Conference PaperPDF Available

Presentación del artículo “Mirando hacia el futuro: Ecosistemas tecnológicos de aprendizaje basados en servicios”

Authors:

Abstract

Esta es la presentación del artículo “Mirando hacia el futuro: Ecosistemas tecnológicos de aprendizaje basados en servicios” realizada en el CINAIC 2015 celebrado en Madrid (España) los días 14-16 de octubre de 2015. La gran distancia existente entre la tecnología y las metodologías docentes provoca que los nuevos avances tecnológicos no tengan fácil su integración en los contextos y prácticas metodológicas implantados, y que las tecnologías educativas maduras y los métodos educativos aplicados no respondan a las demandas de la sociedad ni al potencial transformador de la tecnología para la mejora del aprendizaje. Esta contribución plantea la necesidad de ofrecer un entorno tecnológico para el soporte de servicios de aprendizaje, el ecosistema educativo, que rompa con las limitaciones tecnológicas y de proceso de las actuales plataformas tecnológicas para conseguir una mejora de los procesos educativos. La propuesta de ecosistema educativo se concreta en 6 líneas de actuación: 1) arquitectura para la implantación de ecosistemas de servicios de aprendizaje; 2) toma de decisiones basadas en analíticas de aprendizaje; 3) sistemas de gestión de conocimiento adaptativos; 4) formación gamificada; 5) porfolios semánticos para la recogida de evidencias de aprendizaje; 6) metodologías educativas que hagan un uso efectivo de los avances tecnológicos en pro de la mejora del aprendizaje.
Presentación del artículoMirando hacia el futuro:
Ecosistemas tecnológicos de aprendizaje
basados en servicios
Francisco J. García-Peñalvo
Departamento de Informática y Automática, Universidad de Salamanca, Salamanca, Spain
fgarcia@usal.es
Ángel Fidalgo-Blanco
Departamento de Matemática Aplicada y Métodos Informáticos, Universidad Politécnica de
Madrid, Madrid, Spain
angel.fidalgo@upm.es
Faraón Llorens-Largo
Departamento de Ciencia de la Computación e Inteligencia Artificial, Universidad de Alicante,
Alicante, Spain
faraon.llorens@ua.es
Ángel Hernández-García
Departamento de Ingeniería de Organización, Administración de Empresas y Estadística,
Universidad Politécnica de Madrid, Madrid, Spain
angel.hernandez@upm.es
María L. Sein-Echaluce
Departamento de Matemática Aplicada
Universidad de Zaragoza, Zaragoza, Spain
mlsein@unizar.es
Santiago Iglesias-Pradas
Departamento de Ingeniería de Organización, Administración de Empresas y Estadística,
Universidad Politécnica de Madrid, Madrid, Spain
s.iglesias@upm.es
Miguel Á. Conde
Departamento de Ingenierías Mecánica, Informática y Aeroespacial, Universidad de León, León,
Spain
mcong@unileon.es
Marc Alier
Departament d'Enginyeria de Serveis i Sistemes d’Informació, Universitat Politècnica de
Catalunya,
Barcelona, Spain
marc.alier@upc.edu
Resumen
Esta es la presentación del artículo “Mirando hacia el futuro: Ecosistemas tecnológicos
de aprendizaje basados en servicios” realizada en el CINAIC 2015 celebrado en Madrid
(España) los días 14-16 de octubre de 2015.
La gran distancia existente entre la tecnología y las metodologías docentes provoca que
los nuevos avances tecnológicos no tengan fácil su integración en los contextos y
prácticas metodológicas implantados, y que las tecnologías educativas maduras y los
métodos educativos aplicados no respondan a las demandas de la sociedad ni al
potencial transformador de la tecnología para la mejora del aprendizaje. Esta
contribución plantea la necesidad de ofrecer un entorno tecnológico para el soporte de
servicios de aprendizaje, el ecosistema educativo, que rompa con las limitaciones
tecnológicas y de proceso de las actuales plataformas tecnológicas para conseguir una
mejora de los procesos educativos. La propuesta de ecosistema educativo se concreta en
6 líneas de actuación: 1) arquitectura para la implantación de ecosistemas de servicios
de aprendizaje; 2) toma de decisiones basadas en analíticas de aprendizaje; 3) sistemas
de gestión de conocimiento adaptativos; 4) formación gamificada; 5) porfolios
semánticos para la recogida de evidencias de aprendizaje; 6) metodologías educativas
que hagan un uso efectivo de los avances tecnológicos en pro de la mejora del
aprendizaje.
El artículo presentado puede citarse como:
García-Peñalvo, F. J., Hernández-García, Á., Conde-González, M. Á., Fidalgo-Blanco,
Á., Sein-Echaluce Lacleta, M. L., Alier-Forment, M., Llorens-Largo, F., &
Iglesias-Pradas, S. (2015). Mirando hacia el futuro: Ecosistemas tecnológicos de
aprendizaje basados en servicios. In Á. Fidalgo Blanco, M. L. Sein-Echaluce
Lacleta, & F. J. García-Peñalvo (Eds.), La Sociedad del Aprendizaje. Actas del III
Congreso Internacional sobre Aprendizaje, Innovación y Competitividad. CINAIC
2015 (14-16 de Octubre de 2015, Madrid, España) (pp. 553-558). Madrid, Spain:
Fundación General de la Universidad Politécnica de Madrid.
Link to the presentation
http://www.slideshare.net/FaraonLlorens/mirando-hacia-el-futuro-ecosistemas-
tecnolgicos-de-aprendizaje-basados-en-servicios
Keywords
Ecosistemas educativos; Servicios de aprendizaje; Analítica de aprendizaje; Gestión del
conocimiento; Gamificación; Aprendizaje informal; Computación en la nube.
Referencias
Adell, J., & Castañeda, L. (2010). Los Entornos Personales de Aprendizaje (PLEs): una nueva
manera de entender el aprendizaje. En: R. Roig Vila & M. Fiorucci (Eds.), Claves para la
investigación en innovación y calidad educativas. La integración de las Tecnologías de la
Información y la Comunicación y la Interculturalidad en las aulas. Stumenti di ricerca per
l’innovaziones e la qualità in ámbito educativo. La Tecnologie dell’informazione e della
Comunicaziones e l’interculturalità nella scuola. Alcoy, Spain: Marfil Roma TRE
Universita degli studi.
Agudo-Peregrina, Á.F., Iglesias-Pradas, S., Conde, M.Á., & Hernández-García, Á. (2014). Can
we predict success from log data in VLEs? Classification of interactions for learning
analytics and their relation with performance in VLE-supported F2F and online learning.
Computers in Human Behavior, 31, 542550.
Arroway, P., Davenport, E., Guangning, X., & Updegrove, D. (2010). Educause Core Data
Service Fiscal Year 2009 summary report. EDUCAUSE White Paper.
Avgeriou, P., Papasalouros, A., Retalis, S., & Skordalakis, M. (2003). Towards a Pattern
Language for Learning Management Systems. Educational Technology & Society, 6(2),
1124.
Barrios, O. (2000). Estrategia del portafolio del alumnado. En: De la Torre y O. Barrios (Eds.).
Estrategias didácticas innovadoras, 294301. Barcelona: Octaedro.
Bienkowski, M., Feng, M., & Means, B. (2012). Enhancing teaching and learning through
educational data mining and learning analytics: An issue brief, 157. US Department of
Education, Office of Educational Technology.
Chang, E., & West, M. (2006). Digital Ecosystems A Next Generation of the Collaborative
Environment. 8th International Conference on Information Integration and Web-based
Application & Services.
Domingo, M.G., & Forner, J.A.M. (2010). Expanding the Learning Environment: Combining
Physicality and Virtuality-The Internet of Things for eLearning. 10th IEEE International
Conference on Advanced Learning Technologies (ICALT).
European-Commission. (2006). Digital Ecosystems: The New Global Commons for SMEs and
local growth.
Fidalgo-Blanco, Á., Sein-Echaluce, M. L., & García-Peñalvo, F. J. (2014). Knowledge Spirals
in Higher Education Teaching Innovation. International Journal of Knowledge
Management, 10(4), 16-37.
García-Holgado, A., & García-Peñalvo, F.J. (2013). The evolution of the technological
ecosystems: An architectural proposal to enhancing learning processes. Proceedings of
the First International Conference on Technological Ecosystem for Enhancing
Multiculturality (TEEM’13), 565571. New York, NY, USA: ACM.
García-Peñalvo, F.J. (2005). Estado actual de los sistemas E-Learning. Teoría de la Educación.
Educación y Cultura en la Sociedad de la Información, 6(2).
García-Peñalvo, F.J. (2008). Docencia. En: J. Laviña Orueta & L. Mengual Pavón (Eds.), Libro
Blanco de la Universidad Digital 2010, 2961. Barcelona, España: Ariel.
García-Peñalvo, F.J., & Seoane-Pardo, A. M. (2015). Una revisión actualizada del concepto de
eLearning. Décimo Aniversario. Education in the Knowledge Society, 16(1), 119-144.
doi:http://dx.doi.org/10.14201/eks2015161119144
García-Peñalvo, F.J., Colomo-Palacios, R., & Lytras, M.D. (2012). Informal learning in work
environments: training with the Social Web in the workplace. Behaviour & Information
Technology, 31(8), 753755.
García-Peñalvo, F.J., Conde, M.Á., Alier, M., & Casany, M.J. (2011). Opening Learning
Management Systems to Personal Learning Environments. Journal of Universal
Computer Science, 17(9), 12221240.
García-Peñalvo, F.J., Conde, M.Á., Zangrando, V., García-Holgado, A., Seoane, A.M., Alier,
M., & Minović, M. (2013). TRAILER Project (Tagging, Recognition, Acknowledgment
of Informal Learning Experiences). A Methodology to Make Learners’ Informal Learning
Activities Visible to the Institutions. Journal of Universal Computer Science, 19(11),
16611683
García-Peñalvo, F.J., Hernández-García, Á., Conde-González, M. Á., Fidalgo-Blanco, Á., Sein-
Echaluce Lacleta, M. L., Alier-Forment, M., Llorens-Largo, F., & Iglesias-Pradas, S.
(2015). Learning services-based technological ecosystems. In G. R. Alves & M. C.
Felgueiras (Eds.), Proceedings of the Third International Conference on Technological
Ecosystems for Enhancing Multiculturality (TEEM’15) (Porto, Portugal, October 7-9,
2015) (pp. 467-472). New York, USA: ACM.
García-Peñalvo, F.J., Hernández-García, Á., Conde-González, M. Á., Fidalgo-Blanco, Á., Sein-
Echaluce Lacleta, M. L., Alier-Forment, M., Llorens-Largo, F., & Iglesias-Pradas, S.
(2015). Mirando hacia el futuro: Ecosistemas tecnológicos de aprendizaje basados en
servicios. In Á. Fidalgo Blanco, M. L. Sein-Echaluce Lacleta, & F. J. García-Peñalvo
(Eds.), La Sociedad del Aprendizaje. Actas del III Congreso Internacional sobre
Aprendizaje, Innovación y Competitividad. CINAIC 2015 (14-16 de Octubre de 2015,
Madrid, España) (pp. 553-558). Madrid, Spain: Fundación General de la Universidad
Politécnica de Madrid.
Gardner, H. (2011). Multiple intelligences: Reflections after thirty years. Washington, DC:
National Association of Gifted Children Parent and Community Network.
Hernández-García, Á., & Conde, M. Á. (2014). Dealing with complexity: educational data and
tools for learning analytics. En: Proceedings of the Second International Conference on
Technological Ecosystems for Enhancing Multiculturality (TEEM '14), 263268. ACM,
New York, NY, USA.
Illanas, A., & Llorens, F. (2011). Los retos Web 2.0 de cara al EEES. In C. Suarez-Guerrero &
F.J. García-Peñalvo (Eds.), Universidad y Desarrollo Social de la Web, 1334.
Editandum
Kapp, K. M. (2012). The Gamification of Learning and Instruction: Game-based Methods and
Strategies for Training and Education. Wiley.
Lerís, D., & Sein-Echaluce, M.L. (2011). La personalización del aprendizaje: un objetivo del
paradigma educativo centrado en el aprendizaje. Arbor: Ciencia, pensamiento y cultura,
187(Extra 3), 123134.
Llorens, F. (2009). La tecnología como motor de la innovación educativa. Estrategia y política
institucional de la Universidad de Alicante. Arbor, 185(Extra), 2132.
Llorens, F. (2014). Campus virtuales: De gestores de contenidos a gestores de metodologías.
RED, Revista de Educación a Distancia., 42, 112.
Llorens, F., Bayona, J.J., Gómez, J., & Sanguino, F. (2010). The University of Alicante's
institutional strategy to promote the open dissemination of knowledge. Online
Information Review, 34(4), 565582.
Llorens, F., Molina, R., Compañ, P., & Satorre, R. (2014). Technological Ecosystem for Open
Education. En: R. Neves-Silva, G.A. Tsihrintzis, V. Uskov, R.J. Howlett & L.C. Jain
(Eds.), Smart Digital Futures 2014.Frontiers in Artificial Intelligence and Applications,
Vol. 262, 706715. IOS Press.
Long, P. D., & Siemens, G. (2011). Penetrating the Fog: Analytics in Learning and Education.
EDUCAUSE Review, 46(5), 3140.
McGonigal, J. (2011). Reality Is Broken: Why Games Make Us Better and How They Can
Change the World. Penguin Group US.
Michavila, F. (2013). Prólogo del informe Tendencias Universidad: En pos de la educación
activa. En F. Llorens Largo (Ed.), En pos de la educación activa, 57. Madrid: Cátedra
UNESCO de Gestión y Política Universitaria de la Universidad Politécnica de Madrid.
Phillips, R., Maor, D., Preston, G., & Cumming-Potvin, W. (2012). Exploring Learning
Analytics as Indicators of Study Behaviour. Paper presented at the World Conference on
Educational Multimedia, Hypermedia and Telecommunications 2012, Denver, Colorado,
USA.
Prensky, M. (2007). Digital Game-Based Learning. Paragon House.
Retalis, S., Papasalouros, A., Psaromiligkos, Y., Siscos, S., & Kargidis, T. (2006). Towards
networked learning analyticsA concept and a tool. Proceedings of the Fifth
international conference on networked learning.
Schaffert, R., & Hilzensauer, W. (2008). On the way towards Personal Learning Environments:
Seven crucial aspects. eLearning Papers, 2(9), 1–11.
Werbach, K., & Hunter, D. (2012). For the Win: How Game Thinking Can Revolutionize Your
Business. Wharton Digital Press.
Wexler, S., Dublin, L., Grey, N., Jagannathan, S., Karrer, T., Martinez, M., van Barneveld, A.
(2007). Learning management systems. The good, the bad, the ugly,... and the truth.
Guild Research 360 Degree Report. Santa Rosa, USA: The eLearning Guild.
Wilson, S., Liber, O., Johnson, M., Beauvoir, P., Sharples, P., & Milligan, C. (2007). Personal
Learning Environments: Challenging the dominant design of educational systems Journal
of e-Learning and Knowledge Society, 3(3), 2738.
ResearchGate has not been able to resolve any citations for this publication.
Technical Report
Full-text available
In data mining and data analytics, tools and techniques once confined to research laboratories are being adopted by forward-looking industries to generate business intelligence for improving decision making. Higher education institutions are beginning to use analytics for improving the services they provide and for increasing student grades and retention. The U.S. Department of Education's National Education Technology Plan, as one part of its model for 21st-century learning powered by technology, envisions ways of using data from online learning systems to improve instruction. With analytics and data mining experiments in education starting to proliferate, sorting out fact from fiction and identifying research possibilitiesand practical applications are not easy. This issue brief is intended to help policymakers and administrators understand how analytics and data mining have been-and can be-applied for educational improvement. At present, educational data mining tends to focus on developing new tools for discovering patterns in data. These patterns are generally about the microconcepts involved in learning: one-digit multiplication, subtraction with carries, and so on. Learning analytics-at least as it is currently contrasted with data mining-focuses on applying tools and techniques at larger scales, such as in courses and at schools and postsecondary institutions. But both disciplines work with patterns and prediction: If we can discern the pattern in the data and make sense of what is happening, we can predict what should come next and take the appropriate action. Educational data mining and learning analytics are used to research and build models in several areas that can influence online learning systems. One area is user modeling, which encompasses what a learner knows, what a learner's behavior and motivation are, what the user experience is like, and how satisfied users are with online learning. At the simplest level, analytics can detect when a student in an online course is going astray and nudge him or her on to a course correction. At the most complex, they hold promise of detecting boredom from patterns of key clicks and redirecting the student's attention. Because these data are gathered in real time, there is a real possibility of continuous improvement via multiple feedback loops that operate at different time scales-immediate to the student for the next problem, daily to the teacher for the next day's teaching, monthly to the principal for judging progress, and annually to the district and state administrators for overall school improvement. The same kinds of data that inform user or learner models can be used to profile users. Profiling as used here means grouping similar users into categories using salient characteristics. These categories then can be used to offer experiences to groups of users or to make recommendations to the users and adaptations to how a system performs. User modeling and profiling are suggestive of real-time adaptations. In contrast, some applications of data mining and analytics are for more experimental purposes. Domain modeling is largely experimental with the goal of understanding how to present a topic and at what level of detail. The study of learning components and instructional principles also uses experimentation to understand what is effective at promoting learning. These examples suggest that the actions from data mining and analytics are always automatic, but that is less often the case. Visual data analyticsclosely involve humans to help make sense of data, from initial pattern detection and model building to sophisticated data dashboards that present data in a way that humans can act upon. K-12 schools and school districts are starting to adopt such institution-level analyses for detecting areas for instructional improvement, setting policies, and measuring results. Making visible students' learning and assessment activities opens up the possibility for students to develop skills in monitoring their own learning and to see directly how their effort improves their success. Teachers gain views into students' performance that help them adapt their teaching or initiate tutoring, tailored assignments, and the like. Robust applications of educational data mining and learning analytics techniques come with costs and challenges. Information technology (IT) departments will understand the costs associated with collecting and storing logged data, while algorithm developers will recognize the computational costs these techniques still require. Another technical challenge is that educational data systems are not interoperable, so bringing together administrative data and classroom-level data remains a challenge. Yet combining these data can give algorithms better predictive power. Combining data about student performance-online tracking, standardized tests, teachergenerated tests-to form one simplified picture of what a student knows can be difficult and must meet acceptable standards for validity. It also requires careful attention to student and teacher privacy and the ethical obligations associated with knowing and acting on student data. Educational data mining and learning analytics have the potential to make visible data that have heretofore gone unseen, unnoticed, and therefore unactionable. To help further the fields and gain value from their practical applications, the recommendations are that educators and administrators: • Develop a culture of using data for making instructional decisions. • Involve IT departments in planning for data collection and use. • Be smart data consumers who ask critical questions about commercial offerings and create demand for the most useful features and uses. • Start with focused areas where data will help, show success, and then expand to new areas. • Communicate with students and parents about where data come from and how the data are used. • Help align state policies with technical requirements for online learning systems.Researchers and software developers are encouraged to: • Conduct research on usability and effectiveness of data displays. • Help instructors be more effective in the classroom with more realtime and data-based decision support tools, including recommendation services. • Continue to research methods for using identified student information where it will help most, anonymizing data when required, and understanding how to align data across different systems. • Understand how to repurpose predictive models developed in one context to another. A final recommendation is to create and continue strong collaboration across research, commercial, and educational sectors. Commercial companies operate on fast development cycles and can produce data useful for research. Districts and schools want properly vetted learning environments. Effective partnerships can help these organizations codesign the best tools.
Article
Full-text available
Networked learning is much more ambitious than previous approaches of ICT-support in education. It is therefore more difficult to evaluate the effectiveness and efficiency of the networked learning activities. Evaluation of learners' interactions in networked learning environments is a difficult, resource and expertise demanding task. Educators participating in online learning environments, have very little support by integrated tools to evaluate students' activities and identify learners' online browsing behavior and interactions. As a consequence, educators are in need for non-intrusive and automatic ways to get feedback from learners' progress in order to better follow their learning process and appraise the online course effectiveness. They also need specialized tools for authoring, delivering, gathering and analysing data for evaluating the learning effectiveness of networked learning courses. Thus, the aim of this paper is to propose a new set of services for the evaluator and lecturer so that he/she can easily evaluate the learners' progress and produce evaluation reports based on learners' behaviour within a Learning Management System. These services allow the evaluator to easily track down the learners' online behavior at specific milestones set up, gather feedback in an automatic way and present them in a comprehensive way. The innovation of the proposed set of services lies on the effort to adopt/adapt some of the web usage mining techniques combining them with the use of semantic description of networked learning tasks
Article
Full-text available
A R&I&i process for a knowledge management system development is presented. It transforms different institutions experiences into organisational knowledge applicable to an entire sector, the higher education one specifically. The knowledge management system allows classifying, organising, distributing and facilitating the application of the knowledge generated by the faculty. A study, with more than 1000 system users, reflects that the system helps to the faculty in the way they perform educational innovation activities. The supported model integrates both Nonaka's epistemological and ontological spirals. This allows defining ontologies and used them in order to transform the individual knowledge into organisational one. The knowledge management system encapsulates complex logic expressions and ontologies management, making easy for the users obtaining successful results that may organise in their own way, becoming a powerful knowledge management process that combines epistemological and ontological knowledge spirals to convert individual experiences in educational innovation into organisational knowledge in the higher education sector.
Conference Paper
Full-text available
Resumen-La gran distancia existente entre la tecnología y las metodologías docentes provoca que los nuevos avances tecnológicos no tengan fácil su integración en los contextos y prácticas metodológicas implantados, y que las tecnologías educativas maduras y los métodos educativos aplicados no respondan a las demandas de la sociedad ni al potencial transformador de la tecnología para la mejora del aprendizaje. Esta contribución plantea la necesidad de ofrecer un entorno tecnológico para el soporte de servicios de aprendizaje, el ecosistema educativo, que rompa con las limitaciones tecnológicas y de proceso de las actuales plataformas tecnológicas para conseguir una mejora de los procesos educativos. La propuesta de ecosistema educativo se concreta en 6 líneas de actuación: 1) arquitectura para la implantación de ecosistemas de servicios de aprendizaje; 2) toma de decisiones basadas en analíticas de aprendizaje; 3) sistemas de gestión de conocimiento adaptativos; 4) formación gamificada; 5) porfolios semánticos para la recogida de evidencias de aprendizaje; 6) metodologías educativas que hagan un uso efectivo de los avances tecnológicos en pro de la mejora del aprendizaje. Abstract-The existing distance between technology and learning methods have two consequences: on the one hand, it makes the fit of new technological advances and existing educational methods and practices difficult; on the other hand, mature educational technologies and methods might not give an adequate answer to actual society needs and demands, and they may not fully use their transforming potential to improve learning processes. This study discusses the need for a new technological environment supporting learning services: the educational ecosystem. The educational ecosystems must be able to break the technological constraints of existing learning platforms and achieve an effective improvement of learning processes. Our proposal of educational ecosystems pivots around six specific lines of action: 1) an arquitecture that gives support to learning service-based ecosystems; 2) learning analytics for educational decision making; 3) adaptive knowledge systems; 4) gamifications; 5) semantic porfolios to collect learning evidences; 6) learning methods that make and effective use of technology for the improvement of learning processes.
Conference Paper
Full-text available
The gap between technology and learning methods has two important implications: on the one hand, we should not expect the integration of technological advances into teaching to be an easy task; and there is a danger that mature educational technologies and methods might not give an adequate answer to the demands and needs of society, underusing their transforming potential to improve learning processes. This study discusses the need for a new technological environment supporting learning services, and proposes the concept of the technological learning ecosystem as a solution to both problems. Educational ecosystems should be able to break the technological constraints of existing learning platforms and achieve an effective improvement in learning processes. Our proposed educational ecosystems pivot around five specific lines of action: 1) a framework architecture that supports learning service-based ecosystems; 2) learning analytics for educational decision making; 3) adaptive knowledge systems; 4) gamification of learning processes; 5) semantic portfolios to collect evidence of learning.
Article
Full-text available
New ICT technologies are continuously introducing changes in the way in which society generates, shares and access information. This is changing what society expects and requires of education. eLearning is acting as a vector of this change, introducing pervasive transformations in and out of the classroom. But with Learning Management Systems (LMS) users have reached a plateau of productivity and stability. At the same time outside the walled garden of the LMS new transformative tools, services and ways of learning are already in use, within the PLE and PLN paradigms. The stability and maturity of the LMS may become yet another resistance factor working against the introduction of innovations. New tools and trends cannot be ignored, and this is the reason why learning platforms should become open and flexible environments. In the course of this article the reasons for this change and how it may be addressed will be discussed, together with a proposal for architecture based on Moodle.
Article
Full-text available
Resumen Abstract Palabras clave: Ecosistemas digitales de aprendizaje; eLearning; mLearning; TIC; LMS; PLE; MOOC; Factor humano; Enseñanza+Aprendizaje; Gestión del conocimiento y de la tecnología. Los continuos avances en el plano tecnológico provocan flujos de innovación-aceptación-consolidación-obsolescencia propios de las estrategias, ya sean ad hoc o planificadas, de gestión del conocimiento y de la tecnología de las corporaciones, y, a otra escala, de los propios individuos. Los procesos de enseñanza+aprendizaje no son, obviamente, ajenos a esta circunstancia. La irrupción de las tecnologías de la Información y la comunicación como herramienta educativa supone un punto de inflexión conceptual y metodológico en la forma en que las instituciones, educativas o no, afrontan los procesos educativos y la gestión del aprendizaje, especialmente en lo tocante al concepto de educación a distancia, que evoluciona, de una manera más o menos significativa, al adoptar Internet como medio, the continuous advances in technology cause innovation-acceptation-consolidation-obsolescence flows regarding the knowledge and technology management strategies, both ad hoc and planned, of the corporations and also, in a different scale, of the individuals. teaching and learning processes are not obviously unaware of this situation. the irruption of Information and communication technologies as educational tools mean both a conceptual and a methodological turning point in the way that institutions, educational or not, face training processes and learning management, especially with regard to the concept of distance education, which evolves, in a more or less significant way, when it adopts Internet as media; that is how the eLearning concept rises. however, from the first eLearning experiences, too much settled
Article
There are three key aspects that define the current times, and of course, the world of education: learning, digital and open. Those general ideas give support to the Educational Innovation and lead us to propose the basic matrix of our model, which organizes the different elements of what we think an open education model must consider. The main objective of Open Education is autonomous learning and, to achieve it, it is crucial to provide the learners with contents and tools that allow them to conduct their carrier. In the first times of technological tools for education the tendency was to develop monolithic platforms. From our point of view, the key is not uniformity and closed access but integration and open access for heterogeneous information and tools: a technological ecosystem for open education. Following the current trends and the needs of the users, we propose an open, adaptable system, ready to deal with the different user needs (teachers and students) and to the available tools. We propose a technological ecosystem where a community of open educational methods, policies, regulations, applications, and people teams can coexist so that their processes are interrelated and their implementation is based on the physical factors of the technological environment. As an example of application of the proposed model, we analyze the case of the University of Alicante in the period 2005-2012 and we show some indicators that prove the success of this proposal. Finally, some conclusions and proposals for the future are presented.