ArticlePDF Available

Abstract and Figures

In many coastal and delta cities land subsidence now exceeds absolute sea level rise up to a factor of ten. A major cause for severe land subsidence is excessive groundwater extraction related to rapid urbanization and population growth. Without action, parts of Jakarta, Ho Chi Minh City, Bangkok and numerous other coastal cities will sink below sea level. Land subsidence increases flood vulnerability (frequency, inundation depth and duration of floods), with floods causing major economic damage and loss of lives. In addition, differential land movement causes significant economic losses in the form of structural damage and high maintenance costs for (infra)structure. The total damage worldwide is estimated at billions of dollars annually. As subsidence is often spatially variable and can be caused by multiple processes, an assessment of subsidence in delta cities needs to answer questions such as: what are the main causes? What is the current subsidence rate and what are future scenarios (and interaction with other major environmental issues)? Where are the vulnerable areas? What are the impacts and risks? How can adverse impacts be mitigated or compensated for? Who is involved and responsible to act? In this study a quick-assessment of subsidence is performed on the following mega-cities: Jakarta, Ho Chi Minh City, Dhaka, New Orleans and Bangkok. Results of these case studies will be presented and compared, and a (generic) approach how to deal with subsidence in current and future subsidence-prone areas is provided. Sinking coastal cities. Available from: https://www.researchgate.net/publication/283771445_Sinking_coastal_cities [accessed Jun 2, 2016].
Content may be subject to copyright.
Proc. IAHS, 372, 189–198, 2015
proc-iahs.net/372/189/2015/
doi:10.5194/piahs-372-189-2015
© Author(s) 2015. CC Attribution 3.0 License.
Open Access
Prevention and mitigation of natural and anthropogenic hazards due to land subsidence
Sinking coastal cities
G. Erkens1,2, T. Bucx1, R. Dam3, G. de Lange1, and J. Lambert1
1Deltares Research Institute, Utrecht, the Netherlands
2Utrecht University, Utrecht, the Netherlands
3WaterLand Experts, Amsterdam, the Netherlands
Correspondence to: G. Erkens (gilles.erkens@deltares.nl)
Published: 12 November 2015
Abstract. In many coastal and delta cities land subsidence now exceeds absolute sea level rise up to a factor of
ten. A major cause for severe land subsidence is excessive groundwater extraction related to rapid urbanization
and population growth. Without action, parts of Jakarta, Ho Chi Minh City, Bangkok and numerous other coastal
cities will sink below sea level. Land subsidence increases flood vulnerability (frequency, inundation depth and
duration of floods), with floods causing major economic damage and loss of lives. In addition, differential land
movement causes significant economic losses in the form of structural damage and high maintenance costs for
(infra)structure. The total damage worldwide is estimated at billions of dollars annually.
As subsidence is often spatially variable and can be caused by multiple processes, an assessment of subsidence
in delta cities needs to answer questions such as: what are the main causes? What is the current subsidence rate
and what are future scenarios (and interaction with other major environmental issues)? Where are the vulnerable
areas? What are the impacts and risks? How can adverse impacts be mitigated or compensated for? Who is
involved and responsible to act?
In this study a quick-assessment of subsidence is performed on the following mega-cities: Jakarta, Ho Chi
Minh City, Dhaka, New Orleans and Bangkok. Results of these case studies will be presented and compared,
and a (generic) approach how to deal with subsidence in current and future subsidence-prone areas is provided.
1 Introduction
Currently, global mean absolute sea- level rise is around
3 mm yr1, and projections until 2100 based on Intergov-
ernmental Panel on Climate Change (IPCC) scenarios ex-
pect a global mean absolute sea-level rise in the range of 3–
10 mm yr1(Church and White, 2011; Slangen, 2012). How-
ever, currently observed subsidence rates in coastal megaci-
ties are in the range of 6–100 mmyr1, and projections until
2025 expect similar subsidence rates (Fig. 1).
In coastal cities around the world, land subsidence in-
creases flood vulnerability (flood frequency, inundation
depth, and duration of floods), and hence contributes to major
economic damage and loss of lives. Land subsidence is ad-
ditionally responsible for significant economic losses in the
form of structural damage and high maintenance costs; it af-
fects roads and transportation networks, hydraulic infrastruc-
ture, river embankments, sluice gates, flood barriers, pump-
ing stations, sewage systems, buildings, and foundations. The
total damage associated with subsidence worldwide is esti-
mated at billions of dollars annually.
There are no indications that neither subsidence nor the
resulting damage will reduce in the near future. In fact, both
are likely to increase. Ongoing urbanization and population
growth in delta areas, in particular in coastal mega-cities,
continues to fuel economic development in subsidence-prone
areas. Consequently, economic development drives both the
growing demand for groundwater, thereby increasing subsi-
dence rates, and the growth of the total value of assets at risk.
These impacts are aggravated on the long term in coastal ar-
eas, by expected future climate change impacts, such as sea-
level rise, increased storm surges, and changes in precipita-
tion.
In this paper, we focus on land subsidence in the urban en-
vironment, rather than land subsidence in rural agricultural
areas, where the drivers may be similar, but the impact very
Published by Copernicus Publications on behalf of the International Association of Hydrological Sciences.
190 G. Erkens et al.: Sinking coastal cities
Figure 1. Drivers, processes and impacts of land subsidence in coastal cities. Land subsidence can exceed global absolute sea-level rise
(SLR) with a factor 10.
Figure 2. Subsidence history (cumulative) in a series of coastal cities around the world. Absolute sea level rise is depicted as reference.
Subsidence can differ considerably within a city area, depending on groundwater levels and subsurface characteristics. Values provided here
can be seen as average for the local subsidence hotspots. Some cities are currently seeing an acceleration of subsidence as a result of economic
growth. Tokyo stands out as an example where subsidence has stopped after successful mitigation measures were implemented. The caption
of Table 1 provides references.
Table 1. Subsidence in coastal cities. Estimated additional mean cumulative subsidence until 2025 (mm) are linear interpolations of the
current rates, notwithstanding any policy changes. Sources: Bangkok: MoNRE-DGR (2012), Aobpaet et al. (2013); Ho Chi Min City: van
Trung and Minh Dinh (2009); Jakarta: Bakr (2011); Manila: Eco et al. (2011); West Netherlands: van de Ven (1993); Tokyo: Kaneko and
Toyota (2011).
City Mean cumulative Mean current Maximum Estimated additional mean
subsidence in period subsidencerate subsidence rate cumulative subsidence
1900–2013 (mm) (mm yr1) (mm yr1) until 2025 (mm)
Jakarta 2000 75–100 179 1800
Ho Chi Minh City 300 up to 80 80 200
Bangkok 1250 20–30 120 190
New Orleans 1130 6 26 >200
Tokyo 4250 0 239 0
Proc. IAHS, 372, 189–198, 2015 proc-iahs.net/372/189/2015/
G. Erkens et al.: Sinking coastal cities 191
different. Figure 2 and Table 1 show that land subsidence
rates widely vary from city to city. In many cases, the under-
lying processes and the relative contribution of the different
drivers is not well understood. Similar to the level of techni-
cal understanding, policy formulation and governmental en-
gagement in cities is equally diverse. Whereas some cities are
in an early state of research and policy development on land
subsidence, others have already implemented measures mit-
igating subsidence and the resulting damage. The observed
different stages in development mean that cities can learn
from each other, thereby avoiding re-inventing the wheel.
Cities that actively pursue a policy on subsidence have valu-
able experiences to share with cities that have just started to
address their subsidence.
This is exactly the thought behind the assessment that was
carried out for this research. We compared five cities regard-
ing their state of subsidence research and policy develop-
ment: Jakarta, Ho Chi Minh City, Dhaka, New Orleans and
Bangkok. The assessment aimed at getting insight into the
processes causing subsidence in the urban environment, ob-
taining a (generic) research agenda for this topic, and listing
best practice cases. Results of these case studies will be pre-
sented and a (generic) approach how to cope with subsidence
in current and future subsidence-prone areas is provided.
2 Results of the review
For the quick assessment we used published reports on both
the technical and the policy aspects of subsidence in the focus
cities. In addition, we interviewed local scientist and policy-
makers to obtain their perspective. It became quickly clear
that all cities tried to answer similar questions. We com-
piled the interview results into seven interrelated questions
(Fig. 3). They include questions such as: what are the main
causes for subsidence? How much is the current subsidence
rate and what are future scenarios? Where are the vulnerable
areas? What are the impacts and risks? How can adverse im-
pacts be mitigated or compensated for? Who is involved and
responsible to act? How to monitor the effect of the imple-
mented measures? The interrelation between the questions is
indicated with the arrows in Fig. 3. The indicated interrela-
tion does not necessarily mean that each question needs to be
answered in a specific order, but it merely indicates that each
answer may be valuable input for a next question.
In this paper we follow this framework (in seven steps)
and illustrate how these questions are addressed in example
cities, thereby discussing both technical and policy aspects
of subsidence. In this way, this framework could serve as a
blue print for cities to shape their policy and research agenda
regarding subsidence.
Figure 3. Seven questions that need to be addressed to pursue a suc-
cessful policy to coop with subsidence. This is loosely based on the
policy cycle, a popular framework to analyse policy development.
3 Measuring and monitoring
The first step towards a successful strategy for subsidence is
to establish if a certain area is actually subsiding. This may
not me evident from the field, particular if subsidence is non-
differential and no structural damage (cracks, tilting) is ob-
served in buildings or infrastructure. Typically, the loss of
elevation, which may have been observed, is interpreted as
the result of climate-driven sea level rise instead of the result
of subsidence.
To determine land subsidence rates, accurate measuring
techniques are required. Continuous subsidence monitoring
provides the necessary insight into changes ranging from
minor to very significant changes in the topography of the
urban area. These observations are also essential to validate
subsidence prediction models in a later stage.
The following geodetric observation methods are being
used:
optical levelling;
Global Positioning System (GPS) surveys;
Laser Imaging Detection and Ranging (LIDAR);
Interferometric synthetic aperture radar (InSAR) satel-
lite imagery.
Following early work with systematic optical levelling
nowadays GPS surveys and remote sensing techniques (LI-
DAR and InSAR) are deployed with impressive results. In
contrast to surveys, LIDAR and InSAR images give a spa-
tially resolved subsidence signal. InSAR images date back to
the 1990s and can now be used to establish subsidence since
that time. Application of this technique in soft soil areas is
proc-iahs.net/372/189/2015/ Proc. IAHS, 372, 189–198, 2015
192 G. Erkens et al.: Sinking coastal cities
for the moment limited to the build-up environment, as a re-
sult of the need for stable reflectors. Ideally, multiple obser-
vation techniques are combined, for instance absolute mea-
surements from GPS and Optical Levelling Spatially can be
combined with remotely sensed, relative displacement mea-
surements from InSAR. In this way, spatially resolved subsi-
dence maps with respect to a global reference frame can be
produced. InSAR measurement can therefore not replace pe-
riodic and systematic ground surveys, as they remain essen-
tial for ground truthing subsidence rates derived by remote
sensing and as an independent source for validating subsi-
dence prediction models.
Systematic observation of elevation forms the base for
subsidence monitoring systems. Monitoring results can be
used to develop a so-called dynamic digital elevation model
(dDEM). This is not a static, one-time only (preferably high
resolution) recording of the local topography, but an eleva-
tion model that can be corrected and updated from time to
time, and that can be used in hydraulic models for flood pre-
diction and urban water management.
All techniques mentioned above measure land surface el-
evation change, but give no information on the source of the
subsidence. Subsidence benchmarks or extensometers can
provide in-situ information of ground movement, as they
record the volume reduction across a certain stretch in the
subsurface, or even of individual geological layers. Ideally
the benchmarks or extensometers need to be connected to
surface movement observations, for instance by using a com-
bined extensometer and continuous GPS station (e.g. Wang
et al., 2014). Monitoring total subsidence at these “super-
sites”, where a terrestrial network of site specific measure-
ment stations is combined with remote sensing, forms the
backbone of a spatially resolved subsidence measurement
system (Allison et al., 2014). To support subsidence mod-
elling, hydraulic heads of different aquifer systems and the
phreatic groundwater level need to be monitored at these su-
per sites as well. Measurements of geotechnical parameters
at the same site provide additional necessary input for model
studies.
4 Unravelling the subsidence signal
Subsidence can have natural as well as anthropogenic causes.
The natural causes include tectonics, loading by ice sheets,
by sediments, of by the ocean/sea (isostatic adjustment),
and natural sediment compaction (autocompaction). Anthro-
pogenic causes include compression of shallow soft layers
by loading (with buildings for instance), or as a result of
drainage and subsequent oxidation and consolidation of or-
ganic soils and peat. Alluvial or coastal sediments consisting
of alternating layers of sand, clay, and peat are specifically
compressible and vulnerable for oxidation. This is related
to the physical characteristics of these sediments and makes
low-lying coastal and delta areas specifically prone to subsi-
Figure 4. A distinct relation between falling hydraulic heads and
subsidence in Ho Chi Minh City (Vietnam). This is indicative of
an important contribution of groundwater over-exploration to sub-
sidence, although it is not necessarily the only component contribut-
ing to the total subsidence signal.
dence. In deeper layers subsidence is caused by extraction of
resources such as oil, gas, coal, salt, and groundwater.
In most of the large delta cities where land subsidence is
severe (Jakarta, Ho Chi Minh City, Bangkok, Dhaka, Shang-
hai, and Tokyo), the main cause is extraction of groundwater.
Rapidly expanding urban areas require enormous amounts of
water for domestic and industrial water supply. This need of-
ten leads to over-exploitation of groundwater resources, es-
pecially when surface waters are seriously polluted (Jakarta,
Dhaka). Dhaka (Bangladesh) is an example of a city that
started to discover that it subsided after the flood frequency
increased. In this rapidly expanding city data on subsidence
and its impacts are currently largely lacking. Large-scale ex-
tractions cause groundwater levels to fall by 2–3myr1. At
present, 87 % of the supplied water is from groundwater ex-
traction, and it has been acknowledged that a shift to using
surface water instead is necessary. However, treating the pol-
luted surface water is much more technically complex and
expensive than extracting groundwater.
Although groundwater extraction is often not the sole
source of subsidence, studies in many cities have revealed a
distinct relation between falling groundwater levels and sub-
sidence, indicative of an important contribution of aquifer
compaction (Fig. 4). The resulting spatial pattern of subsi-
dence and its progress over time are strongly related to the
local composition of the subsurface and the number and po-
sitions of groundwater abstraction wells.
New Orleans (USA) is a prominent example of a city
where an array of processes contributes to the total subsi-
dence of the city. The Mississippi Delta subsides as a result
of natural processes, such as autocompaction, faulting, sedi-
ment loading and isostacy (e.g. Törnqvist et al., 2008; Yu et
al., 2012). Within the urban area of New Orleans, there ad-
ditionally is anthropogenic induced subsidence as a result of
drainage of shallow soft soils (Stuurman and Erkens, 2015)
Proc. IAHS, 372, 189–198, 2015 proc-iahs.net/372/189/2015/
G. Erkens et al.: Sinking coastal cities 193
Figure 5. Subsidence components in the urban area of New Orleans. Values are derived from studies of Tulane University, New Orleans,
and are indicative. The total subsidence rate is derived from InSAR measurements (Dixon et al., 2006). It shows that in the urban area natural
subsidence forms the smaller portion of the total subsidence and that human induced subsidence dominates.
and extraction of deeper groundwater in confined aquifers,
for industrial use mainly (Dokka, 2011). After drainage of
the organic rich soils, they start to oxidize and lose volume,
and this process will continue to cause subsidence as long as
organic material is available in the drained subsoil.
The average measured subsidence rate in the city of New
Orleans (including the urban area of Jefferson and St Bernard
Parishes) is 6 mm yr1(Dixon et al., 2006). Many studies
try to quantify one or more of the different components con-
tributing to the total measured subsidence. Figure 5 shows
how this may look for New Orleans, when components are
quantified step by step (source: Tulane University, New Or-
leans). In-situ observation data may provide an independent
valuable source of information to unravel the total subsidence
signal, as argued in Sect. 3. Another approach to unravel the
subsidence signal is inverse modelling, whereby with the use
of a careful inversion scheme, the available knowledge on
the geology and hydrological dynamics of a system can be
quantitatively constrained with subsidence observations (e.g.
Fokker et al., 2007).
From Fig. 5 also follows that in the urban area of New Or-
leans, human induced subsidence has a much larger contri-
bution to the total subsidence signal than natural subsidence.
This is often the case, as natural subsidence rates are mainly
limited to tens of millimeters per year, to millimeters per year
in exceptional cases. Human induced subsidence rates can
easily reach centimeters per year, to even tens of centime-
ters per year (e.g. Jakarta). For policy development this is an
important notion: it is worthwhile to implement measures to
reduce human-induced subsidence.
5 Modelling subsidence to make predictions
In step three, once the causes for land subsidence have been
established (see Sect. 4), predictions can be made to get in-
sight in future land subsidence. Land subsidence modelling
and fore-casting tools are being progressively developed that
enable quantitative assessment of medium- to long- term land
subsidence rates, and determination of multiple causes. Mod-
elling tools are ideally complemented with monitoring tech-
niques (i.e., GPS leveling, the use of InSAR -monitoring
techniques), see Sect. 3.
Because land subsidence is in many places closely linked
to excessive groundwater extraction, we focus in this paper
on modelling of aquifer compaction. One of the most widely
used computer program to simulate vertical compaction in
models of regional ground-water flow is MODFLOW SUB-
WT (Leake and Galloway, 2007). MODFLOW SUB-WT is
developed by the US Geological Survey and uses changes
in groundwater storage in subsurface layers (aquifers and
aquitards) and accounts for temporal and spatial variability
of geostatic and effective stresses to determine layer com-
paction.
In soft soils, such as unconsolidated Holocene layers of
peat and clay, the classical consolidation theory by Terza-
ghi is unable to explain observed consolidation behaviour.
These lithology form the aquitards and interbed units in con-
fined aquifer complex systems, albeit often more consoli-
dated, which start to compact after groundwater is extracted
from the confined aquifers. Creep deformation is one of the
typical processes that occur when the effective stress is in-
creased in clay or peat soils. The creep deformation (also
known as secondary strain) of soils is a secondary consoli-
dation process that leads to a reduction in void ratio at con-
proc-iahs.net/372/189/2015/ Proc. IAHS, 372, 189–198, 2015
194 G. Erkens et al.: Sinking coastal cities
Figure 6. The performance of a series of models used to calculate settlement compared to Oedometer test results. Prediction made by
classic models such as Koppejan fit the measurements less well compared to models based on the isotachs method, such as NEN-Bjerrum or
abc-Isotachs.
stant effective stress, and consequently, to the development
of an apparent pre-consolidation pressure (Den Haan, 1994).
It is seen as visco-plastic behaviour and is considered a slow
process, compared to primary or elastic consolidation. The
inclusion of creep behaviour in numerical descriptions of the
consolidation process has a long history, which is excellently
described in Bakr (2015). An important aspect of the creep
based models is that, due to secondary compression, there
is a family of stress-strain curves rather than a single curve
describing the relationship between stress and strain. Each
of these curves, called “time lines” (i.e. isochrones), corre-
sponds to a different duration of the applied load in a standard
oedometer test. For soft soils, model predictions that make
use of the isochrones method tend to match the oedometer
test results best, specifically on longer time periods (Fig. 6).
Deltares Research Institute modified the US Geological
Survey SUB-WT module by including isotachs (line of equal
speed) based consolidation predictions. This model, MOD-
FLOW SUB-CR (SUBsidence Creep), is used to determine
medium- to long-term land subsidence trends under differ-
ent scenarios of groundwater usage. In this way, the conse-
quences of groundwater extraction for urban flood manage-
ment become clear.
Because the SUB-CR model works with isotachs to calcu-
late consolidation, it differs from the SUB-WT model in two
ways:
It predicts on the longer term more consolidation, thus
subsidence, in clay and peat layers, as creep is a slow
and largely irreversible component of subsidence
Creep may continue for some time even after the hy-
draulic heads increased, introducing a time lag in con-
solidation.
As a result of these differences, aquifers with many fine-
grained interbeds, creep forms a considerable part of the to-
tal amount of settlement over time and should not be ne-
glected. An example is the subsidence predictions conducted
for Jakarta, Indonesia, using isotachs-based consolidation
calculations. Bakr (2015) calculates the subsidence occur-
ring in four future groundwater management scenarios for
Jakarta. The four scenarios are:
1. drawdown for all aquifers are kept zero till 2100 by
maintaining piezometric levels at their values of 2010
(no change);
2. drawdown for all aquifers increase 5m every 5 years
from 2010 till 2030 (business as usual);
3. piezometric heads are recovered for all aquifers by 2015
to their values of 1995 (recovery),
4. piezometric heads are recovered for all aquifers by 2015
to the maximum level of all aquifers in 1995 (full recov-
ery).
In Table 2, we report the predicted cumulative subsidence
for Jakarta as calculated by Bakr (2015), calculated with the
inclusion of creep. The results indicate that (i) if the hy-
draulic head declines continue with the current rate (sce-
nario 2) parts of North Jakarta will sink an additional 3.9 m,
and (ii) even if hydraulic heads remain the same (scenario 1)
or are restored (scenarios 3 and 4) subsidence continues,
up to 2.3 or 2.4m in the recovery scenarios in 2100. This
residual subsidence is the result of both delayed pore wa-
ter pressure dissipation and visco-plastic creep compaction.
This means that even if effective stresses do not change, land
subsidence will continue till all layers reach hydrostatic equi-
librium and creep compaction of all layers vanishes by time
due to aging (Bakr, 2015).
This has important implications for policy development in
the city of Jakarta. The significant predicted subsidence in the
Proc. IAHS, 372, 189–198, 2015 proc-iahs.net/372/189/2015/
G. Erkens et al.: Sinking coastal cities 195
Table 2. Cumulative subsidence (m), modelled including creep behaviour, for 4 groundwater management scenarios for Jakarta, Indonesia,
by Bakr (2015). Because of the slow creep rates, subsidence continues even after hydraulic heads are restored (scenarios 3 and 4).
Year Scenario 1 Scenario 2 Scenario 3 Scenario 4
(no change) (business as usual) (recovery) (rapid recovery)
2020 1.97 2.48 1.74 1.73
2025 2.08 2.75 1.80 1.77
2030 2.18 2.92 1.85 1.81
2100 3.01 3.91 2.43 2.30
business as usual scenario justifies a subsidence mitigation
policy. But the forecasted subsidence values in the recovery
scenarios indicate that for the remaining residual subsidence
an adaptation strategy must be developed too. Because of
these far reaching implications for policy development, it is
important that subsidence predictions are as accurate as pos-
sible. Although the inclusion of creep behaviour in prediction
models aimed to increase accuracy of predictions, they are
also sensitive for the geo(hydro)logical schematisation used
in the model. This is because the fine-grained interbeds and
aquitards are most sensitive to creep, and their exact distri-
bution both in vertical and lateral direction determines the
model outcome. The 3-D distribution of fine-grained deposits
in the subsurface, and their geo-mechanical properties, are
therefore key to reliable subsidence predictions for cities.
6 Impact and damage
With subsidence predictions for different management sce-
narios (step 3, see Sect. 5), damage estimates (step 4 in the
framework, Fig. 3) provide additional information for policy
decisions. The estimation of costs associated to subsidence
is very complex. Subsidence is a “hidden threat” because in
practice, costs appear on financial sheets as part of ad hoc
investments or planned maintenance schemes, but are not la-
belled as subsidence-induced damage. Dedicated damage es-
timates of subsidence can help to raise awareness among pol-
icymakers and initiate policy development.
Generally, two (very different) types of damage as a result
of subsidence can be recognised: (i) increased flood risk (due
to increased flood frequency, floodwater depth, and duration
of inundation) and more frequent rainfall-induced floods due
to ineffective drainage systems, and (ii) damage to buildings,
foundations, infrastructure (roads, bridges, dikes), and sub-
surface structures (drainage, sewerage, gas pipes, etc.). The
former is mainly the result of non-differential subsidence,
which is characteristic for large subsidence bowls that ex-
ist when groundwater or hydrocarbons at greater depth are
extracted. Examples of cities that have increased flood risk
as a result of subsidence include Jakarta, Ho-Chi-Minh and
Bangkok. The second type of damage, to structures, is the re-
sult of differential subsidence. This commonly happens when
fault systems are (re)activated, or when the subsidence is
the result of shallow processes (loading or drainage of soft
soils). Examples of cities in which structures are damaged
include New Orleans, Venice (Italy) and Amsterdam (the
Netherlands). Note that the construction site preparation and
construction costs in soft-soil areas should be considered as
subsidence-related costs, as these are mainly incurred to pre-
vent consolidation. On the longer term, however, cumulative
subsidence of soft soils may also increase flood risk as for
instance happened in the Netherlands (subsidence over the
last 1000 years) or in New Orleans (subsidence over the
last 150 years). The extent of the damage is different in
the two cases: increased flood risk usually applies to a larger
area than structural damage that applies to single structures
or parts of the network. The owner of the problem is also dif-
ferent: it is the local government who is investing in reducing
flood risk, whereas local communities, (utility) companies or
even home owners pay for the damage to (infra)structures.
Making an estimation of costs associated with subsidence
is notoriously complex. Some bulk estimates are available.
For instance, in China, the average total economic loss due to
subsidence is estimated at around USD 1.5 billion per year, of
which 80–90 % is from indirect losses. In Shanghai, over the
period 2001–2010, the total loss cumulates to approximately
USD 2 billion. In the Netherlands, new estimates based on
subsidence modelling, try to unravel the bulk costs. For in-
stance, it is calculated that damage to foundations (as a result
of subsidence) has been more than EUR 5 billion thus far,
and might reach EUR40 billion in 2050 (although this is a
theoretical maximum, Hoogvliet et al., 2012). The communi-
ties in soft soil areas in the Netherlands spend EUR0.25 bil-
lion per year more on maintenance than the communities
on supportive soils. This values consists of EUR0.17 bil-
lion per year maintenance for roads and water networks and
EUR 0.08 billion per year for sewage systems (Lambert et al.,
2014). The total damage associated with subsidence world-
wide is unknown, but estimated based on the aforementioned
values suggest billions of dollars annually. Because of ongo-
ing economic and urban development, the potential damage
costs of subsidence will increase considerably in the future,
especially in subsidence-prone areas such as flood plains.
Damage estimates form the core of cost-benefit analyses.
For subsidence, cost-benefit analyses will help to systemati-
cally calculate and compare benefits and costs of a decision
proc-iahs.net/372/189/2015/ Proc. IAHS, 372, 189–198, 2015
196 G. Erkens et al.: Sinking coastal cities
or government policy on the short and long term. Being a
gradual process, usually mitigation measures for subsidence
are costly on the short term, but cost-effective on the longer
term. Cost-benefit analyses could provide this insight in a
quantitative way.
7 Measures and monitoring
Once the damage caused by subsidence is quantified
(Sect. 6), the responsible actors (step 5 of the framework,
Fig. 3) can work out a policy on subsidence (step 6), that
should be evaluated after implementation (step 7). In this sec-
tion we focus on action necessary for steps 6 and 7.
There are generally two policy strategies for subsid-
ing cities: mitigation and adaptation analogue to the
climate change policy discussions. A successful strategy,
however, probably includes both. Mitigation only works
for human-induced subsidence (Sect. 4). Typical mitigation
measures include restrictions of groundwater extraction, ar-
tificial recharging aquifers, or raising (phreatic) water levels
in areas with organic rich soils, thereby reducing oxidation
of organic matter. Building with lighter materials decreases
the load on soft soils, thereby decreasing consolidation and
subsidence (Lambert et al., 2014).
For the human induced subsidence that cannot be miti-
gated, either because of technical difficulties (for instance the
use of lighter building materials in high rise buildings), or
because of financial reasons (i.e. the mitigation costs are too
high), an adaptation strategy should be considered. This is
also true for residual subsidence after a successful mitigation
of subsidence (see Sect. 5) or for natural subsidence, where
mitigation is not possible.
Adaptation must focus on reducing the impact of sub-
sidence, for instance by decreasing the vulnerability of a
certain asset to the negative impacts of subsidence. For in-
creased flood risk as a result of subsidence, adaptation mea-
sures include the strengthening or heightening of embank-
ments, building on mounds or piles, or conduct spatial plan-
ning in such a way that new constructions are only built on el-
evated areas. For damage to structures, adaptation strategies
may include the use of flexible pipes and cables (specifically
for connection points), the use of better foundations for struc-
tures, or again careful spatial planning, whereby building is
limited to areas with supportive soils (for instance channel
belt deposits within a delta).
Adaptation strategies are commonly applied in subsiding
coastal cities, for instance most of them have network of em-
bankments that reduces the flood risk. Cities that pursue an
active policy on subsidence mitigation are less common, but
successful examples do exist. In Tokyo, after taking regula-
tions measures restricting the groundwater use were imposed
in the early 1960s, the groundwater levels began to rise as a
result (Fig. 7). Subsidence came to hold 10 years later as a
result of the delayed response in the compacting layers (see
Figure 7. Land subsidence and groundwater levels in the Tokyo
area (Japan), modified after Kaneko and Toyota (2011). The effect
of the reduction of groundwater extraction on groundwater levels is
clearly visible. Note that land subsidence completely stops 10 years
after the groundwater level recovery started.
also Sect. 5). The restrictions on groundwater use meant that
a replacement water source had to be found. Dams were con-
structed in several river basins that were designated for wa-
ter resources development. During the 1970s and 80s numer-
ous dams were built to provide storage to avoid future water
scarcity and to supply the growing cities with sufficient wa-
ter. Beginning in the 1960s an additional investment in waste
water treatment was initiated.
Shanghai in China is another example of a city with
a successful subsidence mitigation strategy. Following the
increased understanding of the close relationship between
groundwater extraction and land subsidence in Shanghai
(e.g. Shi et al., 2008), groundwater levels were restored with
active recharge techniques. Although this approach reduced
the further lowering of groundwater tables and limited sub-
sidence, it did not completely eliminate the effects of subsi-
dence on infrastructure, roads, and buildings. The Shanghai
case shows that, with active and substantial recharge, sus-
tainable groundwater use is achievable, without severe sub-
sidence, provided that average yearly pumping rates are in
balance with the average yearly recharge.
In Bangkok, Thailand, regulation of and restrictions on
groundwater extraction have successfully reduced severe
land subsidence. A specific law (the Groundwater Act) was
enacted in 1977. The most affected areas were designated
as Critical Zones, and the government was given more con-
trol over private and public groundwater use in these areas.
Groundwater use charges were first implemented in 1985 and
have gradually increased. Currently about 10% of the to-
tal water use is supplied by groundwater extraction, and this
mainly used by the industry in Bangkok. In most urban areas,
subsidence is now reduced to 1cmyr1, with local increased
subsidence rates of 2 cm yr1in the aforementioned indus-
trial sites.
Proc. IAHS, 372, 189–198, 2015 proc-iahs.net/372/189/2015/
G. Erkens et al.: Sinking coastal cities 197
Jakarta (Indonesia) and Ho-Chi-Minh City (Vietnam) are
considering similar subsidence mitigation strategies. In the
Greater Jakarta area, metropolitan authorities and technical
agencies are advocating the reduction of groundwater extrac-
tion in vulnerable areas. The goal is to completely phase out
the use of groundwater by taxing groundwater consumption.
This would require developing an alternative water supply
for large industrial users or relocation of large groundwa-
ter users, outside the so-called “critical zones”. The num-
ber of “unregistered” users is still a problem. To some ex-
tent, spatial planning measures have been applied to avoid
subsidence-prone areas, but the fast growth of informal set-
tlements has made many of these plans obsolete. Recently,
the Jakarta province government started to clear out the wa-
ter management structures to reduce flood risk. In 2015, the
Governor of Jakarta announced the reduction of the usage of
deep groundwater in all government and public buildings, as
a first step in the transition to piped water supply. The ex-
pected delayed response of subsidence to groundwater head
recovery (Bakr, 2015; Sect. 5) asks for accurate subsidence
prognosis. They form a vital component for any integrated
flood management and coastal defence strategy (Dam, 2012).
Although land subsidence in Ho Chi Minh City has been
observed since 1997, there is still similar to Jakarta con-
siderable disagreement about the underlying processes and
impacts. This is partly due to poor land level and groundwa-
ter extraction monitoring data (Ho Chi Minh City Flood and
Inundation Management, 2013). Restrictions of groundwater
extraction have been initiated, but it is too early to observe
any effects.
In the Netherlands, with arguably the longest history of
human induced subsidence in the world (since 1000 AD), the
focus has been on adaptation strategies for more than nine
centuries. In the coastal peatlands, after 1200 AD, adapta-
tion measures included improving drainage (digging canals),
the closing of (tidal) creeks and rivers, raising dikes and cre-
ating polders, and the improvement of foundations of build-
ings and infrastructure. Only in the last 50 years, with ever
increasing damage to structures, mitigation measures were
implemented. Nowadays, groundwater is sustained as shal-
low as possible in the peatlands. This means careful land use
planning (less productive grassland and nature development
in the most sensitive areas and considering alternative crops
elsewhere) and the inlet of fresh water in polders in dry peri-
ods. Complete mitigation of subsidence is probably not pos-
sible, because that would end agriculture in a major part of
western and northern Netherlands. The associated high eco-
nomic losses are socially and culturally not acceptable. In
the northern part of the Netherlands, gas extraction results in
significant subsidence. Here policy similarly developed to-
wards mitigation measures, albeit on a shorter time scale.
Gas extraction started in the 1960’s, but until about 2010 the
governmental response to subsidence was limited to adapta-
tion of the surface water management system. After 2010,
subsidence was accompanied by more frequent and power-
ful induced seismicity (earthquakes). The resulting damage
of houses and other constructions forced the government in
2014 to start additional mitigation measures in the form of a
significant reduction of gas exploitation in the most critical
fields. Again, full mitigation was very difficult as stopping of
the gas exploitation would endanger the national energy sup-
ply and would reduce the gas revenues by several billion of
euro’s per year. In addition, even if the gas exploitation was
completely phased out, the subsidence and earthquakes are
likely to continue. Concluding, for the Netherlands full mit-
igation of subsidence is far more expensive than implement-
ing adaptation measures and an adaptation strategy combined
with limited mitigation is a much more feasible option.
For all measures taken to reduce subsidence or its impacts,
it is important that the effectiveness of these efforts is mon-
itored. This implies that a subsidence monitoring network
(see Sect. 3) need to be installed before the measures are
implemented. The monitoring data form an important contri-
bution to any subsidence monitoring network that has been
established in step 1 (Sect. 3). Preferably, the monitoring
data and analytical results (of the various modelling tools)
are stored in a central database.
8 Concluding remarks
In urban areas, human induced land subsidence domi-
nates the total subsidence signal.
Land surface elevation measurements need to be com-
bined with in-situ measurements in order to be able to
unravel the total subsidence signal.
There are two types of damage as a result of subsidence:
increased flood risk (with non-differential subsidence)
and damage to structures (with differential subsidence).
Analogue to climate change policies, a successful policy
on subsidence consists of adaptation measures (reduc-
ing the damage and vulnerability) and mitigation mea-
sures (actively reducing subsidence).
Delayed response of aquitards and interbed compaction
may introduce unwanted additional subsidence after im-
plementing mitigation measures, which is presently un-
accounted for.
Acknowledgements. This study is based on research conducted
by scholars working in the cities mentioned in this paper. They
shared data and insights from which this study greatly benefitted.
They are all gratefully acknowledged.
proc-iahs.net/372/189/2015/ Proc. IAHS, 372, 189–198, 2015
198 G. Erkens et al.: Sinking coastal cities
References
Allison, M., Yuill, B., Törnqvist, T., Amelung, F., Dixon, T., Erkens,
G., Stuurman, R. J., Milne, G., Steckler, M., Syvitski, J., and Tea-
tini, P.: Coastal subsidence: global risks and research priorities,
EOS Transactions, 2014.
Aobpaet, A., Caro Cuenca, M., Hooper, A., and Trisirisatayawong,
I.: InSAR time series analysis of land subsidence in Bangkok,
Thailand, Int. J. Remote Sens., 34, 8, 2013.
Bakr, M.: Land subsidence in North Jakarta preliminary analysis
results, part of Jakarta Coastal Defencse Strategy (JCDS) study,
JCDS Atlas, 2011.
Bakr, M.: Influence of Groundwater Management on Land Subsi-
dence in Deltas: A Case Study of Jakarta (Indonesia), Water Re-
sour. Manage., 29, 1541–1555, doi:10.1007/s11269-014-0893-7,
2015.
Church, J. A. and White, N. J.: Sea-Level Rise from the Late 19th
to the Early 21st Century, Surv. Geophys., 32, 585–602, 2011.
Dam, R.: Jakarta Coastal Defencse Strategy (JCDS) study, Activ-
ity Report: Land subsidence and adaptation/mitigation strategies,
JCDS Bridging Phase, 2012.
Den Haan, E. J.: Vertical compression of soils, PhD thesis, Techni-
cal University of Delft, Delft, the Nehterlands, 1994.
Dixon, T. H., Amelung, F., Ferretti, A., Novali, F., Rocca, F., Dokka,
R., Sella, G., and Kim, S.-W.: Subsidence and flooding in New
Orleans A subsidence map of the city offers insight into the
failure of the levees during Hurricane Katrina, Nature, 441, 587–
588, 2006.
Dokka, R. K.: New Orleans The role of deep processes in late 20th
century subsidence of New Orleans and coastal areas of southern
Louisiana and Mississippi, J. Geophys. Res., 116, 2011.
Eco, R. C., Lagmay, A. A., and Bato, M. P.: Investigating ground
deformation and subsidence in northern Metro Manila, Philip-
pines using Persistent Scatterer Interferometric Synthetic Aper-
ture Radar (PSInSAR), American Geophysical Union, Fall Meet-
ing, San Francisco, CA, USA, 5–9 December 2011, G23A-0822,
2011.
Fokker, P. A., Muntendam-Bos, A.-G., and Kroon, I. C.: Inverse
modelling of surface subsidence to better understand the Earth’s
subsurface, First Break, 25, 8, 2007.
Ho Chi Minh City Flood and Inundation Management: Final Re-
port, Volume 2: IFRM Strategy, Annex 3: Land Subsidence,
Royal Haskoning-DHV and Deltares, 2013.
Hoogvliet, M., van de Ven, F., Buma, J., van Oostrom, N., Brolsma,
R., Filatova, T., Verheijen, J., and Bosch, P.: Schades door wa-
tertekorten en overschotten in stedelijk gebied Quick scan van
beschikbaarheid schadegetallen en mogelijkheden om schades te
bepalen, Deltares report 1205463-000, 128 pp., 2012 (in Dutch).
Kaneko, S. and Toyota, T.: Long-Term Urbanization and Land Sub-
sidence in Asian Megacities: An Indicators System Approach,
in: Groundwater and Subsurface Environments: Human Impacts
in Asian Coastal Cities, 2011.
Lambert, J. W. M., van Meerten, J. J., Woning, M. P., and Eijbersen,
M. J.: Verbeterde onderhoud strategie infrastructuur in slappe
bodemgebieden, Deltares report 1209950-000, 31 pp., 2014 (in
Dutch).
Leake, S. A. and Galloway, D. L.: MODFLOW ground-water
model, User guide to the Subsidence and Aquifer-System Com-
paction Package (SUB-WT) for water-table aquifers: US Geo-
logical Survey, Techniques and Methods 6–A23, 42 p., 2007.
MoNRE-DGR (Ministry of Natural Resources and Environment,
Department of Groundwater Resources): The study of systematic
land subsidence monitoring on critical groundwater used area
project, Project report, 2012.
Shi, X., Wua, J., Yea, S., Zhangb, Y., Xuea,Y., Weic, Z., Lic, Q., and
Yud., J.: Regional land subsidence simulation in Su-Xi-Chang
area and Shanghai City, China, Engineering Geology, 100, 27–
42, 2008.
Slangen, A. B. A.: Towards regional projections of twenty-first cen-
tury sea-level change based on IPCC SRES scenarios, Clim. Dy-
nam., 38, 5–6, 2012.
Stuurman, R. J. and Erkens, G.: New Orleans’ soft soils need water
and solid management, J. Hydrogeol., in prepraration, 2015.
Törnqvist, T. E., Wallace, D. J., Storms, J. E. A., Wallinga, J., van
Dam, R. L., Blaauw, M., Derksen, M. S., Klerks, C. J. W., Mei-
jneken, C., and Snijders, E. M. A.: Mississippi Delta subsidence
primarily caused by compaction of Holocene strata, Nat. Geosci.,
1, 173–176, 2008.
van der Ven, G. P.: Man-made lowlands, history of water manage-
ment and land reclamation in the Netherlands, Uitgeverij Matrijs,
Utrecht, the Netherlands, 1993.
van Trung, L. and Minh Dinh, H. T.: Monitoring Land Deformation
Using Permanent Scatterer INSAR Techniques (case study: Ho
Chi Minh City), 7th FIG Regional Conference, Vietnam, 2009.
Wang, G., Yu, J., Kearns, T. J., and Ortega, J.: Assessing the Ac-
curacy of Long-Term Subsidence Derived from Borehole Exten-
someter Data Using GPS Observations: Case Study in Houston,
Texas, J. Surv. Eng., 140, 2014.
Yu, S.-Y., Törnqvist, T. E., and Hu, P.: Quantifying Holocene litho-
spheric subsidence rates underneath the Mississippi Delta, Earth
Planet. Sci. Lett., 331–332, 21–30, 2012.
Proc. IAHS, 372, 189–198, 2015 proc-iahs.net/372/189/2015/
... There are many stakeholders with different interests, whilst their level of awareness of the issue is often limited. This may be related to the fact that damage cannot unambiguously be attributed to subsidence, nor to low levels of knowledge and insight into the root cause and possible mediation strategies (Erkens et al., 2015). As a result, as with many problems that root in earth sciences, the process of formulating a subsidence strategy or implementing appropriate measures is often problematic, leading to particularly difficult decision making. ...
... In developing coping strategies, there is the option of reducing subsidence (mitigation) or reducing the negative consequences of subsidence (adaptation). Most likely a combination of both will be optimal (Erkens et al., 2015). In coastal areas, where subsidence quickly leads to increased flooding, adaptation often forms the initial hazard management strategy. ...
... Realising that in order to emerge from lock-in a sound and shared knowledge base is required to facilitate decision making, it is important to establish which elements must be included in the knowledge base. Based on experience and reviewing best practise cases, Erkens et al. (2015) gathered crucial research elements to facilitate decision making with scientific knowledge. This framework has evolved into the 6M approach to subsidence (Erkens & Stouthamer, 2020), which is a step-wise approach that elaborates along the stages of the policy cycle, with six distinct steps that need to be taken: Measuring, understanding Mechanisms, Modelling, Money, Measures and Monitoring. ...
Chapter
Full-text available
Subsidence is a complex problem, both in a technical sense and in governance. This is particularly the case in the Netherlands, which is a low-lying and densely populated country where various causes of subsidence interfere with each other. Coping with subsidence in the Netherlands started already 1000 years ago. This long history of subsidence, however, along with its slow manifestation, has resulted in a tendency to adaptation rather than mitigation. There is a growing awareness that this focus on adaptation is actually excluding alternative solutions. Potentially cheaper or more effective options may be unknown and not even considered. At the same time, Dutch society is becoming more aware of the severity of human-induced subsidence as it is one of the most prominent current geological hazards. What is needed therefore, is a sound knowledge base facilitating the exploration of solutions outside the traditional way of thinking. Here we present the different knowledge and governance issues at stake. We start with the description of the natural processes that cause subsidence, and the human-induced causes like groundwater management and exploitation of deep geological resources. Then we elaborate how subsidence can be estimated from measurements. We pay specific attention to the utilization of modern ensemble-based techniques to integrate multiple models and data. The objective is to avoid deterministic predictions and instead produce a range of subsidence forecasts with confidence intervals that are in agreement with observational data and their uncertainties. Finally, we describe how technical knowledge can be integrated in decision making by estimating the costs and benefits of different scenarios, thereby offering an array of options for decision makers. Subsidence will keep playing a role in shaping the future of the Netherlands. Human-induced subsidence will continue with new subsurface activities directed towards the energy transition. Incorporating the grim sea level rise predictions, the issue becomes even more serious. It is therefore of paramount importance to maintain and further develop the current knowledge position and to develop proactive mitigation activities.
... Consequently, the study recommends prohibiting groundwater extraction by designating critical zones in areas experiencing severe subsidence. This concept aligns well with groundwater-free zone policy in several countries, as described in [29]. Additionally, subsidence studies in the Mekong Delta have demonstrated a direct relationship between land use and subsidence rates, with rates increasing following land-use changes that either intensify groundwater extraction or otherwise accelerate land subsidence [30]. ...
... In Tokyo, groundwater levels began to rise after groundwater use restrictions were imposed in the early 1960s. Consequently, subsidence completely stopped 10 years after groundwater recovery began [29]. In response to groundwater restrictions, dams were built to provide an alternative water supply. ...
... Charges for groundwater usage were implemented in these zones. As a result, the rate of subsidence significantly declined to 1 cm yr −1 in urban areas [29]. These cases demonstrate that with well-implemented policies, strict groundwater regulations, and sustainable water management strategies, cities can effectively mitigate land subsidence and reduce its long-term impacts. ...
Article
Full-text available
Jakarta faces a critical challenge of extensive land subsidence, ranking prominently globally. This research employs a combined technical and policy evaluation approach to analyze the issue, incorporating sustainability considerations to assess the efficacy of Governor Regulation of Jakarta Number 93 of 2021, focusing on how the groundwater-free zone relates to land subsidence in the city. We processed 81 ALOS-2 PALSAR-2 synthetic aperture radar (SAR) data using persistent scatterer interferometric synthetic aperture radar (PS-InSAR) with HH polarization from 2017 to 2022 and ground truthing with 255 global positioning system (GPS) real-time kinematic (RTK) validation points. Our findings reveal a significant misalignment in the designated groundwater-free zone in the central part of Jakarta. At the same time, severe land subsidence primarily affects northern and northwestern Jakarta, with an average land subsidence rate of 5–6 cm/year. We strongly advocate for a thorough evaluation to rectify and redefine the boundaries of groundwater-free zones, improve regulatory frameworks, and effectively address land subsidence mitigation in the study area. The impact of domestic water needs on land subsidence highlights the urgency of action. Based on a combination of land subsidence velocity rates and domestic water demand, we have classified the cities in Jakarta into three levels of recommendations for groundwater-free zones. The cities are ranked in order of priority from highest to lowest: (1) West Jakarta, (2) North Jakarta, (3) South Jakarta, (4) East Jakarta, and (5) Central Jakarta, which holds the lowest priority.
... One major consequence of groundwater over-extraction is land subsidence (LS), causing ~ 60 % of all global human-induced subsidence cases [2]. Land subsidence is a complex process that is notoriously difficult to measure accurately [25], with land subsidence historically mistaken for sea level rise until recent advancements in remote sensing and satellite imagery [18]. 77 % of global cases are caused by human action (e.g. ...
... [23]), the resulting subsidence can be irreversible. LS can have substantial negative impacts, including, amongst others, water quality concerns [48]; damage to buildings [18]; infrastructure and interruption of services [23]; increased flood risk [35]; and loss of aquifer storage [42]. Many countries, including China, Mexico and the USA [51] have reported LS due to groundwater over-extraction. ...
... Yet, even quantified costs are mostly at the country and regional level (e.g. [23,7,18,14]), and linked to accumulated subsidence over many years (e.g. [32,22,35]), rather than incremental units of subsidence (with Mahya et al. [36] and Kok and Hommes-Slag [33] as notable exceptions). ...
... LS is caused by several factors, including groundwater extraction [76,77], urban development [78], natural compaction [48,79], and tectonic activity [80]. In Java, as has been extensively discussed in this paper, areas that suffer from LS are urban, industrial, and relatively highly developed areas. ...
Article
Full-text available
Java Island, located in Indonesia, is the country’s main island, with a population of 150 million, more than half the population of the country. There are at least four big cities located on the island that have seen fast development in the last 30 years. The land subsidence (LS) issue caused by groundwater overexploitation, compaction, and geological setting, has been known on the island for more than 20 years. However, past studies have mostly focused on one particular important area, while the big picture of LS on the whole island is often overlooked. This study utilized Sentinel-1 Synthetic Aperture Radar (SAR) data from 2017 to 2023, analyzed using Small Baseline Subset (SBAS) interferometry, to map LS across Java Island. We used DEMNAS to eliminate the topographic signal. We found ten regions with a noticeable LS rate, affecting nearly 60 million people who reside in the LS zones, namely, Serang, Greater Jakarta, Cianjur, Bandung, Cirebon, Brebes and Tegal, Pekalongan, Greater Semarang, Surabaya, and Sidoardjo. The highest rates and the large coverage of LS were observed in Greater Jakarta (up to 150 mm/year), Bandung (200 mm/year), Semarang (160 mm/year), and Pekalongan (up to 110 mm/year). LS was also detected in smaller areas or districts, such as Serang, Cianjur, Cirebon, Brebes, Tegal, Surabaya, and Sidoarjo, with rates ranging from 60 to 140 mm/year. The two areas of Cianjur and Brebes, which have never been mentioned in previous studies, show LS rates of about 80 mm/year and 70 mm/year, respectively. The LS rate in all areas was shown to be linear over time, except in Pekalongan, which shows rate deflation after 2021. We also found that most affected regions are urban and industrial zones, indicating a strong correlation with anthropogenic activities. LS leads to widespread socioeconomic and environmental impacts, including damage to infrastructure, increased flooding, and reduced groundwater capacity.
... For sea-level projections, our results emphasize that the current practice of linearly extrapolating historical VLM 13,15 may misestimate the associated sea-level hazards (Fig. 4). Major metropolitan hubs, including Tokyo, Venice, and Shanghai have reduced uid extraction-related subsidence using mitigation policies like pumping regulations [50][51][52] . Similarly, in South Louisiana, onshore hydrocarbon production and associated nonlinear VLM have waned since the 1970s 19 (Fig. 3b, Extended Data Fig. 4a). ...
Preprint
Full-text available
Vertical land motion (VLM) is a key driver of relative sea-level (RSL) changes in coastal areas. Rates of VLM can vary in time due to both anthropogenic (e.g., subsurface fluid extraction) and natural (e.g., sediment compaction, volcano-tectonic activity) processes. However, such nonlinear behavior has not been included in 20th century sea-level budgets or in sea-level projections due to a lack of long-term observations over relevant temporal and spatial scales. Here, we use a probabilistic reconstruction of large-scale climate-related sea level (CSL) from 1900 to 2021 to estimate VLM at a global set of tide gauge stations. We interpret differences between CSL and tide-gauge records (CSL-TG) primarily in terms of VLM and argue that the CSL-TG residuals quantify previously overlooked temporal variations in VLM primarily related to subsurface fluid withdrawal, seismic, and volcanic activity. We demonstrate that decadal variations in the resulting regional RSL trends can be an order of magnitude larger than variations due to CSL, introducing misestimates of up to ~ 75 mm yr − 1 in sea level projections based on linear extrapolations. Our variable VLM estimates provide new constraints on geophysical models of anthropogenic and volcano-tectonic crustal motions and pave the way for more robust, site-specific sea-level projections.
... Vertical land motions (subsidence or uplift) play an important role in estimating the relative sea-level rise. In many coastal cities, the rate of land subsidence surpasses the rate of sea level rise (Erkens et al. 2015;Nicholls et al. 2021;Shirzaei et al. 2021;Buzzanga et al. 2023). Land subsidence, resulting from natural and human-induced activities at local or regional scales, is primarily driven globally by groundwater extraction (Coplin and Galloway 1999). ...
Article
Full-text available
The combined effect of land subsidence and sea-level rise (SLR) leading to coastal inundation is a major threat for global coastal cities. The densely populated tropical Asian cities are believed to be the most affected regions by the rise of sea level. While the SLR is a global phenomenon, the magnitude and extent of the vertical land motion (VLM) varies locally and are often not considered for the estimation of coastal inundation hazard. In this study, we analyse the spatio-temporal variations in the vertical land motion and its impact on the coastal inundation for two densely populated tropical coastal cities and surrounding regions (Kochi and Trivandrum) situated along the south-western coast of India using Interferometric Synthetic Aperture Radar measurements from ALOS-1 (2007-2011) and Sentinel-1 (2015–2022) satellites in conjunction with piezometric level, tide-gauge and satellite altimetry measurements. Our findings indicate that VLM in Kochi is mainly subsidence with a rate of -5 to -25 mm/yr and correlates well with the groundwater depletion trend. In contrast, the Trivandrum city situated ~ 170 km south, experienced land uplift with a rate of 0–10 mm/yr. We model future inundation scenarios for Kochi and Trivandrum regions using the vertical land motion estimations and a LIDAR based high resolution elevation model. We show that by 2100, the projected SLR and the VLM will increase the inundation risk for an area of ~ 24 km² and 1.8 km² for the coastal parts of the Kochi and Trivandrum, respectively. While the land subsidence at Kochi would cause an increase in inundation by ~ 21%, the land uplift at Trivandrum would cause a reduction in inundation by ~ 17%. The present study indicates the importance of local variability in vertical land motions for inundation hazard maps based on global projections of future sea-level rise.
... This explains why there is-in some places, advocated for by some people-a quest for nature-based forms of flood management, restoring ecosystems through wetlands (Biggs et al., 2012). Further, climate change exacerbates these uncertainties, contributing to intensified periods of rainfall causing urban floods, rising sea levels resulting in soil subsidence in coastal cities, and experiencing extreme heat waves (De Block, 2016;Erkens et al., 2015). ...
... Consequently, the thickness of anthropogenic deposits nowadays generally reaches up to 6 m, whereas, beneath the city center, the natural surface can nowadays be found at ca. −3 to −5 m NAP. As a result, the presence of highly compressible soils (namely soft soils; Den Haan and Kruse 2007; Erkens et al. 2015;Herrera-García et al. 2021;Nicholls et al. 2021;Peduto et al. 2022), combined with the city development and associated adaptations to the water system, led to persistent ground subsidence, in turn affecting buildings and infrastructure (Van der Meulen et al. 2013). The geological setting of Amsterdam city is shown in Fig. 1 (DINOloket 2023). ...
Article
The City of Amsterdam is responsible for the maintenance of 600 km of historic quay walls, most of which are over 100 years old while others are 300 years old and are experiencing stability and degradation problems. A lack of knowledge about the as-built information and the current conditions of the retaining structures and their foundation systems exists, and very limited guidelines for the assessment of quay walls are available. Predicting the time when the quay walls are no longer safe is a key challenge in their end-of-life assessment. For this purpose, monitoring of the quay walls via conventional techniques (e.g., in situ surveys, topographic levelling and tachymetry) combined with satellite Multi-temporal Interferometric Synthetic Aperture Radar (MT-InSAR) data provides updated information on the displacements affecting the retaining structures and/or their foundations. This paper develops a multiscale methodology, consisting of three phases, that allow (1) the prioritization of the most exposed retaining structures (quay walls) at the municipal scale, (2) the retrieval of empirical relationships between different damage/movement indicators and quantitative displacement descriptors obtained via in situ surveys and terrestrial monitoring data, and (3) the identification of the most probable collapse mechanism by jointly analyzing the wall crack patterns and monitoring data. The results show that this approach could play a fundamental role to set up sustainable risk mitigation strategies at the municipal scale.
Article
Full-text available
Asian megadeltas, specifically the Ganges‐Brahmaputra‐Meghna, Irrawaddy, Chao Phraya, Mekong, and Red River deltas host half of the world's deltaic population and are vital for Asian countries' ecosystems and food production. These deltas are extremely vulnerable to global change. Accelerating relative sea‐level rise, combined with rapid socio‐economic development intensifies these vulnerabilities and calls for a comprehensive understanding of current and future coastal flood dynamics. Here we provide a state‐of‐the‐art on the current knowledge and recent advances in quantifying and understanding the drivers of coastal flood‐related hazards in these deltas. We discuss the environmental and physical drivers, including climate influence, hydrology, oceanography, geomorphology, and geophysical processes and how they interact from short to long‐term changes, including during extreme events. We also jointly examine how human disturbances, with catchment interventions, land use changes and resource exploitations, contribute to coastal flooding in the deltas. Through a systems perspective, we characterize the current state of the deltaic systems and provide essential insights for shaping their sustainable future trajectories regarding the multifaceted challenges of coastal flooding.
Article
Full-text available
Some of the world's largest cities are sinking faster than the oceans are rising. Humans are part of the problem, but we can also be part of the solution through monitoring and modeling.
Article
Full-text available
Surface subsidence can have major repercussions. A classic example is the seabed above the Ekofisk field, offshore Norway, where excessive subsidence made it necessary to raise the drilling platform by 6 m in the 1980s. On land, subsidence may significantly increase the risk of damage to buildings and infrastructure. But, there is more to say about subsidence. Observations of subsidence can also give us a better handle on the subsurface processes like compaction behaviour of a reservoir, and can tell us more about the reservoir itself: about undrained compartments or the strength of the aquifer. However, to get the information from subsidence data, you have to carefully follow an inversion procedure. This inversion exercise is a big challenge, in which all the available knowledge has to be used to the fullest possible extent. In this article we report on the work we have recently performed in this area.
Article
Full-text available
This study investigated long-term land subsidence derived from borehole extensometer and Global Positioning System (GPS) observations from Addicks, a suburb located in West Houston, Texas. The Addicks borehole extensometer was built in 1974 by the USGS. Two GPS stations were installed at this site in 1993 and 1996, respectively. One GPS antenna (ADKS) is mounted on the inner pipe of the extensometer borehole, which is firmly anchored 549 m below the land surface. Another GPS antenna (PA05) is mounted on a permanent antenna pole anchored 6 m below the land surface. The horizontal distance between these two GPS antennas is 50 m. Continuous GPS data collected from the deeply anchored GPS antenna indicate that the bottom of the borehole has been stable over the past 20 years (1993–2012). Hence the compaction derived from the borehole extensometer data represents the total subsidence at this site, which should be approximately equivalent to the vertical displacement (subsidence) recorded by the shallowly anchored GPS antenna (PA05). In this study, the vertical displacement time series recorded by the shallowly anchored GPS antenna are regarded as the true values to assess the accuracy of the subsidence time series recorded by the extensometer. The authors’ analysis indicates that the difference between the cumulative subsidence measured by the extensometer and the GPS antenna (PA05) is less than 5 mm for a 17-year span (1996–2012). The RMS of the residuals of the monthly subsidence time series derived from the extensometer and GPS antenna (PA05) data over 13 years (2000–2012) is 2 mm.
Article
Full-text available
SUMMARY The level of the ground water has been constantly lowering and the urbanization has been rapidly developing during the last decades due to the strong groundwater extraction has led to the subsidence of some areas in the Ho Chi Minh City. Land deformation at the rate of few centimetres per year can be measured at the heavy ground water pumping stations. Most existing techniques for monitoring ground subsidence base on using methods of precise leveling, and more recently the GPS. These methods are generally expensive and inefficient for monitoring large areas. Besides, sparsely distributed data points are often insufficient to provide information on every localized ground subsidence. Recent advances in the SAR interferometry, especially with the Permanent Scatterer InSAR (PSInSAR) is an appropriate remote sensing technique for measuring ground subsidence in urban areas at high accuracy and low costs. Results demonstrate the effectiveness of employing the PSInSARTechnique for land subsidence monitoring at Ho Chi Minh city and PSInSAR has enabled a long-term study of vertical land movements using SAR images.
Article
The Su-Xi-Chang area and Shanghai City are treated as a single study area for the land subsidence simulation in this paper. Considering the complexity of deformation features of hydrogeological units on a regional scale, a three-dimensional groundwater model with varying parameters and a one-dimensional (vertical) subsidence model are built. According to the different deformation features (elastic, elastic-plastic and visco-elastic-plastic), the groundwater flow equation and the subsidence equation based on the corresponding strainstress relationship are adopted. Solution is by an iterative method based on multiscale finite element method. The simulation results match well with the observed data after calibration and verification. As a result, the coupled model could be used as a predictive tool and to give some reasonable advice of groundwater exploitation and the related land subsidence in future pumping scenarios.
Article
Many of the lessons concerning urban environmental problems are well documented and practiced in international environmental cooperation projects. However, most urban environmental issues analyzed in the past have concentrated exclusively on air pollution, surface water pollution and waste management in cities. With this in mind, we focus on uncovered subsurface environmental issues in cities, which is an emerging problem in developing countries in Asia. As a first step, we collected existing knowledge and information from the literature and synthesized it into a Driving Forces-Pressure-State-Impact-Response (DPSIR) framework (Jago-on et al. Sci Total Environ 407:3089-3104, 2009). Building on our previous work, the current analysis attempts to develop a stage model concerning the long-term relationships between urban development and the emerging subsurface environmental problem of land subsidence and to compare the differences and commonalities across Asian developing countries. With the help of the DPSIR framework, we select and quantify the relevant indicators for each component of the requisite framework. The results indicate that Taipei has successfully utilized its latecomer advantage and that Bangkok has benefited from its natural capacity for groundwater storage. In addition, we find that Jakarta and Manila lag behind the other cities in terms of both the recognition of the issue and the introduction of regulation to combat the problem.
Article
This paper examines effects of groundwater management on land subsidence taking into consideration visco-plastic creep and delayed compaction. The method used in this paper decomposes total strain into a direct elastic contribution and a transient viscous contribution. It is applied to a conceptual model that is partially based on real data of geology, land subsidence measurements, and hydrogeology of northern Jakarta, Indonesia. The developed model is conditioned on land subsidence measurements (from 1974 to 2010) using the Maximum a Posteriori method. The calibrated model is used to evaluate effects of four groundwater management scenarios (from 2010 to 2100) on land subsidence. Maintaining piezometric heads at their values of 2010 has not stopped land subsidence while continuous drawdown has led to larger amount of land subsidence. Furthermore, although piezometric heads recovery decreases effective stresses along the subsurface profile, land subsidence continued (at a lower rate) over time due to creep and slow dissipation of excess pore water pressure. The paper also showed that contribution of creep compaction to total land subsidence could be significant. In addition, coupled processes of consolidation and creep compaction leads to a favorable condition where slow dissipation of excess pore water pressure reduces contribution of the creep compaction to total land subsidence at early times at which degrees of consolidation are small and creep rate is large.
Article
This paper examines effects of groundwater management on land subsidence taking into consideration visco-plastic creep and delayed compaction. The method used in this paper decomposes total strain into a direct elastic contribution and a transient viscous contribution. It is applied to a conceptual model that is partially based on real data of geology, land subsidence measurements, and hydrogeology of northern Jakarta, Indonesia. The developed model is conditioned on land subsidence measurements (from 1974 to 2010) using the Maximum a Posteriori method. The calibrated model is used to evaluate effects of four groundwater management scenarios (from 2010 to 2100) on land subsidence. Maintaining piezometric heads at their values of 2010 has not stopped land subsidence while continuous drawdown has led to larger amount of land subsidence. Furthermore, although piezometric heads recovery decreases effective stresses along the subsurface profile, land subsidence continued (at a lower rate) over time due to creep and slow dissipation of excess pore water pressure. The paper also showed that contribution of creep compaction to total land subsidence could be significant. In addition, coupled processes of consolidation and creep compaction leads to a favorable condition where slow dissipation of excess pore water pressure reduces contribution of the creep compaction to total land subsidence at early times at which degrees of consolidation are small and creep rate is large.
Article
The extent of ground deformation and subsidence in northern Metro Manila was examined using Persistent Scatterer Interferometric Synthetic Aperture Radar (PSInSAR) technique. Using the Stanford Method for Persistent Scatterers/Multi-Temporal InSAR (StaMPS/MTI) software, we processed 21 descending ENVISAT radar imageries taken from 2003 to 2006. The processed interferograms show high coherence due to the high density of PS points in the region of interest. The PSInSAR processing reveals several areas in northern Metro Manila, specifically in Caloocan, Malabon, Navotas and Valenzuela-collectively known as CAMANAVA-that exhibit deformation characteristics similar to that of ground subsidence. Results show that the areas manifesting apparent subsidence are moving with a maximum rate of 4.38 cm/year relative to the satellite. This is consistent with the geodetic surveying results from 1979 to 2009 showing subsidence of approximately 1 meter or 3.33 cm/year per year. Government data also identify these areas as among those with the highest rates of groundwater extraction in Metro Manila, suggesting the possibility of anthropogenic activities as the major cause of subsidence. With this study, we hope to get a better understanding of the nature of subsidence affecting parts of northern Metro Manila. Doing so would help mitigate the effects of potential flood disasters.
Article
Land subsidence poses a serious risk to the low-lying coastal city of Bangkok, Thailand; major flooding occurred there in 1983 and again in 2011. Extreme water pumping in the past led to subsidence rates of up to 120 mm year−1. Although water extraction is now controlled, maximum rates measured by levelling today are still up to 20 mm year−1. In this study, we apply interferometric synthetic aperture radar (InSAR) time-series analysis to study subsidence in Bangkok between October 2005 and March 2010. We validate the InSAR results, by comparing levelling rates and find good agreement between the two techniques. We detect approximately 300,000 coherent pixels overall, with an average density of 120 observations per km2. This is two orders of magnitude greater than the density of levelling benchmarks and reveals subsiding areas that are missed by the levelling network.