Content uploaded by Bartosz Rutowicz
Author content
All content in this area was uploaded by Bartosz Rutowicz on May 13, 2016
Content may be subject to copyright.
64Pol. J. Sport Tourism 2015, 22, 64-73
THE IMPACT OF TEN WEEKS OF BODYWEIGHT TRAINING
ON THE LEVEL OF PHYSICAL FITNESS AND SELECTED PARAMETERS
OF BODY COMPOSITION IN WOMEN AGED 21-23 YEARS
1 2
KRZYSZTOF LIPECKI , BARTOSZ RUTOWICZ
1Cracow University of Economics, Faculty of Management, Department of Tourism
2Jagiellonian University Medical College, Faculty of Medicine, Department of Anatomy
Mailing address: Krzysztof Lipecki, Cracow University of Economics, Faculty of Management,
Department of Tourism, 27 Rakowicka Street, 31-510 Krakow,
tel.: + 48 12 2935096, fax: + 48 12 2935045, e-mail: lipeckik@uek.krakow.pl
Copyright © 2015 by Józef Piłsudski University of Physical Education in Warsaw, Faculty of Physical Education and Sport in Biała Podlaska
Introduction
Physical fitness has a major influence on health, appearance,
and well-being. A sufficient level of physical fitness guarantees
a higher quality of life and helps prevent the development of
many “non-contagious diseases”, such as cardiovascular disor-
ders or obesity. According to the concept of Health-Related
Fitness (HRF), physical fitness is one of the main factors impact-
ing health [1]. HRF emphasises the importance of maintaining
an optimal level of health in terms of the following components:
morphological fitness, musculoskeletal fitness, motor fitness,
cardiorespiratory fitness, and flexibility. Morphological fitness
includes body structure and composition, which, if abnormal,
contribute to a higher risk of death and diseases [2]. Muscu-
loskeletal fitness comprises such elements as the strength and
endurance of the muscles of the legs, arms, and trunk, a high
level of which makes it possible for the entire body to function
properly [3]. Low motor fitness, on the other hand, is a risk factor
for falls, which frequently lead to bone fractures [4]. Body pos-
ture and flexibility also play an important role and insufficient
control of the body and reduced trunk flexibility are associated
with pain in the lumbosacral region of the spine [5]. However,
it is cardiorespiratory fitness that is key in the concept of Health-
Related Fitness, as its low level increases the risk of heart disease
and premature death [6, 7].
An efficient way of impacting all the components of physical
activity listed in HRF is health training, which can have the form
of endurance or strength training [8]. Strength training, which
has so far mainly been associated with increasing muscle mass
by exercising at the gym, can also have the form of bodyweight
training, that is exercise using the weight of one's body. This rela-
tively unpopular form of strength training has undergone dy-
namic development in the past few years, owing to the fact that
it benefits muscle strength and endurance and, as is worth em-
phasising, cardiorespiratory fitness. The advantage of such
training is the fact that it includes functional exercises engaging
many muscle groups, which additionally help improve balance,
prioperception, and flexibility [9]. Moreover, bodyweight train-
ing is a plausible option for persons who claim that their recre-
ational physical activity is limited due to a lack of free time and
financial difficulties [10]. Such persons could take advantage
of the fact that bodyweight training can be done at home, takes
a comparatively short time (12-40 minutes depending on the
training regime), and does not require using special equipment.
Abstract
Introduction. The aim of the study was to assess the impact of 10 weeks of bodyweight training on selected elements of body
composition (body mass, muscle mass, and the percentage of body fat and water) and components of physical fitness
(strength, strength endurance, flexibility, and aerobic capacity) of women aged 21-23 years who do not practise sports pro-
fessionally. Material and methods. The study involved 15 women whose mean age was 22 years 2 months. Their body mass
and composition were assessed using a TANITA BC-1000 scale, and the following parameters of physical fitness were
measured: the strength and power of the upper and lower extremities; the strength endurance of the shoulders, shoulder
girdle, and trunk; as well as their flexibility and physical capacity. The assessment was performed twice, that is before and
after the completion of the 10-week programme. Results. The study revealed that the 10-week bodyweight training pro-
gramme had caused a minor increase in body mass (1.16%) and body fat percentage (2.43%), while muscle mass and body
water percentage had not changed. As far as physical fitness is concerned, the bodyweight exercises had had a positive
impact on all of the elements of physical fitness which were measured, including statistically significant increases in the
explosive strength of the lower extremities (5.6%; p<0.01), strength endurance of the trunk (10.7%; p<0.01), and aerobic
capacity (33.3%; p<0.05). Conclusions. Without a properly balanced diet and nutrition control, the bodyweight training
programme had a small impact on the parameters of body composition. It was, however, an effective way of enhancing gen-
eral physical fitness: apart from improving muscle strength and endurance, it also increased physical capacity and flexibil-
ity.
Key words: bodyweight training, body composition, physical fitness, female
Original research papers
cise intensity, and the number and length of the breaks. During
the first two weeks the subjects performed a block of exercises
increasing muscle endurance as part of the ladders regime.
These exercises were characterised by low intensity and a high
number of repetitions. In the third and fourth weeks the subjects
did more intensive exercise which emphasised increasing mus-
cle strength in the form of interval set training. In the following
two weeks the subjects performed a block of exercises which
were to increase power (super set regime) and in the remaining
4 weeks they completed a block of mixed exercises. The latter
block contained exercises from the previous regimes that were
extended to include tabatas and stappers, which increased the
intensity and variety of the training.
The duration of the training sessions was between 12 and 36
minutes, depending on the week of the programme. The exer-
cises were done with varying levels of intensity, and different
st
groups of muscles were exercised during the week (1 session –
nd
upper extremity muscles, “push” exercises; 2 session – lower
rd
extremity muscles; 3 session – upper extremity muscles, “pull”
th th
exercises; 4 session – back and stomach muscles; and 5 session
– general fitness training). Altogether the subjects spent 48 to
73 minutes exercising during the week. During the entire pro-
gramme each of the muscle groups was trained for 4 hours 42
minutes, and the total time spent exercising over the period of 10
weeks was 20 hours 8 minutes.
The data collected were analysed using descriptive statistics.
The following were calculated for each parameter: the arithmetic
mean, the standard deviation, skewness, kurtosis, and variation.
Moreover, the Shapiro-Wilk W-test was used to assess whether
the distribution of the data was normal. The results of the test
showed that the data were normally distributed. Then the
Wilcoxon signed-rank test was used in order to analyse the differ-
ences for particular parameters between the two measurements.
Statistical significance was set at p<0.05.
Results
Changes in body composition
An analysis of the body composition of the subjects revealed
that the 10-week bodyweight training programme had caused
a minor increase in body mass (of 1.16%) and body fat percent-
age (of 2.43%), while muscle mass and body water percentage
had not changed. These results may indicate that the training
period was too short to cause positive changes in body composi-
tion, which is mainly determined by diet (in approximately 80%)
[14, 15].
Bearing in mind these benefits of bodyweight training, the
aim of the study was to assess the impact of 10 weeks of body-
weight training designed by M. Lauren and J. Clark [11] on se-
lected elements of body composition (body mass, muscle mass,
and the percentage of body fat and water) and parameters of
physical fitness (strength, strength endurance, flexibility, and
aerobic capacity) of women aged 21-23 years who do not practise
sports professionally.
Material and methods
The study involved 15 women aged between 21 and 23 years.
Their mean age was 22 years 2 months. The women's physical
fitness and physical features were assessed twice, that is before
implementing the 10-week exercise programme (in December
2012) and after its completion (in March 2013). The assessment
was done under identical conditions, at the sports hall and gym
at the Cracow University of Economics, and it consisted of the
following.
1. The subjects' physical parameters were assessed: height
was measured using an anthropometer, and body mass
and composition, i.e. muscle mass and the percentage of
fat and water in the body, were assessed using a TANITA
BC-1000 scale. The subjects' BMI (Body Mass Index) was
also calculated.
2. The following physical fitness tests were conducted:
a) standing long jump (cm) – to assess the explosive strength
of the lower extremities;
b) back overhead 3 kg medicine ball throw (cm) – to assess
the dynamic strength of the shoulder girdle, back, and
stomach muscles;
c) arm hang (s) – to assess the strength endurance of the
shoulder and shoulder girdle muscles;
d) sit-ups (number of repetitions/30 seconds) – to assess the
strength endurance of the trunk muscles;
e) dynamometer grip test – to assess of the power of grip of
the left and right hands;
f) sit-and-reach test (cm) – to assess flexibility;
g) Astrand-Rhyming test – to assess aerobic capacity.
3. An evaluation of the subjects' speed and strength capaci-
ties was performed using biomechanical methods: the
vertical jump was measured using an accelerometer con-
nected to a computer, by means of the Myotest PRO sys-
tem. The subjects' goal was to jump as high as possible
during:
a) a counter-movement jump (CMJ) with arm swing;
b) a squat jump (SJ) with no arm swing.
Each of the jumps was done three times, and the one with the
best score was subjected to further analysis. The jumping tests
made it possible to calculate the following biomechanical pa-
rameters:
a) H (cm) – the height of the centre of gravity;
b) P' (W/kg) – derived power in the takeoff phase.
The bodyweight training programme
According to the guidelines set by the authors of the pro-
gramme [11], the subjects' level of physical fitness measured
before they started doing the exercises qualified as “basic”. The
bodyweight training programme lasted 10 weeks, and in the
course of the programme the subjects did not perform any other
physical activity. In the first phase (the first 6 weeks) the exer-
cises were done 4 times a week, and in the final one (starting
th
from the 7 week) the participants exercised 5 times a week. The
breaks between the training sessions depended on the indi-
vidual needs of the subjects. The programme consisted of five
basic training regimes (ladders, interval set, super set, tabatas,
and stappers), which differed in terms of effort duration, exer-
65 Pol. J. Sport Tourism 2015, 22, 64-73 Lipecki and Rutowicz THE IMPACT OF TEN WEEKS OF...:
Table 1. Differences (%) in the physical parameters of the subjects
(n=15) before starting bodyweight training (first assessment)
and after completing it (second assessment)
Height [cm]
Body mass [kg]
Body Mass Index
Fat percentage [%]
Water percentage [%]
Muscle mass [kg]
164.0
59.42
21.93
24.06
53.26
42.13
Difference
between
first
and second
assessment
(%)
1.16 NSS
1.35 NSS
2.43 NSS
−0.75 NSS
0.30 NSS
±SD
XVX±SD V
First assessment
(pre-training)
Second assessment
(post-training)
Body composition
parameter
6.74
10.6
2.5
7.69
4.77
3.67
0.04
0.18
0.11
0.32
0.90
0.09
60.09
22.17
24.67
52.85
42.26
11.05
2.66
7.49
4.61
3.81
0.18
0.12
0.30
0.09
0.09
Note: statistically significant differences: * <0.05, ** <0.01; NSS – differences not
statistically significant; “−” – a decrease in the scores between the first and second
assessments.
Changes in physical fitness
As for the level of the subjects' physical fitness before and
after the completion of the 10-week bodyweight training
programme, it was found that the subjects' scores in seven out
of nine tests had improved (tab. 2).
An analysis of the results obtained for strength revealed
a minor decrease in the dynamic strength of the shoulder girdle,
back, and stomach (test: back overhead medicine ball throw),
by 3.5%, and in the static strength (test: dynamometer grip test)
of the left hand, by 4.2.%. However, an increase in the static
strength of the right hand (by 2.4%) and explosive strength of
the lower extremities (from 1.7% to 5.6%) was found in the fol-
lowing tests: standing long jump and two types of jumps mea-
sured using the Myotest system, that is the counter-movement
jump (CMJ) and squat jump (SJ). The differences between the
scores for the first and second assessments were statistically
significant only for the standing long jump test (improvement
by 5.6%; p<0.05), and they were not statistically significant for
the other tests (p>0.05).
The subjects' scores also improved when it comes to the
strength endurance of the shoulder girdle and shoulder muscles
(test: arm hang), by 30.9%, and of the trunk muscles (test: sit-
ups), by 10.7%. The differences were statistically significant for
the trunk muscles (p<0.01).
Moreover, the bodyweight training programme was proven
to have had a positive impact on the flexibility of the subjects:
after completing the 10-week programme the subjects' scores in
this respect were better by a mean of 2.6% than before they
started it. This improvement was probably due to the specificity
of the programme which had been implemented, as apart from
strength training it also included elements of dynamic stretch-
ing.
A very important component of physical fitness is aerobic
capacity, which, owing to the specificity of strength training,
is often neglected by persons who train at the gym. Isolated
exercises targeting particular muscle groups and the loads used
are usually so great that they lead to muscle fatigue rather than
stimulate the cardiorespiratory system. In this study, however,
the subjects' aerobic capacity increased by as much as 33.3%
(p<0.05).
Discussion
One of the aims of the current study was to describe the dif-
ferences in the parameters of body composition in women aged
21-23 years who took part in a 10-week bodyweight training
programme. Impacting body composition is one of the goals
of this type of training, apart from improving physical fitness
[11]. Some studies that have explored this issue have pointed
to high-intensity training, which constituted a substantial part
of this programme (the programme included interval, tabata,
and stapper training), as more effective in helping to achieve
this goal than typical endurance training, which is also known
as 'cardio' [18, 19]. This may be due to the fact that in high-in-
tensity training one switches between aerobic and anaerobic ex-
ercises, which has a positive effect on muscle mass and im-
proves the basal metabolic rate for as many as 48 hours after the
training [20]. The increased calorie need, combined with a prop-
erly balanced diet, is particularly beneficial for persons who
have undertaken physical activity with a view to changing their
body composition. An additional consequence of doing body-
weight exercise is a visible enhancement of physical appearance
due to increasing the muscle tone without excessive growth
of muscle mass [21]. This effect seems to be sought particularly
by women, who often avoid strength exercise for fear that their
muscle mass will develop excessively.
As far as the body composition parameters are concerned,
an increase in body mass and fat percentage was found in the
participants of the programme, although the differences in this
respect were not statistically significant (p>0.05). No changes
were found for muscle mass or body water percentage.
No studies concerning changes in the parameters of body
composition caused by bodyweight training seem to be avail-
able in the research literature. Due to the specificity of the train-
ing implemented in this study (high-intensity training using in-
Pol. J. Sport Tourism 2015, 22, 64-73 66
Lipecki and Rutowicz THE IMPACT OF TEN WEEKS OF...:
Table 2. Differences (%) in the selected components of the subjects' physical fitness (n=15) before starting bodyweight training (first assessment)
and after completing it (second assessment)
Difference
between first
and second
assessment
(%)
Dynamic strength of shoulder girdle,
back, and stomach
Physical
fitness
component
Back overhead 3 kg medicine
ball throw [cm]
Dynamometer grip [kG]RH
LH
Static strength of upper
extremities
Standing long jump [cm]
H [cm]
P' [W/kg]
Squat jump (SJ)
Counter-movement jump (CMJ)
with arm swing
H [cm]
P' [W/kg]
Explosive strength of lower
extremities (power)
Strength endurance of shoulder
and shoulder girdle
Strength endurance of trunk
Flexibility
Arm hang [s]
Sit-ups [n]
Sit and reach [cm]
Aerobic capacity Astrand-Rhyming test [l/min-1]
Physical capacity
Flexibility
Strength
endurance
Strength
706.3
32.2
31.3
162.0
24.9
39.1
31.0
48.4
7.8
18.4
15.1
1.6
127.4 681.5 147.1 −3.5 NSS
4.9
4.9
20.3
4.0
5.3
4.6
6.9
33.0
30.0
171.7
25.4
40.1
31.6
50.1
4.6
5.3
18.3
3.9
5.6
4.1
3.1
2.4 NSS
−4.2 NSS
5.6**
2.0 NSS
2.5 NSS
1.9 NSS
3.4 NSS
7.0 11.28 12.4 30.9 NSS
4.0
5.8
1.0
20.6
15.5
2.4
3.5
5.5
0.6
10.7**
2.6 NSS
33.3*
±SDX±SDX
First assessment
(pre-training)
Second assessment
(post-training)
Parameter Test
Note: statistically significant differences: * <0.05, ** <0.01; NSS – differences not statistically significant; “−” – a decrease in the scores between the first and second assessments;
RH – right hand, LH – left hand.
terval sets, tabatas, and stappers), the results of the current study
were compared with the findings of other studies concerning the
impact of high-intensity training on the selected parameters.
The results of the current study are comparable with the
results of other studies only to a certain extent. Similar results
for body mass were obtained by Perry et al. [22] and Tjonna et al.
[23]: their studies showed that high-intensity training, lasting
6 or 16 weeks, respectively, caused an increase in the body mass
of the participants. According to experts [24, 25, 18], high-in-
tensity training also causes a reduction in adipose tissue in the
body; however, the results of the current study did not confirm
this. The discrepancies between the findings of the studies may
stem from the lower intensity of the training used in this study
(bodyweight training is not typical high-intensity training), the
shorter duration of the exercises, and the fact that the partici-
pants' diet was not monitored.
An analysis of the impact of the training on the level of the
subjects' physical fitness revealed that the scores for 7 out of 9
tests conducted had improved, including three in a statistically
significant way (p<0.05).
As for the parameters related to static and dynamic strength,
a minor decrease (p>0.05) in the scores for the dynamic strength
of the shoulder girdle, back, and stomach (test: back overhead
3 kg medicine ball throw) and the static strength of the left
hand (test: dynamometer grip) was found. However, the sub-
jects' scores had improved for the static strength of the right
hand (test: dynamometer grip), the explosive strength of the
lower extremities (tests: standing long jump, counter-movement
jump with arm swing, and squat jump). It is also worth noting
that the mean differences between the first and second measure-
ments for the standing long jump test amounted to 5.6% and
were found to be statistically significant (p<0.01). Similar find-
ings emerged in the study conducted by Tabata et al. [26], which
demonstrated a positive influence of a 6-week bodyweight train-
ing programme on increasing maximal anaerobic power in stu-
dents of physical education (by 28.0%).
Another finding of the current study concerned the improve-
ment in the strength endurance of the shoulder girdle and shoul-
der muscles (test: arm hang), and of the trunk muscles (test: sit-
ups). The greatest improvement was found for the strength of the
trunk muscles, which increased significantly (by 10.7%, p<0.01)
between the first and second assessments.
From the point of view of preventing cardiovascular diseases
and promoting health, one of the most beneficial effects of the
training programme was the major improvement in the aerobic
capacity of the participants (by as much as 33.3%; p<0.05).
These results have important implications, since, according
to many experts, a low level of aerobic capacity is a major risk
factor for heart disease and premature death [6, 7, 16, 17]. An im-
provement in the physical fitness of the participants of a 6-week
bodyweight training programme (by 4.0% compared to a con-
trol group who did standard cardio training) was also found by
Tabata et al. [26].
To conclude, the current research is one of few studies con-
cerning training which involves using the weight of one's body,
which is becoming increasingly popular. Bodyweight training
differs substantially from traditional techniques of training
at the gym, among others due to the fact that the exercises are
done in intervals, and for this reason they not only increase the
strength and endurance of the muscles, but they also improve
physical capacity. Moreover, this training is functional. The
movements of the body are physiological and natural, and they
engage many groups of muscles. The exercises additionally stim-
ulate the postural muscles, as well as improving balance, priop-
erception, and flexibility. The benefits of bodyweight training
mentioned above, the relatively short duration of one training
session, and the virtually unlimited accessibility of this training
make it a particularly useful form of daily physical activity
aimed at preventive health. Due to the popularity and availabil-
ity of bodyweight training, the impact of its different forms on
body composition and the level of physical fitness in women and
men of different ages is worth investigating further.
Literature
Weimo Z., Mahar M.T., Welk G.J., Going S.B., Cureton K.J.
(2011). Approaches for Development of Criterion-Referenced
Standards in Health-Related Youth Fitness Tests. American
Journal of Preventive Medicine 41(4), 68-76. DOI: http://dx.
doi.org/10.1016/j.amepre.2011.07.001.
Bombelli M., Facchetti R., Fodri D., Brambilla G., Sega R.,
Grassi G. et al. (2013). Impact of body mass index and waist
circumference on the cardiovascular risk and all-cause
death in a general population: data from the PAMELA study.
Nutrition, Metabolism and Cardiovascular Diseases 23(7),
650-656. DOI: 10.1016/j.numecd.2012.01.004.
Kell R.T., Bell G., Quinney A. (2001). Musculoskeletal fitness,
health outcomes and quality of life. Sports Medicine 31(12),
863-873. PMID: 11665913.
Cousins M.J., Petit M.A., Paudel M.L., Taylor B.C., Hughes
J.M., Cauley J.A. et al. (2010). Muscle power and physical
activity are associated with bone strength in older men: The
osteoporotic fractures in men study. Bone 47, 205-211. DOI:
10.1016/j.bone.2010.05.003.
Smeets R.J., van Geel K.D., Verbunt J.A. (2009). Is the fear
avoidance model associated with the reduced level of aerobic
fitness in patients with chronic low back pain? Archives of
Physical Medicine and Rehabilitation 90(1), 109-117. DOI:
10.1016/j.apmr.2008.07.009.
Blair S.N., Kampert J.B., Kohl H.W., Barlow C.E., Macera C.A.,
Paffenbarger R.S. et al. (1996). Influences of cardiorespiratory
fitness and other precursors on cardiovascular disease and
all-cause mortality in men and women. The Journal of the
American Medical Association 76(3), 205-210. DOI:10.1001/
jama.1996.03540030039029.
Feigenbaum M.S., Pollock M.L. (1997). Strength training:
rationale for current guidelines for adult fitness programs.
The Physician and Sportsmedicine 25(2), 44-63. DOI: 10.
3810/psm.1997.02.1137
Beauvais F., Cohen-Solal A., Driss A.B., Grosdemouge A.,
Renaud N., Tabet J.Y. et al. (2009). Benefits of exercise train-
ing in chronic heart failure. Archives of Cardiovascular Dis-
eases 102(10), 721-730. DOI: 10.1016/j.acvd.2009.05.011.
Lipecki K., Ziarkowski D. (2012). Motives and barriers of
taking up physical activity by students of the tourism and
recreation faculty. Human and Health 6(1), 45-50.
Lauren M., Clark J. (2010). You Are Your Own Gym: The Bible
of Bodyweight Exercises. New Orleans: Light of New Orleans
Publishing.
Bosaeus M., Karlsson T., Holmäng A., Ellegård L. (2014). Ac-
curacy of quantitative magnetic resonance and eight-elec-
trode bioelectrical impedance analysis in normal weight and
obese women. Clinical Nutrition 33(3), 471-477. DOI: http://
dx.doi.org/10.1016/j.clnu.2013.06.017.
Pedrera-Zamorano J.D., Roncero-Martin R., Lavado-Garcia
J.M., Calderon-Garcia J.F., Rey-Sanchez P., Vera V. et al. (2014).
Segmental fat-free and fat mass measurements by bioelec-
trical impedance analysis in 2,224 healthy Spanish women
aged 18-85 years. American Journal of Human Biology. DOI:
10.1002/ajhb.22669.
Volpe S.L., Kobusingye H., Bailur S., Stanek E. (2008). Effect
of diet and exercise on body composition, energy intake and
leptin levels in overweight women and men. The Journal of
the American College of Nutrition 27(2), 195-208.
Kerksick C., Thomas A., Campbell B., Taylor L., Wilborn C.,
67 Pol. J. Sport Tourism 2015, 22, 64-73 Lipecki and Rutowicz THE IMPACT OF TEN WEEKS OF...:
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
Marcello B. et al. (2009). Effects of a popular exercise and
weight loss program on weight loss, body composition, en-
ergy expenditure and health in obese women. Nutrition and
Metabolism 14, 6-23. DOI: 10.1186/1743-7075-6-23.
Hoyos I., Irazusta A., Gravina L., Gil S.M., Gil J., Irazusta J.
(2011). Reduced cardiovascular risk is associated with aero-
bic fitness in university students. European Journal of Sport
Science 11(2), 87-94.
Maaroos J., Landor A. (2001). Antropometric indices and
physical fitness in university undergraduates with different
physical activity. Antropologischer Anzeiger 59(2), 157-163.
Lee M.G., Park K.S., Kim D.U., Choi S.M., Kim H.J. (2012).
Effects of high-intensity exercise training on body composi-
tion, abdominal fat loss, and cardiorespiratory fitness in mid-
dle-aged Korean females. Applied Physiology, Nutrition and
Metabolism 37, 1019-1027. DOI:10.1139/H2012-084.
Corte de Araujo A.C., Roschel H., Picanco A.R., do Prado
D.M.L., Villares S.M.F. et al. (2012). Similar health benefits
of endurance and high-intensity interval training in obese
children. PLOS ONE 7(8), 427-447. DOI:10.1371/journal.
pone.0042747.
King J., Broeder C., Browder K., Panton L. (2002). A compar-
ison of interval vs. steady-state exercise on substrate utiliza-
tion in overweight women. Medicine and Science in Sports
and Exercise 34, 130.
Martins R., Coelho E.S.M., Pindus D., Cumming S., Teixeira
A., Veríssimo M. (2011). Effects of strength and aerobic-based
training on functional fitness, mood and the relationship be-
tween fatness and mood in older adults. The Journal Of Sports
Medicine And Physical Fitness 51(3), 489-496.
Perry C.G.R., Heigenhauser G.J.F., Bonen A., Spriet L.L.
(2008). High-intensity aerobic interval training increases fat
and carbohydrate metabolic capacities in human skeletal
muscle. Nutrition and Metabolism 33(6), 1112-1123. DOI: 10.
1139/H08-097.
Tjønna A.E., Lee S.J., Rognmo Ø., Stølen T.O., Bye A., Haram
P.M. et al. (2008). Aerobic interval training versus continuous
moderate exercise as a treatment for the metabolic syndrome:
a pilot study. Circulation 118(4), 346-354. DOI: 10.1161/
CIRCULATIONAHA.108.772822.
Boutcher S.H. (2011). High-intensity intermittent exercise
and fat loss. Journal of Obesity 2011, 1-10. DOI:10.1155/2011/
868305.
Trapp E.G., Chisholm D.J., Freund J., Boutcher S.H. (2008).
The effects of high-intensity intermittent exercise training
on fat loss and fasting insulin levels of young women. Inter-
national Journal of Obesity 32(4), 684-691. DOI: 10.1038/sj.
ijo.0803781.
Tabata I., Nishimura K., Kouzaki M., Hirai Y., Ogita F., Miy-
achi M. et al. (1996). Effects of moderate-intensity endurance
and high-intensity intermittent training on anaerobic capac-
ity and VO max. Medicine and Science in Sports and Exercise
2
28(10), 1327-1330.
Submitted: August 5, 2014
Accepted: May 26, 2015
Pol. J. Sport Tourism 2015, 22, 64-73 68
Lipecki and Rutowicz THE IMPACT OF TEN WEEKS OF...:
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
69 Pol. J. Sport Tourism 2015, 22, 64-73
WPŁYW 10-TYGODNIOWEGO TRENINGU BODYWEIGHT
NA POZIOM SPRAWNOŚCI FIZYCZNEJ ORAZ KOMPONENTY
BUDOWY CIAŁA KOBIET W WIEKU 21-23 LAT
1 2
KRZYSZTOF LIPECKI , BARTOSZ RUTOWICZ
1Uniwersytet Ekonomiczny w Krakowie, Wydział Zarządzania, Katedra Turystyki
2Uniwersytet Jagielloński Collegium Medicum w Krakowie, Wydział Lekarski, Katedra Anatomii
Adres do korespondencji: Krzysztof Lipecki, Uniwersytet Ekonomiczny w Krakowie, Wydział Zarządzania,
Katedra Turystyki, ul. Rakowicka 27, 31-510 Kraków, tel.: 12 2935096, fax: 12 2935045,
e-mail: lipeckik@uek.krakow.pl
Copyright © 2015 by Józef Piłsudski University of Physical Education in Warsaw, Faculty of Physical Education and Sport in Biała Podlaska
Wst p
Istotnym elementem wpływającym na zdrowie, wygląd oraz
samopoczucie człowieka jest sprawność fizyczna. Odpowiedni
jej poziom gwarantuje wyższą jakość życia, zapobiegając poja-
wiającym się z wiekiem licznym dolegliwością w postaci tzw.
„chorób niezakaźnych” (choroby układy krążenia, otyłość, i in-
ne). Sprawność fizyczna, zgodnie z koncepcją Health-Related
Fitness (H-RF), postrzegana jest jako główny czynnik promocji
zdrowia [1]. W ujęciu H-RF wskazuje się na uzyskanie opty-
malnego dla zdrowia poziomu sprawności morfologicznej, mię-
śniowo-szkieletowej, motorycznej, krążeniowo-oddechowej
oraz gibkości. Sprawność morfologiczna dotyczy budowy i skła-
du ciała, których zaburzenia wpływają znacznie na podwyższo-
ną zachorowalność i umieralność [2]. Wśród komponentów
sprawności mięśniowo-szkieletowej wymienia się siłę i wytrzy-
małość mięśni nóg, ramion oraz tułowia, których wysoki po-
ziom umożliwia prawidłowe funkcjonowanie całego organizmu
[3]. Niska sprawność motoryczna jest z kolei czynnikiem ryzyka
upadków, prowadzących często do złamań kości [4]. Ważnymi
elementami są również kontrola postawy ciała oraz gibkość.
Brak kontroli nad własnym ciałem oraz obniżona mobilność
tułowia powiązana jest z dolegliwościami bólowymi w dolnej
części kręgosłupa [5]. Kluczową rolę w koncepcji Health-Re-
lated Fitness odgrywa jednak sprawność krążeniowo-oddecho-
wa, której niski poziom zwiększa ryzyko chorób serca i przed-
wczesnej śmierci [6].
ęDoskonałym sposobem kształtowania wszystkich kompo-
nentów sprawności fizycznej w ujęciu H-RF jest trening zdro-
wotny, który może przybierać formę treningu wytrzymałościo-
wego lub siłowego [7].
Trening siłowy, utożsamiany dotychczas głównie ze znaczą
rozbudową muskulatury poprzez ćwiczenia na siłowni, może
również przybrać formę bodyweight, czyli treningu z użyciem
wyłącznie ciężaru własnego ciała. Ta stosunkowo mało popular-
na forma treningu siłowego przeżywa w ostatnich latach dyna-
miczny rozwój, który zawdzięcza licznym korzyściom w zakre-
sie siły i wytrzymałości mięśniowej oraz co warte podkreślenia
wydolności krążeniowo-oddechowej. Zaletą tego typu treningu
jest stosowanie ćwiczeń funkcjonalnych, angażujących wiele
grup mięśniowych, zmierzających również do poprawy równo-
wagi, propriocepcji oraz gibkości [8]. Ponadto trening body-
weight jest doskonałą alternatywą dla osób wskazujących niedo-
statek czasu wolnego oraz trudności finansowe jako główne ba-
riery rekreacyjnej aktywności fizycznej [9]. Możliwość wykony-
wania ćwiczeń w warunkach domowych, stosunkowo krótki
czas jednostki treningowej (12-40 minut w zależności od reżimu
treningowego), brak konieczności posiadania specjalistycznego
sprzętu, to główne korzyści tego typu aktywności fizycznej.
W związku z powyższym celem niniejszej pracy było okre-
ślenie wpływu 10 tygodniowego treningu bodyweight autor-
stwa M. Laurena i J. Clarka [10] na komponenty budowy cia-
ła (tj. masę ciała, masę mięśni, procentową zawartość tłuszczu
i wody w organizmie) oraz poziom wybranych parametrów
Streszczenie
Wprowadzenie. Celem pracy było określenie wpływu 10 tygodniowego treningu bodyweight na komponenty budowy cia-
ła (tj. masę ciała, masę mięśni, procentową zawartość tłuszczu i wody w organizmie) oraz poziom wybranych parametrów
sprawności fizycznej (siłę, wytrzymałości siłową, gibkość oraz wydolność tlenową) kobiet w wieku 21-23 lat nieuprawia-
jących sportu zawodowo. Materiał i metody. Badaniami objęto grupę 15 kobiet (średni wiek wyniósł 22 lata i 2 miesiące).
Oszacowano masę i skład ciała (waga TANITA – model BC – 1000) oraz zmierzono siłę i moc kończyn górnych i dolnych,
wytrzymałość siłową ramion i obręczy barkowej oraz tułowia, a także gibkość i wydolność fizyczną. Badania przeprowa-
dzono dwukrotnie, tj. przed rozpoczęciem 10-tygodniowego programu ćwiczeń oraz po jego zakończeniu. Wyniki. Na pod-
stawie wyników ujawniono, że 10-tygodniowy trening bodyweight spowodował nieznaczny przyrost masy ciała (o 1,16%)
oraz zawartości tłuszczu w organizmie (o 2,43%), zaś masa mięśni oraz zawartość wody pozostały na niezmienionym po-
ziomie. W zakresie sprawności fizycznej ujawniono, że ćwiczenia siłowe z wykorzystaniem ciężaru własnego ciała pozy-
tywnie wpłynęły na wszystkie oceniane komponenty sprawności, zaś statystycznie istotna poprawa nastąpiła w sile eks-
plozywnej kończyn dolnych (o 5,6%; p<0,01) wytrzymałości siłowej tułowia (o 10,7%; p<0,01) oraz wydolności tlenowej
(o 33,3%; p<0,05). Wnioski. Ćwiczenia bodyweight bez odpowiednio zbilansowanej diety oraz kontroli odżywiania w nie-
wielkim stopniu wpływają na zmianę parametrów składu ciała. Trening siłowy bodyweight jest skutecznym sposobem
poprawy ogólnej sprawności fizycznej. Poza kształtowaniem siły i wytrzymałości mięśni, przyczynia się również do po-
prawy wydolności fizycznej oraz gibkości.
Słowa kluczowe: trening bodyweight, sprawność fizyczna, kobiety, komponenty budowy ciała
sprawności fizycznej (tj. siłę, wytrzymałości siłową, gibkość
oraz wydolność tlenową) kobiet w wieku 21-23 lat nieuprawia-
jących sportu zawodowo.
Materiał i metody
Badaniami objęto grupę 15 kobiet w wieku od 21 do 23 lat.
Średni wiek badanych wyniósł 22 lata i 2 miesiące. Sprawność
fizyczną oraz komponenty somatyczne kobiet mierzono dwu-
krotnie, tj. przed rozpoczęciem 10-tygodniowego programu
ćwiczeń (grudzień 2012 roku) oraz po jego zakończeniu (marzec
2013 roku). Badania odbyły się w jednakowych warunkach,
na hali sportowej oraz siłowni Uniwersytetu Ekonomicznego
w Krakowie i obejmowały:
1. Pomiar parametrów somatycznych – za pomocą antro-
pometru zmierzono wysokość ciała, zaś masę oraz jego
skład (tj. masę mięśni oraz procentową zawartość tłusz-
czu i wody w organizmie) oszacowano na podstawie wa-
gi TANITA – model BC – 1000 [11, 12]. Obliczono rów-
nież wskaźnik BMI (Body Mass Index) badanych.
2. Testy sprawności fizycznej:
a) skok w dal z miejsca (cm) – ocena siły eksplozywnej koń-
czyn dolnych,
b) rzut piłką lekarską 3 kg w tył zza głowy (cm) – ocena siły
dynamicznej obręczy barkowej, grzbietu i brzucha,
c) zwis na drążku (s) – ocena wytrzymałości siłowej mięśni
ramion i obręczy barkowej,
d) siady z leżenia (liczba powtórzeń/30 sekund) – ocena
wytrzymałości siłowej mięśni tułowia,
e) ściskanie dynamometru (kG) – ocena siły chwytu ręki
prawej i lewej,
f) skłon tułowia w przód w siadzie (cm) – ocena gibkość,
g) test Astranda-Ryhminga – ocena wydolności tlenowej.
3. Ocenę zdolności szybkościowo-siłowych za pomocą me-
tod biomechanicznych – pomiary dotyczące wyskoku
pionowego zostały przeprowadzone z wykorzystaniem
akcelerometru sprzężonym z komputerem PC, w oparciu
o system Myotest PRO. Zadaniem badanego było osią-
gnięcie jak najwyższego wyskoku pionowego:
a) obunóż z miejsca z zamachem ramion – Counter Move-
ment Jump (CMJ),
b) obunóż z półprzysiadu bez zamachu ramion – Squat
Jump (SJ).
Każdy wyskok był wykonany trzykrotnie, a dalszej analizie
poddawano ten o najwyższej wartości.
Wykonywane testy skocznościowe pozwoliły obliczyć na-
stępujące parametry biomechaniczne:
a) H (cm) – wysokość uniesienia środka ciężkości,
b) P' (W/kg) – pochodna mocy w fazie odbicia.
Program ćwiczeń bodyweight
Przed rozpoczęciem ćwiczeń określono poziom sprawności
fizycznej badanych kobiet i zgodnie z zaleceniami twórców pro-
gramu [10] zakwalifikowano je do poziomu „basic”. Uczest-
niczki realizowały 10-tygodniowy program ćwiczeń bodyweight,
a w trakcie jego trwania nie podejmowały innych, dodatkowych
form aktywności fizycznej. W początkowej fazie (pierwsze 6 ty-
godni) ćwiczenia wykonywane były 4 razy w tygodniu, zaś w je-
go końcowej części (od 7 tygodnia) 5 dni w tygodniu. Przerwy
między poszczególnymi treningami rozłożone były dowolnie,
według indywidualnych potrzeb. Program zawierał 5 podstawo-
wych reżimów treningowych (ladders, interwal set, super set,
tabatas, stappers) różniących się czasem trwania wysiłku, iloś-
cią i długością przerw oraz intensywnością ćwiczeń. Przez
pierwsze dwa tygodnie badane realizowały blok zwiększający
wytrzymałość mięśni, podejmując ćwiczenia w reżimie ladders,
charakteryzujące się małą intensywności i dużą liczbą powtó-
rzeń. 3 i 4 tydzień to ćwiczenia z akcentem na zwiększenie siły
mięśniowej realizowane w reżimie interwal sets (większa inte-
nsywność ćwiczeń). W kolejnych dwóch tygodniach realizo-
wano blok zwiększający moc (reżim: super set), zaś ostatnie
4 tygodnie przebiegały w oparciu o blok mieszany. Zawierał
on ćwiczenia z poprzednich reżimów rozbudowane dodatko-
wo o tabatas oraz stappers zwiększające intensywność oraz
różnorodność treningu.
Czas trwania treningów, w zależności od tygodnia ćwiczeń,
wynosił od 12 do 36 minut. Ćwiczenia wykonywane były na róż-
nych poziomach intensywności, zaś akcenty treningowe rozło-
żone były w ciągu tygodnia na inne partie mięśni (1 trening –
mięśnie kończyn górnych typu push, 2 trening – mięśnie koń-
czyn dolnych, 3 trening – mięśnie kończyn górnych typu pull,
4 trening – mięśnie grzbietu i brzucha, 5 trening – kondycyjny,
ogólnorozwojowy). Sumarycznie w ciągu tygodnia badane prze-
znaczały na ćwiczenia od 48 minut do 73 minut. Podczas całego
programu każda z grup mięśniowych trenowana była łącznie
4 godziny i 42 minuty, zaś całkowity czas przeznaczony na ćwi-
czenia w ciągu 10 tygodni wyniósł 20 godzin i 8 minut.
Do opracowania wyników badań wykorzystano podstawowe
charakterystyki statystyczne. Dla każdego wskaźnika obliczono:
średnią arytmetyczną, odchylenie standardowe, wskaźniki sko-
śności, kurtozy i zmienności. Określono również stopień zgod-
ności wyników z rozkładem normalnym za pomocą testu W. Sha-
piro-Wilka. Uzyskane wyniki w tym teście wykazały, że rozkład
cech nie jest zgodny z normalnym. Dlatego w dalszej kolejności
różnice w poziomie poszczególnych wskaźników między bada-
niami: pierwszym i drugim oceniono za pomocą testu kolejności
par Wilcoxona. Za istotną statystycznie przyjęto różnice na po-
ziomie p<0,05.
Wyniki badań
Zmiany komponentów budowy ciała
Na podstawie analizy komponentów budowy ciała w gru-
pie badanych kobiet (tab. 1) odnotowano, że 10-tygodniowy tre-
ning bodyweight spowodował nieznaczny przyrost masy ciała
(o 1,16%) oraz zawartości tłuszczu w organizmie (o 2,43%), zaś
masa mięśni oraz zawartość wody pozostały na niezmienionym
poziomie. Wyniki te mogą wskazywać, iż stosowany okres ćwi-
czeń okazał się zbyt krótki, aby oczekiwać pozytywnych zmian
składu ciała, na które w głównej mierze (ok. 80%) wpływa spo-
sób odżywiania [13, 14].
Tabela 1. Różnice procentowe (%) w poziomie parametrów
somatycznych badanych kobiet (n=15) przed rozpoczęciem treningu
bodyweight (I badanie) oraz po jego zakończeniu (II badanie)
Wysokość ciała [cm]
Masa ciała [kg]
Body Mass Index
Zawartość tłuszczu [%]
Zawartość wody [%]
Masa mięśni [kg]
164,0
59,42
21,93
24,06
53,26
42,13
Różnica
procentowa
między
I a II
badaniem
1,16 NSS
1,35 NSS
2,43 NSS
−0,75 NSS
0,30 NSS
±SD
XVX±SD V
I badanie
(przed eksperymentem)
II badanie
(po eksperymencie)
Badany parametr
6,74
10,6
2,5
7,69
4,77
3,67
0,04
0,18
0,11
0,32
0,90
0,09
60,09
22,17
24,67
52,85
42,26
11,05
2,66
7,49
4,61
3,81
0,18
0,12
0,30
0,09
0,09
Uwagi: różnice istotne: * <0,05; ** <0,01; ***<0,001; NS – różnice statystycznie
nieistotne; znakiem minus („−”) oznaczono pogorszenie wyników między I a II
badaniem.
70Pol. J. Sport Tourism 2015, 22, 64-73
Lipecki and Rutowicz ...: WPŁYW 10-TYGODNIOWEGO TRENINGU
Zmiany parametrów w zakresie sprawności fizycznej
Rozpatrując poziom sprawności fizycznej badanych kobiet
przed i po zakończeniu 10-tygodniowego programu treningo-
wego bodyweight ujawniono poprawę wyników w siedmiu spo-
śród dziewięciu z przeprowadzonych testów (tab. 2).
Analizując otrzymane rezultaty w zakresie siły ujawniono
nieznaczne pogorszenie siły dynamicznej obręczy barkowej,
grzbietu i brzucha (test: rzut piłką lekarską w tył zza głowy)
(o 3,5%) oraz siły statycznej (test: zaciskanie ręki na dynamo-
metrze) w przypadku ręki lewej (o 4,2%). Poprawę natomiast od-
notowano w sile statycznej ręki prawej (o 2,4%) oraz sile eks-
plozywnej kończyn dolnych (od 1,7% do 5,6%) mierzonej za po-
mocą trzech testów: skoku w dal z miejsca oraz dwóch rodzajów
wyskoków z wykorzystaniem systemu Myotest, tj. wyskok z pół-
przysiadu – SJ (Squat Jump) oraz wyskok dowolny – CMJ (Counter
Movement Jump). Istotna statystycznie poprawa rezultatów mię-
dzy I a II badaniem nastąpiła jedynie w teście skoku w dal z miej-
sca (o 5,6%; p<0,05), zaś w pozostałych przypadkach okazała się
statystycznie nieistotna (p>0,05).
Otrzymane wyniki wskazują również na poprawę rezultatów
w zakresie wytrzymałości siłowej mięśni ramion i obręczy bar-
kowej (test: zwis na drążku) o 30,9% oraz mięśni tułowia (test:
siady z leżenia) o 10,7%. W przypadku mięśni tułowia poprawa
wyników między I a II badaniem okazała się istotna statystycznie
(p<0,01).
Zaobserwowano również pozytywny wpływ treningu body-
weight na gibkość badanych kobiet. Po zakończeniu 10-tygodnio-
wego programu treningowego uzyskiwały one rezultaty lepsze
średnio o 2,6% niż przed jego rozpoczęciem. Odnotowana po-
prawa wynika po części ze specyfiki realizowanego programu,
w którym oprócz ćwiczeń siłowych znajdowały się również ele-
menty stretchingu dynamicznego.
Bardzo ważnym komponentem sprawności fizycznej jest
wydolność tlenowa, która ze względu na specyfikę treningu
siłowego jest często zaniedbana przez osoby realizujące typowy
trening w siłowni. Wyizolowane ćwiczenia poszczególnych par-
tii mięśni oraz stosowane obciążenia są zazwyczaj na tyle duże,
że wcześniej prowadzą do ich zmęczenia niż pobudzenia ukła-
du krążeniowo-oddechowego. Analizując wyniki badań wła-
snych odnotowano poprawę wydolności fizycznej badanych
kobiet aż o 33,3% (p<0,05).
Dyskusja
Jednym z celów podjętych badań było określenie różnic
w zakresie parametrów składu ciała kobiet w wieku 21-23 lat
realizujących 10-tygodniowy program ćwiczeń bodyweight.
W swoich założeniach trening ten oprócz poprawy sprawności
fizycznej oddziałuje także na komponenty budowy ciała [10].
W tym zakresie coraz więcej prac naukowych wskazuje na wyż-
szość treningu o wysokiej intensywności, do którego zaliczyć
można znaczą część realizowanego programu (tj. reżimy trenin-
gowe: interval sets, tabatas oraz stappers) nad typowo wytrzy-
małościowym, tzw. kardio [17, 18]. Przyczyną takiego stanu rze-
czy może być fakt, że w treningu o wysokiej intensywności wy-
siłki beztlenowe występują naprzemiennie z tlenowymi. Pozy-
tywnie wpływa to na rozbudowę masy mięśniowej, powodując
zwiększenie podstawowej przemiany materii utrzymujące się
nawet do 48 godzin po treningu [19]. Wzmożone zapotrzebowa-
nie kaloryczne organizmu, przy odpowiednio zbilansowanej
diecie jest szczególnie przydatne dla osób podejmujących ak-
tywność fizyczną z zamiarem zmiany komponentów własnego
ciała. Dodatkowym efektem ćwiczeń bodyweight jest widoczna
poprawa wyglądu zewnętrznego spowodowana zwiększeniem
tonusu mięśniowego bez nadmiernej rozbudowy muskulatury
[20]. Efekt ten wydaje się być szczególnie pożądany dla kobiet,
które nie podejmują ćwiczeń siłowych w obawie o przyrost ma-
sy mięśniowej.
W zakresie parametrów składu ciała, wśród uczestniczek
10-tygodniowego treningu bodyweight (badania własne) odno-
towano zwiększenie masy ciała oraz zawartości tłuszczu w or-
ganizmie (statystycznie nieistotne, p>0,05). Nie stwierdzono
natomiast zmian w zakresie masy mięśni oraz zawartości wody.
W światowej literaturze naukowej nie odnaleziono prac do-
tyczących zmian parametrów składu ciała spowodowanych tre-
ningiem bodyweight. Ze względu na specyfikę omawianego tre-
ningu (wysoka intensywność ćwiczeń w reżimach treningo-
wych interval sets, tabatas oraz stappers) wyniki badań włas-
nych skonfrontowano więc z doniesieniami na temat wpływu
treningu o wysokiej intensywności na badane parametry.
Wyniki badań własnych tylko częściowo pokrywają się ze
współczesnymi rezultatami. W zakresie masy ciała podobne da-
ne uzyskali Perry i in. [21] oraz Tjonna i in. [22]. Autorzy wyka-
Tabela 2. Różnice procentowe (%) w poziomie wybranych komponentów sprawności fizycznej badanych kobiet przed i po zakończeniu
10-tygodniowego treningu bodyweight
Różnica %
między I a II
badaniem
Siła dynamiczna obręczy barkowej,
grzbietu i brzucha
Wymiar
Rzut piłką lekarską 3 kg w tył
zza głowy [cm]
Zaciskanie ręki
na dynamometrze [kG]
P
L
Siła statyczna kończyn górnych
Skok w dal z miejsca [cm]
H [cm]
P' [W/kg]
Wyskok pionowy z półprzysiadu
(SJ)
Wyskok pionowy z zamachem
(CMJ)
H [cm]
P' [W/kg]
Siła eksplozywna kończyn dolnych
(moc)
Siła mięśni ramion i obręczy
barkowej
Siła tułowia
Gibkość
Zwis na drążku [s]
Siady z leżenia [n]
Skłon dosiężny w przód w siadzie [cm]
Wydolność tlenowa Test Astranda-Ryhminga [l/min-1]
Wydolność fizyczna
Gibkość
Wytrzymałość
siłowa
Siła
706,3
32,2
31,3
162,0
24,9
39,1
31,0
48,4
7,8
18,4
15,1
1,6
127,4681,5147,1−3,5 NSS
4,9
4,9
20,3
4,0
5,3
4,6
6,9
33,0
30,0
171,7
25,4
40,1
31,6
50,1
4,6
5,3
18,3
3,9
5,6
4,1
3,1
2,4 NSS
−4,2 NSS
5,6**
2,0 NSS
2,5 NSS
1,9 NSS
3,4 NSS
7,0 11,28 12,4 30,9 NSS
4,0
5,8
1,0
20,6
15,5
2,4
3,5
5,5
0,6
10,7**
2,6 NSS
33,3*
±SDX±SDX
Badanie I
(przed eksperymentem)
Badanie II
(po eksperymencie)
Czynnik Test
Uwagi: różnice istotne: * <0,05; ** <0,01; ***<0,001; NS – różnice statystycznie nieistotne; znakiem minus („−”) oznaczono pogorszenie wyników między I a II badaniem.
71 Pol. J. Sport Tourism 2015, 22, 64-73 Lipecki and Rutowicz ...: WPŁYW 10-TYGODNIOWEGO TRENINGU
zali, że treningi charakteryzujące się wysoką intensywnością,
trwające odpowiednio 6 oraz 16 tygodni, spowodowały zwięk-
szenie masy ciała u trenujących osób. Zdaniem specjalistów
[23, 24, 17] trening o wysokiej intensywności powoduje rów-
nież zmniejszenie ilości tkanki tłuszczowej w organizmie, cze-
go nie potwierdziły jednak wyniki badań własnych. Rozbież-
ności te mogą wynikać z niższej intensywności stosowanych
jednostek treningowych (trening bodyweight nie jest typowym
treningiem o wysokiej intensywności), krótszego czasu ćwiczeń
oraz sposobu odżywiania badanych, który nie był monitorowa-
ny. Analizując wpływ stosowanych ćwiczeń na poziom spraw-
ności fizycznej badanych kobiet odnotowano poprawę rezul-
tatów w 7 (w tym trzech istotnie statystycznie; p<0,05), spośród
9 przeprowadzonych testów.
W zakresie parametrów związanych z siłą statyczną i dyna-
miczną ujawniono nieznaczne pogorszenie wyników (p>0,05)
siły dynamicznej obręczy barkowej, grzbietu i brzucha (test:
rzut piłką lekarską 3 kg w tył zza głowy) oraz siły statycznej ręki
lewej (test: zaciskanie ręki na dynamometrze). Poprawa zaś
nastąpiła w sile statycznej ręki prawej (test: zaciskanie ręki na
dynamometrze) oraz sile eksplozywnej kończyn dolnych (test:
skok w dal z miejsca, wyskok pionowy z półprzysiadu (SJ), wy-
skok pionowy z zamachem (CMJ)). Warto odnotować, że różnice
w wynikach między badaniem pierwszym i drugim w teście
skoku w dal z miejsca wyniosły średnio 5,6% i okazały się być
istotne pod względem statystycznym (p<0,01). Zbieżne rezul-
taty przedstawili Tabata i in. [25] wykazując pozytywny wpływ
6 tygodniowego programu ćwiczeń z wykorzystaniem ciężaru
własnego ciała na maksymalną moc anaerobową (o 28,0%) stu-
dentów wychowania fizycznego.
W badaniach własnych odnotowano także poprawę wyni-
ków w zakresie wytrzymałości siłowej mięśni ramion i obręczy
barkowej (test: zwis na drążku), a także mięśni tułowia (test: sia-
dy z leżenia). Szczególnie korzystnie zastosowany program ćwi-
czeń wpłynął na siłę mięśni tułowia powodując istotną popra-
wę rezultatów (10,7%, p<0,01) między pierwszym a drugim ba-
daniem.
Z punktu widzenia profilaktyki chorób układu krążenia oraz
promocji zdrowia wyjątkowo cennym efektem zastosowanego
programu ćwiczeń była poprawa wydolności tlenowej bada-
nych (aż o 33,3%; p<0,05). Rezultaty te wydają się być szczegól-
nie cenne gdyż zdaniem wielu specjalistów niski poziom wy-
dolności tlenowej jest głównym czynnikiem ryzyka wystąpienia
chorób serca i przedwczesnej śmierci [15, 6, 16]. Poprawę wy-
dolności fizycznej wśród osób podejmujących przez 6 tygodni
ćwiczenia siłowe z ciężarem własnego ciała (o 4,0% w stosunku
do grupy kontrolnej, wykonującej standardowy trening kardio)
odnotowali także Tabata i in. [25].
Podsumowanie
Konkludując, niniejsza praca jest jedną z nielicznych opraco-
wań naukowych poświęconych coraz popularniejszemu w prak-
tyce treningowi siłowemu z wykorzystaniem ciężaru własnego
ciała. Trening bodyweight znacznie różni się od tradycyjnych
ćwiczeń w siłowni między innymi tym, iż ćwiczenia wykony-
wane są w sposób interwałowy co sprawia, że oddziałują nie tyl-
ko na zwiększenie siły i wytrzymałości mięśni, ale także na po-
prawę wydolności fizycznej. Jest to ponadto trening funkcjo-
nalny. Wykonywane ruchy są fizjologiczne i naturalne, anga-
żujące wiele grup mięśniowych. Podczas ćwiczeń pobudzane
są również mięśnie posturalne, kształtowana jest równowaga,
propriocepcja oraz gibkość. Powyższe fakty, a także stosunkowo
krótki czas pojedynczej sesji treningowej oraz nieograniczona
dostępność do tego rodzaju treningu powodują, że może on być
niezwykle przydatnym rozwiązaniem w zakresie codziennej ak-
tywności fizycznej rozumianej jako szeroko pojęta profilaktyka
zdrowia. Ze względu na powszechność i ogólnodostępność tre-
ningu bodyweight zasadne wydają się dalsze badania nad wpły-
wem różnych jego wariantów na komponenty budowy ciała oraz
poziom sprawności fizycznej kobiet i mężczyzn w różnym wie-
ku.
Piśmiennictwo
Weimo Z., Mahar M.T., Welk G.J., Going S.B., Cureton K.J.
(2011). Approaches for Development of Criterion-Referenced
Standards in Health-Related Youth Fitness Tests. American
Journal of Preventive Medicine 41(4), 68-76. DOI: http://dx.
doi.org/10.1016/j.amepre.2011.07.001.
Bombelli M., Facchetti R., Fodri D., Brambilla G., Sega R.,
Grassi G. et al. (2013). Impact of body mass index and waist
circumference on the cardiovascular risk and all-cause death
in a general population: data from the PAMELA study. Nutri-
tion, Metabolism and Cardiovascular Diseases 23(7), 650-656.
DOI: 10.1016/j.numecd.2012.01.004.
Kell R.T., Bell G., Quinney A. (2001). Musculoskeletal fitness,
health outcomes and quality of life. Sports Medicine 31(12),
863-873. PMID: 11665913.
Cousins M.J., Petit M.A., Paudel M.L., Taylor B.C., Hughes
J.M., Cauley J.A. et al. (2010). Muscle power and physical
activity are associated with bone strength in older men: The
osteoporotic fractures in men study. Bone 47, 205-211. DOI:
10.1016/j.bone.2010.05.003.
Smeets R.J., van Geel K.D., Verbunt J.A. (2009). Is the fear
avoidance model associated with the reduced level of aerobic
fitness in patients with chronic low back pain? Archives
of Physical Medicine and Rehabilitation 90(1), 109-117.
DOI: 10.1016/j.apmr.2008.07.009.
Blair S.N., Kampert J.B., Kohl H.W., Barlow C.E., Macera C.A.,
Paffenbarger R.S. et al. (1996). Influences of cardiorespiratory
fitness and other precursors on cardiovascular disease and
all-cause mortality in men and women. The Journal of the
American Medical Association 76(3), 205-210. DOI:10.1001/
jama.1996.03540030039029.
Feigenbaum M.S., Pollock M.L. (1997). Strength training: ra-
tionale for current guidelines for adult fitness programs.
The Physician and Sportsmedicine 25(2), 44-63. DOI: 10.
3810/psm.1997.02.1137
Beauvais F., Cohen-Solal A., Driss A.B., Grosdemouge A.,
Renaud N., Tabet J.Y. et al. (2009). Benefits of exercise training
in chronic heart failure. Archives of Cardiovascular Diseases
102(10), 721-730. DOI: 10.1016/j.acvd.2009.05.011.
Lipecki K., Ziarkowski D. (2012). Motives and barriers of
taking up physical activity by students of the tourism and
recreation faculty. Human and Health 6(1), 45-50.
Lauren M., Clark J. (2010). You Are Your Own Gym: The Bible
of Bodyweight Exercises. New Orleans: Light of New Orleans
Publishing.
Bosaeus M., Karlsson T., Holmäng A., Ellegård L. (2014). Ac-
curacy of quantitative magnetic resonance and eight-elec-
trode bioelectrical impedance analysis in normal weight and
obese women. Clinical Nutrition 33(3), 471-477. DOI:http://
dx.doi.org/10.1016/j.clnu.2013.06.017.
Pedrera-Zamorano J.D., Roncero-Martin R., Lavado-Garcia
J.M., Calderon-Garcia J.F., Rey-Sanchez P., Vera V. et al. (2014).
Segmental fat-free and fat mass measurements by bioelec-
trical impedance analysis in 2,224 healthy Spanish women
aged 18-85 years. American Journal of Human Biology. DOI:
10.1002/ajhb.22669.
Volpe S.L., Kobusingye H., Bailur S., Stanek E. (2008). Effect
of diet and exercise on body composition, energy intake and
leptin levels in overweight women and men. The Journal of
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
72Pol. J. Sport Tourism 2015, 22, 64-73
Lipecki and Rutowicz ...: WPŁYW 10-TYGODNIOWEGO TRENINGU
the American College of Nutrition 27(2), 195-208.
Kerksick C., Thomas A., Campbell B., Taylor L., Wilborn C.,
Marcello B. et al. (2009). Effects of a popular exercise and
weight loss program on weight loss, body composition, energy
expenditure and health in obese women. Nutrition and Me-
tabolism 14, 6-23. DOI: 10.1186/1743-7075-6-23.
Hoyos I., Irazusta A., Gravina L., Gil S.M., Gil J., Irazusta J.
(2011). Reduced cardiovascular risk is associated with aero-
bic fitness in university students. European Journal of Sport
Science 11(2), 87-94.
Maaroos J., Landor A. (2001). Antropometric indices and
physical fitness in university undergraduates with different
physical activity. Antropologischer Anzeiger 59(2), 157-163.
Lee M.G., Park K.S., Kim D.U., Choi S.M., Kim H.J. (2012).
Effects of high-intensity exercise training on body composi-
tion, abdominal fat loss, and cardiorespiratory fitness in mid-
dle-aged Korean females. Applied Physiology, Nutrition and
Metabolism 37, 1019-1027. DOI:10.1139/H2012-084.
Corte de Araujo A.C., Roschel H., Picanco A.R., do Prado
D.M.L., Villares S.M.F. et al. (2012). Similar health benefits of
endurance and high-intensity interval training in obese chil-
dren. PLOS ONE 7(8), 427-447. DOI:10.1371/journal.pone.
0042747.
King J., Broeder C., Browder K., Panton L. (2002). A compari-
son of interval vs. steady-state exercise on substrate utiliza-
tion in overweight women. Medicine and Science in Sports
and Exercise 34, 130.
Martins R., Coelho E.S.M., Pindus D., Cumming S., Teixeira
A., Veríssimo M. (2011). Effects of strength and aerobic-based
training on functional fitness, mood and the relationship be-
tween fatness and mood in older adults. The Journal Of Sports
Medicine And Physical Fitness 51(3), 489-496.
Perry C.G.R., Heigenhauser G.J.F., Bonen A., Spriet L.L.
(2008). High-intensity aerobic interval training increases fat
and carbohydrate metabolic capacities in human skeletal
muscle. Nutrition and Metabolism 33(6), 1112-1123. DOI:
10.1139/H08-097.
Tjønna A.E., Lee S.J., Rognmo Ø., Stølen T.O., Bye A., Haram
P.M. et al. (2008). Aerobic interval training versus continuous
moderate exercise as a treatment for the metabolic syndrome:
a pilot study. Circulation 118(4), 346-354. DOI: 10.1161/
CIRCULATIONAHA.108.772822.
Boutcher S.H. (2011). High-intensity intermittent exercise
and fat loss. Journal of Obesity 2011, 1-10. DOI:10.1155/2011/
868305.
Trapp E.G., Chisholm D.J., Freund J., Boutcher S.H. (2008).
The effects of high-intensity intermittent exercise training
on fat loss and fasting insulin levels of young women. Inter-
national Journal of Obesity 32(4), 684-691. DOI: 10.1038/sj.ijo.
0803781.
Tabata I., Nishimura K., Kouzaki M., Hirai Y., Ogita F., Miyachi
M. et al. (1996). Effects of moderate-intensity endurance and
high-intensity intermittent training on anaerobic capacity
and VO max. Medicine and Science in Sports and Exercise
2
28(10), 1327-1330.
Otrzymano: 03.08.2014
Przyjęto: 26.05.2015
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
73 Pol. J. Sport Tourism 2015, 22, 64-73 Lipecki and Rutowicz ...: WPŁYW 10-TYGODNIOWEGO TRENINGU