K.H., and Beyer, J.E. 2006. Asymptotic size determines species abundance
612!
in the marine size spectrum. Am. Nat. 168: 54–61. 613!
Andersen, K.H., and Beyer, J.E. 2015. Size structure, not metabolic scaling rules,
614!
determines fisheries reference points. Fish Fish. 16(1): 1–22. doi:
615!
10.1111/faf.12042.
616!
Andersen, K.H., Beyer, J.E., Pedersen, M., Andersen, N.G., and Gislason, H. 2008. 617!
Life-history constraints on the success of the many small eggs reproductive 618!
strategy. Theor. Popul. Biol. 73(4): 490–7. doi: 10.1016/j.tpb.2008.02.001.
619!
Andersen, K.H., Blanchard, J.L., Fulton, E.A., Gislason, H., Jacobsen, N.S., and van
620!
Kooten, T. 2016b. Assumptions behind size-based ecosystem models are 621!
realistic. ICES J. Mar. Sci. doi: doi:10.1093/icesjms/fsv211.
622!
Andersen, K.H., Brander, K., and Ravn-Jonsen, L. 2015. Trade-offs between 623!
objectives for ecosystem management of fisheries. Ecol. Appl. 25: 1390–1396.
624!
Andersen, K.H., and Pedersen, M. 2010. Damped trophic cascades driven by fishing
625!
in model marine ecosystems. Proc. R. Soc. London B 277: 795–802. 626!
Andersen, K.H., and Rice, J.C. 2010. Direct and indirect community effects of
627!
rebuilding plans. ICES J. Mar. Sci. 67(9): 1980–1988.
628!
Andersen, K.P., and Ursin, E. 1977. A multispecies extension to the Beverton and 629!
!
25!
Holt theory of fishing, with accounts of phosphorus circulation and primary 630!
production. Meddelelser fra Danmarks Fisk. og Havundersøgelser 7: 319–435. 631!
Barange, M., Merino, G., Blanchard, J.L., Scholtens, J., Harle, J., Allison, E.H., 632!
Allen, J.I., Holt, J., and Jennings, S. 2014. Impacts of climate change on marine 633!
ecosystem production in societies dependent on fisheries. Nat. Clim. Chang. 634!
4(3): 211–216. doi: 10.1038/NCLIMATE2119. 635!
Barnes, C., Bethea, D.M., Brodeur, R.D., Spitz, J., Ridoux, V., Pusineri, C., Chase, 636!
B.C., Hunsicker, M.E., Juanes, F., Kellermann, A., J., L., Ménard, F., Bard, F.-637!
X., Munk, P., Pinnegar, J.K., Scharf, F.S., Rountree, R.A., Stergiou, K.I., Sassa, 638!
C., Sabates, A., and Jennings, S. 2008. Predator and prey body sizes in marine 639!
food webs. Ecology 89(3): 881. 640!
Benoît, E., and Rochet, M.-J. 2004. A continuous model of biomass size spectra 641!
governed by predation and the effects of fishing on them. J. Theor. Biol. 226(1): 642!
9–21. doi: 10.1016/S0022-5193(03)00290-X. 643!
Beverton, R.J.H. 1992. Patterns of reproductive strategy parameters in some marine
644!
teleost fishes. J. Fish Biol. 41: 137–160.
645!
Blanchard, J.L., Andersen, K.H., Scott, F., Hintzen, N.T., Piet, G., and Jennings, S.
646!
2014. Evaluating targets and trade-offs among fisheries and conservation 647!
objectives using a multispecies size spectrum model. J. Appl. Ecol. 51(3): 612–
648!
622. doi: 10.1111/1365-2664.12238.
649!
Blanchard, J.L., Jennings, S., Holmes, R., Harle, J., Merino, G., Allen, J.I., Holt, J.,
650!
Dulvy, N.K., and Barange, M. 2012. Potential consequences of climate change 651!
for primary production and fish production in large marine ecosystems. Philos. 652!
Trans. R. Soc. Lond. B. Biol. Sci. 367(1605): 2979–89. doi:
653!
10.1098/rstb.2012.0231.
654!
Blanchard, J.L., Jennings, S., Law, R., Castle, M.D., McCloghrie, P., Rochet, M.-J., 655!
and Benoît, E. 2009. How does abundance scale with body size in coupled size-
656!
structured food webs? J. Anim. Ecol. 78(1): 270–80. doi: 10.1111/j.1365-657!
2656.2008.01466.x.
658!
Blanchard, J.L., Law, R., Castle, M.D., and Jennings, S. 2011. Coupled energy
659!
pathways and the resilience of size-structured food webs. Theor. Ecol. 4(3): 289–660!
300. doi: 10.1007/s12080-010-0078-9.
661!
Boudreau, P.R., and Dickie, L.M. 1992. Biomass spectra of aquatic ecosystems in
662!
relation to fisheries yield. Can. J. Fish. Aquat. Sci. 49(8): 1528–1538. 663!
Brown, J.H., Gillooly, J.F., Allen, A.P., Savage, V.M., and West, G.B. 2004. Toward
664!
a metabolic theory of ecology. Ecology 85(7): 1771–1789. 665!
Collie, J.S., Botsford, L.W., Hastings, A., Kaplan, I.C., Largier, J.L., Livingston, P. a,
666!
!
26!
Plagányi, É., Rose, K. a, Wells, B.K., and Werner, F.E. 2014. Ecosystem models 667!
for fisheries management: finding the sweet spot. Fish Fish. doi: 668!
10.1111/faf.12093. 669!
Daan, N., Gislason, H., Pope, J.G., and Rice, J.C. 2005. Changes in the North Sea fish 670!
community: evidence of indirect effects of fishing? ICES J. Mar. Sci. 62(2): 671!
177–188. doi: 10.1016/j.icesjms.2004.08.020. 672!
Datta, S., Delius, G.W., and Law, R. 2010. A jump-growth model for predator--prey 673!
dynamics: derivation and application to marine ecosystems. Bull. Math. Biol. 674!
72(6): 1361–1382. 675!
Datta, S., Delius, G.W., Law, R., and Plank, M.J. 2011. A stability analysis of the 676!
power-law steady state of marine size spectra. J. Math. Biol. 63(4): 779–799. 677!
Elton, C. 1927. Animal Ecology. In Animal ecology. doi: 10.1098/rstb.2010.0107. 678!
Engelhard, G.H., Peck, M.A., Rindorf, A., Raab, K., Smout, S., Aarts, G., Deurs, M. 679!
Van, Brunel, T., Hoff, A., Lauerburg, R.A.M., Garthe, S., Andersen, K.H., Scott, 680!
F., Kooten, T. Van, Beare, D., and Peck, M.A. 2013. Marine Science.
681!
Freedman, J.A., and Noakes, D.L.G. 2002. Why are there no really big bony fish? A
682!
point-of-view on maximum body size in teleosts and elasmobranchs. Rev. Fish
683!
Biol. Fish. 12: 403–416. 684!
Froese, R., Walters, C., Pauly, D., Winker, H., Weyl, O.L.F., Demirel, N., Tsikliras,
685!
A.C., and Holt, S.J. 2015. A critique of the balanced harvesting approach to
686!
fishing. ICES J. Mar. Sci. doi: doi:10.1093/icesjms/fsv122.
687!
Fulton, E.A., Link, J.S., Kaplan, I.C., Savina-Rolland, M., Johnson, P., Ainsworth, C., 688!
Horne, P., Gorton, R., Gamble, R.J., Smith, A.D.M., and Smith, D.C. 2011. 689!
Lessons in modelling and management of marine ecosystems: The Atlantis
690!
experience. Fish Fish. 12(2): 171–188. doi: 10.1111/j.1467-2979.2011.00412.x.
691!
Fung, T., Farnsworth, K.D., Shephard, S., Reid, D.G., and Rossberg, A.G. 2013. Why 692!
the size structure of marine communities can require decades to recover from
693!
fishing. Mar. Ecol. Prog. Ser. 484: 155–171. doi: 10.3354/meps10305. 694!
Gilljam, D., Thierry, A., Edwards, F.K., Figueroa, D., Ibbotson, A.T., Jones, J.I.,
695!
Lauridsen, R.B., Petchey, O.L., Woodward, G., and Ebenman, B. 2011. Seeing
696!
Double: Size-Based and Taxonomic Views of Food Web Structure. Adv. Ecol. 697!
Res. 45: 67–133. doi: 10.1016/B978-0-12-386475-8.00003-4.
698!
Gislason, H., Daan, N., Rice, J.C., and Pope, J.G. 2010. Size, growth, temperature and
699!
the natural mortality of marine fish. Fish Fish. 11(2): 149–158. doi: 700!
10.1111/j.1467-2979.2009.00350.x.
701!
Haldane, J.B.S. 1928. On being the right size. In A treasury of science. Edited by H. 702!
Shapely, S. Raffort, and H. Wright. Harper, New York. pp. 321–325.
703!
!
27!
Hall, S.J., Collie, J.S., Duplisea, D.E., Jennings, S., Bravington, M., and Link, J. 704!
2006. A length-based multispecies model for evaluating community responses to 705!
fishing. Can. J. Fish. Aquat. Sci. 63(6): 1344–1359. doi: 10.1139/f06-039. 706!
Hartvig, M. 2011. Ecological processes yield complex and realistic food webs. In 707!
Food Web Ecology. Lund University. pp. 73–100. 708!
Hartvig, M., and Andersen, K.H. 2013. Coexistence of structured populations with 709!
size-based prey selection. Theor. Popul. Biol. 89: 24–33. doi: 710!
10.1016/j.tpb.2013.07.003. 711!
Hartvig, M., Andersen, K.H., and Beyer, J.E. 2011. Food web framework for size-712!
structured populations. J. Theor. Biol. 272(1): 113–122. 713!
Houle, J.E., Andersen, K.H., Farnsworth, K.D., and Reid, D.G. 2013. Emerging 714!
asymmetric interactions between forage and predator fisheries impose 715!
management trade-offs. J. Fish Biol. 83(4): 890–904. doi: 10.1111/jfb.12163. 716!
Houle, J.E., de Castro, F., Cronin, M.A., Farnsworth, K.D., Gosch, K.D., and Reid, 717!
D.G. 2015. Effects of seal predation on a modeled marine fish community and
718!
consequences for a commercial fishery. J. Appl. Ecol. doi: 10.1111/1365-
719!
2664.12548.
720!
Houle, J.E., Farnsworth, K.D., Rossberg, A.G., and Dave, R. 2012. Assessing the 721!
sensitivity and specificity of fish community indicators to management action.
722!
Can. J. Fish. Aquat. Sci. 69(6): 1065–1079.
723!
Jacobsen, N.S., Essington, T.E., and Andersen, K.H. 2015. Comparing model
724!
predictions for ecosystem based management. Can. J. Fish. Aquat. Sci. doi: 725!
10.1139/cjfas-2014-0561. 726!
Jacobsen, N.S., Gislason, H., and Andersen, K.H. 2014. The consequences of
727!
balanced harvesting of fish communities. Proc. R. Soc. B 281(1775): 20132701.
728!
doi: 10.1098/rspb.2013.2701. 729!
Jennings, S., and Collingridge, K. 2015. Predicting Consumer Biomass, Size-
730!
Structure, Production, Catch Potential, Responses to Fishing and Associated 731!
Uncertainties in the World’s Marine Ecosystems. PLoS One 10(7): e0133794.
732!
Jennings, S., Pinnegar, J.K., Polunin, N.V.C., and Boon, T.W. 2001. Weak cross-
733!
species relationships between body size and trophic level belie powerful size-734!
based trophic structuring in fish communities. J. Anim. Ecol. 70(6): 934–944.
735!
Kleiber, M. 1932. Body size and metabolism. Hilgardia 6: 315–353.
736!
Kolding, J., Jacobsen, N.S., Andersen, K.H., and van Zwieten, P. 2015. Maximizing 737!
fisheries yields while maintaining community structure. Can. J. Fish. Aquat. Sci.
738!
Law, R., Plank, M.J., James, A., and Blanchard, J.L. 2009. Size-spectra dynamics 739!
!
28!
from stochastic predation and growth of individuals. Ecology 90(3): 802–11. 740!
Law, R., Plank, M.J., and Kolding, J. 2014. Balanced exploitation and coexistence of 741!
interacting, size-structured, fish species. Fish Fish. doi: 10.1111/faf.12098. 742!
Lefort, S., Aumont, O., Bopp, L., Arsouze, T., Gehlen, M., and Maury, O. 2014. 743!
Spatial and body-size dependent response of marine pelagic communities to 744!
projected global climate change. Glob. Chang. Biol. doi: 10.1111/gcb.12679. 745!
Lewy, P., and Vinther, M. 2004. A stochastic age-length-structured multispecies 746!
model applied to North Sea stocks. ICES (CM/FF:20): 33 pp. 747!
Maury, O., Faugeras, B., Shin, Y.J., Poggiale, J.C., Ari, T.B., and Marsac, F. 2007a. 748!
Modeling environmental effects on the size-structured energy flow through 749!
marine ecosystems. Part 1: The model. Prog. Oceanogr. 74(4): 479–499. 750!
Maury, O., and Poggiale, J. 2013. From individuals to populations to communities: A 751!
dynamic energy budget model of marine ecosystem size-spectrum including life 752!
history diversity. J. Theor. Biol.: 1–20. doi: 10.1016/j.jtbi.2013.01.018. 753!
Maury, O., Shin, Y.J., Faugeras, B., Ben Ari, T., and Marsac, F. 2007b. Modeling
754!
environmental effects on the size-structured energy flow through marine
755!
ecosystems. Part 2: Simulations. Prog. Oceanogr. 74(4): 500–514.
756!
Neuheimer, A.B., Hartvig, M., Heuschele, J., Hylander, S., Kiørboe, T., Olsson, K., 757!
Sainmont, J., and Andersen, K.H. 2015. Adult and offspring size in the ocean
758!
over 17 orders of magnitude follows two life-history strategies. Ecology.
759!
Persson, L., van Leeuwen, A., and de Roos, A.M. 2014. The ecological foundation for
760!
ecosystem-based management of fisheries: mechanistic linkages between the 761!
individual-, population-, and community-level dynamics. ICES J. Mar. Sci. 762!
71(8): 2268–2280. doi: 10.1093/icesjms/fst231.
763!
Peters, R.H. 1983. The ecological implications of body size. Cambridge University
764!
Press. 765!
Pikitch, E.K., Santora, C., Babcock, E.A., Bakun, A., Bonfil, R., Conover, D.O.,
766!
Dayton, P., Doukakis, P., Fluharty, D., Heneman, B., and others. 2004. 767!
Ecosystem-based fishery management. Science 305(5682): 346–347.
768!
Plagányi, É.E. 2007. Models for an ecosystem approach to fisheries. FAO Fish. Tech.
769!
Pap. (477): 108 p. 770!
Pope, J.G., Falk-Pedersen, J., Jennings, S., Rice, J.C., Gislason, H., and Daan, N.
771!
2009. Honey, I cooled the cods: Modelling the effect of temperature on the
772!
structure of Boreal/Arctic fish ecosystems. Deep Sea Res. Part II 56(21-22): 773!
2097–2107. doi: 10.1016/j.dsr2.2008.11.021.
774!
Pope, J.G., Rice, J.C., Daan, N., Jennings, S., and Gislason, H. 2006. Modelling an 775!
!
29!
exploited marine fish community with 15 parameters–results from a simple size-776!
based model. ICES J. Mar. Sci. 63(6): 1029–1044. 777!
Rall, B.C., Brose, U., Hartvig, M., Kalinkat, G., Schwarzmüller, F., Vucic-Pestic, O., 778!
and Petchey, O.L. 2012. Universal temperature and body-mass scaling of feeding 779!
rates. Philos. Trans. R. Soc. B Biol. Sci. 367: 2923–2934. doi: 780!
10.1098/rstb.2012.0242. 781!
Reuman, D.C., Gislason, H., Barnes, C., Mélin, F., and Jennings, S. 2014. The marine 782!
diversity spectrum. J. Anim. Ecol. 83(4): 963–979. doi: 10.1111/1365-783!
2656.12194. 784!
Rice, J., and Gislason, H. 1996. Patterns of change in the size spectra of numbers and 785!
diversity of the North Sea fish assemblages, as reflected in surveys and models. 786!
ICES J. Mar. Sci. 53: 1214–1225. 787!
Rijnsdorp, A., and Leeuwen, P. Van. 1992. Density-dependent and independent 788!
changes in somatic growth of female North Sea plaice Pleuronectes platessa 789!
between 1930 and 1985 as revealed by back-calculation of otoliths. Mar. Ecol.
790!
Prog. Ser. 88: 19–32.
791!
Rochet, M.-J., and Benoît, E. 2012. Fishing destabilizes the biomass flow in the
792!
marine size spectrum. Proc. Biol. Sci. 279(1727): 284–92. doi: 793!
10.1098/rspb.2011.0893.
794!
Rochet, M.J., Collie, J.S., Jennings, S., and Hall, S.J. 2011. Does selective fishing
795!
conserve community biodiversity? Predictions from a length-based multispecies
796!
model. Can. J. Fish. Aquat. Sci. 68(3): 469–486. 797!
de Roos, A.M., and Persson, L. 2001. Physiologically structured models - from 798!
versatile technique to ecological theory. Oikos 94: 51–71.
799!
De Roos, A.M., and Persson, L. 2002. Size-dependent life-history traits promote
800!
catastrophic collapses of top predators. Proc. Natl. Acad. Sci. U.S.A. 99(20): 801!
12907–12912.
802!
de Roos, A.M., Schellekens, T., van Kooten, T., van de Wolfshaar, K., Claessen, D., 803!
and Persson, L. 2008. Simplifying a physiologically structured population model
804!
to a stage-structured biomass model. Theor. Popul. Biol. 73(1): 47–62. doi:
805!
10.1016/j.tpb.2007.09.004. 806!
Rossberg, A.G. 2012. A complete analytic theory for structure and dynamics of
807!
populations and communities spanning wide ranges in body size. Adv. Ecol. Res.
808!
46: 429–522. 809!
Rossberg, A.G. 2013. Food Webs and Biodiversity: Foundations, Models, Data.
810!
Wiley. 811!
Rossberg, A.G., and Farnsworth, K.D. 2011. Simplification of structured population
812!
!
30!
dynamics in complex ecological communities. Theor. Ecol. 4: 449–465. doi: 813!
10.1007/s12080-010-0088-7. 814!
Rossberg, A.G., Houle, J.E., and Hyder, K. 2013. Stock–recruitment relations 815!
controlled by feeding interactions alone. Can. J. Fish. Aquat. Sci. 70: 1447–816!
1455. doi: 10.1139/cjfas-2012-0531. 817!
Scott, F., Blanchard, J.L., and Andersen, K.H. 2014. mizer: an R package for 818!
multispecies, trait-based and community size spectrum ecological modelling. 819!
Methods Ecol. Evol. doi: 10.1111/2041-210X.12256. 820!
Sheldon, R., and Prakash, A. 1972. The size distribution of particles in the ocean. 821!
Limnol. Oceanogr. XVII(May): 327–340. 822!
Sheldon, R.W., and Parsons, T.R. 1967. A continuous size spectrum for particulate 823!
matter in the sea. J. Fish. Res. Board. Canada. 24(5): 909–915. 824!
Sheldon, R.W., Sutcliffe Jr., W.H., and Paranjape, M.A. 1977. Structure of pelagic 825!
food chain and relationship between plankton and fish production. J. Fish. Res. 826!
Board Canada 34: 2344–2353.
827!
Silvert, W., and Platt, T. 1978. Energy flux in the pelagic ecosystem: a time-
828!
dependent equation. Limnol. Oceanogr. 23(4): 813–816.
829!
Spence, M.A., Blackwell, P.G., and Blanchard, J.L. 2015. Parameter uncertainty of a 830!
dynamic multi-species size spectrum model. Can. J. Fish. Aquat. Sci.
831!
Sprules, W.G., and Barth, L.E. (n.d.). Surfing the biomass size spectrum: some
832!
remarks on history, theory, and application. Can. J. Fish. Aquat. Sci.: this issue.
833!
Thorpe, R.B., Le Quesne, W.J.F., Luxford, F., Collie, J.S., and Jennings, S. 2015. 834!
Evaluation and management implications of uncertainty in a multispecies size-835!
structured model of population and community responses to fishing. Methods
836!
Ecol. Evol. 6(1): 49–58. doi: 10.1111/2041-210X.12292.
837!
Ursin, E. 1973. On the prey size preferences of cod and dab. Meddelelser fra 838!
Danmarks Fisk. og Havundersøgelser 7: 85–98.
839!
Werner, E.E., and Gilliam, J.F. 1984. The ontogenetic niche and species interactions 840!
in size-structured populations. Ann. Rev. Ecol. Syst. 15: 393–425.
841!
West, G.B., Brown, J.H., and Enquist, B.J. 2001. A general model for ontogenetic
842!
growth. Nature 413: 628–631. 843!
Winberg, G.G. 1956. Rate of metabolism and food requirements of fishes. J. Fish.
844!
Res. Board Canada 194: 1–253.
845!
Woodworth-Jefcoats, P., Polovina, J., Howell, E., and Blanchard, J. 2015. Two takes 846!
on the ecosystem impacts of climate change and fishing: comparing a size-based
847!
and a species-based ecosystem model in the central North Pacific. Prog. 848!
!
31!
Oceanogr. doi: 10.1016/j.pocean.2015.04.004. 849!
Woodworth-Jefcoats, P.A., Polovina, J.J., Dunne, J.P., and Blanchard, J.L. 2013. 850!
Ecosystem size structure response to 21st century climate projection: Large fish 851!
abundance decreases in the central North Pacific and increases in the California 852!
Current. Glob. Chang. Biol. 19(3): 724–733. doi: 10.1111/gcb.12076. 853!
Worm, B., Hilborn, R., Baum, J.K., Branch, T.A., Collie, J.S., Costello, C., Fogarty, 854!
M.J., Fulton, E.A., Hutchings, J.A., Jennings, S., Jensen, O.P., Lotze, H.K., 855!
Mace, P.M., McClanahan, T.R., Minto, C., Palumbi, S.R., Parma, A.M., Ricard, 856!
D., Rosenberg, A.A., Watson, R., and Zeller, D. 2009. Rebuilding global 857!
fisheries. Science 325(5940): 578–85. doi: 10.1126/science.1173146. 858!
Zhang, C., Chen, Y., and Ren, Y. 2015. Assessing uncertainty of a multispecies size-859!
spectrum model resulting from process and observation errors. ICES J. Mar. Sci. 860!
doi: doi:10.1093/icesjms/fsv086. 861!
Zhang, L., Hartvig, M., Knudsen, K., and Andersen, K.H. 2013. Size-based 862!
predictions of food web patterns. Theor. Ecol. 7(1): 23–33.
863!
Zhang, L., Thygesen, U.H., Knudsen, K., and Andersen, K.H. 2012. Trait diversity
864!
promotes stability of community dynamics. Theor. Ecol. 6(1): 57–69. doi:
865!
10.1007/s12080-012-0160-6. 866!
Zijlema, M. 1996. On the construction of a third-order accurate monotone convection
867!
scheme with application to turbulent flows in general domains. Int. J. Numer.
868!
Methods Fluids 22: 619–641.
869!
!870!
! 871!
!
32!
872!
873!
4*'=&3HI3J"9&)1+1?3&:0*(+"1,3"!3(5&3!0==3!""#$%&'3/"#&=I33K0',.)+7(3L+M3)&!&),3("3,7&.+&,310/'&)I!874!
D1."01(&)3*1#3."1,0/7(+"13
!
!!Prey!size!selection!
v#Lwxy
#-f\g ;rz eA#Lwxy
#
&
i".dA
&$!
M1!
!!Clearance!rate!
{
A# - _A#b''|}~•''_A-H
F^AeA
`ab
/ ; H
F.c2€dA
!
M2!
!!Encountered!food!
•A# - {
A"#$ ‚Aƒ
ƒ
v#Lwxy
#!ƒ#Lwxy #Lwxy(#Lwxy
∞
F
!
M3!
!!Maximum!consumption!
rate!
„TUV1A"#$ - ^A#`!
M4!
!!Feeding!level!
H
A# - •A"#$
•A# < „TUV1A"#$!
M5!
J)"%(53*1#3)&7)"#0.(+"13
!!Maturation!function!
… # - / < #
†AW
A
a%F a% #
W
A
%a`
!
M6!
!!Somatic!growth!
CA# - ‡H
A# „TUV1A ; IA#K"/ ; … # $!
M7a!
!
C # - ˆ ‡H # „TUV ; I#K"/ ; … # $!
M7b!
!!Egg!production!
C€# - ‡H
A# „TUV1A ; IA#K… # !
M8a!
!
C€# - ˆ ‡H # „TUV ; I#K… # !
M8b!
N"01#*)23."1#+(+"13
!!Population!egg!
production!
GL1A -u
.#F
!A# C€# '(#
‰Š
)‹
!
M9!
!!Recruitment!
GA- GTUV1A
GL1A
GTUV1A < GL1A
!
M10!
!!Boundary!condition!
!A#FC #F- GA!
M11!
!
33!
A")(*=+(23
!!Background!mortality!
DF- qFW
AŒ!
M12!
!!Predation!mortality!
DL1A #Lwxy - v #Lwxy
#/ ; H
ƒ# {
ƒ# ‚Aƒ!
ƒ# (#
‰•
)‹
ƒ
'!
M13!
!
@&,"0).&3,7&.()0/3
!!Population!dynamics!
(!w"#$
(B - ŽF#`a% 2"#$ ; !w"#$ ; DL1€ # !€"#$!
M14!
!!Carrying!capacity!
2 # - ' 2w#a3!
M15!
4)*+($'*,/"#&=3
3
3
!!Maximum!
recruitment!
GTUV1A - 2N2 ‡H
F^#F
`; IJ#F
K'W
A
&`abam:n #F
a`an •W
A!
M16!
!!Physiological!
mortality!
o - H
F^
‡H
F^ ; IJ
e&`aba% f\g .O Q ; / ; Q&< / d &
.!
M17!
!875!
!876!
! !877!
!
34!
!878!
4*'=&3OI3K2/'"=,3*1#39*=0&,3"!3,7&.+&,$+1#&7&1#&1(37*)*/&(&),3+13(5&3()*+($'*,*1#3."//01+(23/"#&=,I33879!
!880!
Symbol!
Explanation!
Value!and!unita!
#!
Body!weight!
g!
W!
Asymptotic!body!weight!
g!
!"#$!
Abundance!density!spectrum!
numbers/gram!b!
e!
Preferred!predator-prey!mass!ratio!
100!c!
d!
Width!of!size!preference!
1.3!d!
‚!
Species!preference!
1!
Q!
Exponent!for!clearance!rate!
0.8!!e!
H
F!
Initial!feeding!level!
0.6!!f!
‡!
Assimilation!efficiency!
0.6!
^!
Factor!for!maximum!consumption!
20!g0.25yr-1!!!!g!
O!
Exponent!for!maximum!consumption!
¾!!h!
IJ!
Factor!for!standard!metabolism!
2.4!g0.25yr-1!
P!
Exponent!for!standard!metabolism!
¾!!h!
†3
Ratio!between!size!at!maturation!and!W!
0.25!(0.01)!!i!
2N!
Constant!for!max.!recruitment!
1.7!!!!g!
u!
Efficiency!of!reproduction!
0.1!!!j!
#F!
Egg!size!
1!mg!!!k!
qF!
Factor!for!background!mortality!
2!g0.25yr-1!!!!l!
•!
Exponent!for!background!mortality!
-0.25!!!!m!
ŽF!
Resource!productivity!
4!g0.25yr-1!!!!n!
#‘’“!
Maximum!size!of!resource!
1!g!!o!
2€!
Resource!carrying!capacity!
1012!g-1!!!b,!g!
!
35!
aValues!in!parentheses!refers!to!the!community!model!
bThe!units!of!the!abundance!density!spectrum!could!also!be!expressed!as!a!concentration,!i.e.,!as!
numbers/gram/volume!or!numbers/gram/area.!In!that!case!the!units!of!the!resource!carrying!capacity!
should!also!be!changed!accordingly.!Further,!the!units!of!the!clearance!rate!would!become!volume!per!time!
or!area!per!time!respectively.!
c!Ursin!1973;!Jennings!et!al.!2001.!
d!Ursin!(1973)!finds!d - /,!but!here!d!is!increased!to!represent!cross-species!variation.!In!the!food-web!
model'd - /!except!if!specific!knowledge!about!a!species!exists.!
e!Andersen!and!Beyer,!2006.!
f!!Assumes!that!fish!in!general!are!not!satiated!(H
FY /$!while!also!have!a!signifant!surplus!after!assimilation!
and!standard!metabolism,!i.e,!larger!than!IJi"‡^$ - 01.1'Setting!H
F!in!the!middle!of!the!range!0.2…1!gives!
0.6.!See!also!Hartvig!et!al.!(2011),!App.!E.!
g!!Adjusted!to!give!similar!results!to!the!North!Sea!model!(Blanchard!et!al.!2014),!despite!the!use!of!different!
exponent!for!O;!see!text!and!Figure!2.!
h!!See!text.!
i!!Beverton,!1992.!
j!!Andersen!and!Beyer!(2013).!Note!that!this!differs!from!the!North!Sea!model!(Blanchard!et!al.!2014),!
where!a!value!of!u - /!was!used.!This!will!(in!the!North!Sea!model)!lead!to!overestimations!of!”
T•y!for!
individual!species.!
k!!!Neuheimer!et!al.,!2015.!
l!!!This!value!leads!to!a!background!mortality!on!a!10!kg!individual!of!0.2!yr-1.!These!individuals!will!have!
little!predation!mortality!in!the!model,!so!background!mortality!is!the!largest!part.!See!also!discussion.!
m!!!!Standard!“metabolic”!assumption!(Brown!et!al.!2004).!
n!!!Hartvig!et!al.,!2011.!
o!!!Set!to!include!mesoplankton,!such!as!shrimps.!
!881!
3 3882!
!
36!
3883!
4*'=&3P3Implementations!of!size!spectrum!models.!References!are!given!to!where!a!particular!884!
model!was!first!formulated!or!calibrated!to!specific!system,!but!not!to!applications!of!the!models.!885!
The!column!“growth”!refers!to!the!functional!response!used!to!calculate!growth!rate.!886!
Reference!
Growth!
Reproduction!
Resource!
Density!dependence!
B""#$%&'3/"#&=,3
!
!
!
!
Hall!et!al.!2006,!
Rochet!et!al.!2011!
Fixed!
Fixed!
N.a.!
Stock-recruitment!
Hartvig!2011,!Hartvig!
et!al.!2011!
Type!II!
Dynamic!
Dynamic!
Emergent!
Houle!et!al.!2012,!
Blanchard!et!al.!2014!
Type!II!
Dynamic!
Dynamic!
Stock-recruitment!
Rossberg!et!al.!2013!
Type!II!
Dynamic!
Dynamic!
Emergent!
4)*+($'*,/"#&=,3
!
!
!
!
Pope!et!al.!2006,!2009!
Fixed!
Fixed!
N.a.!
Stock-recruitment!
relationship!
Andersen!and!
Pedersen!2010!
Type!II!
Fixed!
Dynamic!
Fixed!recruitment!
Houle!et!al.!2013;!
Jacobsen!et!al.!2014!
Type!II!
Dynamic!
Dynamic!
Stock-recruitment!
relationship!
Maury!and!Poggiale!
2013!
Type!II!
Dynamic!
Dynamic!
Switching!
8"//01+(23/"#&=,3
!
!
!
!
Benoît!and!Rochet!
2004;!Blanchard!et!al.!
2009;!Law!et!al.!2009!
QHR!
!
Type!I!
N.a.!
Fixed!
Fixed!boundary!
condition!
Blanchard!et!al.!2011!
Type!I!&!
Dynamic!
Fixed!
Fixed!boundary!
!
37!
3887!
QHR3G"(&3(5*(3S*%3&(3*=I3QOTTUR30,&,3*3,=+?5(=23#+!!&)&1(3."1,&)9*(+"13&:0*(+"13(5*13(5&3888!
"(5&)3/"#&=,I3889!
!3890!
II!
condition!
Maury!et!al.!2007!!
Type!II!
Dynamic!
Dynamic!
!
This!article!
Type!II!
N.a.!!
Dynamic!
Fixed!boundary!
condition!
!
38!
!891!
!!892!
B+?0)&3HI3>==0,()*(+"13"!3(5&3,+6&3,7&.()0/3.*=.0=*(+"13"!33!")3*3,7&.+&,3Q(5+13'=*.C3=+1&R3!)"/3(5&37&),7&.(+9&3"!3893!
*13+1#+9+#0*=3*(3*3?+9&13,+6&I3;==37)".&,,&,3+1,+#&3(5&3"9*=3*)"01#3(5&3!+,53*)&3+1#+9+#0*=3=&9&=37)".&,,&,V3%+(53894!
#*)C3?)&23*))"%,3)&7)&,&1(+1?3/*,,3!="%,3*1#3(5&3=+?5(3?)&23*))"%3)&7)&,&1(+1?3/")(*=+(23=",,&,I345&3,.*=+1?3895!
!)"/3+1#+9+#0*=3=&9&=37)".&,,&,3"!3?)"%(5V3&??37)"#0.(+"13*1#37)&#*(+"13*)&3!*.+=+(*('23(5&3A.W&1#)+.$9"13896!
B"&),(&)3&:0*(+"13Q&:I3HR3*1#3(5&3'"01#*)23."1#+(+"13QAHHRI345&37)".&,,3+,3+(&)*(+9&3%+(53(5&3,+6&3,7&.()0/3897!
'&+1?31&&#("3.*=.0=*(&3(5&37"70=*(+"1$=&9&=3/&*,0)&,3"!3)&7)"#0.(+"13*1#3)&.)0+(/&1(I345&310/'&),3)&!&)3898!
("3(5&3&:0*(+"1,3+134*'=&3HI3 3899!
!"#$%"&'(
)*+,"-+).
/001213,&1$"
)4+,"-+)5
6'071(,&1$"
)8
),&%(,&1$"
)9
:($;&<
)8
!==+7($ ->
)?
6'7($-%#&1$"
)@
6'#(%1&2'"&
)AB
C1D'+07'#&(%2
'E>+A+F+)AA
C%1&, G3'+7('H I('-,&$(0
J"-1K1-%,3+ 01D 'L+w
M1$2,00+07'#&(%2L+B3$=NwO
PQQ07(1"=+ 01D'L+w0
!
39!
900!
B+?0)&3OI3K"=0(+"1,3"!3(5&3."//01+(23/"#&=3Q=&!(3."=0/1RV3(5&3()*+($'*,/"#&=3Q/+##=&3."=0/1RV3(5&3G")(53901!
K&*3!""#$%&'3/"#&=3Q)+?5(3."=0/1R3*1#3(5&3&:0+=+')+0/3,"=0(+"13Q#*,5=+1&,R3+13*1301$!+,5,+(0*(+"13*,3*3902!
!01.(+"13"!3'"#23/*,,I34"7X3N+"/*,,3,+6&3,7&.()*3+13(5&3LK5&=#"13,.*=+1?Y3#&7+.(+1?3'+"/*,,3+13="?$,7*.,+6&3903!
?)"07,V3,5"%+1?3."//01+(23,7&.()0/3Q(5+.CRV3'*.C?)"01#3,7&.()0/3Q(5+.C3?)&2RV3,7&.+&,3,7&.()*3Q(5+13?)&2R3904!
*1#3(5&3(5&")&(+.3*9&)*?&3,7&.()0/3!)"/3(5&3&:0+=+')+0/3,"=0(+"13Q#*,5&#RI3A+##=&X3?)"%(53)*(&,3Q,"=+#R3905!
."/7*)("3(5&3/*Z+/0/37",,+'=&3?)"%(53)*(&3%5&13!*#3=+'+(0/3Q#*,5&#[3!")3(5&3!""#$%&'3/"#&=3(5+,3+,3*13906!
*9&)*?&3"9&)3*==3,7&.+&,RI3N"(("/X3*9&)*?&37)&#*(+"13/")(*=+(2V3Q,"=+#RV3!")3&*.53,7&.+&,3Q?)&2R3*1#3!)"/3(5&3907!
&:0+=+')+0/3,"=0(+"13Q#*,5&#RI3G"(&3(5*(3+13(5&3()*+($'*,/"#&=3*==3*,2/7("(+.3,+6&3.=*,,&,3&Z7&)+&1.&3(5&3908!
,*/&37)&#*(+"13/")(*=+(23,+1.&3!&&#+1?3+,3"1=23'*,"13,+6&I3909!
! !910!
Community model
108
109
1010
1011
1012
1013
Sheldon spectra (g)
(a)
10-1
101
103
105
Growth (g/year)
(d)
10-3 10-1 10110 310 5
0
2
4
6
Mortality (year-1 )
(g)
Trait-based model
(b)
(e)
10-3 10-1 10110 310 5
Body mass (g)
(h)
Food-web model
(c)
(f)
10-3 10-1 10110 310 5
(i)
!
40!
!911!
!912!
B+?0)&3PI3@&,7"1,&3("3!+,5+1?3"13(5&3."//01+(23!")3(5&3G")(53K&*3!""#$%&'3/"#&=3Q?)&2RV3(5&3()*+($'*,/"#&=3913!
Q,"=+#3'=*.CR3*1#3(5&3."//01+(23/"#&=3Q#*,5'=*.CRI3K+6&3,7&.()*3*)&3,5"%13)&=*(+9&3("3(5&301!+,5,+6&3914!
,7&.()*3!)"/3B+?0)&3OI3*R3@&,7"1,&3("3!+,5+1?3*==3,7&.+&,3%+(53*3()*%=$(27&3,&=&.(+9+(237*((&)1I3K&=&.(+"13"13&*.53915!
,7&.+&,3,(*)(,3*(3010lW*1#3(5&3!+,5+1?3/")(*=+(23+,3TI\32)$HI3>13(5&3."//01+(23/"#&=3*==3+1#+9+#0*=,3=*)?&)3(5*13916!
HT3?3*)&3!+,5&#I3'R385*1?&,3("3(5&3!+,5."//01+(23+137*1&=3*R3%5&13!")*?&3!+,5+1?3+,3)&/"9&#V3+I&I3!+,5+1?3"13917!
,7&.+&,3%+(53*13*,2/7("(+.3,+6&3,/*==&)3(5*13OTT3?3Q")3+1#+9+#0*=,3,/*==&)3(5*13OTT3?3!")3(5&3."//01+(23918!
/"#&=RI33919!
! !920!
a)
Relative spectra
0.1
0.2
0.5
1
2
5
10
b)
Body mass (g)
10-3 10-1 10110 310 5
Relative spectra
0.2
0.5
1
2
5
!
41!
!921!
B+?0)&3]I3>==0,()*(+"13"!3(5&3(+/&$#&7&1#&1(3,"=0(+"13+13(5&3."//01+(23/"#&=3Q(%"3=&!($/",(3."=0/1,R3*1#3(5&3922!
()*+($'*,/"#&=3Q)+?5($/",(3."=0/1RI34"73)"%X3*9&)*?&3'+"/*,,3,7&.()*3Q,"=+#R3*1#3)*1?&3"!39*)+*(+"13Q?)&23923!
7*(.5RI3N"(("/3)"%X3(5&375*,&$7=*1&3'&(%&&13*37)&23"!3HT3?3*1#3*37)&#*(")3%+(53*3,+6&3"1&37)&#*(")$7)&23/*,,3924!
=*)?&)3Qe/0'C$3+==0,()*(%+(539&)(+.*=3#*,5=+1&,3+13(5&3("73)"%I3S&!(3."=0/1X3."//01+(23/"#&=3%+(53%+#(53925!
"!3,+6&37)&!&)&1.&3d - /1RI3A+##=&3."=0/1X3."//01+(23/"#&=3%+(53d - /I3@+?5(3."=0/1X3()*+($'*,/"#&=3%+(53926!
d - /I3^(5&)37*)*/&(&),3*,3+13B+?,I3O3*1#3PV3&Z.&7(3(5*(3(5&3=*)?&,(3,+6&3"!3(5&3")?*1+,/,3+,3HTTT3C?I33927!
! !928!
10
-3
10
-1
10
1
10
3
10
5
10
0
10
2
10
4
10
6
10
8
10
10
10
12
Sheldon spectrum (g)
(a)
10
3
10
5
10
7
10
9
10
11
10
-2
10
-1
10
0
10
1
10
2
10
3
10
4
10
5
10
6
10
7
10
8
Predator spectrum (g
-1
)
(d)
10
-3
10
-1
10
1
10
3
10
5
Body mass (g)
(b)
10
3
10
5
10
7
10
9
10
11
Prey spectrum (g
-1
)
(d)
10
-3
10
-1
10
1
10
3
10
5
(c)
10
3
10
5
10
7
10
9
10
11
(f)
!
42!
!929!
B+?0)&3\I3;,2/7("(+.3%&+?5(3,7&.()0/3Q&Z(&1#K5&=#"13527"(5&,+,RV3,5"%+1?3("(*=310/'&),3"!3+1#+9+#0*=,3+13930!
="?*)+(5/+.*==23,7*.*,2/7("(+.3%&+?5(3?)"07,3+13*1301!+,5Q?)&2R3*1#3!+,5,+(0*(+"13Q'=*.CR3!)"/3(5&3931!
()*+($'*,/"#&=I345&3,+/0=*(+"13)&,0=(,3*)&3."/7*)("3#*(*3!)"/3(5)&&3#+!!&)&1(3()*%=3,0)9&2,3(Daan!et!al.!932!
2005)I3>(3+,3*,,0/(5*(3(5&3()*%=3,0)9&2,3"1=23)&(*+13+1#+9+#0*=,3=*)?&)3(5*13HT3./I3933!
3934!
!935!
B+?0)&3_I3A*Z+/0/3)&.)0+(/&1(V3G–n— V3!")3(5&3G")(53K&*3/"#&=3Q.+).=&,R3*1#3(5&3()*+($'*,/"#&=3%+(53="?$936!
,7*.&,3*,2/7("(+.3,+6&3?)"07,3Q=+1&R3*1#3%+(53*,2/7("(+.3,+6&3?)"07,3%+(53(5&3,*/&3*,2/7("(+.3,+6&,3*,3+13(5&3937!
G")(53K&*3/"#&=3Q.)",,&,RI3938!
!939!
W1 (g)
10210310410 5
Numbers
106
107
108
109
1010
1011
1012
W1 (g)
10110210310 410 5
Rmax (numbers/yr)
109
1010
1011
1012
1013
1014
1015
!