Article

Exercise Highlight DEPTH JUMP

Authors:
To read the full-text of this research, you can request a copy directly from the authors.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

ResearchGate has not been able to resolve any citations for this publication.
Article
Full-text available
We examined the effects of 2 plyometric training programs, equalized for training volume, followed by a 4-week recovery period of no plyometric training on anaerobic power and vertical jump performance. Physically active, college-aged men were randomly assigned to either a 4-week (n = 19, weight = 73.4 +/- 7.5 kg) or a 7-week (n = 19, weight = 80.1 +/- 12.5 kg) program. Vertical jump height, vertical jump power, and anaerobic power via the Margaria staircase test were measured pretraining (PRE), immediately posttraining (POST), and 4 weeks posttraining (POST-4). Vertical jump height decreased in the 4-week group PRE (67.8 +/- 7.9 cm) to POST (65.4 +/- 7.8 cm). Vertical jump height increased from PRE to POST-4 in 4-week (67.8 +/- 7.9 to 69.7 +/- 7.6 cm) and 7-week (64.6 +/- 6.2 to 67.2 +/- 7.6 cm) training programs. Vertical jump power decreased in the 4-week group from PRE (8,660.0 +/- 546.5 W) to POST (8,541.6 +/- 557.4 W) with no change in the 7-week group. Vertical jump power increased PRE to POST-4 in 4-week (8,660.0 +/- 546.5 W to 8,793.6 +/- 541.4 W) and 7-week (8,702.8 +/- 527.4 W to 8,931.5 +/- 537.6 W) training programs. Anaerobic power improved in the 7-week group from PRE (1,121.9 +/- 174.7 W) to POST (1,192.2 +/- 189.1 W) but not the 4-week group. Anaerobic power significantly improved PRE to POST-4 in both groups. There were no significant differences between the 2 training groups. Four-week and 7-week plyometric programs are equally effective for improving vertical jump height, vertical jump power, and anaerobic power when followed by a 4-week recovery period. However, a 4-week program may not be as effective as a 7-week program if the recovery period is not employed.
Article
summary Strength and conditioning pro- grams can serve a role in the pre- vention of injuries. Athletes who are at risk for a serious knee injury may benefit from a plyometric training program. The program that a high school coach develops or implements should be evi- dence based and address lower- extremity strength and biome- chanical techniques.
Article
To determine the effects of a sprint-specific plyometrics program on sprint performance, an 8-week training study consisting of 15 training sessions was conducted. Twenty-six male subjects completed the training. A plyometrics group (N = 10) performed sprint-specific plyometric exercises, while a sprint group (N = 7) performed sprints. A control group (N = 9) was included. Subjects performed sprints over 10-and 40-m distances before (Pre) and after (Post) training. For the plyometrics group, significant decreases in times occurred over the 0-10-m (Pre 1.96 +/- 0.10 seconds, Post 1.91 +/- 0.08 seconds, p = 0.001) and 0-40-m (Pre = 5.63 +/- 0.18 seconds, Post = 5.53 +/- 0.20 seconds, p = 0.001) distances, but the improvements in the sprint group were not significant over either the 0-10-m (Pre 1.95 +/- 0.06 seconds, Post 1.93 +/- 0.05 seconds) or 0-40-m distance (Pre 5.62 +/- 0.14 seconds, Post 5.55 +/- 0.10 seconds). The magnitude of the improvements in the plyometrics group was, however, not significantly different from the sprint group. The control group showed no changes in sprint times. There were no significant changes in stride length or frequency, but ground contact time decreased at 37 m by 4.4% in the plyometrics group only. It is concluded that a sprint-specific plyometrics program can improve 40-m sprint performance to the same extent as standard sprint training, possibly by shortening ground contact time. (C) 2000 National Strength and Conditioning Association
Article
In the literature, drop jumping is advocated as an effective exercise for athletes who prepare themselves for explosive activities. When executing drop jumps, different jumping techniques can be used. In this study, the influence of jumping technique on the biomechanics of jumping is investigated. Ten subjects executed drop jumps from a height of 20 cm and counter-movement jumps. For the execution of the drop jumps, two different techniques were adopted. The first technique, referred to as bounce drop jump, required the subjects to reverse the downward velocity into an upward one as soon as possible after landing. The second technique, referred to as counter-movement drop jump, required them to do this more gradually by making a larger downward movement. During jumping, the subjects were filmed, ground reaction forces were registered, and electromyograms were recorded. The results of a biomechanical analysis show that moments and power output about knee and ankle joints reach larger values during the drop jumps than during counter-movement jumps. The largest values were attained during bounce drop jumps. Based on this finding, it was hypothesized that bounce drop jump is better suited than counter-movement drop jump for athletes who seek to improve the mechanical output of knee extensors and plantar flexors. Researchers are, therefore, advised to control jumping technique when investigating training effects of executing drop jumps.
NSCA's Essentials of Personal Training
  • J Coburn
  • W Malek
Coburn, J., W. & Malek, M., H. (Eds.). NSCA's Essentials of Personal Training. 2nd ed. Champaign, IL: Human Kinetics; 2012.
Touchdown Before Takeoff. NSCA Education
  • T Hefflefinger
Hefflefinger, T. Touchdown Before Takeoff. NSCA Education. http://www.nsca.com/Education/Articles/Touchdown-Before- Takeoff/. Accessed January 10, 2013.
Power Development Using Boxes
  • G Infantolino
Infantolino, G. Power Development Using Boxes. Tactical Strength & Conditioning Report. 4: 4.3-4.4. 2008
Common Mistakes in the implementation of Plyometrics
  • S Myszka
Myszka, S. Common Mistakes in the implementation of Plyometrics. NSCA Education.
Touchdown Before Takeoff
  • T Hefflefinger
Hefflefinger, T. Touchdown Before Takeoff. NSCA Education. http://www.nsca.com/Education/Articles/Touchdown-Before-Takeoff/. Accessed January 10, 2013.
Eccentrics and Prevention of Hamstring Injury in Sport
  • S Myszka
Myszka, S. Common Mistakes in the implementation of Plyometrics. NSCA Education. http://www.nsca.com/Education/Articles/Common-Mistakes-in-the-Implementation-of-Plyometrics/ Accessed January 10, 2013. 10. National Strength and Conditioning Association. Eccentrics and Prevention of Hamstring Injury in Sport. NSCA Education. http://www.nsca.com/Education/Articles/Hot-Topic-Eccentrics-and-Prevention-of-Hamstring-Injury-in-Sport/. Accessed January, 2013.