Content uploaded by Andrea Alfonsi

Author content

All content in this area was uploaded by Andrea Alfonsi on Oct 30, 2015

Content may be subject to copyright.

Probabilistic Safety Assessment and Management PSAM 12, June 2014, Honolulu, Hawaii

RAVEN, a New Software for Dynamic Risk Analysis

C. Rabitia, A. Alfonsia, J. Cogliatia, D. Mandellia, R. Kinoshitaa

a Idaho National Laboratory, Idaho Falls, USA

Abstract: RAVEN is a generic software driver to perform parametric and probabilistic analysis of

code simulating complex systems. Initially developed to provide dynamic risk analysis capabilities to

the RELAP-7 code, [1] RAVEN capabilities are currently being extended by adding Application

Programming Interfaces (APIs). These interfaces are used to allow RAVEN to interface with any code

as long as all the parameters that need to be perturbed are accessible by inputs files or directly via

python interfaces. RAVEN is capable to investigate the system response, probing the input space using

Monte Carlo, Grid strategies, or Latin Hyper Cube schemes, but its strength is its focus toward system

feature discovery, such as limit surfaces, separating regions of the input space leading to system

failure, using dynamic supervised learning techniques. The paper will present an overview of the

software capabilities and their implementation schemes followed by some application examples.

Keywords: PRA, Limit Surface, Reliability.

1. INTRODUCTION

1.1. Project Background

The RAVEN [2-4] project was started at the beginning of 2012 to provide a modern framework for

risk evaluation for Nuclear Power Plant (NPPs). RAVEN, under the support of the Nuclear Energy

Advanced Modelling and Simulation (NEAMS) program, has been tasked to provide the necessary

software and algorithmic tools to enable the application of the conceptual framework developed by the

Risk Informed Safety Margin Characterization (RISMC) path-lead [5]. RISMC is one of the paths

defined under the Light Water Reactor Sustainability (LWRS) DOE program. In its initial stage of

development RAVEN has focused and optimized for the RELAP-7 code, currently under development

at Idaho National Laboratory as future replacement of the RELAP5-3D [6] code. Since most of the

capabilities developed under the RAVEN project for RELAP-7 are easily deployable to other

software, currently side activities are on going for coupling RAVEN with other codes such as

RELAP5-3D and BISON (fuel performance code) [7]. This paper focuses on the description of the

software infrastructure and the current capabilities that are available to any generic code.

1.2. Software Goals

Before starting a more deep exploration of the software capabilities and their implementations it would

be helpful to review in more detail the tasks that the project was designed to accomplish. RAVEN is

essentially designed as a discovery environment to characterize system responses and, in particular, to

compute the risk connected to the operation of a particular system. Risk is obviously defined following

the engineering approach by:

Where:

: vector of the system coordinates in the phase space

: time

: initial time

: probability of the system being in , centred in , at a time within , centred in

: support of

Probabilistic Safety Assessment and Management PSAM 12, June 2014, Honolulu, Hawaii

: cost function

The analysis of risk, defined above, is meaningful for systems for which it is not possible to build a

fully deterministic representation and here referred as dynamic stochastic systems. Unfortunately,

these represent most of the systems of practical interest in engineering. The stochastic behaviours, or

impossibility of defining a fully deterministic model, is imposed by uncertainties in the initial

conditions, in the parameters characterizing the mathematical models used to simulate the system and

by intrinsically stochastic laws, characterizing the underlining physics.

Given that, an analysis code such as RAVEN aims to investigate the probability of the system to be

located within a certain region of the phase space. This is a classical task that could be accomplished,

for example, using the Monte Carlo (MC) method. MC is, unfortunately, notoriously computationally

expensive and therefore other sampling strategies have been and will be implemented in RAVEN.

While the evaluation of the risk is per se a relevant task, it is even more important to map the

behaviour of the risk as a function of the initial condition and of the parameters characterizing the

system behaviour (input space). The knowledge of the relationship among risk, initial conditions and

model parameters guides engineers improving the systems, prioritize additional experiments to reduce

uncertainty on selected parameters, and the development of more accurate models. RAVEN uses its

sampling methodologies to support the engineer in investigating such relationships, in a fast and

focused fashion.

2. THE SOFWARE

2.1 The Basic Elements

RAVEN is coded in Python and has a highly object oriented design. The framework can be described

through few (not all) key basic objects. A list of these objects and a summary of their most important

functionalities is reported as follows:

Distribution: In order to produce sampling of the input parameters and initial conditions, RAVEN

requires the capability to sample the possible values, based on their probabilistic distribution. In

this respect, a large library of probability distribution functions is available.

Sampler: A proper strategy to sample the input space is fundamental to the optimization of the

computational time. A sampler, in the RAVEN framework, connects a set of variables to their

corresponding distributions and produces a sequence of points in the input space.

Model: A model owns the representation of the physical system; it is therefore capable to predict

the (or one of the possible) evolution of the system given a coordinate set in the input space.

Surrogate Models (SM): As already mentioned the construction of the risk variation, as a function

of the coordinates in the input space, is a very expensive process, especially when brute force

approaches, i.e. Monte Carlo methods, are used. Surrogate models are used to speed up this

process by reducing the number of needed points and prioritizing the area of the input space to be

explored.

In addition to the ones already mentioned, there are others important entities (objects) in the RAVEN

framework but they are more closely related to the software infrastructure and therefore less important

in the illustration of the analysis capabilities of the RAVEN code.

2.2. Distribution

As already mentioned, the capability to properly represent variability in the input space is tied into the

availability of the proper probabilistic distributions. RAVEN implements an interface to the Boost

library [8] that makes available the following univariate distributions: Bernoulli, Binomial,

Exponential, Logistic, Lognormal, Normal, Poisson, Triangular, Uniform, Weibull, Gamma, and Beta.

All distributions are also available in their truncated form when this is mathematically feasible. Figure

1 shows a scattered plot of a Lognormal, normal and uniform distributions obtained with an equally

probable spaced grid with respect to the sampled parameters.

Since these distributions will be used also later on to illustrate some of the sampling strategies, for

convenience, the equations are here reported with the value of the parameters used:

Probabilistic Safety Assessment and Management PSAM 12, June 2014, Honolulu, Hawaii

Figure 1: Scattered plot generated by sampling (Latin Hypercube sampling scheme) of a Normal (red),

Lognormal (blue) and Uniform distributions (green).

Many times, parameters that need to be sampled are subject to correlations. This is the case, for

example, when the same experimental setting is used to measure more physical parameters that are

then incorporated in the mathematical models. In this case it is possible that experimentalist might

suggest that the error on those parameters is correlated by, for example, a common type of dispersion.

In case of correlated variables ( and ) it is not possible to determine the probability that

without knowing the value of to . Another common situation that leads to correlate variables is

when the probability of failure of a system is derived from databases collected with multi dimensional

parameterization; for example, number of load cycles and average environmental temperature to

which the component is exposed. Currently in RAVEN it is possible to describe both N-dimensional

(i.e., multivariate) Cumulative Distribution Functions (CDF) and Probability Distribution Functions

(PDF) by means of external files that provide the probability (or cumulative probability) values as a

function of the interested parameters. The grid at which the probability/cumulative probability is

provided could be Cartesian (possibly non regular) or completely sparse. The available algorithms to

interpolate the imported CDF/PDF are n-dimensional splines [9] (only Cartesian grid) and inverse

weight [10]. Internally, RAVEN provides also the needed n-dimensional differentiation to derive from

the CDF the PDF and eventually the integration to derive the CDF from the PDF.

One of the biggest challenges in using multidimensional distributions is lack of an inverse. When, for

example, a Monte Carlo sampling strategy is used for univariate distributions, first a random number

between 0-1 is generated, then the CDF at that point is inverted to get the value of the variable to be

used in the simulation. The existence of the inverse of the CDF is guaranteed in the univariate case by

the monotonicity of the CDF. In the N-Dimensional case this is not sufficient since the CDF is a

function and therefore could not be a bijection. This situation is illustrated in

figure 2 where the failure probability of a pipe is provided as function of the temperature and the

pressure. The plane identifies an iso-probability line (in general an iso-surface) along which all points

(pipe temperature and pressure) satisfy the 0.5 value of the CDF. When multivariate distributions are

used RAVEN implements a surface finding algorithm to identify the location of the iso-surface and

then chooses randomly a point on this surface. A similar strategy is also used when, like in the Latin

Hypercube Sampling (LHS), the points are required to be within a certain CDF band.

Probabilistic Safety Assessment and Management PSAM 12, June 2014, Honolulu, Hawaii

Figure 2: Demonstrative multivariate CDF of the failure of a pipe as a function of temperature and

pressure.

2.3. Sampler

The samplers are one of the most developed part of the RAVEN framework and the ones that will

receive also more attention in the future given its crucial importance in increasing the effectiveness of

the computational resources. There are three main classes of samplers: blind samplers, dynamic event

tree samplers, and adaptive samplers. Given the extension of the argument and its importance each

type will be treated separately.

2.3.1 Blind Sampler

Under the name of blind sampler we collect the samplers that neither take advantage of the

information collected by the already performed sampling of the system (adaptive samplers) neither

take advantage of common patterns that different sampling might generate in the phase space

(dynamic event trees).

They belong to this type of samplers and are implemented in RAVEN, Monte Carlo, Cartesian grids,

and Latin Hypercube. To illustrate the different features of the samplers we can compare figures 3 to

5. On the left side all the figures have the reconstruction of the distributions used (the ones also

referred in figure 1) in the center the sampling point dispersion in the 3D space and on the right the

reconstruction of the N-Dimensional probability (the variable distributed following the uniform

distribution has been suppressed since it only provides a scaling factor).

The sampler type and parameters used for the different figure are the following:

Figure 3: Grid sampler, 21 points over the Lognormal and Normal distribution equally spaced in

cumulative probability, 4 points over the uniform distribution equally spaced in variable values.

Total number of sampling 1764.

Figure 4: Monte Carlo sampling, 300 total sampling.

Figure 5: LHS sampling, 100 total sampling equally spaced in cumulative probability.

From the comparison of the 3 figures it is evident how the LHS (figure 5), which is nowadays

probably the most used of the blind samplers, provides a good coverage of each single distribution (2D

plot on the right) but still results in a very sparse scatter plot of the sampling location in the 3D

(center) scatter plot. Clearly the grid-based sampler is the one that has discovered the most of the

underlining probabilistic structure (figure 3 on the right) but it is also the most expensive. All these

samplers are well know, as well as their properties, therefore it is not of interest to further investigate

their application.

00.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

pipe temperaturepipe pressure

failure probability

Probabilistic Safety Assessment and Management PSAM 12, June 2014, Honolulu, Hawaii

Figure 3: Grid based sampler. From the left: sampling point on the distribution, 3D dispersion of the

sampling point coordinate, and probability map.

Figure 4: Grid based sampler. From the left: sampling point on the distribution, 3D dispersion of the

sampling point coordinate, and probability map.

Figure 5: LHS based sampler Grid based sampler. From the left: sampling point on the distribution,

3D dispersion of the sampling point coordinate, and probability map.

2.3.2 Dynamic Event Tree Sampler

The main idea that has lead to the success of the dynamic event tree approach [11] is the consideration

that some events, characterizing the stochastic behavior of the system, might influence the trajectory in

the phase space only from a certain point in time onward. Given this consideration, it is natural to seek

a way to leverage this to reduce the computational burden.

Similarly to a grid based sampling approach, a N-Dimensional grid is built on the CDF space. A single

simulation is started and a set of triggers are added to the control logic of system code so that at each

time, one of the CDF point in the grid is exceed (this is determined by monitoring the evolution of the

system in the phase space) a new simulation is started. The probability associated to each simulation is

partitioned so that the branch where the exceeding of the CDF leads to a transition in the phase space

carry a fraction equal to the CDF exceeded threshold and the one where nothing happens it carries the

complementary probability.

Figure 6 shows a practical example. We assume that the probability failure of a pipe is proportional to

the pressure inside (on the top right), and a three intervals grid is applied on the CDF. One simulation

is started (0) and, when the control logic after a certain amount of time detects reaching 33% of the

CDF, stop the simulation and start two new branches. The restarted simulation with the broken pipe

(red line) carries 33% of the probability while the other with the pipe still intact carries 66% of the

probability. The same procedure is repeated at point 2.

Probabilistic Safety Assessment and Management PSAM 12, June 2014, Honolulu, Hawaii

Of course not all parameters could be sampled using a dynamic event tree approach, generally it is

common practice to sample the parameters affected by aleatory (statistical) uncertainty using the event

tree approach and sampling the input space for the ones subject to epistemic uncertainty. In reality the

determination of the possibility/impossibility to sample a variable in one of the two ways is more

complex and ties into the possibility to construct a phase space such as the evolution of the probability

density function for the system could be represented by the Louiville equation. A more detailed

discussion on this issue could be found in [3]. For example it would be possible to add to the input

space the failure pressure of the pipe and this would allow performing a Monte Carlo preserving the

probabilistic structure of the system. On the other side if the friction coefficient inside the pipe is

considered as an uncertain parameter, this would lead to an immediate branching of the simulation

making the dynamic event tree approach just a grid sampling on the input space. There are also cases

where the aleatory variables could not be casted into initial condition but, even if at a costly expansion

of the phase space, this is possible in most of the cases of practical interest. At the moment a hybrid

approach (sampling of initial condition plus dynamic event trees) is not yet implemented but it is

foreseen being available in the next months.

As already mentioned, the dynamic event tree requires an interaction between the software performing

the simulation of the physical system and a control logic capable to evaluate what is the CDF value for

the current system coordinate in the phase space, and eventually stopping the simulation. Not all codes

possess this capability and even if available it should be accessible by RAVEN code so to modify the

CDF thresholds according to the branching pattern. Currently this capability is fully available for

RELAP-7 and being tested for RELAP-5.

Figure 5: Dynamic Event Tree simulation pattern.

2.3.3 Adaptive samplers

One of the more advanced options that RAVEN offers is goal oriented sampling strategies for the

research of limit surfaces. To properly explain which type of information is available by these

techniques it is useful to start from the characterization of limit surfaces in system where the

probabilistic behavior could be studied only as a function of uncertainty in the model parameters (

)

and initial condition

only.

In such a cases:

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

200 250 300 350 400

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

200 250 300 350 400

Pipe failure pressure

Pipe failure pressure

180

230

280

330

0 5 10

180

230

280

330

0 5 10

Failure @66% CDF

Failure @33% CDF

180

230

280

330

0 5 10

Probability

Cumulative Distribution

Function (CDF)

Time

Time

Time

Pressure

Pressure

Pressure

180

230

280

330

0 5 10

Time

Pressure

0 1

2

Probabilistic Safety Assessment and Management PSAM 12, June 2014, Honolulu, Hawaii

Where:

: space of the variability of the parameters characterizing the model

: space of the variability of the initial condition that for a given set of

parameters brings the system at the coordinate

at time along the

mapping (being

the transfer function of the system).

For convenience it is possible to remove the distinction between uncertain parameters and uncertain

boundary condition by introducing

where

As a consequence:

In many engineering cases the cost function is just a Heaviside function describing the availability of

the system (1 system available, 0 system down). In a generalized description it is more appropriate to

use the characteristic function of the failure domain that for simplicity is assumed to depend only

on the status of the system at the end of the simulation time (mission time) since this does not alter the

conclusion hereafter derived.

Where is the region of the phase space where the system is not available.

By replacing this definition of the cost function, the integral that define the risk becomes:

Now by expressing the probability density function of the system by the probability density function

of the initial condition and uncertain parameters

where .

The important point to notice is that the risk evaluation could be transferred in a probability evaluation

on the initial condition and parameters space. This will still hold for more complex risk functions even

if it will be necessary to account for the transformation of coordinate in the phase space and, in case of

non-Liuoville type of problem, of the diffusion of the probability in the phase space.

The contour of is defined as the limit surface (). In conclusion, a limit surface is a hyper-

surface discriminating the input space coordinates (initial condition and model parameters) depending

on the evolution that the system will have located either on the left or right side of the limit surface.

The knowledge of the limit surface allows a fast evaluation of risk functions, provides information

concerning which uncertainty is mostly relevant to risk increase/decrease, defines safe areas to be

explored for parametric operational optimization and risk reduction. Unfortunately the search of a

limit surface in terms of computational effort is very expensive.

A brute force approach would be to build an N-dimensional grid on the input space and sample each

point. The number of points in the grid would be proportional to the degree of accuracy sought and

would hit rather fast a prohibitive number. To avoid such a situation RAVEN uses acceleration

schemes based on Surrogate Models (SM) that are used to predict the location of the limit surface so to

guide the exploration of the input space. Such a scheme is shown in figure 7 that will be described

after the introduction of the Surrogate Models in the next paragraph.

2.4 Models

First in the RAVEN environment a model is considered whatever could be fully characterized by an

input and a corresponding output, essentially a mapping. RAVEN does not possess any models per se

but implements APIs by which models could be integrated and sampled by the code. Currently these

APIs are implemented for RELAP-7, any generic MOOSE [12] based application, and RELAP5-3D.

In addition there is an API for writing directly inside the RAVEN framework a set of python methods

Probabilistic Safety Assessment and Management PSAM 12, June 2014, Honolulu, Hawaii

that can be interpreted as a model of a physical system. The exchange of data between RAVEN and

code representing the physical model (from now on the model) could be performed either by software

to software or by files. The APIs leaves future developers free in this respect. Currently, if the model

would take a long computational time, it is suggested to transfer the information by files since the

parallelism could be better deployed on large clusters. A schema of the information flow and the API

interface is reported in figure 8 as a general overview of the working flow. An interesting feature of

the RAVEN API for external codes is the fact that the syntax by which the external code interface

knows how to modify the input file is completely transparent to RAVEN. RAVEN receives from its

input file an association with the a probability distribution and a string, it will pass the sampled value

along with the string to the external code interface and will let the interface to interpreter the syntax

that the developer has chosen for the interface of its specific external code.

2.5 Surrogate Models

In literature there are several definition for surrogate models and/or reduced order models and/or

supervised learning process and they sometimes overlap. For the purpose of this article, a surrogate

model is a mathematical model that could be trained to predict the response of a physical system. The

training is a process that uses sampling of the physical model to improve the prediction capability

(capability to predict the status of the system given a realization of the input space) of the surrogate

model. More specifically in our case the surrogate model is trained to emulate a numerical

representation of the physical system that we assume is performed with a high degree of fidelity but is

also very computational expensive to realize. Two general characteristics of surrogate models will be

assumed true in the remaining of this discussion even though exceptions are possible:

1. The higher the number of realizations in the training sets the higher the accuracy of the prediction

of the surrogate model. This is assumed true although some of the surrogate models used might be

subject to the over-fitting issue. Since this a phenomena that is highly dependent on the surrogate

model type it will not be discussed here, given the large number of options available in the

RAVEN code. Depending on the cases the user should consult the specific literature on this

subject.

2. The smaller the size of the input domain with respect the variability of the system response

projected on the cost function, or vice versa, the smoother the response of the system projected on

the cost function within the input domain, the more likely the surrogate model will be able to

represent the risk function.

Given the fact that most of the time the cost function assume the form of a characteristic function of a

certain domain in the phase space, in the development of the RAVEN code it has been given priority

to the introduction of a class of supervised learning algorithms that are usually referred to as a

classifier. In essence, a classifier is a surrogate model that is capable to represent a binary response of

the system (failure/success). In these cases the response that is emulated is therefore

as a function of

.

The first class of classifier introduced has been the Support Vector Machines with several different

kernels (polynomial of arbitrary integer order, radial basis function kernel, sigmoid) followed by a

nearest-neighbor based classification using a K-D tree search algorithm. All these supervised learning

algorithms have been imported via an Application Programming Interfaces (APIs) from the scikit-

learn [13] library. It is planned to import the whole library of supervised learning methods from scikit-

learn. Also the N-Dimensional spline and the inverse weight methods, that are currently available for

the interpolation of N-Dimensional PDF/CDF, will soon be available as surrogate models.

Now it is possible to fully understand the calculation flow in figure 7 where

indicate

the prediction by the SM of

. Something that has not been yet mentioned is the fact

that the point to be sampled next during the iterative algorithm is chosen as the one located in the

assumed limit surface that is the most far away from any other already sampled location.

Evaluation of the system response on a low number of points of the input space

𝑥𝑡𝑒𝑛𝑑𝐻𝑥𝑝𝑡𝑒𝑛𝑑

Evaluation of the binary cost functions 𝜃𝑓𝑥𝑡𝑒𝑛𝑑

Training of the SM

Probabilistic Safety Assessment and Management PSAM 12, June 2014, Honolulu, Hawaii

Figure 6: Adaptive limit surface iterative process.

2.6 The Simulation Environment

RAVEN, during a work session, is perceived by the user as a pool of tools and data. Any action in

which the tools are applied to the data is considered a ‘step’ in the RAVEN environment. For the

scope of the paper we can focus on the multiRun type of step, since all the other are either closely

related (single run and adaptive run) or just used to perform data management and visualization. First

of all the RAVEN input file associates the variable definition syntax to a set of PDF and to a sampling

strategy. As this name says, the multiRun step is used to perform several runs (sampling) in a block of

a model, like for example in a Monte Carlo sampling strategy. At the beginning of each sub sequential

run of the model the sampler provides the new values of the variables to be modified. The code API

places those values properly in the input file. At this point the code API generates the run command

and asks to be queued by the job scheduler. The job scheduler handles the parallel execution of as

many run as possible within a user prescribed range and communicates with the step controller when a

new set of output files are ready to be read. The code API receives the new input files and collects the

data in the RAVEN internal format. The sampler is queried to assess if the sequence of runs is ended,

if not, the step controller will ask a new set of values from the sampler and the sequence is restarted

described in figure

The job scheduler currently is capable to run different run instances of the code in parallel and can also

handle codes that are multi threaded underneath or using any form of MPI parallel implementation.

RAVEN has also the capability to plot the simulation outcomes while the set of sampling is performed

and to store the data for later recovery.

RAVEN Input File

External code

variable

identification

syntax

Sampler type description

CDF pool

Probabilistic Safety Assessment and Management PSAM 12, June 2014, Honolulu, Hawaii

Figure 7: Workflow for the execution of a multi run type of simulation step.

3. EXAMPLES

This section will present some of the results obtained with RAVEN. The focus of this section will be

about how the capabilities of RAVEN could be used to perform PRA type of analysis.

3.1 The Reference Case

The case hereafter shortly described will be used overall as a baseline for further exemplification of

RAVEN capabilities in addition to few more specialized cases that will be described time by time.

The case is a simplified PWR simulated by RELAP-7 during a Station Black Out condition. Figure 8

shows a visualization of the plant.

I/O interface

Probabilistic Safety Assessment and Management PSAM 12, June 2014, Honolulu, Hawaii

Figure 8: PWR demo plant layout.

3.1.1 The Monte Carlo Analysis

Once that the plant is in SBO condition the probability of recovering the emergency cooling system is

set dependent from the recovery of any of the following system:

Diesel Generators (DGs): the power is restored when two of the three DG train is recovered

The recovery time of the first train is distributed as it follows:

The recovery time of the second train is distributed as it follows:

Reserve Station Service Transformer recovery time ():

The recovery of the main AC line is distributed following:

The simulation scope is to assess the failure success of the plant. The goal function associated is:

Where is the maximum clad temperature and the is the clad failure temperature.

The failure temperature of the clad is also a stochastic variable with triangular distribution:

Note that the time at which both diesel generators are available needs to be treated as a

multidimensional distribution function unless the recovery of the second train is computed inside the

system control logic once the recovery time of the first train is already known.

For this analysis, 4000 samples using a Monte Carlo scheme were performed using a batch size of 400

cores on the Fission HPC cluster at the Idaho National Laboratory. In figure 9 it is shown the

histograms of the max temperature achieved during the simulation and the clad failure temperature.

Failures might happen in the overlapping regions of the histograms, a more detailed discussion on the

reading of this plot is reported in [11].

3.1.2 The Dynamic Event Tree Analyses

Probabilistic Safety Assessment and Management PSAM 12, June 2014, Honolulu, Hawaii

The situation considered is exactly the one presented in the Monte Carlo analysis (3.1.2) and the

details of the analysis can be found in [11]. Figure 9 shows the time evolution of the clad temperature

and a projection of the sampling grid pattern generated by the dynamic event trees approach. The

green lines are the simulation continuing while the red dots signal a point where a simulation was

stopped since reaching the maximum clad temperature. It could be noticed that there are simulation

being stopped at a level of temperature that are exceeded by other simulations. The reason is of course

the random value of the clad failure temperature. On the left the plot shows a projection of the

threshold triggered by the Dynamic Event Tree simulation of the transient. The projection is

performed by defining the recovery time of the auxiliary system . It is

clear how the competing variable (max clad temperature and AC recovery time) are alternatively

moved towards higher values of theirs CDF until a transition point between success failure is reached.

This pattern is generated by the contemporaneously sampling of two antagonist variables or in a

terminology more familiar in the RISMC framework by contemporaneously sampling the capacity and

the load. This aspect is discussed more in detail in [11].

Figure 9: On the left the max clad temperature for each of the branches generated by the dynamic

event tree. On the right the point sampled by the dynamic event tree.

3.1.3 Limit Surface Analysis

Figure 10, which is generated of the Monte Carlo Sampling in 3.1.1 shows clearly how (for a fixed

value of clad failure temperature) the limit surface is composed by three orthogonal planes. This is

clearly due to the fact that in essence the regions of possible system failure the max temperature in the

clad could be described by a linear relationship with the recovery time of the auxiliary system. The

success condition is therefore:

In order to evaluate the limit surface search capability, that is still in a testing phase it was not used

directly the original case described in 3.1.1 but with the help of the API for the implementation of an

external model as described in 2.4 it was constructed a model returning:

The model of course was not accurate in terms of numbers but it was supposed to show a similar

behavior even if one of the sampled recovery times was suppressed to allow a 3D visualization of the

limit surface for varying failure temperature of the clad.

Figure 10 shows the two limit surfaces obtained with a nearest neighbor (on the right) and radial basis

function (RBF) based surrogate models. Both limit surface show the two bounding planes compared to

the safe space (side of the surface with low recovery times) increase with the raising of the failure

temperature of the clad. This is clearly observable by the inclination of the planes. The nearest

neighbor as expected presents sharper edges with respect to the RBF kernel that instead tends to soften

the borders. The nearest neighbor algorithm closed the top of the surface erroneously; this unexpected

behavior is still under investigation.

Probabilistic Safety Assessment and Management PSAM 12, June 2014, Honolulu, Hawaii

Figure 10: Classification of the input space for the PWR SBO depending if during the simulation the

max clad temperature has been (failure, green), or have not been (success red) exceeded. To obtain a

3D plot the has been kept constant at 1477 K.

Figure 11: On the left the max clad temperature for each of the branches generated by the dynamic

4. CONCLUSION

RAVEN is reaching a level of maturity that might lead soon to a release of the code outside Idaho

National Laboratory to collect the first feedback. The statistical analysis framework based on grids and

Monte Carlo relies on very well assessed methodologies, and seems solid already. The integration of

those methodologies with the data handling flexibility, the visualization capabilities (all plots are

directly generated by the RAVEN code) and the ease of coupling with different physical model

simulators shows how RAVEN can be a powerful tool for PRA analysis. The dynamic event tree

implementation allows also a rapid turnaround time for the coupling with other codes as long as access

to the simulator of control logic is provided. The dynamic event trees has been identified as one of the

most promising approaches for PRA and at the same time it is foreseen its additional development to

introduce adaptivity.

Moreover the coming release of the code will the familiarize the PRA community with this enhanced

techniques like limit surface or surrogate model construction for identifying the leading mechanisms

of the system failure.

Acknowledgements

This work is supported by the U.S. Department of Energy, under DOE Idaho Operations Office

Contract DE-AC07-05ID14517. Accordingly, the U.S. Government retains a nonexclusive, royalty-

free license to publish or reproduce the published form of this contribution, or allow others to do so,

for U.S. Government purposes.

138 KV

Recovery

time

Diesel Generator

Recovery time

69 KV Recovery Time

Probabilistic Safety Assessment and Management PSAM 12, June 2014, Honolulu, Hawaii

References

[1] D. Anders, R. Berry, D. Gaston, R. Martineau, J. Peterson, H. Zhang, H. Zhao, and L. Zou,

“Relap-7 level 2 milestone report: Demonstration of a steady state single phase pwr simulation

with relap-7,” Tech. Rep. INL/EXT-12-25924, Idaho National Laboratory (INL), 2012.

[2] C. Rabiti, A. Alfonsi, J. Cogliati, D. Mandelli, and R. Kinoshita, “Reactor analysis and virtual

control environment (raven) fy12 report,” Tech. Rep. INL/EXT-12-27351, Idaho National

Laboratory (INL), 2012.

[3] C. Rabiti, D. M. A. Alfonsi, J. Cogliati, and B. Kinoshita, “Mathematical framework for the

analysis of dynamic stochastic systems with the raven code,” in Proceedings of International

Conference of mathematics and Computational Methods Applied to Nuclear Science and

Engineering (M&C 2013), Sun Valley (Idaho), pp. 320–332, 2013.

[4] Alfonsi, C. Rabiti, D. Mandelli, J. Cogliati, and B. Kinoshita, “Raven as a tool for dynamic

probabilistic risk assessment: Software overview,” in Proceedings of International Conference

of mathematics and Computational Methods Applied to Nuclear Science and Engineering

(M&C 2013), Sun Valley (Idaho), pp. 1247–1261, 2013.

[5] Smith, C. Rabiti and R. Martineau, “Risk Informed Safety Margins Characterization (RISMC)

Pathway Technical Program Plan,” INL/EXT-11-22977, November 2012

[6] RELAP5-3D© Code Manual, Vol.1-5, Rev. 3, INEEL-EXT-98-00834 (2009)

[7] R.L. Williamson, J.D. Hales, S.R. Novascone, M.R. Tonks, D.R. Gaston, C.J. Permann, D.

Andrs, R.C. Martineau, “Multidimensional multiphysics simulation of nuclear fuel behavior”,

Journal of Nuclear Materials, 423 (2012) 149–163

[8] Boost Team, http://www.boost.org

[9] Christian Habermann, Fabian Kindermann, “Multidimensional Spline Interpolation: Theory and

Applications”, Computational Economics, Volume 30, Issue 2, pp 153-169, 2007

[10] William J. Gordon and James A. Wixom, “Shepard's Method of "Metric Interpolation" to

Bivariate and Multivariate Interpolation”, Mathematics and Computation, vol. 32, n 141, pp

253-264, 1978.

[11] Alfonsi, C. Rabiti, D. Mandelli, J. Cogliati, B. Kinoshita, and A. Naviglio. “Dynamic event tree

analysis through Raven”. In Proceedings of ANS PSA 2013 International Topical Meeting on

Probabilistic Safety Assessment and Analysis, Columbia (South Carolina), 2013.

[12] Gaston, G. Hansen, S. Kadioglu, D. A. Knoll, C. Newman, H. Park, C. Permann, and W.

Taitano, “Parallel multiphysics algorithms and software for computational nuclear engineering,”

Journal of Physics: Conference Series, vol. 180, no. 1, p. 012012, 2009.

[13] Pedregosa et al., “Scikit-learn: Machine Learning in Python”, Journal of Machine Learning

Research, pp. 2825-2830, 2011.