ArticlePDF Available

Abstract and Figures

Size spectrum models have emerged from 40 years of basic research on how body size determines individual physiology and structures marine communities. They are based on commonly accepted assumptions and have a low parameter set, making them easy to deploy for strategic ecosystem-oriented impact assessment of fisheries. We describe the fundamental concepts in size-based models about food encounter and the bioenergetics budget of individuals. Within the general framework, three model types have emerged that differ in their degree of complexity: the food-web, the trait-based, and the community models. We demonstrate the differences between the models through examples of their response to fishing and their dynamic behavior. We review implementations of size spectrum models and describe important variations concerning the functional response, whether growth is food-dependent or fixed, and the density dependence imposed on the system. Finally, we discuss challenges and promising directions.
Content may be subject to copyright.
!
1!
The$theoretical$foundations$for$size$spectrum$models$of$fish$
1!
communities$$
2!
Ken!H.!Andersen1,!Nis!S.!Jacobsen1!and!K.!D.!Farnsworth2!3!
!
4!
1Center!for!Ocean!Life,!National!Institute!of!Aquatic!Resources!(DTU-Aqua),!Technical!5!
University!of!Denmark,!Charlottenlund!Castle,!DK-2920,!Charlottenlund,!Denmark!6!
2!Institute!of!Global!Food!Security,!Queens!University!Belfast,!97!Lisburn!Road,!Belfast!7!
BT9!7BL,!Northern!Ireland,!UK!!
8!
!9!
Abstract(
10!
Size!spectrum!models!have!emerged!from!40!years!of!basic!research!on!how!body!size!11!
determines!individual!physiology!and!structures!marine!communities.!They!are!based!12!
on!commonly!accepted!assumptions!and!have!a!low!parameter!set,!which!make!them!
13!
easy!to!deploy!for!strategic!ecosystem!oriented!impact!assessment!of!fisheries.!!We!
14!
describe!the!fundamental!concepts!in!size-based!models!about!food!encounter!and!the!15!
bioenergetics!budget!of!individuals.!Within!the!general!framework!three!model!types!
16!
have!emerged!that!differs!in!their!degree!of!complexity:!the!food-web,!the!trait-based!
17!
and!the!community!model.!We!demonstrate!the!differences!between!the!models!
18!
through!examples!of!their!response!to!fishing!and!their!dynamic!behavior.!We!review!
19!
implementations!of!size!spectrum!models!and!describe!important!variations!concerning!20!
the!functional!response,!whether!growth!is!food-dependent!or!fixed,!and!the!density-
21!
dependence!imposed!on!the!system.!Finally!we!discuss!challenges!and!promising!
22!
directions.!23!
!
24!
Key(words:(Ecosystem!approach,!food-web,!ecosystem!based!fisheries!management! !
25!
!
2!
Introduction$26!
Marine!community!models!range!from!the!original!Lotka-Volterra!differential!equations!
27!
to!extremely!complicated!end-to-end!simulations!(Plagányi!2007;!Fulton!et!al.!2011).!In!
28!
the!middle!of!the!range!we!find!size!spectrum!models.!Size!spectrum!models!use!body!
29!
size!of!individuals!to!represent!the!entire!fish!community!as!a!size!distribution.!The!30!
reliance!of!body!size!simplify!the!description!of!predator-prey!interactions,!individual!31!
physiology!and!vulnerability!to!fishing!gear.!This!paper!highlights!one!of!the!important!32!
advantages!of!the!size!spectrum!approach:!a!well-founded!and!unifying!mechanistic!33!
basis!allowing!for!great!explanatory!power!and!parsimonious!use!of!data.!!34!
!35!
Size spectrum models are relevant to fisheries science in the context of!the!ecosystem!36!
approach!to!fisheries!management!(Pikitch!et!al.!2004).!While!single-species!stock!37!
assessments!and!impact!assessment!will!continue!to!be!important!management!tools,!38!
they!need!to!be!supplemented!by!strategic!impact!assessments!at!the!level!of!the!39!
ecosystem.!Such!impact!assessments!assist!the!development!and!implementation!of!40!
strategic!long-term!management!goals!for!the!ecosystem,!e.g.,!how!should!fishing!
41!
pressure!be!distributed!over!the!entire!ecosystem?!How!do!we!balance!exploitation!of!
42!
competing!fisheries!such!as!forage!fisheries!and!consumer!fisheries?!How!do!we!
43!
maximize!the!yield!(of!biomass!or!wealth)!of!the!entire!ecosystem!while!minimizing!risk!44!
of!failure!or!impoverish!components!of!the!system!under!environmental!change?!To!
45!
answer!these!questions,!we!need!to!quantitatively!understand!the!relationship!between!46!
fishing!practice!(what,!when!and!how!much)!and!the!abundance!of!species!and!sizes!of!47!
organisms!throughout!the!community.!!!
48!
!
49!
Size!spectrum!models!are!especially!suited!to!these!questions!because!they!resolve!the!
50!
most!import!aspects!of!fish!life!history!and!trophic!ecology.!A!key!characteristic!of!fish!is!
51!
that!individuals!grow!through!several!orders!of!magnitude!in!body!size!through!their!52!
!
3!
life.!This,!combined!with!the!strong!relationship!between!body-size!and!trophic!niche!53!
(Barnes!et!al.!2008;!Gilljam!et!al.!2011),!means!that!individuals!change!their!trophic!
54!
niche!throughout!ontogeny!(Werner!and!Gilliam!1984).!Such!ontogenetic!trophic!niche!
55!
shifts!makes!it!difficult!to!apply!the!conventional!food-web!approach,!where!each!
56!
species!is!described!by!a!single!metric!(abundance!or!biomass)!and!a!specific!trophic!57!
level,!to!fish!communities.!The!relation!between!body!size!and!trophic!niche!has!58!
prompted!the!hypothesis!that!individual!body!size!(rather!than!species!identity)!is!the!59!
primary!determinant!of!community!structure!(Jennings!et!al.!2001).!60!
!61!
Size!spectrum!models!are!based!upon!the!long!tradition!in!ecology!of!recognizing!body!62!
size!as!a!central!trait!to!describe!individuals!(Elton!1927;!Haldane!1928;!Andersen!et!al.!63!
2016a)!because!it!correlates!strongly!with:!metabolism!(Kleiber!1932;!Winberg!1956,!64!
Brown!et!al.!2004),!predator-prey!relations!(Ursin!1973;!Barnes!et!al.!2008),!encounter!65!
rates!(Acuña!et!al.!2011),!functional!responses!(Rall!et!al.!2012),!reproductive!effort,!and!66!
other!vital!rates!(Peters!1983).!For!application!to!fisheries,!body!size!furthermore!is!an!67!
excellent!descriptor!of!mesh-size!regulations!and!characterizes!the!value!of!a!catch!
68!
(Andersen!et!al.!2015).!Finally,!distributions!of!abundance!vs.!size!show!a!remarkable!
69!
regularity!(Sheldon!and!Prakash!1972;!Sheldon!et!al.!1977;!Boudreau!and!Dickie!1992)!
70!
and!deviations!from!this!regularity!has!been!used!to!characterize!ecosystem!level!71!
impact!of!fishing!(Rice!and!Gislason!1996;!Daan!et!al.!2005).!The!size!spectrum!
72!
modeling!paradigm!promises!a!“charmingly!simple”!(Pope!et!al.!2006)!set!of!tools!with!a!73!
low!to!intermediate!complexity!that!can!be!readily!deployed!for!a!given!system!and!74!
provide!quantitative!information!about!the!ecosystem!impact!of!fishing!(Collie!et!al.!
75!
2014).!This!makes!it!possible!to!apply!the!models!in!situations!where!more!complex!but!
76!
also!data-demanding!end-to-end!models!cannot!be!employed!either!because!of!lack!of!
77!
data!or!manpower!to!calibrate!and!run!them.!
78!
!79!
!
4!
The!various!types!of!size!spectrum!model!can!be!viewed!as!different!developments!of!80!
the!same!core!concepts.!We!review!the!common!basic!concepts!behind!size!spectrum!
81!
models!focusing!on!models!that!describe!an!entire!fish!community.!Among!them!we!
82!
recognize!three!broad!classes!of!decreasing!levels!of!complexity.!Most!complex!are!the!
83!
!""#$%&'’!models,!so!called!because!they!explicitly!represent!individual!populations!84!
with!species-specific!energy!budget!parameters!and!prey!preferences,!thereby!85!
quantifying!a!network!of!trophic!interactions!as!an!explicit!food-web.!These!are!86!
simplified!into!the!‘()*+($'*,&#’!models!by!reducing!differences!among!the!populations!87!
to!a!single!continuous!variable!representing!a!trait!(usually!maturation!size)!and!88!
simplifying!prey!selection!to!a!fixed!predator-prey!body!size!ratio.!Further!simplification!89!
produces!the!-."//01+(2-!size!spectrum!models,!so!called!because!they!ignore!90!
differences!among!populations!thereby!representing!the!community!as!a!single!91!
population!of!interacting!individuals!that!differ!only!in!their!body-size.!We!explain!how!92!
the!simpler!models!can!be!derived!from!the!more!complex,!starting!from!the!food-web!93!
and!ending!with!the!community!model.!Further!we!develop!analytical!“equilibrium”!94!
solutions!to!the!models.!We!illustrate!the!models’!behavior,!in!particular!their!response!
95!
to!fishing,!and!finally!discuss!challenges!and!open!issues!for!further!development.!
96!
Concepts$underlying$size$spectrum$models$
97!
Size!spectrum!models!are!founded!on!three!common!concepts:!First,!biomass!(and!98!
equivalent!energy)!is!conserved,!enabling!accountancy!of!energy!flows!at!the!
99!
community!level!based!on!individual!level!processes.!Second,!trophic!interactions!are!100!
the!main!determinant!of!community!structure!and!these!are!foremost!determined!by!101!
predator-prey!size!ratios.!!Third,!the!energy!budget!of!an!individual!is!allometrically!
102!
linked!to!body!size,!so!that!body!size!can!be!used!as!a!key!identifier!of!organisms!and!
103!
their!interactions!with!the!community.!The!three!main!ecological!processes!for!any!104!
organism!are!growth,!reproduction!and!mortality!and!all!three!can!be!linked!to!body!
105!
!
5!
size!in!this!modeling!framework.!This!simplification!has!great!strategic!value!as!it!106!
enables!ecological!measures!such!as!production!rate!and!size!structure!(which!are!107!
important!for!ecosystem!based!fisheries!management)!to!be!derived!from!relatively!108!
little!and!accessible!data!about!physiology!and!life!history!invariants.!The!equations!for!109!
the!models!used!in!the!examples!to!follow!are!provided!in!Table!1!and!parameters!in!110!
Table!2.!111!
3112!
45&3,+6&3,7&.()0/3113!
The!size!spectrum!represents!abundance!or!biomass!of!individuals!as!a!function!of!their!114!
body!size.!In!this!context!‘body!size’!usually!means!body!mass!because!it!is!the!natural!115!
metric!to!formulate!an!energy!budget.!116!
!117!
Three!size!spectrum!representations!are!common!in!the!literature!(Sprules!and!Barth,!118!
this!issue;!Andersen!and!Beyer!2006;!Rossberg!2012):!the!abundance!density!spectrum,!119!
the!biomass!density!spectrum!and!the!“Sheldon”!biomass!spectrum.!The!abundance!
120!
density!spectrum!!"#$!represents!the!number!of!individuals!in!the!body!mass!range!
121!
from!#%!to!#&!as! ! # '(#
)*
)+,!and!here!it!is!referred!to!as!the!size!spectrum!for!brevity.!
122!
It!can!be!constructed!from!observations!by!dividing!the!total!number!of!individuals!in!a!123!
size!class!by!the!width!of!the!size!class!and!therefore!has!dimensions!of!numbers!per!
124!
mass!(often!referred!to!as!the!“normalized!size!spectrum”;!Sprules!and!Barth,!this!
125!
issue).!The!biomass!density!spectrum!is!constructed!from!the!abundance!density!
126!
spectrum!by!multiplying!with!body!mass!! # #!(dimensions!biomass!per!mass).!The!127!
“Sheldon”!biomass!spectrum!(Sheldon!and!Parsons!1967)!is!the!biomass!in!128!
logarithmically!wide!classes,!i.e.,!the!biomass!in!the!range!#!to!,#!where!,!is!a!constant!
129!
larger!than!one!determining!the!width!of!the!size!class.!For!example,!the!“octave”!bin!
130!
used!by!Sheldon!implies!, - .,!and!normal!log10!base!implies!, - /01!If!we!assume!that!131!
the!abundance!density!spectrum!follows!a!power-law!! # - 2# 3!within!the!class!then!
132!
!
6!
the!biomass!spectrum!can!be!found!as:!133!
!134!
4567 # - ! 8 8'(8
9)
)
- 2 ,&:3 ; /
. < = #&:3 > #&! # ?!135!
!136!
where!8!is!a!dummy!variable!for!the!integration.!All!terms!except!#&:3 !are!independent!137!
of!size,!hence!the!biomass!spectrum!is!proportional!to!the!number!density!spectrum!138!
multiplied!by!the!body!mass!squared.!For!mathematical!analyses!the!density!spectra!are!139!
convenient!because!integrals!over!these!give!the!abundance!and!biomass.!For!140!
presentation!purposes!the!Sheldon!biomass!representation!#&!"#$!is!convenient!141!
because,!at!the!community!level,!it!shows!how!the!biomass!of!prey!is!distributed!with!142!
size!(assuming!that!the!size!range!of!preferred!prey!is!constant),!and!on!a!species!level!it!143!
is!proportional!to!the!cohort!biomass.3144!
33145!
8"1,&)9*(+"13&:0*(+"13146!
The!size!spectrum!is!calculated!by!considering!a!balance!between!mortality!and!growth!
147!
at!all!body!sizes! #.!Individuals!flow!into!size!classes!via!somatic!growth!whilst!some!
148!
are!lost!to!natural!and!fisheries!mortality.!This!balance!is!formalized!by!the!McKendric-
149!
von!Foerster!equation!(see!Silvert!and!Platt!(1978)!for!a!derivation):!150!
!
151!
@!A#
@B <@CA# !A#
@# - ;DA# !A# ?'''''"/$!
152!
!
153!
where!CA#!is!the!growth!rate!(mass!per!time)!and!DA# 'the!mortality!(per!time),!and!154!
!A#!is!the!size!spectrum!of!species!E.!Thus!eq.!(1)!scales!from!individual-level!155!
processes!of!growth!and!mortality!to!the!population-level!size!spectrum.!Recruitment!
156!
from!the!population!flows!into!the!size!spectrum!at!the!smallest!body!size!(typically!the!
157!
egg!size)!#F.!This!is!represented!as!a!boundary!condition:!158!
!
7!
!159!
CA#F!A#F- GA?'''".$!160!
!161!
where!GA!is!the!recruitment!(number!of!recruits!or!eggs!per!time).!The!above!two!162!
equations!are!mathematical!formalizations!of!a!mass!balance,!and!can!be!thought!of!as!163!
the!size-based!version!of!classic!survivor!analysis!used!in!age-based!models.!!164!
!165!
The!following!outlines!the!central!assumptions!in!the!models!about!how!growth!CA,!166!
mortality!DA'and!reproduction!(recruitment)!GA?!are!calculated.!With!the!partial!167!
exception!of!recruitment!these!are!all!calculated!from!individual!level!processes!of!168!
predator-prey!encounter!and!a!bioenergetic!budget!(Figure!1).!169!
!170!
45&3;1#&),&1$<),+13&1."01(&)3/"#&=3171!
The!key!process!in!the!models!is!predator-prey!encounters!between!individuals!172!
governed!by!a!formalization!of!the!general!rule,!bigger!fish!eat!smaller!fish!!(Andersen!
173!
and!Ursin!1977).!Individuals!prefer!prey!a!certain!fraction!smaller!than!themselves!(M1,!
174!
Table!1)!(Ursin!1973).!The!clearance!rate!(dimensions!time-1)!is!an!increasing!function!
175!
of!body!size!(larger!fish!clear!a!larger!volume!of!water!for!prey!per!time!than!small!fish)!176!
(M2).!The!combination!of!preference,!clearance!rate!and!prey!abundance!specifies!the!
177!
food!encounter!rate!(M3,!biomass!per!time).!Intake!upon!encounter!(“satiation”)!is!
178!
represented!with!a!type!II!functional!response!(M5)!as!the!“feeding!level”!H
A#,!i.e.,!the!
179!
ratio!between!consumption!and!maximum!consumption!(M4)!(dimensionless!number!180!
between!0!and!1).!181!
!
182!
>1#+9+#0*=3&1&)?23'0#?&(33
183!
The!energy!budget!describes!how!consumed!food!is!used!for!maintenance,!activity,!184!
growth!and!reproduction.!Consumed!food!is!assimilated!and!first!used!for!standard!
185!
!
8!
metabolism,!widely!recognized!to!be!an!allometric!function!of!body!mass:!IJ#K.!Juvenile!186!
individuals!use!the!remaining!available!energy!for!growth,!while!mature!individuals!187!
apportion!the!energy!between!growth!and!reproduction!(M6-M8).!The!exact!188!
specification!of!allocation!of!energy!between!growth!and!reproduction!is!not!crucial.!189!
The!one!used!here!ensures!that!when!the!feeding!level!is!constant,!size-at-age!curves!190!
resembles!a!von!Bertalanffy!curve!and!the!gonado-somatic!is!independent!of!body!size!191!
(Hartvig!et!al.!2011).3192!
!193!
@&7)"#0.(+"13*1#3)&.)0+(/&1(33194!
Reproduction!and!recruitment!represent!the!reproductive!output!from!the!entire!195!
population.!The!reproductive!output!GL1A!(numbers!per!time;!M9)!is!discounted!by!a!196!
reproductive!efficiency!M!to!represent!losses!due!to!egg!mortality!and!spawning!effort,!197!
and!used!to!calculate!the!recruitment!GA.!Within!this!context,!recruitment!refers!to!the!198!
rate!of!production!of!new!individuals!from!the!fertilized!egg!stage,!but!it!could!be!done!199!
at!a!later!stage!if!properly!discounted!(Andersen!and!Beyer!2015).!Ideally!the!
200!
recruitment!is!equal!to!the!reproductive!output,!but!many!models!apply!a!stock!
201!
recruitment!relationship!(M10).!The!density!dependence!imposed!by!the!stock!
202!
recruitment!relationship!avoids!the!competitive!exclusion!between!species!that!203!
otherwise!tends!to!occur!(Hartvig!and!Andersen!2013).!The!stock-recruitment!
204!
relationship!contains!two!essential!parameters:!the!“slope”!parameter!that!specifies!
205!
recruitment!at!low!population!sizes!and!the!maximum!recruitment!that!specifies!the!
206!
population!carrying!capacity.!The!slope!parameter!is!given!directly!by!the!egg!207!
production!of!the!population!(Andersen!and!Beyer!2015),!but!the!maximum!recruitment!208!
has!to!be!specified!separately.!This!parameter!represents!all!effects!on!the!population!
209!
that!are!not!explicitly!represented!in!the!model,!such!as!limitations!due!to!juvenile!
210!
habitat!size!that!is!known!to!limit!some!marine!populations!(Rijnsdorp!and!Leeuwen!211!
!
9!
1992).!The!maximum!recruitment!and!possibly!the!recruitment!efficiency!are!key!212!
parameters!for!calibrating!a!model!to!data!from!real!fish!stocks!(see!discussion).!213!
!214!
A")(*=+(2!215!
Three!categories!of!mortality!are!recognized.!First,!predation!mortality!(M13)!emerges!216!
from!the!trophic!dynamics!within!the!system;!second,!intrinsic!or!background!mortality!217!
(M12)!is!usually!represented!as!an!allometric!function!of!asymptotic!size!(Brown!et!al.!218!
2004),!though!starvation!mortality!can!be!explicitly!added!(e.g.,!Hartvig!et!al.!2011);!219!
third,!exogenous!sources!of!mortality!(especially!fishing)!are!often!added.!220!
!221!
@&,"0).&3222!
The!resource!spectrum!!N# 'represents!food!other!than!fish.!The!resource!is!needed!223!
for!the!smallest!individuals!who!are!not!yet!large!enough!to!be!piscivorous!but!it!can!224!
represent!any!kind!of!food:!a!single!size-group!of!small!zooplankton!prey!species,!a!size!225!
spectrum!of!zooplankton!prey!(as!in!Fig.!1),!or!a!size!distribution!including!larger!prey!,!
226!
e.g.!benthic!production.!The!resource!can!be!constant,!in!which!case!the!growth!rate!of!
227!
small!fish!is!fixed,!or!it!can!be!modeled!dynamically,!e.g.,!as!a!semi-chemostat!(M14).!The!
228!
semi-chemostat!formulation!is!convenient!because!it!leads!to!a!very!stable!dynamics!of!229!
the!resource.!Using!logistic!growth!results!in!a!more!pronounced!dynamical!response!of!
230!
the!resource!which!translate!into!stronger!dynamics!of!the!fish!part!of!the!model!(de!
231!
Roos!et!al.!2008).!
232!
Models$types$233!
We!now!briefly!describe!how!these!common!concepts!are!used!to!create!size!spectrum!234!
models!at!three!levels!of!complexity!and!demonstrate!an!approximate!analytical!
235!
solution!for!the!equilibrium.!!
236!
!237!
!
10!
B""#$%&'3/"#&=3238!
In!the!food-web!model,!the!processes!M1!–!M15!are!instantiated!with!all!parameters!239!
from!Table!2!being!species!specific!(either!representing!identified!species!or!240!
hypothetical!ones!matching!relevant!criteria),!but!in!practice!some!parameters!are!241!
usually!cross-species!constants,!such!as!the!exponents!O? P!and!Q.!Populations,!thus!242!
identified!as!different!species,!interact!through!predator-prey!relations!with!interaction!243!
strengths!specified!by!an!interaction!matrix,!which!represents!a!combination!of!species-244!
specific!preferences!and!encounter!probabilities.!This!matrix!could!be!populated!with!245!
empirical!interaction!coefficients!derived!from!stomach!content!analyses,!spatial!246!
overlap!(Blanchard!et!al.!2014),!or!it!may!represent!hypothetical!distributions!--!random!247!
and!uniform!(everything!eats!everything!else)!interaction!networks!are!popular!248!
hypotheses.!A!fully!specified!food-web!model!has!14!parameters!for!each!species,!plus!249!
an!interaction!matrix,!so!for!C!species!the!total!is!up!to!R < /SI < I&!parameters.!!250!
!251!
4)*+($'*,&#3/"#&=33
252!
The!trait-based!model!represents!differences!among!species!only!by!the!governing!trait!
253!
of!asymptotic!size!(Pope!et!al.!2006).!This!assumes!that!the!most!important!trait!is!the!
254!
asymptotic!size!(or,!equivalently,!size!at!maturation),!which!embodies!a!trade-off!255!
between!reproductive!output!and!asymptotic!size.!!The!trait-based!model!is!
256!
conceptually!derived!from!the!food-web!model!by!assuming!that!all!parameters!in!Table!
257!
2!are!cross-species!constants!and!by!using!theoretical!arguments!to!determine!GTUV!as!a!
258!
function!of!W!(appendix!A).!Feeding!interaction!are!solely!determined!by!individual!259!
size.!The!solution!is!the!trait!size!spectrum!!"#? W$!(dimensions!numbers!per!mass!per!260!
asymptotic!mass)!describing!the!joint!distribution!of!individual!and!asymptotic!sizes!
261!
(Andersen!and!Beyer!2006).!In!numerical!implementations!the!asymptotic!size!axis!is!
262!
discretized,!typically!into!logarithmic!‘bins’!grouping!species!in!asymptotic!size!classes.!263!
In!practice,!the!results!of!the!trait-based!model!are!effectively!independent!of!the!
264!
!
11!
number!of!simulated!asymptotic!size!classes!once!this!number!is!greater!than!10.!The!265!
trait-based!model!is!specified!with!the!18!parameters!in!Table!2.!!266!
!267!
8"//01+(23/"#&=33268!
The!community!model!ignores!all!differences!between!species!and!only!considers!269!
differences!in!size!(Benoît!and!Rochet!2004).!It!can!be!derived!from!the!trait-based!and!270!
food-web!models!by!integrating!over!all!trait-classes!or!summing!over!species!(Zhang!et!271!
al.!2012):!272!
!273!
!9# - ! #? W '(W
)
- !A"#$
AX%
1!274!
!275!
The!integral!only!runs!from!#!because!asymptotic!size!groups!with!# Y W!does!not!276!
contribute!to!the!community!spectrum!at!size!#.!The!community!model!only!resolves!277!
the!‘community!spectrum’!!9"#$.!Substantial!consequences!arise!because!this!model!is!278!
unable!to!represent!maturation,!reproduction!and!recruitment.!The!energy!budget!(M6-
279!
M8)!is!simplified!such!that!growth!is!solely!available!energy!multiplied!by!an!“average!
280!
growth!efficiency”!derived!from!equilibrium!theory!(M7b;!Appendix!A).!Because!
281!
energetic!losses!to!reproduction!are!not!explicitly!accounted!for,!the!model!will!not!282!
reproduce!von!Bertalanffy!growth.!Further,!most!implementations!in!the!literature!use!
283!
just!a!linear!functional!response,!ignore!standard!metabolism!and!use!a!fixed!resource!
284!
(Table!3),!however,!these!simplifications!are!not!significant!for!the!community!model.!In!
285!
its!most!comprehensive!form,!the!community!model!requires!only!11!parameters!(less!286!
without!the!functional!response!and!with!fixed!resource).!287!
!
288!
D:0+=+')+0/3,"=0(+"1,3
289!
!
12!
Analytical!solutions!to!the!trait-based!model!can!be!derived!under!the!assumption!that!290!
the!feeding!level!is!constant!H # - H
F!and!that!the!spectrum!is!infinitely!long,!i.e.!#F-291!
0!and!Z[\ W -
!(Andersen!and!Beyer!2006;!Hartvig!et!al.!2011).!This!results!in!an!292!
‘equilibrium!community!spectrum’:!293!
!294!
!9# - /
]
H
F
/ ; H
F
^
_#`a&ab '"R$'!295!
!296!
with!] - .cdeb a` f\g'h Q ; O &d&i.$j.!The!scaling!exponent!O ; . ; Q k ;.10l!is!in!297!
accordance!with!observations!(Boudreau!and!Dickie!1992).!The!equilibrium!solution!for!298!
each!species!spectrum!is:!!299!
! #? W > 2W&`abam:n #a`an / ; #
W
%a` ni"%a`$
'"S$3300!
!301!
with!the!“physiological!mortality”!o!given!in!(M17).!This!result!is!used!to!calculate!302!
expected!scaling!solutions!to!predation!mortality,!the!scaling!of!maximum!recruitment!303!
with!asymptotic!size!used!in!the!trait-based!models,!and!the!average!growth!efficiency!
304!
in!the!community!model!(Appendix!A).!Note!that!the!solution!in!eq.!(4)!does!not!fulfill!
305!
the!boundary!condition!(M9);!the!total!reproductive!output!calculated!from!(4)!will!lead!
306!
to!a!life-time!reproductive!output!larger!than!1!and!increasing!with!asymptotic!size!307!
(discussed!in!Hartvig!et!al.!2011!and!Rossberg!2012).!This!discrepancy!has!to!be!
308!
resolved!by!density-dependent!effects!within!each!population!not!accounted!for!in!(4),!
309!
and!it!has!been!used!to!relate!the!slope!parameter!in!stock-recruitments!relationship!to!
310!
asymptotic!size!(Andersen!and!Beyer!2015).!In!the!dynamical!models!the!emergent!311!
physiological!mortality!depends!on!asymptotic!size,!with!smaller!species!having!a!312!
smaller!o!than!larger!(Hartvig!et!al.!2011),!in!accordance!with!empirical!measurements!
313!
of!how!mortality!depends!on!asymptotic!size!(Gislason!et!al.!2010).!Even!though!(4)!is!
314!
!
13!
not!an!exact!solution!of!the!entire!model,!it!is!still!a!useful!approximation,!as!315!
demonstrated!by!its!ability!to!resolve!species!diversity!(Reuman!et!al.!2014).!316!
!317!
The!equilibrium!results!all!rely!on!the!metabolic!assumption!inherent!in!the!functional!318!
response!where!consumption!is!proportional!to!#`.!If!a!functional!response!is!not!used!319!
the!solution!for!the!exponent!of!the!community!spectrum!will!differ!from!eq.!(3).!In!320!
particular!it!will!not!depend!on!the!metabolic!exponent!O,!but!rather!on!the!preferred!321!
predator-prey!mass!ratio!e!(Benoît!and!Rochet!2004;!Datta!et!al.!2010;!Rossberg!2012).!322!
Such!solutions!will!result!in!consumption!rates!that!do!not!follow!metabolic!scaling.!!323!
!324!
E*)*/&(&),3325!
Parameters!are!either!determined!from!knowledge!about!the!specific!species!(for!the!326!
food-web!model),!or!from!cross-species!investigations!of!life-history!invariants!(Table!327!
2;!see!Hartvig!et!al.!(2011),!App!E.!for!a!detailed!discussion).!The!relatively!small!set!of!328!
parameter!facilitates!formal!investigations!of!model!behavior!under!varying!parameter!
329!
values!(Thorpe!et!al.!2015;!Zhang!et!al.!2015).!
330!
!
331!
>/7=&/&1(*(+"13332!
Size!spectrum!models!may!be!simulated!with!Mizer”,!a!reference!implementation!in!R!
333!
(Scott!et!al.!2014),!or!with!the!matlab!code!(see!online!supplementary).!For!the!food-
334!
web!model!we!have!used!the!parameterization!for!the!North!Sea!(Blanchard!et!al.!2014),!
335!
which!uses'O - .iR!as!is!customary!in!the!fisheries!literature.!For!the!trait-based!and!336!
community!models!we!have!used!O - RiS!to!conform!with!“metabolic”!theory!(West!et!337!
al.!2001).!The!results!are!qualitatively!sensitive!to!the!value!of!O!as!long!as!it!is!changed!
338!
in!all!the!relationships!in!Table!1.!The!community!model!has!been!implemented!as!a!
339!
trait-based!model!with!a!single!trait!group!having!a!very!large!asymptotic!size.!As!the!340!
individuals!in!the!trait!group!mature!their!growth!rate!declines!(Fig.!2d).!In!this!way!the!
341!
!
14!
average!growth!in!the!community!model!corresponds!to!the!average!growth!in!a!trait-342!
based!model.!Our!implementation!avoids!the!need!for!an!additional!senescent!mortality!343!
for!the!largest!individuals!as!is!common!practice!(Law!et!al.!2009;!Rochet!and!Benoît!344!
2012).!!345!
!346!
All!simulations!are!set!up!with!100!logarithmically!spaced!grid!points!on!the!mass!axis,!347!
with!the!first!grid!point!set!to!egg!size!w0.!Each!simulation!was!run!with!a!time!step!of!348!
0.25!year!until!convergence!(Appendix!B).!349!
Example$simulations$350!
All!three!models!predict!size!spectra,!growth!rates!and!mortality!(Figure!2).!In!the!351!
absence!of!fishing!and!top!predators!the!largest!size!groups!(# p /0!kg)!are!352!
superabundant,!i.e.,!that!part!of!the!spectrum!is!greater!than!predicted!by!the!353!
equilibrium!solution.!This!is!most!pronounced!in!the!food-web!model,!and!could!be!354!
changed!by!increasing!the!background!mortality!qF.!The!superabundance!results!in!355!
higher!predation!mortality!on!medium-sized!individuals,!which!triggers!a!trophic!
356!
cascade!and!associated!changes!in!growth!and!mortality!of!smaller!individuals!
357!
(Andersen!and!Pedersen!2010).!!
358!
!359!
@&,7"1,&,3("3!+,5+1?3
360!
The!behavior!of!the!models!is!illustrated!by!examining!the!response!of!the!time-
361!
averaged!solution!to!fishing!and!their!dynamical!behavior.!Fishing!using!size-selective!
362!
gear!is!represented!by!adding!a!fishing!mortality!that!depends!on!body!size,!and!363!
possibly!also!asymptotic!size!or!species.!!We!illustrate!fishing!through!two!scenarios:!a)!364!
community-wide!fishing!on!all!species!with!a!trawl-type!selectivity!pattern!having!50%!
365!
selectivity!at!010lW,!and!b)!a!bottom-up!perturbation!where!forage!fishery!is!removed!
366!
from!scenario!(a)!simulated!by!setting!fishing!mortality!zero!on!all!species!with!W Y367!
!
15!
.00!g!in!the!food-web!and!trait-based!models!and!on!individuals!with!# Y .00!g!in!the!368!
community!model!(Figure!3).!In!scenario!(a)!(community!wide!fishing)!the!reduction!of!369!
large!individuals!induces!a!trophic!cascade!throughout!the!community!seen!as!a!wave!in!370!
the!size!spectrum.!When!forage!fishing!is!removed!(b),!the!food-web!and!trait-based!371!
models!predict!an!increase!of!forage!fish!but!relatively!modest!effects!on!the!rest!of!the!372!
community.!The!forage!fish!have!a!higher!biomass!than!in!the!unfished!situation!due!to!373!
the!partial!release!from!predation!by!higher!trophic!levels!caused!by!fishing.!The!374!
response!of!the!community!model!is!different:!it!predicts!a!decline!in!the!size-range!375!
where!fishing!is!removed,!while!the!effects!on!the!rest!of!the!community!are!weak,!as!in!376!
the!other!models.!This!difference!in!the!community!models!stems!from!its!inability!to!377!
represent!fishing!(or,!in!this!case,!absence!of!fishing)!on!specific!species!or!life!histories,!378!
but!only!on!body!sizes.!!This!result!emphasizes!the!importance!of!representing!379!
individual!populations!in!fisheries!applications.!The!two!scenarios!illustrates!the!380!
relative!importance!of!mortality!and!growth!to!mediate!trophic!cascades:!in!scenario!(a)!381!
the!trophic!cascade!is!mainly!mediated!by!changes!in!predation!mortality,!which!leads!
382!
to!a!strong!cascade.!In!scenario!(b)!increases!in!forage!fish!abundance!has!two!effects!
383!
with!opposite!consequences:!1)!it!increases!growth!rates!of!larger!individuals,!but!2)!it!
384!
also!increases!competition!between!juvenile!individuals!of!larger!species!and!forage!fish!385!
leading!to!decreased!growth!rates.!The!end!result!is!a!modest!trophic!cascade!(Houle!et!
386!
al.!2013;!Jacobsen!et!al.!2015).!The!importance!of!competition!between!forage!fish!and!
387!
juvenile!predatory!fish!in!real!ecosystems!could!be!analyzed!by!comparing!stomach!
388!
contents!of!forage!fish!and!juvenile!predatory!fish.!In!summary:!the!food-web!and!trait-389!
based!models!predict!similar!response!to!selective!fishing,!while!the!community!model!390!
fails!to!resolve!effects!on!different!populations.!
391!
!
392!
F21*/+.3,"=0(+"1,3393!
!
16!
The!community!model!also!differs!from!the!food-web!and!trait-based!model!in!394!
dynamical!behavior,!i.e.,!how!the!solution!varies!over!time.!All!models!tend!to!be!395!
unstable!(oscillate!over!time)!if!the!trophic!overlap!is!small.!The!trophic!overlap!is!396!
determined!by!the!ratio!between!the!width!of!the!size!preference!function,!d,!and!the!397!
predator-prey!size!ratio!rst"e$:!the!smaller!the!value!of!dirst"e$,!the!smaller!the!398!
trophic!overlap,!and!the!more!unstable!the!solution!becomes!(larger!oscillations)!(Datta!399!
et!al.!2011;!Zhang!et!al.!2012)!(Figure!4).!Oscillations!in!the!trait-based!models!are!fairly!400!
modest,!but!the!community!model!is!prone!to!unrealistically!strong!non-linear!401!
dynamics:!the!solution!varies!by!up!to!10!orders!of!magnitude!(Figure!4b!and!d).!This!402!
means!that!some!parts!of!the!spectrum!alternate!between!being!completely!devoid!of!403!
fish!and!being!fully!populated.!It!is!therefore!evident!that!the!non-linear!properties!of!404!
the!community!model!are!fundamentally!different!from!the!models!with!life-history!405!
diversity,!such!as!the!trait-based!models!or!a!food-web!model.!!Even!if!the!community!406!
model!is!made!linearly!stable!with!a!high!trophic!overlap!or!a!diffusion!term!(Datta!et!407!
al.,!2011),!the!strong!dynamical!response!will!still!be!present!if!the!model!is!perturbed!
408!
away!from!the!equilibrium.!This!should!be!kept!in!mind!if!the!model!is!used!to!simulate!
409!
the!dynamical!behavior!of!marine!ecosystems!(Zhang!et!al.!2012;!Rossberg!2013!p.!273).!
410!
Challenges$and$open$issues$411!
Size!spectrum!models!distinguish!themselves!from!unstructured!models!by!resolving!
412!
individual!body!size!as!a!continuous!state!variable!(body!size).!To!what!extent!do!
413!
individual!body!size!and!species!identity!determine!the!ecological!outcomes!of!
414!
community!dynamics?!The!thrust!of!size!spectrum!modeling!has!become!an!emphasis!415!
on!the!former,!whilst!unstructured!models!have!emphasized!the!latter.!Some!size!416!
spectrum!models!represent!species!interactions,!and!some!attempts!have!been!made!to!
417!
find!a!common!understanding!between!the!two!perspectives.!Notably,!a!food-web!model!
418!
with!implicit!representation!of!intra-species!size!structure!was!obtained!(Rossberg!and!419!
!
17!
Farnsworth!2011)!to!(indirectly)!describe!interactions!among!species!of!different!sizes.!420!
The!importance!of!explicitly!resolving!the!size-structure!of!species,!or!where!it!can!421!
safely!be!ignored,!is!context!dependent!so!requires!specific!and!systematic!exploration!422!
(Jacobsen!et!al.!2015;!Woodworth-Jefcoats!et!al.!2015).!!423!
!424!
An!important!difference!between!implementations!of!size!spectrum!models!is!whether!425!
growth!is!fixed!or!food-dependent!(Table!3).!Fixing!growth!simplifies!model!setup!and!426!
calibration.!It!is!justified!by!the!modest!variations!in!growth!observed!in!marine!species.!427!
Fixing!growth,!however,!has!consequences!which!should!be!considered!when!the!model!428!
is!calibrated!and!results!are!interpreted.!A!model!with!fixed!growth!will!still!resolve!429!
trophic!cascades!mediated!by!mortality,!but!it!will!not!resolve!competition,!which!is!430!
crucial!to!describe!the!phenomenon!of!overcompensation!(De!Roos!and!Persson!2002)!431!
and!may!be!important!to!understand!the!response!of!the!spectrum!to,!e.g.!fishing!on!432!
‘forage’!species!(Houle!et!al.!2013;!Jacobsen!et!al.!2015).!More!importantly,!without!433!
food-dependent!growth,!the!mass!balancing!between!growth!and!predation!mortality!is!
434!
broken.!This!requires!that!care!is!taken!in!the!setup!to!ensure!that!predation!mortalities!
435!
are!in!the!correct!range!by!adjusting!the!“other!food”!compartment!(Thorpe!et!al.!2015).!
436!
Having!too!low!predation!mortalities!(as!in!Hall!et!al.!2006;!Worm!et!al.!2009;!Rochet!et!437!
al.!2011)!will!result!in!a!model!that!is!essentially!a!set!of!weakly!coupled!single-species!
438!
models!thus!defying!the!purpose!of!a!multi-species!model.!
439!
!!
440!
Size-based!models!have!been!characterized!as!“highly!unrealistic”!and!being!based!on!441!
“unrealistic!and!even!contradictory!assumptions”!(Froese!et!al.!2015;!Andersen!et!al.!442!
2016b).!We!hope!to!have!made!it!clear!that!the!basic!assumptions!are!realistic!and!
443!
internally!consistent.!Nevertheless,!while!the!size-based!models!have!matured!to!a!
444!
degree!where!they!can!be!applied!to!make!impact!assessments!of!fishing!on!marine!445!
ecosystems,!they!still!face!challenges!related!to!density-dependence,!life-history!trade-
446!
!
18!
offs,!termination!at!the!large!body!sizes!end,!calibration!procedure,!and!numerical!447!
implementation,!which!must!be!confronted:!each!will!be!briefly!discussed.!!448!
!449!
F&1,+(23#&7&1#&1.&3450!
All!food-web!models!of!real!ecosystems,!i.e.!with!specific!species,!require!some!form!of!451!
density!dependent!regulation!of!the!abundance!of!each!species!to!avoid!competitive!452!
exclusion.!Not!much!is!known!about!the!exact!mechanism!of!the!regulation!and!how!453!
different!mechanisms!affect!model!results.!The!size!based!interactions!and!trait!454!
differences!among!species!in!size!spectrum!models!provide!insufficient!niche!455!
differentiation!to!avoid!competitive!exclusion!(Hartvig!and!Andersen!2013).!Additional!456!
niche!differentiation!may!be!represented!by!a!random!species-specific!interaction!457!
matrix,!which!can!support!coexistence!(Hartvig!2011;!Hartvig!et!al.!2011).!Other!458!
commonly!used!mechanisms!are!(Table!3):!stock-recruitment!relationships;!fixed!459!
recruitment;!predator-dependent!functional!responses,!whereby!intake!depends!on!the!460!
density!of!competitors!as!well!as!prey!(also!used!in!Ecosim)!(Abrams!2014);!and!prey!
461!
switching!(Maury!and!Poggiale!2013),!whereby!rare!prey!are!not!attacked!(leading!to!an!
462!
emergent!type!III!functional!response).!Which!of!these!mechanisms!is!the!most!correct!
463!
representation!of!effects!in!real!ecosystem!is!currently!unknown:!stock-recruitment!464!
relations!and!fixed!recruitment!are!in!line!with!standard!practice!in!fisheries!science,!
465!
but!have!little!theoretical!support;!predator-dependent!functional!responses!and!prey!
466!
switching!certainly!occur!to!some!extent,!but!the!understanding!is!currently!too!weak!to!
467!
make!general!statements!of!the!strength!of!the!processes.!Within!structured!models,!468!
such!as!size!spectrum!models,!the!type!of!density!dependent!regulation!may!have!a!469!
profound!impact!on!the!solution,!both!the!size!spectrum!of!the!individual!species!and!
470!
the!relative!abundances!of!species!(compare!Fig.!4!in!Maury!and!Poggiale!(2013)!with!
471!
Figure!2B).!As!an!example,!we!tested!the!prediction!from!the!trait-based!model!against!472!
empirical!observations!by!comparing!the!asymptotic!size!distribution!with!observations!
473!
!
19!
from!three!trawl!surveys!in!the!North!Sea!(Daan!et!al.!2005)!(Figure!5).!Even!though!the!474!
comparison!does!not!reject!the!modeled!distribution,!more!comparisons!with!similar!475!
data!from!other!systems!are!needed!to!build!confidence!in!the!predicted!asymptotic!size!476!
distributions.!477!
!478!
In!addition!to!ensuring!coexistence!of!species,!the!imposed!density!dependence!also!acts!479!
as!a!carrying!capacity.!In!the!food-web!model!the!carrying!capacity!(GTUV$!is!found!by!480!
calibrating!to!observed!biomasses.!The!trait-based!model,!however,!relies!on!theoretical!481!
results!from!the!equilibrium!theory.!That!theory!compares!favorably!to!the!calibrated!482!
results!(Figure!6).!Nevertheless,!the!use!of!a!stock-recruitment!relationship!is!483!
unsatisfactory!as!it!introduces!a!dominating!external!regulation!on!the!biomass!of!484!
species.!This!may!bias!the!response!time!of!community!size!structure!(Fung!et!al.!2013),!485!
which!is!of!interest!in!conservation.!Further,!the!stock-recruitment!relationship!means!486!
that!a!large!amount!of!spawned!biomass!is!simply!lost!to!unspecified!density-dependent!487!
processes.!The!stock-recruitment!relationship!therefore!breaks!the!mass-balancing!
488!
which!is!carefully!observed!in!the!other!processes!in!the!model!(Persson!et!al.!2014).!!
489!
Since!there!is!no!generally!accepted!solution!to!the!problem!of!maintaining!coexistence,!
490!
results!should!be!interpreted!in!light!of!the!assumptions!used!to!represent!density!491!
dependent!regulation.!It!must!be!emphasized!that!this!problem!is!common!to!all!food-
492!
web!models!and!not!unique!to!size!spectrum!models.!
493!
!
494!
4)*+(,3*1#3()*#&$"!!,!495!
The!trait-based!model!assumes!that!the!most!important!trait!is!the!asymptotic!size.!Fish,!496!
however,!vary!in!other!traits!than!asymptotic!size.!The!questions!are!then:!which!other!
497!
trait(s)!should!be!included!in!a!model!to!represent!observed!variation?!And!how!can!
498!
suitable!trade-offs!be!formulated!and!parameterized?!An!obvious!trait!is!activity.!499!
Increased!activity!causes!higher!prey!encounter!rates!(higher!value!of!the!clearance!rate!
500!
!
20!
constant,!_).!On!the!other!hand,!higher!activity!results!in!increased!metabolic!rates!and!501!
increased!vulnerability!due!to!higher!exposure!to!predators.!It!is!possible!that!inclusion!502!
of!an!activity!trait!would!make!it!possible!to!distinguish!sedentary!from!active!species!503!
with!the!same!asymptotic!size,!such!as!anglerfish!and!scombroids.!Such!a!trait!may!not!504!
solve!the!problem!of!competitive!exclusion!because!it!does!not!lead!to!sufficient!niche!505!
differentiation.!A!trait!which!would!lead!to!niche!differentiation!could!be!related!to!506!
habitat!(Hartvig!2011;!Zhang!et!al.!2013),!i.e.,!pelagic!vs.!benthic!(Blanchard!et!al.!2011).!507!
In!both!cases!more!theoretical!investigations!are!needed!but!also!empirical!work!to!508!
establish!and!parameterize!the!trade-offs.!509!
!510!
8=",0)&3"!3(5&3,7&.()0/3*(3=*)?&3'"#23,+6&,3511!
An!overlooked!issue!is!the!termination!(closure)!of!the!model!spectrum!at!the!largest!512!
body!sizes.!Closure!is!usually!achieved!(rather!arbitrarily)!by!choosing!a!maximum!body!513!
size!and!enforcing!some!background!mortality!to!kill!of!the!largest!individuals.!514!
However,!the!size!of!this!mortality!clearly!influences!the!results,!in!particular!in!the!un-
515!
fished!situation.!In!the!simulations!presented!here!(Figure!2),!this!background!mortality!
516!
is!relatively!low,!leading!to!the!superabundance!of!large!individuals!compared!to!the!
517!
equilibrium!solution.!However,!we!do!not!know!the!real!abundance!of!the!largest!518!
individuals!in!an!unfished!system,!because!most!systems!are!heavily!perturbed.!!
519!
Further,!what!is!the!theoretical!largest!size!of!a!fish?!Why!are!teleost!fish!not!larger!than!
520!
a!few!hundred!kg?!There!is!no!physiological!mechanism!in!the!model!to!limit!the!
521!
asymptotic!size,!and!current!theoretical!understanding!can!only!guess!at!an!answer!to!522!
this!question!(Freedman!and!Noakes!2002;!Andersen!et!al.!2008;!Andersen!et!al.!2016a).!523!
A!satisfactory!theoretical!understanding!of!the!factors!limiting!the!upper!size!of!fish!is!
524!
needed!to!bolster!the!consistency!of!the!models.!
525!
!526!
8*=+')*(+"13("3)&*=3,2,(&/,3
527!
!
21!
Size!based!models!can!be!calibrated!to!real!ecosystems,!for!instance!on!the!scale!of!a!528!
continental!shelf!(in!smaller!systems!immigration!/!emigration!violate!the!assumed!529!
population!closure).!!In!the!trait-based!models!calibration!is!achieved!by!varying!some!530!
of!the!crucial!parameters,!such!as!the!growth!rate!parameter!^!and!the!carrying!capacity!531!
of!the!resource!to!reproduce!observed!average!growth!rates!of!individuals!and!eco-532!
system!level!catch!rates!of!the!fishery!(Pope!et!al.!2006;!Kolding!et!al.!2015).!The!next!533!
level!of!sophistication!is!to!match!modeled!species!to!known!species!characteristics!534!
(Jacobsen!et!al.!2015),!and!further!to!include!a!species!interaction!matrix!(Hall!et!al.!535!
2006;!Blanchard!et!al.!2014).!In!these!cases!the!biomass!of!each!species!has!to!be!536!
calibrated!by!adjusting!GTUV.!!Another!important!parameter!that!hitherto!has!been!537!
ignored!is!the!reproductive!efficiency!u.!This!parameter!represents!egg!survival,!which!538!
is!likely!to!vary!substantially!between!species.!Introducing!yet!another!calibration!539!
parameter,!however,!requires!more!data.!Currently,!the!calibration!methods!applied!are!540!
statistically!simple.!A!more!sophisticated!approach!acknowledges!uncertainty!by!541!
creating!an!ensemble!of!plausible!models,!requiring!them!to!fulfill!general!criteria!
542!
(Thorpe!et!al.!2015).!A!possible!future!direction!could!be!introduction!of!a!full!statistical!
543!
framework!where!distributions!of!parameter!values!are!derived!from!observations!of!
544!
biomasses!and!stomach!content!by!maximizing!a!likelihood!function!(Lewy!and!Vinther!545!
2004;!Spence!et!al.!2015).!Finally,!it!should!be!kept!in!mind!that!even!though!a!model!
546!
may!be!well!calibrated!to!current!situations!there!is!no!guarantee!that!it!will!reliably!
547!
predict!the!future.!
548!
!549!
G0/&)+.*=3,"=0(+"137)".&#0)&3550!
Gains!in!accuracy!and!speed!of!the!numerical!solution!may!be!achieved!by!moving!to!
551!
more!advanced!methods.!The!standard!method!is!a!first-order!semi-implicit!upwind!
552!
scheme!that!is!simple!to!implement!(Appendix!B).!The!drawback!of!this!method!is!that!it!553!
has!numerical!diffusivity,!is!not!very!efficient,!possibly!inaccurate!for!dynamics,!and!is!
554!
!
22!
unable!to!resolve!“cohort!cycles”!(de!Roos!and!Persson!2001)!with!discontinuities!in!the!555!
solution!in!the!form!of!“shocks”.!To!move!forward,!we!recommend!looking!in!the!rich!556!
literature!from!computational!fluid!mechanics!for!inspiration,!in!particular!towards!557!
higher!order!finite-volume!techniques!with!limiters,!which!maintains!positivity!of!the!558!
solution!(Zijlema!1996),!or!spectral!methods!(Rossberg!2012).!Enhancements!to!the!559!
numerical!scheme!could!be!implemented!to!common!benefit!in!the!(open!access)!560!
reference!implementation!“Mizer”!(Scott!et!al.!2014).!!561!
!562!
80))&1(3*1#3!0(0)&3*77=+.*(+"1,3563!
We!have!shown!how!size!spectrum!models!can!be!used!to!simulate!how!fishing!of!one!564!
group!of!species!affects!the!entire!system!and!that!is!very!difficult!to!achieve!with!565!
alternative!models.!Despite!several!open!issues!in!size-based!modeling,!as!discussed!566!
above,!the!model!framework!has!already!shown!its!use!to:!illustrate!how!fishing!drives!567!
trophic!cascades!(Andersen!and!Pedersen!2010),!simulate!the!impact!of!rising!568!
temperatures!(Maury!et!al.!2007;!Pope!et!al.!2009),!explore!the!potential!impacts!of!
569!
climate!change!scenarios!on!fish!production!(Blanchard!et!al.!2012;!Woodworth-Jefcoats!
570!
et!al.!2013;!Barange!et!al.!2014;!Lefort!et!al.!2014),!describe!the!indirect!effect!of!
571!
ecosystem!recovery!strategies!(Andersen!and!Rice!2010),!quantify!the!interaction!572!
between!forage!and!consumer!fishery!fleets!(Engelhard!et!al.!2013;!Houle!et!al.!2013)!or!
573!
between!fisheries!and!marine!mammals!(Houle!et!al.!2015),!evaluate!ecosystem!fishing!
574!
strategies!and!indicators!(Houle!et!al.!2012;!Blanchard!et!al.!2014;!Jennings!and!
575!
Collingridge!2015;!Spence!et!al.!2015;!Thorpe!et!al.!2015),!evaluate!balanced!harvesting!576!
(Rochet!et!al.!2011;!Jacobsen!et!al.!2014;!Law!et!al.!2014)!and!describe!the!ecosystem!577!
level!yield!(Worm!et!al.!2009;!Andersen!et!al.!2015).!Other!obvious!uses!would!be!as!
578!
operating!models!in!management!strategy!evaluations,!as!the!basis!for!bio-economic!
579!
evaluations!of!fishing!on!the!entire!community!(Andersen!et!al.!2015),!and!to!further!580!
developing!our!basic!understanding!of!fish!community!functioning.!In!our!view,!the!
581!
!
23!
community!model!is!best!limited!to!theoretical!work!examining!the!steady-state!582!
solutions.!The!trait-based!model!can!be!quickly!deployed!in!data-poor!situations!and!583!
makes!a!flexible!tool!for!exploration!of!community-level!fishery!interactions.!The!food-584!
web!types!of!models!are!well!suited!to!more!specific!fisheries!questions!where!a!higher!585!
level!of!species!identity!is!needed!than!provided!by!the!trait-based!model.!Besides!these!586!
strategic!applications,!it!is!tempting!to!deploy!size!spectrum!models!for!tactical!587!
ecosystem!based!management,!e.g.,!for!providing!advice!on!specific!species.!We!are!588!
reluctant!to!endorse!such!uses!because!we!find!the!purely!process-oriented!framework!589!
too!rigid!to!provide!precise!quantitative!information!on!the!species!level.!In!conclusion:!590!
the!small!number!of!parameters,!the!low!computational!requirements!and!the!solid!591!
mechanistically!basis!provide!a!framework!of!low!to!intermediate!complexity,!highly!592!
suited!to!the!strategic!impact!assessment!of!pressures!such!as!fishing!and!593!
environmental!change!on!marine!ecosystems.!594!
! !595!
!
24!
!596!
Acknowledgements(597!
We!thank!Julia!L.!Blanchard!and!Axel!Rossberg!for!comments!on!the!manuscript.!This!598!
work!was!supported!by!the!Centre!for!Ocean!Life,!a!VKR!Centre!of!Excellence!supported!599!
by!the!Villum!Foundation.!600!
!601!
References(602!
Abrams, P.A. 2014. Why ratio dependence is (still) a bad model of predation. Biol. 603!
Rev. 90: 794–814. doi: 10.1111/brv.12134. 604!
Acuña, J.L., López-Urutia, Á., and Colin, S. 2011. Faking giants: the evolution of 605!
high prey clearance rates in jellyfishes. Science 333: 1627–1629. 606!
Andersen, K.H., Berge, T., Gonçalves, K.H., Hartvig, M., Heuschele, J., Hylander, S., 607!
Jacobsen, N.S., Lindemann, C., Martens, C., Neuheimer, A.B., Olsson, A.B., 608!
Palacz, A., Prowe, F., Sainmont, J., Traving, S.J., Visser, A.W., Wadhwa, N., 609!
and Kiørboe, T. 2016a. Characteristic sizes of life in the oceans, from bacteria to
610!
whales. Ann. Rev. Mar. Sci. doi: 10.1146/annurev-marine-122414-034144.
611!
Andersen, K.H., and Beyer, J.E. 2006. Asymptotic size determines species abundance
612!
in the marine size spectrum. Am. Nat. 168: 54–61. 613!
Andersen, K.H., and Beyer, J.E. 2015. Size structure, not metabolic scaling rules,
614!
determines fisheries reference points. Fish Fish. 16(1): 1–22. doi:
615!
10.1111/faf.12042.
616!
Andersen, K.H., Beyer, J.E., Pedersen, M., Andersen, N.G., and Gislason, H. 2008. 617!
Life-history constraints on the success of the many small eggs reproductive 618!
strategy. Theor. Popul. Biol. 73(4): 490–7. doi: 10.1016/j.tpb.2008.02.001.
619!
Andersen, K.H., Blanchard, J.L., Fulton, E.A., Gislason, H., Jacobsen, N.S., and van
620!
Kooten, T. 2016b. Assumptions behind size-based ecosystem models are 621!
realistic. ICES J. Mar. Sci. doi: doi:10.1093/icesjms/fsv211.
622!
Andersen, K.H., Brander, K., and Ravn-Jonsen, L. 2015. Trade-offs between 623!
objectives for ecosystem management of fisheries. Ecol. Appl. 25: 1390–1396.
624!
Andersen, K.H., and Pedersen, M. 2010. Damped trophic cascades driven by fishing
625!
in model marine ecosystems. Proc. R. Soc. London B 277: 795–802. 626!
Andersen, K.H., and Rice, J.C. 2010. Direct and indirect community effects of
627!
rebuilding plans. ICES J. Mar. Sci. 67(9): 1980–1988.
628!
Andersen, K.P., and Ursin, E. 1977. A multispecies extension to the Beverton and 629!
!
25!
Holt theory of fishing, with accounts of phosphorus circulation and primary 630!
production. Meddelelser fra Danmarks Fisk. og Havundersøgelser 7: 319–435. 631!
Barange, M., Merino, G., Blanchard, J.L., Scholtens, J., Harle, J., Allison, E.H., 632!
Allen, J.I., Holt, J., and Jennings, S. 2014. Impacts of climate change on marine 633!
ecosystem production in societies dependent on fisheries. Nat. Clim. Chang. 634!
4(3): 211–216. doi: 10.1038/NCLIMATE2119. 635!
Barnes, C., Bethea, D.M., Brodeur, R.D., Spitz, J., Ridoux, V., Pusineri, C., Chase, 636!
B.C., Hunsicker, M.E., Juanes, F., Kellermann, A., J., L., Ménard, F., Bard, F.-637!
X., Munk, P., Pinnegar, J.K., Scharf, F.S., Rountree, R.A., Stergiou, K.I., Sassa, 638!
C., Sabates, A., and Jennings, S. 2008. Predator and prey body sizes in marine 639!
food webs. Ecology 89(3): 881. 640!
Benoît, E., and Rochet, M.-J. 2004. A continuous model of biomass size spectra 641!
governed by predation and the effects of fishing on them. J. Theor. Biol. 226(1): 642!
9–21. doi: 10.1016/S0022-5193(03)00290-X. 643!
Beverton, R.J.H. 1992. Patterns of reproductive strategy parameters in some marine
644!
teleost fishes. J. Fish Biol. 41: 137–160.
645!
Blanchard, J.L., Andersen, K.H., Scott, F., Hintzen, N.T., Piet, G., and Jennings, S.
646!
2014. Evaluating targets and trade-offs among fisheries and conservation 647!
objectives using a multispecies size spectrum model. J. Appl. Ecol. 51(3): 612–
648!
622. doi: 10.1111/1365-2664.12238.
649!
Blanchard, J.L., Jennings, S., Holmes, R., Harle, J., Merino, G., Allen, J.I., Holt, J.,
650!
Dulvy, N.K., and Barange, M. 2012. Potential consequences of climate change 651!
for primary production and fish production in large marine ecosystems. Philos. 652!
Trans. R. Soc. Lond. B. Biol. Sci. 367(1605): 2979–89. doi:
653!
10.1098/rstb.2012.0231.
654!
Blanchard, J.L., Jennings, S., Law, R., Castle, M.D., McCloghrie, P., Rochet, M.-J., 655!
and Benoît, E. 2009. How does abundance scale with body size in coupled size-
656!
structured food webs? J. Anim. Ecol. 78(1): 270–80. doi: 10.1111/j.1365-657!
2656.2008.01466.x.
658!
Blanchard, J.L., Law, R., Castle, M.D., and Jennings, S. 2011. Coupled energy
659!
pathways and the resilience of size-structured food webs. Theor. Ecol. 4(3): 289–660!
300. doi: 10.1007/s12080-010-0078-9.
661!
Boudreau, P.R., and Dickie, L.M. 1992. Biomass spectra of aquatic ecosystems in
662!
relation to fisheries yield. Can. J. Fish. Aquat. Sci. 49(8): 1528–1538. 663!
Brown, J.H., Gillooly, J.F., Allen, A.P., Savage, V.M., and West, G.B. 2004. Toward
664!
a metabolic theory of ecology. Ecology 85(7): 1771–1789. 665!
Collie, J.S., Botsford, L.W., Hastings, A., Kaplan, I.C., Largier, J.L., Livingston, P. a,
666!
!
26!
Plagányi, É., Rose, K. a, Wells, B.K., and Werner, F.E. 2014. Ecosystem models 667!
for fisheries management: finding the sweet spot. Fish Fish. doi: 668!
10.1111/faf.12093. 669!
Daan, N., Gislason, H., Pope, J.G., and Rice, J.C. 2005. Changes in the North Sea fish 670!
community: evidence of indirect effects of fishing? ICES J. Mar. Sci. 62(2): 671!
177–188. doi: 10.1016/j.icesjms.2004.08.020. 672!
Datta, S., Delius, G.W., and Law, R. 2010. A jump-growth model for predator--prey 673!
dynamics: derivation and application to marine ecosystems. Bull. Math. Biol. 674!
72(6): 1361–1382. 675!
Datta, S., Delius, G.W., Law, R., and Plank, M.J. 2011. A stability analysis of the 676!
power-law steady state of marine size spectra. J. Math. Biol. 63(4): 779–799. 677!
Elton, C. 1927. Animal Ecology. In Animal ecology. doi: 10.1098/rstb.2010.0107. 678!
Engelhard, G.H., Peck, M.A., Rindorf, A., Raab, K., Smout, S., Aarts, G., Deurs, M. 679!
Van, Brunel, T., Hoff, A., Lauerburg, R.A.M., Garthe, S., Andersen, K.H., Scott, 680!
F., Kooten, T. Van, Beare, D., and Peck, M.A. 2013. Marine Science.
681!
Freedman, J.A., and Noakes, D.L.G. 2002. Why are there no really big bony fish? A
682!
point-of-view on maximum body size in teleosts and elasmobranchs. Rev. Fish
683!
Biol. Fish. 12: 403–416. 684!
Froese, R., Walters, C., Pauly, D., Winker, H., Weyl, O.L.F., Demirel, N., Tsikliras,
685!
A.C., and Holt, S.J. 2015. A critique of the balanced harvesting approach to
686!
fishing. ICES J. Mar. Sci. doi: doi:10.1093/icesjms/fsv122.
687!
Fulton, E.A., Link, J.S., Kaplan, I.C., Savina-Rolland, M., Johnson, P., Ainsworth, C., 688!
Horne, P., Gorton, R., Gamble, R.J., Smith, A.D.M., and Smith, D.C. 2011. 689!
Lessons in modelling and management of marine ecosystems: The Atlantis
690!
experience. Fish Fish. 12(2): 171–188. doi: 10.1111/j.1467-2979.2011.00412.x.
691!
Fung, T., Farnsworth, K.D., Shephard, S., Reid, D.G., and Rossberg, A.G. 2013. Why 692!
the size structure of marine communities can require decades to recover from
693!
fishing. Mar. Ecol. Prog. Ser. 484: 155–171. doi: 10.3354/meps10305. 694!
Gilljam, D., Thierry, A., Edwards, F.K., Figueroa, D., Ibbotson, A.T., Jones, J.I.,
695!
Lauridsen, R.B., Petchey, O.L., Woodward, G., and Ebenman, B. 2011. Seeing
696!
Double: Size-Based and Taxonomic Views of Food Web Structure. Adv. Ecol. 697!
Res. 45: 67–133. doi: 10.1016/B978-0-12-386475-8.00003-4.
698!
Gislason, H., Daan, N., Rice, J.C., and Pope, J.G. 2010. Size, growth, temperature and
699!
the natural mortality of marine fish. Fish Fish. 11(2): 149–158. doi: 700!
10.1111/j.1467-2979.2009.00350.x.
701!
Haldane, J.B.S. 1928. On being the right size. In A treasury of science. Edited by H. 702!
Shapely, S. Raffort, and H. Wright. Harper, New York. pp. 321–325.
703!
!
27!
Hall, S.J., Collie, J.S., Duplisea, D.E., Jennings, S., Bravington, M., and Link, J. 704!
2006. A length-based multispecies model for evaluating community responses to 705!
fishing. Can. J. Fish. Aquat. Sci. 63(6): 1344–1359. doi: 10.1139/f06-039. 706!
Hartvig, M. 2011. Ecological processes yield complex and realistic food webs. In 707!
Food Web Ecology. Lund University. pp. 73–100. 708!
Hartvig, M., and Andersen, K.H. 2013. Coexistence of structured populations with 709!
size-based prey selection. Theor. Popul. Biol. 89: 24–33. doi: 710!
10.1016/j.tpb.2013.07.003. 711!
Hartvig, M., Andersen, K.H., and Beyer, J.E. 2011. Food web framework for size-712!
structured populations. J. Theor. Biol. 272(1): 113–122. 713!
Houle, J.E., Andersen, K.H., Farnsworth, K.D., and Reid, D.G. 2013. Emerging 714!
asymmetric interactions between forage and predator fisheries impose 715!
management trade-offs. J. Fish Biol. 83(4): 890–904. doi: 10.1111/jfb.12163. 716!
Houle, J.E., de Castro, F., Cronin, M.A., Farnsworth, K.D., Gosch, K.D., and Reid, 717!
D.G. 2015. Effects of seal predation on a modeled marine fish community and
718!
consequences for a commercial fishery. J. Appl. Ecol. doi: 10.1111/1365-
719!
2664.12548.
720!
Houle, J.E., Farnsworth, K.D., Rossberg, A.G., and Dave, R. 2012. Assessing the 721!
sensitivity and specificity of fish community indicators to management action.
722!
Can. J. Fish. Aquat. Sci. 69(6): 1065–1079.
723!
Jacobsen, N.S., Essington, T.E., and Andersen, K.H. 2015. Comparing model
724!
predictions for ecosystem based management. Can. J. Fish. Aquat. Sci. doi: 725!
10.1139/cjfas-2014-0561. 726!
Jacobsen, N.S., Gislason, H., and Andersen, K.H. 2014. The consequences of
727!
balanced harvesting of fish communities. Proc. R. Soc. B 281(1775): 20132701.
728!
doi: 10.1098/rspb.2013.2701. 729!
Jennings, S., and Collingridge, K. 2015. Predicting Consumer Biomass, Size-
730!
Structure, Production, Catch Potential, Responses to Fishing and Associated 731!
Uncertainties in the World’s Marine Ecosystems. PLoS One 10(7): e0133794.
732!
Jennings, S., Pinnegar, J.K., Polunin, N.V.C., and Boon, T.W. 2001. Weak cross-
733!
species relationships between body size and trophic level belie powerful size-734!
based trophic structuring in fish communities. J. Anim. Ecol. 70(6): 934–944.
735!
Kleiber, M. 1932. Body size and metabolism. Hilgardia 6: 315–353.
736!
Kolding, J., Jacobsen, N.S., Andersen, K.H., and van Zwieten, P. 2015. Maximizing 737!
fisheries yields while maintaining community structure. Can. J. Fish. Aquat. Sci.
738!
Law, R., Plank, M.J., James, A., and Blanchard, J.L. 2009. Size-spectra dynamics 739!
!
28!
from stochastic predation and growth of individuals. Ecology 90(3): 802–11. 740!
Law, R., Plank, M.J., and Kolding, J. 2014. Balanced exploitation and coexistence of 741!
interacting, size-structured, fish species. Fish Fish. doi: 10.1111/faf.12098. 742!
Lefort, S., Aumont, O., Bopp, L., Arsouze, T., Gehlen, M., and Maury, O. 2014. 743!
Spatial and body-size dependent response of marine pelagic communities to 744!
projected global climate change. Glob. Chang. Biol. doi: 10.1111/gcb.12679. 745!
Lewy, P., and Vinther, M. 2004. A stochastic age-length-structured multispecies 746!
model applied to North Sea stocks. ICES (CM/FF:20): 33 pp. 747!
Maury, O., Faugeras, B., Shin, Y.J., Poggiale, J.C., Ari, T.B., and Marsac, F. 2007a. 748!
Modeling environmental effects on the size-structured energy flow through 749!
marine ecosystems. Part 1: The model. Prog. Oceanogr. 74(4): 479–499. 750!
Maury, O., and Poggiale, J. 2013. From individuals to populations to communities: A 751!
dynamic energy budget model of marine ecosystem size-spectrum including life 752!
history diversity. J. Theor. Biol.: 1–20. doi: 10.1016/j.jtbi.2013.01.018. 753!
Maury, O., Shin, Y.J., Faugeras, B., Ben Ari, T., and Marsac, F. 2007b. Modeling
754!
environmental effects on the size-structured energy flow through marine
755!
ecosystems. Part 2: Simulations. Prog. Oceanogr. 74(4): 500–514.
756!
Neuheimer, A.B., Hartvig, M., Heuschele, J., Hylander, S., Kiørboe, T., Olsson, K., 757!
Sainmont, J., and Andersen, K.H. 2015. Adult and offspring size in the ocean
758!
over 17 orders of magnitude follows two life-history strategies. Ecology.
759!
Persson, L., van Leeuwen, A., and de Roos, A.M. 2014. The ecological foundation for
760!
ecosystem-based management of fisheries: mechanistic linkages between the 761!
individual-, population-, and community-level dynamics. ICES J. Mar. Sci. 762!
71(8): 2268–2280. doi: 10.1093/icesjms/fst231.
763!
Peters, R.H. 1983. The ecological implications of body size. Cambridge University
764!
Press. 765!
Pikitch, E.K., Santora, C., Babcock, E.A., Bakun, A., Bonfil, R., Conover, D.O.,
766!
Dayton, P., Doukakis, P., Fluharty, D., Heneman, B., and others. 2004. 767!
Ecosystem-based fishery management. Science 305(5682): 346–347.
768!
Plagányi, É.E. 2007. Models for an ecosystem approach to fisheries. FAO Fish. Tech.
769!
Pap. (477): 108 p. 770!
Pope, J.G., Falk-Pedersen, J., Jennings, S., Rice, J.C., Gislason, H., and Daan, N.
771!
2009. Honey, I cooled the cods: Modelling the effect of temperature on the
772!
structure of Boreal/Arctic fish ecosystems. Deep Sea Res. Part II 56(21-22): 773!
2097–2107. doi: 10.1016/j.dsr2.2008.11.021.
774!
Pope, J.G., Rice, J.C., Daan, N., Jennings, S., and Gislason, H. 2006. Modelling an 775!
!
29!
exploited marine fish community with 15 parameters–results from a simple size-776!
based model. ICES J. Mar. Sci. 63(6): 1029–1044. 777!
Rall, B.C., Brose, U., Hartvig, M., Kalinkat, G., Schwarzmüller, F., Vucic-Pestic, O., 778!
and Petchey, O.L. 2012. Universal temperature and body-mass scaling of feeding 779!
rates. Philos. Trans. R. Soc. B Biol. Sci. 367: 2923–2934. doi: 780!
10.1098/rstb.2012.0242. 781!
Reuman, D.C., Gislason, H., Barnes, C., Mélin, F., and Jennings, S. 2014. The marine 782!
diversity spectrum. J. Anim. Ecol. 83(4): 963–979. doi: 10.1111/1365-783!
2656.12194. 784!
Rice, J., and Gislason, H. 1996. Patterns of change in the size spectra of numbers and 785!
diversity of the North Sea fish assemblages, as reflected in surveys and models. 786!
ICES J. Mar. Sci. 53: 1214–1225. 787!
Rijnsdorp, A., and Leeuwen, P. Van. 1992. Density-dependent and independent 788!
changes in somatic growth of female North Sea plaice Pleuronectes platessa 789!
between 1930 and 1985 as revealed by back-calculation of otoliths. Mar. Ecol.
790!
Prog. Ser. 88: 19–32.
791!
Rochet, M.-J., and Benoît, E. 2012. Fishing destabilizes the biomass flow in the
792!
marine size spectrum. Proc. Biol. Sci. 279(1727): 284–92. doi: 793!
10.1098/rspb.2011.0893.
794!
Rochet, M.J., Collie, J.S., Jennings, S., and Hall, S.J. 2011. Does selective fishing
795!
conserve community biodiversity? Predictions from a length-based multispecies
796!
model. Can. J. Fish. Aquat. Sci. 68(3): 469–486. 797!
de Roos, A.M., and Persson, L. 2001. Physiologically structured models - from 798!
versatile technique to ecological theory. Oikos 94: 51–71.
799!
De Roos, A.M., and Persson, L. 2002. Size-dependent life-history traits promote
800!
catastrophic collapses of top predators. Proc. Natl. Acad. Sci. U.S.A. 99(20): 801!
12907–12912.
802!
de Roos, A.M., Schellekens, T., van Kooten, T., van de Wolfshaar, K., Claessen, D., 803!
and Persson, L. 2008. Simplifying a physiologically structured population model
804!
to a stage-structured biomass model. Theor. Popul. Biol. 73(1): 47–62. doi:
805!
10.1016/j.tpb.2007.09.004. 806!
Rossberg, A.G. 2012. A complete analytic theory for structure and dynamics of
807!
populations and communities spanning wide ranges in body size. Adv. Ecol. Res.
808!
46: 429–522. 809!
Rossberg, A.G. 2013. Food Webs and Biodiversity: Foundations, Models, Data.
810!
Wiley. 811!
Rossberg, A.G., and Farnsworth, K.D. 2011. Simplification of structured population
812!
!
30!
dynamics in complex ecological communities. Theor. Ecol. 4: 449–465. doi: 813!
10.1007/s12080-010-0088-7. 814!
Rossberg, A.G., Houle, J.E., and Hyder, K. 2013. Stock–recruitment relations 815!
controlled by feeding interactions alone. Can. J. Fish. Aquat. Sci. 70: 1447–816!
1455. doi: 10.1139/cjfas-2012-0531. 817!
Scott, F., Blanchard, J.L., and Andersen, K.H. 2014. mizer: an R package for 818!
multispecies, trait-based and community size spectrum ecological modelling. 819!
Methods Ecol. Evol. doi: 10.1111/2041-210X.12256. 820!
Sheldon, R., and Prakash, A. 1972. The size distribution of particles in the ocean. 821!
Limnol. Oceanogr. XVII(May): 327–340. 822!
Sheldon, R.W., and Parsons, T.R. 1967. A continuous size spectrum for particulate 823!
matter in the sea. J. Fish. Res. Board. Canada. 24(5): 909–915. 824!
Sheldon, R.W., Sutcliffe Jr., W.H., and Paranjape, M.A. 1977. Structure of pelagic 825!
food chain and relationship between plankton and fish production. J. Fish. Res. 826!
Board Canada 34: 2344–2353.
827!
Silvert, W., and Platt, T. 1978. Energy flux in the pelagic ecosystem: a time-
828!
dependent equation. Limnol. Oceanogr. 23(4): 813–816.
829!
Spence, M.A., Blackwell, P.G., and Blanchard, J.L. 2015. Parameter uncertainty of a 830!
dynamic multi-species size spectrum model. Can. J. Fish. Aquat. Sci.
831!
Sprules, W.G., and Barth, L.E. (n.d.). Surfing the biomass size spectrum: some
832!
remarks on history, theory, and application. Can. J. Fish. Aquat. Sci.: this issue.
833!
Thorpe, R.B., Le Quesne, W.J.F., Luxford, F., Collie, J.S., and Jennings, S. 2015. 834!
Evaluation and management implications of uncertainty in a multispecies size-835!
structured model of population and community responses to fishing. Methods
836!
Ecol. Evol. 6(1): 49–58. doi: 10.1111/2041-210X.12292.
837!
Ursin, E. 1973. On the prey size preferences of cod and dab. Meddelelser fra 838!
Danmarks Fisk. og Havundersøgelser 7: 85–98.
839!
Werner, E.E., and Gilliam, J.F. 1984. The ontogenetic niche and species interactions 840!
in size-structured populations. Ann. Rev. Ecol. Syst. 15: 393–425.
841!
West, G.B., Brown, J.H., and Enquist, B.J. 2001. A general model for ontogenetic
842!
growth. Nature 413: 628–631. 843!
Winberg, G.G. 1956. Rate of metabolism and food requirements of fishes. J. Fish.
844!
Res. Board Canada 194: 1–253.
845!
Woodworth-Jefcoats, P., Polovina, J., Howell, E., and Blanchard, J. 2015. Two takes 846!
on the ecosystem impacts of climate change and fishing: comparing a size-based
847!
and a species-based ecosystem model in the central North Pacific. Prog. 848!
!
31!
Oceanogr. doi: 10.1016/j.pocean.2015.04.004. 849!
Woodworth-Jefcoats, P.A., Polovina, J.J., Dunne, J.P., and Blanchard, J.L. 2013. 850!
Ecosystem size structure response to 21st century climate projection: Large fish 851!
abundance decreases in the central North Pacific and increases in the California 852!
Current. Glob. Chang. Biol. 19(3): 724–733. doi: 10.1111/gcb.12076. 853!
Worm, B., Hilborn, R., Baum, J.K., Branch, T.A., Collie, J.S., Costello, C., Fogarty, 854!
M.J., Fulton, E.A., Hutchings, J.A., Jennings, S., Jensen, O.P., Lotze, H.K., 855!
Mace, P.M., McClanahan, T.R., Minto, C., Palumbi, S.R., Parma, A.M., Ricard, 856!
D., Rosenberg, A.A., Watson, R., and Zeller, D. 2009. Rebuilding global 857!
fisheries. Science 325(5940): 578–85. doi: 10.1126/science.1173146. 858!
Zhang, C., Chen, Y., and Ren, Y. 2015. Assessing uncertainty of a multispecies size-859!
spectrum model resulting from process and observation errors. ICES J. Mar. Sci. 860!
doi: doi:10.1093/icesjms/fsv086. 861!
Zhang, L., Hartvig, M., Knudsen, K., and Andersen, K.H. 2013. Size-based 862!
predictions of food web patterns. Theor. Ecol. 7(1): 23–33.
863!
Zhang, L., Thygesen, U.H., Knudsen, K., and Andersen, K.H. 2012. Trait diversity
864!
promotes stability of community dynamics. Theor. Ecol. 6(1): 57–69. doi:
865!
10.1007/s12080-012-0160-6. 866!
Zijlema, M. 1996. On the construction of a third-order accurate monotone convection
867!
scheme with application to turbulent flows in general domains. Int. J. Numer.
868!
Methods Fluids 22: 619–641.
869!
!870!
! 871!
!
32!
872!
873!
4*'=&3HI3J"9&)1+1?3&:0*(+"1,3"!3(5&3!0==3!""#$%&'3/"#&=I33K0',.)+7(3L+M3)&!&),3("3,7&.+&,310/'&)I!874!
D1."01(&)3*1#3."1,0/7(+"13
!
!!Prey!size!selection!
v#Lwxy
#-f\g ;rz eA#Lwxy
#
&
i".dA
&$!
M1!
!!Clearance!rate!
{
A# - _A#b''|}~•''_A-H
F^AeA
`ab
/ ; H
F.c2dA
!
M2!
!!Encountered!food!
A# - {
A"#$ ‚
ƒ
v#Lwxy
#!ƒ#Lwxy #Lwxy(#Lwxy
F
!
M3!
!!Maximum!consumption!
rate!
TUV1A"#$ - ^A#`!
M4!
!!Feeding!level!
H
A# - A"#$
A# < „TUV1A"#$!
M5!
J)"%(53*1#3)&7)"#0.(+"13
!!Maturation!function!
# - / < #
AW
A
a%F a% #
W
A
%a`
!
M6!
!!Somatic!growth!
CA# - ‡H
A# „TUV1A ; IA#K"/ ; … # $!
M7a!
!
C # - ˆ ‡H # „TUV ; I#K"/ ; … # $!
M7b!
!!Egg!production!
C# - ‡H
A# „TUV1A ; IA#K… # !
M8a!
!
C# - ˆ ‡H # „TUV ; I#K… # !
M8b!
N"01#*)23."1#+(+"13
!!Population!egg!
production!
GL1A -u
.#F
!A# C# '(#
Š
)
!
M9!
!!Recruitment!
GA- GTUV1A
GL1A
GTUV1A < GL1A
!
M10!
!!Boundary!condition!
!A#FC #F- GA!
M11!
!
33!
A")(*=+(23
!!Background!mortality!
DF- qFW
AŒ!
M12!
!!Predation!mortality!
DL1A #Lwxy - v #Lwxy
#/ ; H
ƒ# {
ƒ# ‚!
ƒ# (#
)
ƒ
'!
M13!
!
@&,"0).&3,7&.()0/3
!!Population!dynamics!
(!w"#$
(B - ŽF#`a% 2"#$ ; !w"#$ ; DL1€ # !"#$!
M14!
!!Carrying!capacity!
2 # - ' 2w#a3!
M15!
4)*+($'*,&#3/"#&=3
3
3
!!Maximum!
recruitment!
GTUV1A - 2N2 ‡H
F^#F
`; IJ#F
K'W
A
&`abam:n #F
a`an •W
A!
M16!
!!Physiological!
mortality!
o - H
F^
‡H
F^ ; IJ
e&`aba% f\g .O Q ; / ; Q&< / d &
.!
M17!
!875!
!876!
! !877!
!
34!
!878!
4*'=&3OI3K2/'"=,3*1#39*=0&,3"!3,7&.+&,$+1#&7&1#&1(37*)*/&(&),3+13(5&3()*+($'*,&#3*1#3."//01+(23/"#&=,I33879!
!880!
Symbol!
Explanation!
Value!and!unita!
#!
Body!weight!
g!
W!
Asymptotic!body!weight!
g!
!"#$!
Abundance!density!spectrum!
numbers/gram!b!
e!
Preferred!predator-prey!mass!ratio!
100!c!
d!
Width!of!size!preference!
1.3!d!
!
Species!preference!
1!
Q!
Exponent!for!clearance!rate!
0.8!!e!
H
F!
Initial!feeding!level!
0.6!!f!
!
Assimilation!efficiency!
0.6!
^!
Factor!for!maximum!consumption!
20!g0.25yr-1!!!!g!
O!
Exponent!for!maximum!consumption!
¾!!h!
IJ!
Factor!for!standard!metabolism!
2.4!g0.25yr-1!
P!
Exponent!for!standard!metabolism!
¾!!h!
3
Ratio!between!size!at!maturation!and!W!
0.25!(0.01)!!i!
2N!
Constant!for!max.!recruitment!
1.7!!!!g!
u!
Efficiency!of!reproduction!
0.1!!!j!
#F!
Egg!size!
1!mg!!!k!
qF!
Factor!for!background!mortality!
2!g0.25yr-1!!!!l!
!
Exponent!for!background!mortality!
-0.25!!!!m!
ŽF!
Resource!productivity!
4!g0.25yr-1!!!!n!
#‘’“!
Maximum!size!of!resource!
1!g!!o!
2!
Resource!carrying!capacity!
1012!g-1!!!b,!g!
!
35!
aValues!in!parentheses!refers!to!the!community!model!
bThe!units!of!the!abundance!density!spectrum!could!also!be!expressed!as!a!concentration,!i.e.,!as!
numbers/gram/volume!or!numbers/gram/area.!In!that!case!the!units!of!the!resource!carrying!capacity!
should!also!be!changed!accordingly.!Further,!the!units!of!the!clearance!rate!would!become!volume!per!time!
or!area!per!time!respectively.!
c!Ursin!1973;!Jennings!et!al.!2001.!
d!Ursin!(1973)!finds!d - /,!but!here!d!is!increased!to!represent!cross-species!variation.!In!the!food-web!
model'd - /!except!if!specific!knowledge!about!a!species!exists.!
e!Andersen!and!Beyer,!2006.!
f!!Assumes!that!fish!in!general!are!not!satiated!(H
FY /$!while!also!have!a!signifant!surplus!after!assimilation!
and!standard!metabolism,!i.e,!larger!than!IJi"‡^$ - 01.1'Setting!H
F!in!the!middle!of!the!range!0.2…1!gives!
0.6.!See!also!Hartvig!et!al.!(2011),!App.!E.!
g!!Adjusted!to!give!similar!results!to!the!North!Sea!model!(Blanchard!et!al.!2014),!despite!the!use!of!different!
exponent!for!O;!see!text!and!Figure!2.!
h!!See!text.!
i!!Beverton,!1992.!
j!!Andersen!and!Beyer!(2013).!Note!that!this!differs!from!the!North!Sea!model!(Blanchard!et!al.!2014),!
where!a!value!of!u - /!was!used.!This!will!(in!the!North!Sea!model)!lead!to!overestimations!of!
T•y!for!
individual!species.!
k!!!Neuheimer!et!al.,!2015.!
l!!!This!value!leads!to!a!background!mortality!on!a!10!kg!individual!of!0.2!yr-1.!These!individuals!will!have!
little!predation!mortality!in!the!model,!so!background!mortality!is!the!largest!part.!See!also!discussion.!
m!!!!Standard!“metabolic”!assumption!(Brown!et!al.!2004).!
n!!!Hartvig!et!al.,!2011.!
o!!!Set!to!include!mesoplankton,!such!as!shrimps.!
!881!
3 3882!
!
36!
3883!
4*'=&3P3Implementations!of!size!spectrum!models.!References!are!given!to!where!a!particular!884!
model!was!first!formulated!or!calibrated!to!specific!system,!but!not!to!applications!of!the!models.!885!
The!column!“growth”!refers!to!the!functional!response!used!to!calculate!growth!rate.!886!
Reference!
Growth!
Reproduction!
Resource!
Density!dependence!
B""#$%&'3/"#&=,3
!
!
!
!
Hall!et!al.!2006,!
Rochet!et!al.!2011!
Fixed!
Fixed!
N.a.!
Stock-recruitment!
Hartvig!2011,!Hartvig!
et!al.!2011!
Type!II!
Dynamic!
Dynamic!
Emergent!
Houle!et!al.!2012,!
Blanchard!et!al.!2014!
Type!II!
Dynamic!
Dynamic!
Stock-recruitment!
Rossberg!et!al.!2013!
Type!II!
Dynamic!
Dynamic!
Emergent!
4)*+($'*,&#3/"#&=,3
!
!
!
!
Pope!et!al.!2006,!2009!
Fixed!
Fixed!
N.a.!
Stock-recruitment!
relationship!
Andersen!and!
Pedersen!2010!
Type!II!
Fixed!
Dynamic!
Fixed!recruitment!
Houle!et!al.!2013;!
Jacobsen!et!al.!2014!
Type!II!
Dynamic!
Dynamic!
Stock-recruitment!
relationship!
Maury!and!Poggiale!
2013!
Type!II!
Dynamic!
Dynamic!
Switching!
8"//01+(23/"#&=,3
!
!
!
!
Benoît!and!Rochet!
2004;!Blanchard!et!al.!
2009;!Law!et!al.!2009!
QHR!
!
Type!I!
N.a.!
Fixed!
Fixed!boundary!
condition!
Blanchard!et!al.!2011!
Type!I!&!
Dynamic!
Fixed!
Fixed!boundary!
!
37!
3887!
QHR3G"(&3(5*(3S*%3&(3*=I3QOTTUR30,&,3*3,=+?5(=23#+!!&)&1(3."1,&)9*(+"13&:0*(+"13(5*13(5&3888!
"(5&)3/"#&=,I3889!
!3890!
II!
condition!
Maury!et!al.!2007!!
Type!II!
Dynamic!
Dynamic!
!
This!article!
Type!II!
N.a.!!
Dynamic!
Fixed!boundary!
condition!
!
38!
!891!
!!892!
B+?0)&3HI3>==0,()*(+"13"!3(5&3,+6&3,7&.()0/3.*=.0=*(+"13"!33!")3*3,7&.+&,3Q(5+13'=*.C3=+1&R3!)"/3(5&37&),7&.(+9&3"!3893!
*13+1#+9+#0*=3*(3*3?+9&13,+6&I3;==37)".&,,&,3+1,+#&3(5&3"9*=3*)"01#3(5&3!+,53*)&3+1#+9+#0*=3=&9&=37)".&,,&,V3%+(53894!
#*)C3?)&23*))"%,3)&7)&,&1(+1?3/*,,3!="%,3*1#3(5&3=+?5(3?)&23*))"%3)&7)&,&1(+1?3/")(*=+(23=",,&,I345&3,.*=+1?3895!
!)"/3+1#+9+#0*=3=&9&=37)".&,,&,3"!3?)"%(5V3&??37)"#0.(+"13*1#37)&#*(+"13*)&3!*.+=+(*(&#3'23(5&3A.W&1#)+.$9"13896!
B"&),(&)3&:0*(+"13Q&:I3HR3*1#3(5&3'"01#*)23."1#+(+"13QAHHRI345&37)".&,,3+,3+(&)*(+9&3%+(53(5&3,+6&3,7&.()0/3897!
'&+1?31&&#&#3("3.*=.0=*(&3(5&37"70=*(+"1$=&9&=3/&*,0)&,3"!3)&7)"#0.(+"13*1#3)&.)0+(/&1(I345&310/'&),3)&!&)3898!
("3(5&3&:0*(+"1,3+134*'=&3HI3 3899!
!"#$%"&'(
)*+,"-+).
/001213,&1$"
)4+,"-+)5
6'071(,&1$"
)8
),&%(,&1$"
)9
:($;&<
)8
!==+7($ ->
)?
6'7($-%#&1$"
)@
6'#(%1&2'"&
)AB
C1D'+07'#&(%2
'E>+A+F+)AA
C%1&, G3'+7('H I('-,&$(0
J"-1K1-%,3+ 01D 'L+w
M1$2,00+07'#&(%2L+B3$=NwO
PQQ07(1"=+ 01D'L+w0
!
39!
900!
B+?0)&3OI3K"=0(+"1,3"!3(5&3."//01+(23/"#&=3Q=&!(3."=0/1RV3(5&3()*+($'*,&#3/"#&=3Q/+##=&3."=0/1RV3(5&3G")(53901!
K&*3!""#$%&'3/"#&=3Q)+?5(3."=0/1R3*1#3(5&3&:0+=+')+0/3,"=0(+"13Q#*,5&#3=+1&,R3+13*1301$!+,5&#3,+(0*(+"13*,3*3902!
!01.(+"13"!3'"#23/*,,I34"7X3N+"/*,,3,+6&3,7&.()*3+13(5&3LK5&=#"13,.*=+1?Y3#&7+.(+1?3'+"/*,,3+13="?$,7*.&#3,+6&3903!
?)"07,V3,5"%+1?3."//01+(23,7&.()0/3Q(5+.CRV3'*.C?)"01#3,7&.()0/3Q(5+.C3?)&2RV3,7&.+&,3,7&.()*3Q(5+13?)&2R3904!
*1#3(5&3(5&")&(+.3*9&)*?&3,7&.()0/3!)"/3(5&3&:0+=+')+0/3,"=0(+"13Q#*,5&#RI3A+##=&X3?)"%(53)*(&,3Q,"=+#R3905!
."/7*)&#3("3(5&3/*Z+/0/37",,+'=&3?)"%(53)*(&3%5&13!&#3*#3=+'+(0/3Q#*,5&#[3!")3(5&3!""#$%&'3/"#&=3(5+,3+,3*13906!
*9&)*?&3"9&)3*==3,7&.+&,RI3N"(("/X3*9&)*?&37)&#*(+"13/")(*=+(2V3Q,"=+#RV3!")3&*.53,7&.+&,3Q?)&2R3*1#3!)"/3(5&3907!
&:0+=+')+0/3,"=0(+"13Q#*,5&#RI3G"(&3(5*(3+13(5&3()*+($'*,&#3/"#&=3*==3*,2/7("(+.3,+6&3.=*,,&,3&Z7&)+&1.&3(5&3908!
,*/&37)&#*(+"13/")(*=+(23,+1.&3!&&#+1?3+,3"1=23'*,&#3"13,+6&I3909!
! !910!
Community model
108
109
1010
1011
1012
1013
Sheldon spectra (g)
(a)
10-1
101
103
105
Growth (g/year)
(d)
10-3 10-1 10110 310 5
0
2
4
6
Mortality (year-1 )
(g)
Trait-based model
(b)
(e)
10-3 10-1 10110 310 5
Body mass (g)
(h)
Food-web model
(c)
(f)
10-3 10-1 10110 310 5
(i)
!
40!
!911!
!912!
B+?0)&3PI3@&,7"1,&3("3!+,5+1?3"13(5&3."//01+(23!")3(5&3G")(53K&*3!""#$%&'3/"#&=3Q?)&2RV3(5&3()*+($'*,&#3/"#&=3913!
Q,"=+#3'=*.CR3*1#3(5&3."//01+(23/"#&=3Q#*,5&#3'=*.CRI3K+6&3,7&.()*3*)&3,5"%13)&=*(+9&3("3(5&301!+,5&#3,+6&3914!
,7&.()*3!)"/3B+?0)&3OI3*R3@&,7"1,&3("3!+,5+1?3*==3,7&.+&,3%+(53*3()*%=$(27&3,&=&.(+9+(237*((&)1I3K&=&.(+"13"13&*.53915!
,7&.+&,3,(*)(,3*(3010lW*1#3(5&3!+,5+1?3/")(*=+(23+,3TI\32)$HI3>13(5&3."//01+(23/"#&=3*==3+1#+9+#0*=,3=*)?&)3(5*13916!
HT3?3*)&3!+,5&#I3'R385*1?&,3("3(5&3!+,5&#3."//01+(23+137*1&=3*R3%5&13!")*?&3!+,5+1?3+,3)&/"9&#V3+I&I3!+,5+1?3"13917!
,7&.+&,3%+(53*13*,2/7("(+.3,+6&3,/*==&)3(5*13OTT3?3Q")3+1#+9+#0*=,3,/*==&)3(5*13OTT3?3!")3(5&3."//01+(23918!
/"#&=RI33919!
! !920!
a)
Relative spectra
0.1
0.2
0.5
1
2
5
10
b)
Body mass (g)
10-3 10-1 10110 310 5
Relative spectra
0.2
0.5
1
2
5
!
41!
!921!
B+?0)&3]I3>==0,()*(+"13"!3(5&3(+/&$#&7&1#&1(3,"=0(+"13+13(5&3."//01+(23/"#&=3Q(%"3=&!($/",(3."=0/1,R3*1#3(5&3922!
()*+($'*,&#3/"#&=3Q)+?5($/",(3."=0/1RI34"73)"%X3*9&)*?&3'+"/*,,3,7&.()*3Q,"=+#R3*1#3)*1?&3"!39*)+*(+"13Q?)&23923!
7*(.5RI3N"(("/3)"%X3(5&375*,&$7=*1&3'&(%&&13*37)&23"!3HT3?3*1#3*37)&#*(")3%+(53*3,+6&3"1&37)&#*(")$7)&23/*,,3924!
=*)?&)3Qe/0'C$3+==0,()*(&#3%+(539&)(+.*=3#*,5&#3=+1&,3+13(5&3("73)"%I3S&!(3."=0/1X3."//01+(23/"#&=3%+(53%+#(53925!
"!3,+6&37)&!&)&1.&3d - /1RI3A+##=&3."=0/1X3."//01+(23/"#&=3%+(53d - /I3@+?5(3."=0/1X3()*+($'*,&#3/"#&=3%+(53926!
d - /I3^(5&)37*)*/&(&),3*,3+13B+?,I3O3*1#3PV3&Z.&7(3(5*(3(5&3=*)?&,(3,+6&3"!3(5&3")?*1+,/,3+,3HTTT3C?I33927!
! !928!
10
-3
10
-1
10
1
10
3
10
5
10
0
10
2
10
4
10
6
10
8
10
10
10
12
Sheldon spectrum (g)
(a)
10
3
10
5
10
7
10
9
10
11
10
-2
10
-1
10
0
10
1
10
2
10
3
10
4
10
5
10
6
10
7
10
8
Predator spectrum (g
-1
)
(d)
10
-3
10
-1
10
1
10
3
10
5
Body mass (g)
(b)
10
3
10
5
10
7
10
9
10
11
Prey spectrum (g
-1
)
(d)
10
-3
10
-1
10
1
10
3
10
5
(c)
10
3
10
5
10
7
10
9
10
11
(f)
!
42!
!929!
B+?0)&3\I3;,2/7("(+.3%&+?5(3,7&.()0/3Q&Z(&1#&#3K5&=#"13527"(5&,+,RV3,5"%+1?3("(*=310/'&),3"!3+1#+9+#0*=,3+13930!
="?*)+(5/+.*==23,7*.&#3*,2/7("(+.3%&+?5(3?)"07,3+13*1301!+,5&#3Q?)&2R3*1#3!+,5&#3,+(0*(+"13Q'=*.CR3!)"/3(5&3931!
()*+($'*,&#3/"#&=I345&3,+/0=*(+"13)&,0=(,3*)&3."/7*)&#3("3#*(*3!)"/3(5)&&3#+!!&)&1(3()*%=3,0)9&2,3(Daan!et!al.!932!
2005)I3>(3+,3*,,0/&#3(5*(3(5&3()*%=3,0)9&2,3"1=23)&(*+13+1#+9+#0*=,3=*)?&)3(5*13HT3./I3933!
3934!
!935!
B+?0)&3_I3A*Z+/0/3)&.)0+(/&1(V3G–n— V3!")3(5&3G")(53K&*3/"#&=3Q.+).=&,R3*1#3(5&3()*+($'*,&#3/"#&=3%+(53="?$936!
,7*.&,3*,2/7("(+.3,+6&3?)"07,3Q=+1&R3*1#3%+(53*,2/7("(+.3,+6&3?)"07,3%+(53(5&3,*/&3*,2/7("(+.3,+6&,3*,3+13(5&3937!
G")(53K&*3/"#&=3Q.)",,&,RI3938!
!939!
W1 (g)
10210310410 5
Numbers
106
107
108
109
1010
1011
1012
W1 (g)
10110210310 410 5
Rmax (numbers/yr)
109
1010
1011
1012
1013
1014
1015
!
... From the total number of produced eggs, only a fraction will survive to become Age-0 recruits the next fall. The survivorship from eggs and recruits is determined by an annually variable recruitment carrying capacity which encapsulates all density-dependence in the model (Andersen et al. 2016). Although spawning data were not assessed on an annual basis, auxiliary data from the Wasi Falls spawning site sampled during a subset of years could be used to infer on reproductive traits of Walleye, such as gonad production and absolute fecundity as a function of fish length. ...
... The recruitment term , +1 in turn depends on: (i) the mean number of eggs (or mean fecundity) produced by each fish that were aged a in the previous Fall ( , ) (i.e., the transition marked as "Reproduction" in Figure 1), and (ii) an implicit mortality that occurs between spawning in spring and the time of population assessment in the following Fall ("Recruitment" in Figure 1). This egg to age-0/juvenile mortality is assumed as the only source of density dependence in the model, and is represented by a Beverton-Holt stock-recruitment relationship (Andersen et al. 2016): ...
Technical Report
Full-text available
This report is a direct response to the Lake Nipissing management plan timeline for a review after 5 years and further builds upon the recommendations of the third-party Quantitative Fisheries Centre report. Using the Fall Walley Index Netting time series (starting in 1998) a Bayesian state-space model has been developed to assist with future management discussions. Besides the structural differences between the current Risk Assessment Model for Joint Adaptive Management and Bayesian model the most important change was not to incorporate the harvest data, from either the angling or commercial fisheries, in the present model version. This change was made to address the concern that the cost and feasibility of maintaining the collection of fisheries-dependent information (i.e., winter and open water angler creel surveys, and commercial catch monitoring) may not be sustainable on an annual basis into the future. The results from the Bayesian model have shown that the current management system should allow the Lake Nipissing Walleye population to reach its desired biomass recovery target in the near future. The simulated effects of a variety of alternate recreational angling rules were compared and there appear to be several options that can greatly decrease the risk to the resource while maintaining or increasing harvest into the near future. The model requires the annual data collected from the Fall Walley Index Netting program on Lake Nipissing (at least until the Walleye population has reached the recovery target of 1.3BMSY).
... We built a size spectrum model for 18 resident freshwater fishes of the Mörrum river in Sweden using the R package 'mizer' . The theoretical background of size spectrum models now support a range of applications for single species, trait-based, and multi-species approaches to answer questions related to fisheries , Andersen et al. 2016 (Fig. 1). In layperson terms, a size spectrum model is a deterministic model that allows a user to project how a fish community changes over time, based on size-based predator-prey interactions and individual fish species physiology. ...
Article
Full-text available
Modeling fish community responses to dam removal is an emerging field of study as dam removals become more common, but uncertainties concerning recovery time and community stability remain. In Europe, an EU-wide biodiversity strategy plans to restore around 25,000 km of rivers to free-flowing status, which emphasizes the importance of being able to predict fish community responses after dam removal. We developed a multi-species size spectrum model for a fish community in the Mörrum River in Sweden to identify possible outcomes after a dam was removed in 2020. Electrofishing monitoring before the dam removal was used to calibrate the model. We projected multiple scenarios into the future to explore patterns of community stability, individual species responses, and recovery time while varying parameters related to dam removal mortality, base resource rate change, and maximum recruitment change. We created 30 hypothetical scenarios using an abrupt change perspective (parameters are step-based) and 30 scenarios using a gradual change perspective (parameters are smooth). In both perspectives, dam removal mortality and a decreasing resource rate reduced community biomass and delayed recovery time compared to pre-dam removal conditions. Our results demonstrate that recovery from a dam removal scenario is not necessarily a benefit for all species. In scenarios where dam removal practices or dam failures cause high mortality events and sustained impacts on base trophic level resources, recovery of pre-removal biomass may take decades, while community stability may be unstable for twice that time-period. Our study shows that size spectrum models can be applied to dam removal scenarios to explore potential recovery outcomes, particularly from a risk avoidance perspective. A benefit of using such an approach is the relatively low data requirements needed to perform projections (e.g., present species, fish growth rates, relative fish abundance). Implementing this model in other river systems, particularly at the reach scale, can help river restoration and management assess tradeoffs associated with different habitat restoration approaches prior to committing to a dam removal plan.
... cal size-scaling exponents to estimate interaction strength along with other life-history parameters see Reum et al., 2019, Spence et al., 2021. These models have led to conceptual advances in the consequences of harvest on populations(Andersen et al., 2009), communities(Andersen et al., 2015;Claessen et al., 2009) or whole ecosystems ...
Article
Full-text available
How strongly predators and prey interact is both notoriously context dependent and difficult to measure. Yet across taxa, interaction strength is strongly related to predator size, prey size and prey density, suggesting that general cross‐taxonomic relationships could be used to predict how strongly individual species interact. Here, we ask how accurately do general size‐scaling relationships predict variation in interaction strength between specific species that vary in size and density across space and time? To address this question, we quantified the size and density dependence of the functional response of the California spiny lobster Panulirus interruptus , foraging on a key ecosystem engineer, the purple sea urchin Strongylocentrotus purpuratus , in experimental mesocosms. Based on these results, we then estimated variation in lobster–urchin interaction strength across five sites and 9 years of observational data. Finally, we compared our experimental estimates to predictions based on general size‐scaling relationships from the literature. Our results reveal that predator and prey body size has the greatest effect on interaction strength when prey abundance is high. Due to consistently high urchin densities in the field, our simulations suggest that body size—relative to density—accounted for up to 87% of the spatio‐temporal variation in interaction strength. However, general size‐scaling relationships failed to predict the magnitude of interactions between lobster and urchin; even the best prediction from the literature was, on average, an order of magnitude (+18.7×) different than our experimental predictions. Harvest and climate change are driving reductions in the average body size of many marine species. Anticipating how reductions in body size will alter species interactions is critical to managing marine systems in an ecosystem context. Our results highlight the extent to which differences in size‐frequency distributions can drive dramatic variation in the strength of interactions across narrow spatial and temporal scales. Furthermore, our work suggests that species‐specific estimates for the scaling of interaction strength with body size, rather than general size‐scaling relationships, are necessary to quantitatively predict how reductions in body size will alter interaction strengths.
... It is more probable that in natural systems the distribution of metabolic responses will be structured by species traits, such as body size and cognitive capacity, which in turn can correlate with relative positions within the food web (Woodward et al., 2005;Edmunds et al., 2016). The responses should be more pronounced in predators with higher behavioral flexibility and overall levels of activity, which in general have larger sizes and occupy higher trophic positions, at least in aquatic ecosystems (Shurin et al., 2006;Andersen et al., 2016;Potapov et al., 2019). These are the so-called demand organisms in the Dynamic Energy Budget (DEB) framework (Kooijman, 2010), as opposed to supply organisms, which have lower metabolic requirements, relatively simpler behavioral repertoire but a more plastic physiology, and tend to occupy lower trophic positions. ...
Article
Full-text available
The metabolic cost of foraging is the dark energy of ecological systems. It is much harder to observe and to measure than its beneficial counterpart, prey consumption, yet it is not inconsequential for the dynamics of prey and predator populations. Here I define the metabolic response as the change in energy expenditure of predators in response to changes in prey density. It is analogous and intrinsically linked to the functional response, which is the change in consumption rate with prey density, as they are both shaped by adjustments in foraging activity. These adjustments are adaptive, ubiquitous in nature, and are implicitly assumed by models of predator–prey dynamics that impose consumption saturation in functional responses. By ignoring the associated metabolic responses, these models violate the principle of energy conservation and likely underestimate the strength of predator–prey interactions. Using analytical and numerical approaches, I show that missing this component of interaction has broad consequences for dynamical stability and for the robustness of ecosystems to persistent environmental or anthropogenic stressors. Negative metabolic responses – those resulting from decreases in foraging activity when more prey is available, and arguably the most common – lead to lower local stability of food webs and a faster pace of change in population sizes, including higher excitability, higher frequency of oscillations, and quicker return times to equilibrium when stable. They can also buffer the effects of press perturbations, such as harvesting, on target populations and on their prey through top-down trophic cascades, but are expected to magnify bottom-up cascades, including the effects of nutrient enrichment or the effects of altering lower trophic levels that can be caused by environmental forcing and climate change. These results have implications for any resource management approach that relies on models of food web dynamics, which is the case of many applications of ecosystem-based fisheries management. Finally, besides having their own individual effects, metabolic responses have the potential to greatly alter, or even invert, functional response-stability relationships, and therefore can be critical to an integral understanding of predation and its influence on population dynamics and persistence.
Article
Full-text available
Fish body growth is a trait of major importance for individual survival and reproduction. It has implications in population, ecology, and evolution. Somatic growth is controlled by the GH/IGF endocrine axis and is influenced by nutrition, feeding, and reproductive-regulating hormones as well as abiotic factors such as temperature, oxygen levels, and salinity. Global climate change and anthropogenic pollutants will modify environmental conditions affecting directly or indirectly fish growth performance. In the present review, we offer an overview of somatic growth and its interplay with the feeding regulatory axis and summarize the effects of global warming and the main anthropogenic pollutants on these endocrine axes.
Article
Full-text available
Recent research has revealed the diversity and biomass of life across ecosystems, but how that biomass is distributed across body sizes of all living things remains unclear. We compile the present-day global body size-biomass spectra for the terrestrial, marine, and subterranean realms. To achieve this compilation, we pair existing and updated biomass estimates with previously uncatalogued body size ranges across all free-living biological groups. These data show that many biological groups share similar ranges of body sizes, and no single group dominates size ranges where cumulative biomass is highest. We then propagate biomass and size uncertainties and provide statistical descriptions of body size-biomass spectra across and within major habitat realms. Power laws show exponentially decreasing abundance (exponent -0.9±0.02 S.D., R2 = 0.97) and nearly equal biomass (exponent 0.09±0.01, R2 = 0.56) across log size bins, which resemble previous aquatic size spectra results but with greater organismal inclusivity and global coverage. In contrast, a bimodal Gaussian mixture model describes the biomass pattern better (R2 = 0.86) and suggests small (~10-15 g) and large (~107 g) organisms outweigh other sizes by one order magnitude (15 and 65 Gt versus ~1 Gt per log size). The results suggest that the global body size-biomass relationships is bimodal, but substantial one-to-two orders-of-magnitude uncertainty mean that additional data will be needed to clarify whether global-scale universal constraints or local forces shape these patterns.
Preprint
Full-text available
We introduce the group-based approach, use it to develop a multi-group biodiversity theory, and apply it find solutions to the multi-species maximum sustainable yield problem for a mixed species fishery. The group-based approach to community ecology is intermediate between classical species-centric and more recent trait-based (species-less) approaches. It describes ecological communities as composed of conspecific groups rather than species (as in classical models) or species-less individuals (as in trait-based models), and reconsiders community structure as results of inter-group resource competition. The approach respects species affiliation and recognises the importance of trait trade-offs at the conspecific group level. It offers an alternative to both classical and trait-based approaches and, remarkably, provides a complete analytical description of the community structure in the bench-mark case of zero-sum resource redistribution. Highlights We introduce a group-based approach to modelling of ecological communities and develop a multi-group biodiversity theory. A classification of intergroup interactions is established, based on the type of contest (which is determined by the relative role of qualitative vs. quantitative factors) and the accounting of resource redistribution. For pure resource competition, we obtain the full analytic description of multi-group and multi-species community structure and its dynamics, including the processes of fission-fusion and invasion-extinction among groups. A principle of competitive coexistence is formulated, which explains the existence of conspecific groups as a mechanism for avoiding competitive exclusion. We apply the theory to harvesting multi-species communities (e.g., for fisheries) and derive analytic expression for total catch and approximate solutions for multi-species maximum sustainable yield (MSY).
Preprint
Full-text available
Highlights 1. We introduce a group-based approach to modelling of ecological communities and develop a multi-group biodiversity theory. 2. A classification of intergroup interactions is established , based on the type of contest (which is determined by the relative role of qualitative vs. quantitative factors) and the accounting of resource redistribution. 3. For pure resource competition, we obtain the full analytic description of multi-group and multi-species community structure and its dynamics, including the processes of fission-fusion and invasion-extinction among groups. 4. A principle of competitive coexistence is formulated, which explains the existence of conspecific groups as a mechanism for avoiding competitive exclusion. 5. We apply the theory to harvesting multi-species communities (e.g., for fisheries) and derive analytic expression for total catch and approximate solutions for mul-ti-species maximum sustainable yield (MSY). Abstract We introduce the group-based approach, use it to develop a multi-group biodiversity theory, and apply it find solutions to the multi-species maximum sustainable yield problem for a mixed species fishery. The group-based approach to community ecology is intermediate between classical species-centric 2 and more recent trait-based (species-less) approaches. It describes ecological communities as composed of conspecific groups rather than species (as in classical models) or species-less individuals (as in trait-based models), and reconsiders community structure as results of inter-group resource competition. The approach respects species affiliation and recog-nises the importance of trait trade-offs at the conspecific group level. It offers an alternative to both classical and trait-based approaches and, remarkably, provides a complete analytical description of the community structure in the benchmark case of zero-sum resource redistribution.
Preprint
Full-text available
Recent research has revealed the diversity and biomass of life on Earth, but how that biomass is distributed across body sizes remains unclear. We compile the present-day global body size-biomass spectra for the terrestrial, marine, and subterranean realms. To achieve this compilation, we pair biomass estimates with previously uncatalogued body size ranges across all free-living biological groups. These data show that diverse organism types converge on similar overall minimum and maximum sizes. We then propagate biomass and size uncertainties and provide statistical descriptions of body size-biomass spectra across and within major habitat realms. Power laws show exponentially decreasing abundance (exponent -0.9, R 2 =0.97) and nearly equal biomass (exponent 0.09, R 2 =0.56) across log size bins. Gaussian mixture models show small and large organisms outweigh other sizes by about one order magnitude ( R 2 =0.86 in the size-biomass spectrum), but one-to-two orders of magnitude uncertainty persists across all organisms. The results show that the global body size-biomass relationships may be bimodal, but additional data will be needed to clarify whether global-scale universal constraints or local forces shape these patterns.
Article
Full-text available
The advent of an ecosystem-based approach dramatically expanded the scope of fisheries management, creating a critical need for new kinds of data and quantitative approaches that could be integrated into the management system. Ecosystem models are needed to codify the relationships among drivers, pressures and resulting states, and to quantify the trade-offs between conflicting objectives. Incorporating ecosystem considerations requires moving from the single-species models used in stock assessments, to more complex models that include species interactions, environmental drivers and human consequences. With this increasing model complexity, model fit can improve, but parameter uncertainty increases. At intermediate levels of complexity, there is a ‘sweet spot’ at which the uncertainty in policy indicators is at a minimum. Finding the sweet spot in models requires compromises: for example, to include additional component species, the models of each species have in some cases been simplified from age-structured to logistic or bioenergetic models. In this paper, we illuminate the characteristics, capabilities and short-comings of the various modelling approaches being proposed for ecosystem-based fisheries management. We identify key ecosystem needs in fisheries management and indicate which types of models can meet these needs. Ecosystem models have been playing strategic roles by providing an ecosystem context for single-species management decisions. However, conventional stock assessments are being increasingly challenged by changing natural mortality rates and environmentally driven changes in productivity that are observed in many fish stocks. Thus, there is a need for more tactical ecosystem models that can respond dynamically to changing ecological and environmental conditions.
Article
Full-text available
The majority of higher organisms in the marine environment display indeterminate growth; that is, they continue to grow throughout their life, limited by an asymptotic size. We derive the abundance of species as a function of their asymptotic size. The derivation is based on size‐spectrum theory, where population structure is derived from physiology and simple arguments regarding the predator‐prey interaction. Using a hypothesis of constant satiation, which states that the average degree of satiation is independent of the size of an organism, the number of individuals with a given size is found to be proportional to the weight raised to the power −2.05, independent of the predator/prey size ratio. This is the first time the spectrum exponent has been derived solely on the basis of processes at the individual level. The theory furthermore predicts that the parameters in the von Bertalanffy growth function are related as \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape $K\propto L^{-1}_{\infty }$ \end{document} .
Article
The strategic objectives for fisheries, which are enshrined in international conventions, are to maintain or restore stocks to produce maximum sustainable yield (MSY) and to implement the ecosystem approach, requiring that interactions between species be taken into account and conservation constraints be respected. While the yield and conservation aims are, to some extent, compatible when a fishery for a single species is considered, species interactions entail that MSY for a species depends on the species with which it interacts, and the yield and conservation objectives therefore conflict when an ecosystem approach to fisheries management is required. We applied a conceptual size- and trait-based model to clarify and resolve these issues by determining the fishing pattern that maximizes the total yield of an entire fish community in terms of catch biomass or economic rent under acceptable conservation constraints. Our results indicate that the eradication of large, predatory fish species results in a potential maximum catch at least twice as high as if conservation constraints are imposed. However, such a large catch could only be achieved at a cost of forgone rent; maximum rent extracts less than half of the potential maximum catch mass. When a conservation constraint is applied, catch can be maximized at negligible cost in forgone rent, compared with maximizing rent. Maximization of rent is the objective that comes closest to respecting conservation concerns.
Book
Food webs have now been addressed in empirical and theoretical research for more than 50 years. Yet, even elementary foundational issues are still hotly debated. One difficulty is that a multitude of processes need to be taken into account to understand the patterns found empirically in the structure of food webs and communities. Food Webs and Biodiversity develops a fresh, comprehensive perspective on food webs. Mechanistic explanations for several known macroecological patterns are derived from a few fundamental concepts, which are quantitatively linked to field-observables. An argument is developed that food webs will often be the key to understanding patterns of biodiversity at community level. Key Features: Predicts generic characteristics of ecological communities in invasion-extirpation equilibrium. Generalizes the theory of competition to food webs with arbitrary topologies. Presents a new, testable quantitative theory for the mechanisms determining species richness in food webs, and other new results. Written by an internationally respected expert in the field. With global warming and other pressures on ecosystems rising, understanding and protecting biodiversity is a cause of international concern. This highly topical book will be of interest to a wide ranging audience, including not only graduate students and practitioners in community and conservation ecology but also the complex-systems research community as well as mathematicians and physicists interested in the theory of networks. "This is a comprehensive work outlining a large array of very novel and potentially game-changing ideas in food web ecology." Ken Haste Andersen, Technical University of Denmark "I believe that this will be a landmark book in community ecology ... it presents a well-established and consistent mathematical theory of food-webs. It is testable in many ways and the author finds remarkable agreements between predictions and reality." Géza Meszéna, Eötvös University, Budapest
Article
Abstract: Charles Elton introduced the “pyramid of numbers” in the late 1920s, but this remarkable insight into body-size dependent patterns in natural communities lay fallow until the theory of the biomass size spectrum was introduced by aquatic ecologists in the mid-1960s. They noticed that the summed biomass concentration of individual aquatic organisms was roughly constant across equal logarithmic intervals of body size from bacteria to the largest predators. These observations formed the basis for a theory of aquatic ecosystems, based on the body size of individual organisms, that revealed new insights into constraints on the structure of biological communities. In this review, we discuss the history of the biomass spectrum and the development of underlying theories. We indicate how to construct biomass spectra from sample data, explain the mathematical relations among them, show empirical examples of their various forms, and give details on how to statistically fit the most robust linear and nonlinear models to biomass spectra. We finish by giving examples of biomass spectrum applications to production and fisheries ecology and offering recommendations to help standardize use of the biomass spectrum in aquatic ecology.
Article
A recent publication about balanced harvesting (Froese et al., ICES Journal of Marine Science; doi:10.1093/icesjms/fsv122) contains several erroneous statements about size-spectrum models. We refute the statements by showing that the assumptions pertaining to size-spectrum models discussed by Froese et al. are realistic and consistent. We further show that the assumption about density-dependence being described by a stock recruitment relationship is responsible for determining whether a peak in the cohort biomass of a population occurs late or early in life. Finally, we argue that there is indeed a constructive role for a wide suite of ecosystem models to evaluate fishing strategies in an ecosystem context.