Content uploaded by Arturo Tozzi

Author content

All content in this area was uploaded by Arturo Tozzi on Oct 18, 2017

Content may be subject to copyright.

1

THE BORSUK-ULAM THEOREM

EXPLAINS QUANTUM

ENTANGLEMENT

James F. Peters

Department of Electrical and Computer Engineering, University of Manitoba

75A Chancellor’s Circle

Winnipeg, MB R3T 5V6 CANADA

James.Peters3@umanitoba.ca

Arturo Tozzi

Center for Nonlinear Science, University of North Texas

1155 Union Circle, #311427

Denton, TX 76203-5017 USA

tozziarturo@libero.it

A quantum entanglement’s composite system does not display separable states and a single

constituent cannot be fully described without considering the other states. We introduce quantum

entanglement on a hypersphere, derived from signals originating on the surface of an ordinary 3D

sphere. We show that a separable state can be achieved for each of the entangled particles, just by

embedding them in a higher dimensional space. We view quantum entanglement as the

simultaneous activation of antipodal signals in a 3D space mapped into a hypersphere, which is a

4D space undetectable by observers living in a 3D world. By demonstrating that the particles are

entangled at the 3D level and un-entangled at the 4D hypersphere level, we achieved a composite

system in which each local constituent is equipped with a pure state. We anticipate this new view

of quantum entanglement leading to what are known as qubit information systems.

2

Quantum entanglement is a widely accepted, experimentally verified physical phenomenon occurring when a system of

particles interact as a whole, in a way such that the quantum state of each particle cannot be described independently

and their physical properties - such as position or spin - are instantly correlated (1). When a composite system is

entangled, it is impossible to separate its components and attribute to each one a definite pure state. Quantum state

cannot be factored as a product of states of its local constituents (e.g. individual particles) and one constituent cannot be

fully described without considering the other(s) (2-4). It gives rise to a paradoxical effect: it seems that one particle of

an entangled pair “knows” what measurement has been randomly performed on the other, even though such information

cannot be communicated between them. While a composite system is always expressible as a sum of products of states

of local constituents, when the system is entangled the sum necessarily has more than one term. This means that we

cannot recognize cause/effect relationships. In such a framework, the Borsuk-Ulam theorem (BUT) from topology

comes into play, leading to a game-changing result: the hypersphere quantum information theorem. The BUT states

that every continuous map from a n-sphere (denoted Sn) to a n-Euclidean space must identify a pair of antipodal points

directly opposite each other (5). To make an example, the case n =1 says that there always exist a pair of opposite

points on the earth’s equator with the same temperature. An n-sphere (called a hypersphere) is a generalization of the

circle: mathematically, it is a simply connected manifold of constant, positive curvature that maps to an n-dimensional

Euclidean space (6). When we examine a system equipped with quantum entanglement, we usually do not take into

account a noteworthy feature: our measurements are on a S2 manifold , which is a 3D world.

Our basic approach is to map entangled system signals in S2 to S3. Notice that our S2 measurements illustrate just the

“hints” of such an S3 activity analogous to way one recognizes an object from its shadow projected on a screen. The

spheres equipped with n>2 are not detectable in the usual spatial 3-dimensions and are thus challenging to assess. If

we look just at mappings on the surface of S3 system, we find the puzzling picture of quantum entanglement, apparently

incompatible with our perceptions. BUT also states that every continuous function maps each pair of antipodal n-

sphere surface points into surface vectors on a Euclidean n-space. This means that entanglement (i.e., a system not

formed by two product states) can be seen as just 3D space surface points that have a corresponding pair of S3 antipodal

points (pure states!). We demonstrate that each of the two entangled particles may have a pure state, provided they are

embedded in a dimension higher: the system is entangled at the S2 level, but un-entangled at the S3 hypersphere level.

We thus obtain a 4D composite system, factored as a product of states of its local constituents.

In keeping with recent work on quantum computation, quantum distillation and quantum information science (1,2), we

propose an approach to entanglement which provides a new source of quantum information, by mapping entangled

quanta on a 3D surface to unentangled quanta on the surface of a hypersphere. The old adage that opposites are

attracted to each other, applies here. This analogy, applied to the problem of extracting information from entangled

quanta, gets it impetus from BUT, a discovery made by Borsuk(5) in 1933. If we start with entangled quanta with

antipodal locations on the surface of a sphere, then a continuous mapping of surface particles to a higher level quanta on

the surface of a hypersphere results in matching quantum information derived from the entangled quanta. This

information is reversible for invertible continous mappings of antipodal surface quanta into the surface of a

hypersphere. Schrödinger (7)17 observed that we must gather information about the entangled quanta to achieve

disentanglement. His work provides yet another solution to the disentanglement problem. In this instance, our

proposed continuous mapping of surface quanta to hypersphere surface quanta is analogous to what Schrödinger calls a

programme of observations as a means of finding representatives of entangled quanta. In our case, the quantum-

mapping images are representatives of entangled quanta, with the added bonus that the images provide matching

signatures of the entangled surface quanta.

The basic approach is to think in terms of a homotopic mapping of a 3D shape produced by one continuous function

that can be deformed into another shape by a second continuous function. To do this, we first consider the BUT

theorem. An n-dimensional Euclidean vector space is denoted by

n

R

. Thus, for example, a feature vector

n

x R

models the description of a surface signal. BUT states that every continuous map :

n n

f S R

must identify a pair of

antipodal points – diametrically opposite points on an n-sphere (8-11). Points are antipodal, provided they are

diametrically opposite (9). Examples of antipodal points are the endpoints of a line segment, or opposite points along

the circumference of a circle, or poles of a sphere.

We will follow the terminology displayed in BOX.

3

BOX

The following notation and terminology is used in this paper:

Qubit

stands for

quantum information.

Qubit system stands for a system that can be in one of an infinite number of states.

A space X is pathwise-connected, provided, for every two points A,B ∈ X, there is a path connecting them

(22). This means that each pair of points A,B are connected by a curve lying wholly within X.

1-sphere: S1 stands for a 1-sphere (i.e, a collection of circles). Each x ∈ S1 is a vector (x1, x2) on the

perimeter of a S1 circle. A ∈ S1, is a vector (x1, x2) on the circumference of a 1-sphere.

2-sphere: S2 is a 2-sphere (for example, a common beach ball). Each x ∈ S2 is a vector (x1, x2, x3).

(A, q(A)) is a vector on the surface of a 2-sphere, in which q(A)

∈

R is a real number that is a signal value.

|q(A)

⟩

q(A) stands for a singlet state vector written as a ket |q(A)

⟩

q(A) of the signal q(A) on a 2-sphere.

3-sphere: S3 stands for a 3-sphere (the smallest hypersphere). Each x ∈ S3 is a vector (x1, x2, x3, x4).

f(q(A)) ∈ S3 is a vector (A, q(A), f(q(A))) on the surface of a hypersphere S3, while f(q(−A)) ∈ S3 is a vector

((−A, q(−A), f(q(−A))). Observe that f(q(A)) = f(q(−A)) is predicted by BUT.

|f(q(A))

⟩

q(A) is a singlet state vector written as a ket |f(q(A))

⟩

of the description of q(A) on the 3-sphere.

The notation

n

S

designates an n-sphere. We have the following n-spheres, starting with the perimeter of a circle (this

is S1) and advancing to S3, which is the smallest hypersphere:

1-sphere S1 : x12 + x22 → R1 (circle perimeter),

2-sphere S2 : x12 + x22 + x32 → R2 (surface),

3-sphere S3 : x12 + x22 + x32+ x42 → R3 (smallest hypersphere surface), ...,

n-sphere Sn : x12 + x22 + x32+ ... + xn2→ Rn

If we view the phase space of quantum entanglement as a n-sphere and the feature space for signals as a finite-

dimensional Euclidean topological space, then BUT tells us that for each description

( )

f x

of a signal

x

, we can

expect to find an antipodal feature vector

( )

f x

that describes a signal on the opposite (antipodal) to x with a matching

description (Figure).

4

Figure 1A. Spontaneous parametric down-conversion, the commonest method used to create quantum entanglement

(23,24), generates a pair of photons entangled in polarisation. Photons are splitted into entangled type II photon pairs

(A and B in figure), equipped with mutually perpendicular polarization (horizontal and vertical).

Figure 1B. We embedded the two points A and B, corresponding to the entangled particles of Figure 1A, in a

circumference centered in the laser beam. Such a circumference is one of the circles surrounding the sphere Sn. For

the Borsuk-Ulam theorem, the two antipodal points A and B are described by the same function, provided they are

embedded in Sn. The function stands for the physical properties corresponding to the quantum entanglement of the two

particles A and B: in this framework, it becomes clear that the two points are strictly correlated. Note that the figure is

just an oversimplification: the Sn sphere, which is actually a 3-sphere, is depicted as a simple 2-sphere, to make it

easier to recognize.

5

Let

X

denote a nonempty set of points on the surface of a 3D system. We assume that that is a topological space, which

means that the unions and intersections of the subsets of x belong to X. Let

,

X Y

be topological spaces. Recall that a

function or map :

f X Y

on a set

X

to a set

Y

is a subset

X Y

, so that for each

x X

there is a unique

y Y

such that ( , )

x y f

(usually written

( )

y f x

). The mapping

f

is defined by a rule that tells us how to find

( )

f x

. A mapping :

f X Y

is continuous, provided

A Y

is open, then the inverse 1( )

f A X

is also open

(8,11,12) 14,19,22. In this view of continuous mappings from a signals topological space

X

on the surface of a 3-sphere to

the signal feature space

n

R

, we can consider not just one signal feature vector

n

x R

, but also mappings from

X

to

a set of signal feature vectors

( )

f X

. This expanded view of signals has interest, since every connected set of feature

vectors

( )

f X

has a shape, which has direct bearing on the study of the shapes of space (13). This means that signal

shapes (in our case, mappings of sets of entangled particles) can be compared.

A consideration of

( )

f X

(set of region signal descriptions entangled on a n-sphere) instead of

( )

f x

(description of a

single signal

x

) leads to a region-based view of signals, which arises naturally in terms of a comparison of shapes

produced by different mappings from

X

(object space) to the feature space

n

R

.

Let , :

f g X Y

be continuous mappings from

X

to

Y

. The continuous map : [0,1]

H X Y

is defined by

( ,0) ( ),

H x f x

( ,1) ( ),

H x g x

for every

x X

.

The mapping H is a homotopy (6,14,15), if there is a continuous transformation (called a deformation) from f to g. The

continuous maps f, g are called homotopic maps, provided

( )

f X

continuously deforms into

( )

g X

(denoted by

( ) ( )

f X g X

). The sets of points

( )

f X

,

( )

g X

are called shapes (8,13).

The mapping : [0,1]

n

H X R

, where

( ,0)

H X and

( ,1)

H X

are homotopic, provided

( )

f X

and

( )

g X

have the same shape. That is,

( )

f X

and

( )

g X

are homotopic, if:

( ) ( ) ( )

f X g X f X

, for all

x X

.

Once achieved an association between the geometric notion of shape and homotopies, we introduce the following

theorem:

Hypersphere Quantum Information Theorem. Let {|f(q(−A))⟩} be a set of pathwise-connected qubit vectors on the

surface of a hypersphere S4 in a normed linear space. The shape {|f(q(−A))⟩} induced by the set of path-connected qubit

state vectors can be deformed onto the shape {|f(q(A))⟩} on a 4-sphere.

Proof: The proof is an immediate consequence of the Borsuk-Ulam Theorem. From BUT, each |f(q(A))⟩ = |f(q(−A))⟩.

Hence the shape {|f(q(−A))⟩} deforms into the shape {|f(q(A))⟩}.

Next, we investigate quantum entanglement on an n-Sphere embedded in a normed linear space X. Let E(A,B) denote

the entanglement of vectors A,B on a normed linear space. Conventional entanglement is represented by:

E(A,B) =1/√2 (|0⟩A ⊗ |1⟩B −|1⟩A ⊗ |0⟩B) .

Let S1 ∈ X be the circumference (perimeter) of a 1-sphere circle, A,−A

∈

X the quanta (vectors) on X and, finally, let

A,−A be antipodal quanta on X. Let q : X → R be a mapping from a quantum A on X into the reals R and q(A), q(B) ∈

R be real-valued antipodal entangled signals. In addition, let Q be a set of signal values originating from points A, B on

the perimeter X of a 1-sphere circle.

Remark 1. For A in Sn, the point A (also called a state) and the signal q(A) defines a vector (A, q(A)) on the surface of a

2-sphere. That is, Sq(A)⟩A ∈ S2. Signals on an S2 surface are then mapped to feature vectors f(q(A)) ∈ S3 that describe

the signals q(A). From this, we can rewrite the quantum entanglement model in the following way. Let E(A,−A) denote

the quantum entanglement of states A,−A, defined by:

E(A,−A) =1/√2 (|q(A)⟩A ⊗ |q(B)⟩−A −|q(−A)⟩−A ⊗ |q(A)⟩A) .

Let Q be a set of signals on the surface of a 2-sphere, Y be a set of feature vectors S3 on the surface of a 4-dimensional

hypersphere and f : Q → Y be a continuous mapping on the set of signals Q into Y. Let q,−q ∈ Q be antipodal quantum

signals.

Remark 2. f(q(A)) defines a feature vector (A, q(A), f(q(A))) on the surface of a hypersphere S3. That is, |f(q(A))⟩q(A)

∈ S3. Each qubit provides information about a signal q(A). In addition, the Borsuk-Ulam Theorem predicts the presence

of antipodal qubits f(q(A)), f(q(−A)), such that the information provided by f(q(−A)) matches the information provided

by f(q(A)). From this, we obtain a new form of entanglement, at the information level on a hypersphere. Let E(q(A),

q(−A)) denote the quantum entanglement of states q(A), q(−A), defined by:

6

E(q(A), q(−A)) =1/√2 (|f(q(A))⟩q(A) ⊗ |f(q(−A))⟩q(−A) − |f(q(−A))⟩q(−A) ⊗ |f(q(A))⟩q(A)).

Let the qubit system Y = {Sf(q(A))⟩} be a set of pathwise-connected qubit vectors on the surface of a hypersphere S3 in

a Hilbert space, which defines a quantum information system. That is, the set of descriptions Y of signals provides a

model for a process about a collection of signals. From the Hypersphere Quantum Information Theorem, we know that

the shape {|f(q(−A))⟩} can be deformed into the shape Y . In addition, from the Borsuk-Ulam Theorem, we also know

that:

|f(q(A))⟩ = |f(q(−A))⟩.

This means that a definite pure state can be attributed to |f(q(A))⟩. The system is thus entangled at the S2 level, while is

un-entangled at the S3 hypersphere level.

The geometrical aspects of entanglement have been already investigated by offering a numerical approach, iteratively

refining an estimated separable state towards the target state to be tested, and checking if the target state can indeed be

reached (16)16. We gave instead a different geometrical account of quantum entanglement, by exploring the possibility

of a a correlation between it and the Borsuk-Ulam Theorem. We showed that there are striking analogies between the

antipodal points evoked by BUT and the entangled particles evoked by quantistics, such that the phenomenon of

quantum entanglement can be investigated in guise of an n-sphere embedded in a Hilbert Space. This leads naturally to

the possibility of a region-based, instead of a point-based, geometry in which we view collections of signals as surface

shapes, where one shape maps to another antipodal one (17-21). We have developed a mathematical model of

antipodal points and regions cast in a physically-informed fashion, resulting in a framework that has the potential to be

operationalized and assessed empirically. The notion that information about particles resides on a hypersphere is a

counter-intuitive hypothesis, since we live in a 3D world with no immediate perception that 4D space exists at all, e.g.,

if we walk along one of the curves of a 4-ball, we think are crossing a straight trajectory, not recognizing that our

environment is embedded in higher spatial dimensions. The cause/effect relationships of the entangled system occurs in

the fourth dimension: for this reason, we are not able to detect it by ordinary means. We are able to look just at at the

3D part part of the S3 system and such an incomplete viewpoint gives us the false impression of a weird picture,

apparently incompatible with our common sense. In conclusion, the Borsuk-Ulam theorem sheds new light on quantum

entanglement. It explains how the two entangled particles on a hypersphere yield observations about particles that

reside on a lower dimensional sphere, thus leading to a quantum information system.

7

REFERENCES

1) Jaeger, G. Quantum information. An overview (Springer, New York-Berlin, 2007).

2) Gruska, J. Quantum entanglement as a new information processing resource. New Generation Computing 21,

279-295 (2003).

3) Hauke, P., Tagliacozzo, L. Spread of correlations in long-range interacting quantum systems. Phys Rev Lett.

111, (20):207202 (2013).

4) Horodecki, P., Horodecki, M. Entanglement and thermodynamical analogies Acta Physica Slovaca 3, 141-56

(1998).

5) Borsuk, K. Drei saetze ueber die n-dimensionale euklidische sphaere. Fundamenta Mathematicae XX, 177–

190 (1933).

6) Cohen, M.M. A course in simple homotopy theory (Springer-Verlag, New York-Berlin, 1973).

7) Schroedinger, E. Discussion of probabilty relations between separated systems. Proceedings of the Cambridge

Philosophical Society 31, 555-563 (1935).

8) Peters, J.F. Computional Proximity. Excursions in the Topology of Digital Images, Intelligent Systems

(Reference Library, Springer, 2015, to appear).

9) Weisstein, E.W. Antipodal points (http://mathworld.wolfram.com/AntipodalPoints.html. 2015).

10) Henderson, D.W. Experiencing Geometry: In Euclidean, Spherical, and Hyperbolic Spaces (Second edition

2001).

11) Naimpally, S.A., Peters, J.F. Preservation of continuity. Scientiae Mathematicae Japonicae 76, 305-311

(2013).

12) Willard, S. General topology (Dover Pub., Inc., Mineola, New York, 1970).

13) Collins, G.P. The shapes of space. Sci. Am. 291, 94–103 (2004).

14) Borsuk, M., Gmurczyk A. On homotopy types of 2-dimensional polyhedral. 109, 123–142 (1980).

15) Dodson, C.T.J., Parker, P.E. A user’s guide to algebraic topology (Kluwer, Dordrecht, Netherlands, 1997).

16) Leinaas, J.M., et al. Geometrical aspects of entanglement, arXiv, 0605079v1, 1-31 (2006).

17) Borsuk, M. Concerning the classification of topological spaces from the standpoint of the theory of retracts.

XLVI, 177–190 (1958-1959).

18) Borsuk, M. Fundamental retracts and extensions of fundamental sequences. 64, 55–85 (1969).

19) Krantz, S.G. A guide to topology. (The Mathematical Association of America, Washington, D.C. 2009).

20) Manetti, M. Topology. (Springer, Heidelberg, 2015).

21) Peters, J.F. Topology of Digital Images. Visual Pattern Discovery in Proximity Spaces. Intelligent Systems

(Reference Library, 63, Springer, 2014).

22) Weisstein, E.W. Pathwise-connected (Mathworld, http://mathworld.wolfram.com/Pathwise-

Connected.html. 2015).

23) Zhang, Y. et al. Simulating quantum state engineering in spontaneous parametric down-conversion using

classical light. Opt Express. 22, 17039-17049 (2014).

24) Quesada, N., Sipe, J.E. Time-ordering effects in the generation of entangled photons using nonlinear optical

processes Phys Rev Lett. 114, 093903 (2015).