Article

Kefir-isolated bacteria and yeasts inhibit Shigella flexneri invasion and modulate pro-inflammatory response on intestinal epithelial cells

Authors:
To read the full-text of this research, you can request a copy directly from the authors.

Abstract

The aim of this work was to evaluate the ability of a kefir-isolated microbial mixture containing three bacterial and two yeast strains (MM) to protect intestinal epithelial cells against Shigella flexneri invasion, as well as to analyse the effect on pro-inflammatory response elicited by this pathogen. A significant decrease in S. flexneri strain 72 invasion was observed on both HT-29 and Caco-2 cells pre-incubated with MM. Pre-incubation with the individual strains Saccharomyces cerevisiae CIDCA 8112 or Lactococcus lactis subsp. lactis CIDCA 8221 also reduced the internalisation of S. flexneri into HT-29 cells although in a lesser extent than MM. Interestingly, Lactobacillus plantarum CIDCA 83114 exerted a protective effect on the invasion of Caco-2 and HT-29 cells by S. flexneri. Regarding the pro-inflammatory response on HT-29 cells, S. flexneri infection induced a significant activation of the expression of interleukin 8 (IL-8), chemokine (C-C motif) ligand 20 (CCL20) and tumour necrosis factor alpha (TNF-α) encoding genes (P<0.05), whereas incubation of cells with MM did not induce the expression of any of the mediators assessed. Interestingly, pre-incubation of HT-29 monolayer with MM produced an inhibition of S. flexneri-induced IL-8, CCL20 and TNF-α mRNA expression. In order to gain insight on the effect of MM (or the individual strains) on this pro-inflammatory response, a series of experiments using a HT-29-NF-κB-hrGFP reporter system were performed. Pre-incubation of HT-29-NF-κB-hrGFP cells with MM significantly dampened Shigella-induced activation. Our results showed that the contribution of yeast strain Kluyveromyces marxianus CIDCA 8154 seems to be crucial in the observed effect. In conclusion, results presented in this study demonstrate that pre-treatment with a microbial mixture containing bacteria and yeasts isolated from kefir, resulted in inhibition of S. flexneri internalisation into human intestinal epithelial cells, along with the inhibition of the signalling via NF-κB that in turn led to the attenuation of the inflammatory response.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

... Nutrients 2019, 11, x; doi: FOR PEER REVIEW www.mdpi.com/journal/nutrients [3][4][5][6][7][8][9] -Lb. plantarum CIDCA 8336 (×2) [3,8] -Lb. ...
... It was studied in depth using both in vivo and in vitro models. Lb. plantarum CIDCA 83114 was observed to have a protective effect against pathogen invasion of cultured human cells, with pre-incubation of the strain with Caco-2 or HT-29 colon cell lines resulting in a significant reduction in the internalization of the pathogen Shigella flexneri [6]. Of particular note is the fact of its protective effects in both cell lines, a property not observed in other strains tested in this study. ...
... Furthermore, a wide range of histological changes induced by C. difficile infection were absent in the mice pre-treated with the microbial mixture. This group used the same microbial mixture to test for effects upon infection by S. flexneri [6]. They found that while the microbial mixture caused a significant reduction in the level of Shigella invasion into Caco-2 cells, the individual strain of 8348 did not. ...
Article
Full-text available
Lactobacilli are among the most common microorganisms found in kefir; a traditional fermented milk beverage produced locally in many locations around the world. Kefir has been associated with a wide range of purported health benefits; such as antimicrobial activity; cholesterol metabolism; immunomodulation; anti-oxidative effects; anti-diabetic effects; anti-allergenic effects; and tumor suppression. This review critically examines and assesses these claimed benefits and mechanisms with regard to particular Lactobacillus species and/or strains that have been derived from kefir; as well as detailing further potential avenues for experimentation.
... Additionally, it has been demonstrated that a combination of kefir microorganisms exerted protection against diarrhea and enterocolitis triggered by Clostridium difficile [87]. A later study on the mixture of kefir isolated two lactobacilli, one Lactococcus, and two yeasts demonstrated protection on epithelial cells in vitro against Shigella invasion [109]. Moreover, a recent study of the behavior of Staphylococcus aureus revealed that the use of a high kefir grain-to-milk ratio may minimize foodborne contamination during artisanal kefir manufacture [115]. ...
... Remarkably, the administration of kefir beverages has recently been shown to modulate the composition of the host gut microbiota. Furthermore, there is burgeoning scientific evidence to suggest that imbalance of the intestinal microbiota is associated with immunopathologies, chronic diseases, as well as intestinal infections [109,178,179]. The environmental cause of the alteration in the gut microbiome is often attributed to antibiotic usage and poor dietary intakes. ...
Article
Full-text available
Kefir is a fermented beverage with renowned probiotics that coexist in symbiotic association with other microorganisms in kefir grains. This beverage consumption is associated with a wide array of nutraceutical benefits, including anti-inflammatory, anti-oxidative, anti-cancer, anti-microbial, anti-diabetic, anti-hypertensive, and anti-hypercholesterolemic effects. Moreover, kefir can be adapted into different substrates which allow the production of new functional beverages to provide product diversification. Being safe and inexpensive, there is an immense global interest in kefir’s nutritional potential. Due to their promising benefits, kefir and kefir-like products have a great prospect for commercialization. This manuscript reviews the therapeutic aspects of kefir to date, and potential applications of kefir products in the health and food industries, along with the limitations. The literature reviewed here demonstrates that there is a growing demand for kefir as a functional food owing to a number of health-promoting properties.
... Recent microbiological analysis of kefir grains being consumed in our region (Grand Vitoria, Brazil) [36,37] showed a microflora formed by beneficial bacteria (e.g., Lactobacillus kefiranofaciens, Bifidobacterium) and yeasts (e.g., Candida kefir) which have been shown to preserve gut eubiosis and correct dysbiosis by adhering to gastrointestinal mucus [31,38]. These beneficial microbes then protect against the invasion of pathogenic microbes [7,39,40] and against the cytotoxic effects of pathogenic microbial toxins [41]. ...
... Kefir consumption results in transient changes in the levels of cytokines [92][93][94], TNFα and INFγ, in both in vivo [83,84] and in in vitro experiments [93]. Several studies with whole kefir, kefir fractions, or organisms isolated from kefir demonstrated that anti-inflammatory cytokines promote a Th2 response while simultaneously inhibiting the pro-inflammatory Th1 response [39,78,[92][93][94][95]. Interestingly, it was recently found that a protein derived from Lactobacillus plantarum, has a significant anti-inflammatory effect through regulating the gut barrier, microbiota and inflammatory cytokines [96].Therefore, kefir and derived isolated microorganisms can increase anti-inflammatory cytokines and decrease pro-inflammatory responses, justifying its anti-atherosclerotic potential. ...
Article
Full-text available
The gut microbiota maintains a complex mutual interaction with different organs of the host. Whereas in normal conditions this natural community of trillions of microorganisms greatly contributes to the human health, gut dysbiosis is related with onset or worsening of diverse chronic systemic diseases. Thus, the reestablishment of gut microbiota homeostasis with consumption of prebiotics and probiotics may be a relevant strategy to prevent or attenuate several cardiovascular and metabolic complications. Among these functional foods, the synbiotic kefir, which is a fermented milk composed of a mixture of bacteria and yeasts, is currently the most used and has attracted the attention of health care professionals. The present review is focused on reports describing the feasibility of kefir consumption to provide benefits in cardiometabolic diseases, including hypertension, vascular endothelial dysfunction, dyslipidemia and insulin resistance. Interestingly, recent studies show that mechanisms of actions of kefir in cardiometabolic diseases include recruitment of endothelial progenitor cells, improvement of the balance vagal/sympathetic nervous system, diminution of excessive generation of reactive oxygen species, angiotensin converting enzyme inhibition, anti-inflammatory cytokines profile and alteration of the intestinal microbiota. These findings provide a better understanding about the mechanisms of the beneficial actions of kefir and motivate further investigations to determine whether the use of this synbiotic could also be translated into clinical improvements in cardiometabolic diseases.
... etc. Specifically, L. plantarum CIDCA 83114 seems to have a protective effect against pathogen invasion of cultured human cells, with pre-incubation of the strain with Caco-2 or HT-29 colon cell lines [113]. The same strain was capable to protect Vero cells from the effects of E. coli O157:H7 containing type-II Shiga toxin and was effective against pathogenic E. coli in various in vivo studies [114]. ...
Article
Full-text available
Lactic acid fermentation of fresh fruit juices is a low-cost and sustainable process, that aims to preserve and even enhance the organoleptic and nutritional features of the raw matrices and extend their shelf life. Selected Lactic Acid Bacteria (LAB) were evaluated in the fermentation of various fruit juices, leading in some cases to fruit beverages, with enhanced nutritional and sensorial characteristics. Among LAB, Lactiplantibacillus (Lpb.) plantarum subsp. plantarum strains are quite interesting, regarding their application in the fermentation of a broad range of plant-derived substrates, such as vegetables and fruit juices, since they have genome plasticity and high versatility and flexibility. L. plantarum exhibits a remarkable portfolio of enzymes that make it very important and multi-functional in fruit juice fermentations. Therefore, L. plantarum has the potential for the production of various bioactive compounds, which enhance the nutritional value and the shelf life of the final product. In addition, L. plantarum can positively modify the flavor of fruit juices, leading to higher content of desirable volatile compounds. All these features are sought in the frame of this review, aiming at the potential and challenges of L. plantarum applications in the fermentation of fruit juices.
... Additional evidence for kefir's gut microbiota modulation effect was demonstrated from kefiran's capacity to change faecal and gut microbiota of BALB/c mice via increasing the number of Bifidobacteria populations, without a change in Lactobacillus populations [120]. Pre-treatment with a microbial mixture containing bacteria and yeasts isolated from kefir inhibited Shigella flexneri from internalising into human intestinal epithelial cells and led to the attenuation of the inflammatory response [121]. Feeding mice with kefir reduces protozoan Giardia intestinalis infection and promotes the activation of different mechanisms of humoral and cellular immunity that are down-regulated by this parasitic infection [122]. ...
Article
Full-text available
Kefir is a dairy product that can be prepared from different milk types, such as goat, buffalo, sheep, camel, or cow via microbial fermentation (inoculating milk with kefir grains). As such, kefir contains various bacteria and yeasts which influence its chemical and sensory characteristics. A mixture of two kinds of milk promotes kefir sensory and rheological properties aside from improving its nutritional value. Additives such as inulin can also enrich kefir's health qualities and organoleptic characters. Several metabolic products are generated during kefir production and account for its distinct flavour and aroma: Lactic acid, ethanol, carbon dioxide, and aroma compounds such as acetoin and acetaldehyde. During the storage process, microbiological, physicochemical, and sensory characteristics of kefir can further undergo changes, some of which improve its shelf life. Kefir exhibits many health benefits owing to its antimicrobial, anticancer, gastrointestinal tract effects, gut microbiota modulation and anti-diabetic effects. The current review presents the state of the art relating to the role of probiotics, prebiotics, additives, and different manufacturing practices in the context of kefir's physicochemical, sensory, and chemical properties. A review of kefir's many nutritional and health benefits, underlying chemistry and limitations for usage is presented.
... A kefir-isolated microbial mixture containing three bacterial and two yeast strains protected intestinal epithelial cells against Shigella flexneri invasion (Bolla, Abraham, Perez, & Serradell, 2016), the effect of the yeast Kluyveromyces marxianus CIDCA 8154, being crucial for the observed benefit. In another work, Lactobacillus kefiri CIDCA 8348 treatment increased the IgA levels in mice feces and reduced the expression of pro-inflammatory mediators in Peyer patches and mesenteric lymph nodes, also increasing IL-10 (Carasi et al., 2015). ...
Article
The development of functional foods containing probiotics has experienced a great boom in the last years, reflected by the increasing number of novel products available at the market, as well as by the well-documented extensive research, going beyond the traditional fermented dairy foods. However, to safe arrive to their target, the gut, microorganisms contained in food products have to overcome different barriers, both technological and physiological. Food processing might cause different types of damages on beneficial bacteria, which finally lead to a decrease of viability. In addition, once ingested, and before arriving to the gut, microorganisms are exposed to other food constituents, low pH and digestive juices, all of them constituting detrimental environments that can decrease their viability. For this reason, this review offers an updated state of the art on the microorganisms' response to the factors affecting their survival during drying techniques, storage and rehydration. Current strategies to overcome detrimental processing effects on bacterial viability are also reviewed, as well as the effect of food matrices on bacterial protection during food manufacturing and storage. The effect of probiotic microorganisms on the gut, and in particular on the intestinal microbiota is an issue of increasing interest in the last decades, and thus, special emphasis was put it on.
... Combination of kefir microorganisms was also studied in order to obtain blends with improved probiotics properties. It was demostrated that a combination of two lactobacilli, one lactococcus and two yeasts protected epithelial cells in vitro against Shigella invasion (Bolla et al. 2016). Additionally, this blend exerted a protection against Clostridium difficile infection in a mouse model (Bolla et al. 2013). ...
Article
Kefir is a homemade viscous and slightly effervescent beverage obtained by milk fermentation with kefir grains, which are built up by a complex community of lactic acid and acetic acid bacteria and yeasts confined in a matrix of proteins and polysaccharides. The present review summarizes the role of kefir microorganisms in grain assembly and in the beneficial properties attributed to kefir. The use of both culture dependent and independent methods has made possible to determine the microorganisms that constitute this ecosystem. Kefir consumption has been associated with a wide range of functional and probiotic properties that could be attributed to the microorganisms present in kefir and/or to the metabolites synthetized by them during milk fermentation. In this context, the role of microorganisms in kefir health promoting properties is discussed with particular attention to the yeasts contribution as well as bioactive metabolites such as lactic and acetic acid, exopolysaccharides and bioactive peptides. Even though many advances on the knowledge of this ancient fermented milk have been made, further studies are necessary to elucidate the complex nature of the kefir ecosystem. This article is protected by copyright. All rights reserved.
Article
Full-text available
This study aimed to evaluate the protective function of probiotics against Shigella sonnei pathogenicity. For this purpose, 400 zebrafish were divided into four groups with two replications: (T1): receiving Lacticaseibacillus casei for 27 days, (T2): receiving L. casei for 27 days followed by 72 hr exposure to S. sonnei, (T3): receiving basal diet for 27 days followed by 72 hr exposure to S. sonnei, and control group (C): receiving basal diet without exposure to the pathogen. According to the results, feeding with L. casei for 27 days reduced the interleukin-8 (IL-8) expression significantly (P<0.05). The results showed a decrease in IL-8 expression in the group exposed to the pathogen and fed with the probiotic compared to the group only fed with the basal diet (P<0.05). Considering the role of IL-8 as a pro-inflammatory cytokine, our results indicated that feeding with L. casei could modulate inflammatory responses.
Article
Tibetan kefir grains (TKGs) are distinctive and complex mixtures with protein-lipid-polysaccharide matrices and multiple microorganism species. The objective of this study was to evaluate the microflora composition, probiotic species and functional genes within TKGs. Metagenomic analysis was used to evaluate communities of three TKGs, revealing the presence of 715 species, with Lactobacillus kefiranofaciens as the most dominant species. The relative abundances of acetic acid bacteria and yeast significantly differed among the three TKGs (acetic acid bacteria: p < 0.01; yeast: p < 0.05), and the dominant yeast species also varied across three TKGs. Lactobacillus helveticus was the most abundant listed probiotic species, and its abundance did not significantly differ across three TKGs. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed that ko01501 was the most abundant pathway that related to human disease. There are 16 different KOs (KEGG Orthology) in the ko01501 pathway were annotated in TKGs, which helps to resist β-lactam. This study provided a new insight into the microbial community structures and the presence of probiotic species within TKGs and provides a foundation for further targeted studies.
Article
The aim of this study was to investigate the efficacy of kefir on colorectal cancer (CRC) via regulating the microbiota structure in the colon using the azoxymethane/dextran sulfate sodium (AOM/DSS) induced CRC mouse model. Mice in the treatment group were orally administered with milk or kefir. The gut microbiota composition was assessed by internally transcribed spacer 2 (ITS2) and 16S rRNA high-throughput sequencing. Furthermore, the biomarkers associated with the gut barrier, inflammation, and cell proliferation regulators were evaluated. The results indicated that the size and the amount of tumor were decreased and the immunity regulators (TNF-α, IL-6, and IL-17a) and oncocyte proliferation indicator (Ki67, NF-κB, and β-catenin) were all decreased. Increased short chain fatty acids (SCFAs) lowered the pH in the colon and helped enhance the intestinal barrier. The Firmicutes/Bacteroidetes ratio and Ascomycota/Basidiomycota ratio were decreased at the phylum level; the relative abundance of probiotics was increased and the pathogenic bacterium (Clostridium sensu stricto, Aspergillus and Talaromyces) were decreased after supplementation of kefir. Consequently, kefir could regulate the gut microbiota composition and ameliorate AOM/DSS induced colorectal cancer.
Article
Many attempts have been made to search for safer immunomodulatory agents that enhance the immune response and reduce the number and severity of infections in at-risk populations. The use of postbiotics, non-viable microbial cells or cell fractions that confer a health benefit to the consumer, represents a safe and attractive way to modulate and enhance the immune function in order to improve human health. Therefore, the aim of this work is to evaluate the immunoregulatory effect of Lactobacillus rhamnosus CRL1505 postbiotics in a complex culture system using human intestinal epithelial cells (IECs) and dendritic cells (DCs) differentiated from peripheral blood mononuclear cells. First, we demonstrated that L. rhamnosus CRL1505 differentially modulate human IECs and DCs after the challenge with the TLR4 agonist LPS. The CRL1505 strain down-regulated CD40, CD80 and CD86 expression in DCs, and increased their production of TNF-α, IL-1β, IL-6 and IL-10. Interestingly, the non-viable strain was able to modulate the immune response of both types of human cells. Then, we showed that cell wall (CW1505) and peptidoglycan (PG1505) from L. rhamnosus CRL1505 modulated TLR4-triggered immune response in IECs and DCs. Of interest, CW1505 showed a strong stimulatory effect while the PG1505 presented immune characteristics that were more similar to viable and non-viable CRL1505. To date, several molecules of immunobiotics were identified, that can be connected to specific host-responses. We hereby demonstrated that peptidoglycan of L. rhamnosus CRL1505 is a key molecule for the immunobiotic properties of this strain in human IECs and DCs. Likewise, the result of these studies could provide predictive tools for the in vivo efficacy of postbiotics and the scientific basis for their future applications in immunocompromised patients.
Article
Food allergies are known as the public health problem, affecting people of all age groups, but more commonly in babies and children, with consequences for nutritional status and quality of life. The increase in the consumption of healthy foods has consequently led to an increased demand for functional foods with specific health benefits. Thus, the pharmaceutical industry's interest in natural products has grown every time and is therefore considered as an alternative to synthetic drugs. Kefir has been outstanding for several years as promising in the manufacture of various pharmaceutical products, due to its nutritional and therapeutic properties for the treatment of many diseases. Currently, a wide variety of new functional foods are appearing on the market, representing an important segment. Postbiotics, for example, has stood out for being a product with action similar to probiotics, without offering side effects. The kefiran is the postbiotic from kefir that promotes potential beneficial effects on food allergy from the intestinal microbiome to the immune system. In this context, it is necessary to know the main promoting component of this functional effect. This review compiles the benefits that kefir, and especially its postbiotic, kefiran, can bring to food allergy. In addition, it serve as a subsidy for studies on the development of innovative nutraceutical products, including the use of kefiran as an alternative therapy in food allergy.
Article
Full-text available
Kefir is a putatively health-promoting dairy beverage that is produced when a kefir grain, consisting of a consortium of microorganisms, is added to milk to initiate a natural fermentation. Here, a detailed analysis was carried out to determine how the microbial population, gene content, and flavor of three kefirs from distinct geographic locations change over the course of 24-h fermentations. Metagenomic sequencing revealed that Lactobacillus kefiranofaciens was the dominant bacterial species in kefir during early stages of fermentations but that Leuconostoc mesenteroides became more prevalent in later stages. This pattern is consistent with an observation that genes involved in aromatic amino acid biosynthesis were absent from L. kefiranofaciens but were present in L. mesenteroides. Additionally, these shifts in the microbial community structure, and associated pathways, corresponded to changes in the levels of volatile compounds. Specifically, Acetobacter spp. correlated with acetic acid; Lactobacillus spp. correlated with carboxylic acids, esters and ketones; Leuconostoc spp. correlated with acetic acid and 2,3-butanedione; and Saccharomyces spp. correlated with esters. The correlation data suggest a causal relationship between microbial taxa and flavor that is supported by observations that addition of L. kefiranofaciens NCFB 2797 increased the levels of esters and ketones whereas addition of L. mesenteroides 213M0 increased the levels of acetic acid and 2,3-butanedione. Finally, we detected genes associated with probiotic functionalities in the kefir microbiome. Our results illustrate the dynamic nature of kefir fermentations and microbial succession patterns therein and can be applied to optimize the fermentation processes, flavors, and health-related attributes of this and other fermented foods.
Article
Full-text available
Two types of microbial mixtures containing selected lactic acid bacteria and yeasts isolated from kefir grains were tested against the Shigella invasion of Hep-2 cells in culture. A five-strain mixture demonstrated a significant inhibition of the cell internalisation of Shigella flexneri and Shigella sonnei. The addition of single kefir strains or their mixtures to the cells, before the addition of Shigella, protected more efficiently than the simultaneous addition of the lactic-acid bacteria and Shigella on the cells. Among the kefir strains assayed, Lactobacillus plantarum strain CIDCA 83114 showed the most significant inhibition of the invasion. Both the cell walls of L. plantarum and the intact bacterial cells demonstrated an equivalent protection of cell monolayers; with the possibility of a protein or peptide mediating this effect. These results provide evidence for the potential inhibitory properties of certain kefir strains, such as L plantarum CIDCA 83114, against disease-producing species of Shigella.
Article
Full-text available
The evaluation of the impact of probiotics on host health could help to understand how they can be used in the prevention of diseases. On the basis of our previous studies and in vitro assays on PBMC and Caco-2 ccl20:luc reporter system presented in this work, the strain Lactobacillus kefiri CIDCA 8348 was selected and administrated to healthy Swiss mice daily for 21 days. The probiotic treatment increased IgA in feces and reduced expression of proinflammatory mediators in Peyer Patches and mesenteric lymph nodes, where it also increased IL-10. In ileum IL-10, CXCL-1 and mucin 6 genes were upregulated; meanwhile in colon mucin 4 was induced whereas IFN-íµí»¾, GM-CSF, and IL-1íµí»½ genes were downregulated. Moreover, ileum and colon explants showed the anti-inflammatory effect of L. kefiri since the LPS-induced increment of IL-6 and GM-CSF levels in control mice was significantly attenuated in L. kefiri treated mice. Regarding fecal microbiota, DGGE profiles allowed differentiation of experimental groups in two separated clusters. Quantitative PCR analysis of different bacterial groups revealed only significant changes in Lactobacillus population. In conclusion, L. kefiri is a good candidate to be used in gut inflammatory disorders.
Article
Full-text available
The potential for the positive manipulation of the gut microbiome through the introduction of beneficial microbes, as also known as probiotics, is currently an active area of investigation. The FAO/WHO define probiotics as live microorganisms that confer a health benefit to the host when administered in adequate amounts. However, dead bacteria and bacterial molecular components may also exhibit probiotic properties. The results of clinical studies have demonstrated the clinical potential of probiotics in many pathologies, such as allergic diseases, diarrhea, inflammatory bowel disease and viral infection. Several mechanisms have been proposed to explain the beneficial effects of probiotics, most of which involve gene expression regulation in specific tissues, particularly the intestine and liver. Therefore, the modulation of gene expression mediated by probiotics is an important issue that warrants further investigation. In the present paper, we performed a systematic review of the probiotic-mediated modulation of gene expression that is associated with the immune system and inflammation. Between January 1990 to February 2014, PubMed was searched for articles that were published in English using the MeSH terms "probiotics" and "gene expression" combined with "intestines", "liver", "enterocytes", "antigen-presenting cells", "dendritic cells", "immune system", and "inflammation". Two hundred and five original articles matching these criteria were initially selected, although only those articles that included specific gene expression results (77) were later considered for this review and separated into three major topics: the regulation of immunity and inflammatory gene expression in the gut, in inflammatory diseases of the gut and in the liver. Particular strains of Bifidobacteria, Lactobacilli, Escherichia coli, Propionibacterium, Bacillus and Saccharomyces influence the gene expression of mucins, Toll-like receptors, caspases, nuclear factor-κB, and interleukins and lead mainly to an anti-inflammatory response in cultured enterocytes. In addition, the interaction of commensal bacteria and probiotics with the surface of antigen-presenting cells in vitro results in the downregulation of pro-inflammatory genes that are linked to inflammatory signaling pathways, whereas other anti-inflammatory genes are upregulated. The effects of probiotics have been extensively investigated in animal models ranging from fish to mice, rats and piglets. These bacteria induce a tolerogenic and hyporesponsive immune response in which many genes that are related to the immune system, in particular those genes expressing anti-inflammatory cytokines, are upregulated. By contrast, information related to gene expression in human intestinal cells mediated by the action of probiotics is scarce. There is a need for further clinical studies that evaluate the mechanism of action of probiotics both in healthy humans and in patients with chronic diseases. These types of clinical studies are necessary for addressing the influence of these microorganisms in gene expression for different pathways, particularly those that are associated with the immune response, and to better understand the role that probiotics might have in the prevention and treatment of disease.
Article
Full-text available
Lactobacilli are generally regarded as safe; however, certain strains have been associated with cases of infection. Our workgroup has already assessed many functional properties of Lactobacillus kefiri, but parameters regarding safety must be studied before calling them probiotics. In this work, safety aspects and antimicrobial activity of L. kefiri strains were studied. None of the L. kefiri strains tested caused α - or β -hemolysis. All the strains were susceptible to tetracycline, clindamycin, streptomycin, ampicillin, erythromycin, kanamycin, and gentamicin; meanwhile, two strains were resistant to chloramphenicol. On the other hand, all L. kefiri strains were able to inhibit both Gram(+) and Gram(−) pathogens. Regarding the in vitro results, L. kefiri CIDCA 8348 was selected to perform in vivo studies. Mice treated daily with an oral dose of 108 CFU during 21 days showed no signs of pain, lethargy, dehydration, or diarrhea, and the histological studies were consistent with those findings. Moreover, no differences in proinflammatory cytokines secretion were observed between treated and control mice. No translocation of microorganisms to blood, spleen, or liver was observed. Regarding these findings, L. kefiri CIDCA 8348 is a microorganism isolated from a dairy product with a great potential as probiotic for human or animal use.
Article
Full-text available
The objective of this study was to evaluate the functional properties of lactic acid bacteria (LAB) isolated from Tibetan kefir grains. Three Lactobacillus isolates identified as Lactobacillus acidophilus LA15, Lactobacillus plantarum B23 and Lactobacillus kefiri D17 that showed resistance to acid and bile salts were selected for further evaluation of their probiotic properties. The 3 selected strains expressed high in vitro adherence to Caco-2 cells. They were sensitive to gentamicin, erythromycin and chloramphenicol and resistant to vancomycin with MIC values of 26 µg/ml. All 3 strains showed potential bile salt hydrolase (BSH) activity, cholesterol assimilation and cholesterol co-precipitation ability. Additionally, the potential effect of these strains on plasma cholesterol levels was evaluated in Sprague-Dawley (SD) rats. Rats in 4 treatment groups were fed the following experimental diets for 4 weeks: a high-cholesterol diet, a high-cholesterol diet plus LA15, a high-cholesterol diet plus B23 or a high-cholesterol diet plus D17. The total cholesterol, triglyceride and low-density lipoprotein cholesterol levels in the serum were significantly (P
Article
Full-text available
Kefir-a traditional beverage whose consumption has been associated with health benefits-is a logical natural product to investigate for new probiotic strains. The aim of the present work was to isolate and identify kefir yeasts and select those with acid and bile tolerance to study their adhesion to epithelial cells and their transit through mouse gut. From 4 milky and 3 sugary kefir grains, 34 yeast strains were isolated and identified by means of classical microbiological and molecular-genetic methods (whole-cell protein pattern, internal-transcribed-spacer amplification, and analysis of restriction-fragment-length polymorphisms). We identified 4 species belonging to 3 genera-Saccharomyces cerevisiae (15 strains), Saccharomyces unisporus (6 strains), Issatchenkia occidentalis (4 strains), and Kluyveromyces marxianus (9 strains)-and selected 13 strains on the basis of resistance to low pH and bile salts. Among the strains selected, Kluyveromyces marxianus CIDCA 8154 and Saccharomyces cerevisiae CIDCA 8112 were further studied. Both strains evidenced the capacity to adhere to epithelial intestine-derived cells in vitro and to survive passage through the gastrointestinal tract of BALB/c mice. The investigation of the potential probiotic features of these kefir-yeast strains should be useful for the development of novel functional foods.
Article
Full-text available
OBJETIVOS: Evaluar la resistencia a antibióticos de cepas de Shigella spp. aisladas de muestras de heces en el nordeste argentino y caracterizarlas desde el punto de vista de su epidemiología molecular. MÉTODOS: Se estudiaron 132 aislamientos de Shigella spp. obtenidos de las heces de igual número de pacientes con diarrea que asistieron a diferentes laboratorios privados y estatales de las provincias del Chaco y Corrientes, Argentina, durante el período de 1998 a 2002. Cada cepa se caracterizó según su serotipo, su resistencia a 13 antibióticos individuales o combinados y su sensibilidad a las piocinas. A 52 cepas seleccionadas en función de sus perfiles de susceptibilidad antimicrobiana se les determinaron la dotación plasmídica mediante lisis alcalina y las secuencias repetitivas palindrómicas extragénicas mediante la amplificación de segmentos repetitivos de ADN con la reacción en cadena de la polimerasa (REP-RCP). Se aplicó la prueba de ji al cuadrado para comparar proporciones. El nivel de significación estadística fue de 0,05. RESULTADOS: Shigella flexneri fue la especie más frecuente (78%), seguida de S. sonnei (22%). En general, la resistencia de S. flexneri a los antibióticos estudiados fue mayor que la de S. sonnei y esta diferencia fue estadísticamente significativa (P
Article
Full-text available
Kefir is a dairy product obtained by fermentation of milk with a complex microbial population and several health-promoting properties have been attributed to its consumption. In this work, we tested the ability of different kefir-isolated bacterial and yeast strains (Lactobacillus kefir, Lb. plantarum, Lactococcus lactis subps. lactis, Saccharomyces cerevisiae and Kluyveromyces marxianus) or a mixture of them (MM) to antagonise the cytopathic effect of toxins from Clostridium difficile (TcdA and TcdB). Cell detachment assays and F-actin network staining using Vero cell line were performed. Although incubation with microbial cells did not reduce the damage induced by C. difficile spent culture supernatant (SCS), Lc. lactis CIDCA 8221 and MM supernatants were able to inhibit the cytotoxicity of SCS to Vero cells. Fraction of Lc. lactis CIDCA 8221 supernatant containing components higher than 10 kDa were responsible for the inhibitory activity and heating of this fraction for 15 min at 100 °C completely abrogated this ability. By dot-blot assay with anti-TcdA or anti-TcdB antibodies, concentration of both toxins seems to be reduced in SCS treated with Lc. lactis CIDCA 8221 supernatant. However, protective effect was not affected by treatment with proteases or proteases-inhibitors tested. In conclusion, we demonstrated that kefir-isolated Lc. lactis CIDCA 8221 secreted heat-sensitive products able to protect eukaryotic cells from cytopathic effect of C. difficile toxins in vitro. Our findings provide new insights into the probiotic action of microorganisms isolated from kefir against virulence factors from intestinal pathogens.
Article
Full-text available
Kefir is a unique cultured dairy product due to combined lactic acid and alcoholic fermentation of lactose in milk. Kefir is produced by microbial activity of "kefir grains" which have a relatively stable and specific balance of lactic acid bacteria and yeast. Due to the claimed health benefits of kefir which include reduction of lactose intolerance symptoms, stimulation of the immune system, lowering cholesterol, and antimutagenic and anticarcinogenic properties, kefir has become an important functional dairy food and consequently, research on kefir has increased in the past decade. In the following review, recent studies on the functional properties of kefir are reviewed.
Article
Full-text available
In 2006, 3,531 fecal samples were collected from patients with diarrhea in Henan Province, China. A total of 467 (13.2%) Shigella strains were isolated and serotyped. Seventy-one Shigella flexneri strains were characterized by MIC determination, pulsed-field gel electrophoresis (PFGE), and detection of genes encoding cephalosporin resistance. Most infections were caused by S. flexneri variant X [IV:(7),8] (27.6%), S. sonnei (24.2%), and S. flexneri 2a (20.8%). However, large regional differences were observed. Significantly higher odds (2.0) of females compared to males were infected with S. flexneri 2a. Untypeable S. flexneri (−:6) isolates were absent among males, as were untypeable S. flexneri [I:(7),8] isolates among females. Patient ages ranged from 2 months to 82 years, with 231 subjects (49.7%) <5 years of age. Most of the patients were male (62.1% [n = 290]). Infections peaked in July; week 27 with 38 cases (8.1%). All of the 71 S. flexneri conferred resistance to nalidixic acid; in addition, 21% (n = 15) and 79% (n = 56) were high- and low-level resistant to ciprofloxacin, respectively. Six S. flexneri isolates {serotype 2b [II:7,(8)] and 2b [II:(3),4;7,(8)]} harbored the blaCTX-M-14 or blaCTX-M-15 gene. A total of 52 unique XbaI PFGE patterns were observed among the 71 S. flexneri isolates with 11 distinct PFGE clusters. This study revealed a high prevalence of shigellosis with geographical differences in the distribution of serotypes in the distribution of serotypes and also differences in comparisons by gender. A high frequency of resistance, including 100% resistance to ciprofloxacin and resistance to extended-spectrum cephalosporins, was observed. We detected several isolates exhibiting the same PFGE type and MIC profile, indicating multiple undetected outbreaks.
Article
Full-text available
The effect of freeze-drying on viability and probiotic properties of a microbial mixture containing selected bacterial and yeast strains isolated from kefir grains (Lactobacillus kefir, Lactobacillus plantarum, Lactococcus lactis, Saccharomyces cerevisiae and Kluyveromyces marxianus) was studied. The microorganisms were selected according to their potentially probiotic properties in vitro already reported. Two types of formulations were performed, a microbial mixture (MM) suspended in milk and a milk product fermented with MM (FMM). To test the effect of storage on viability of microorganisms, MM and FMM were freeze-dried and maintained at 4°C for six months. After 180 days of storage at 4°C, freeze-dried MM showed better survival rates for each strain than freeze-dried FMM. The addition of sugars (trehalose or sucrose) did not improve the survival rates of any of the microorganisms after freeze-drying. Freeze-drying did not affect the capacity of MM to inhibit growth of Shigella sonnei in vitro, since the co-incubation of this pathogen with freeze-dried MM produced a decrease of 2 log in Shigella viability. The safety of freeze-dried MM was tested in mice and non-translocation of microorganisms to liver or spleen was observed in BALB/c mice feed ad libitum during 7 or 20 days. To our knowledge, this is the first report about the effect of freeze-drying on viability, in vitro probiotic properties and microbial translocation of a mixture containing different strains of both bacteria and yeasts isolated from kefir.
Article
Full-text available
Toxigenic strains of Clostridium difficile were co-cultured with different strains of bifidobacteria and lactobacilli. Spent culture supernatants were tested for biological activity on cultured Vero cells. Co-culture of C. difficile with some potentially probiotic strains lead to a reduction of the biological activity of spent culture supernatants. The observed effects cannot be ascribed either to secreted factors from the probiotic strains or to toxin adsorption by bacterial cells. Immunological assays showed that there was significant diminution of both clostridial toxins (TcdA and TcdB) in spent culture supernatants of co-cultures as compared with pure clostridial cultures. Even though co-cultured clostridial cells showed a slight increase of intracellular toxins, this increase did not completely explains the reduction of toxin concentration in culture supernatants. The evidence suggests that the antagonism could be due to the diminution of the synthesis and/or secretion of both clostridial toxins. Our findings provide new insights into the possible mechanisms involved in the protective effect of probiotics in the context of C. difficile infection.
Article
Full-text available
The invasion of colonic epithelial cells by Shigella, an early essential step for causing bacillary dysentery, is mediated by the IpaB, IpaC and IpaD proteins. Secretion of the Ipa proteins from Shigella requires functions encoded by the mxi and spa loci. In this study, we show that contact between the bacteria and epithelial cell triggers release of the Ipa proteins into the external medium, which results in a rapid decrease in levels of Ipa proteins presented on the cell surface. When the bacteria were used to infect polarized Caco-2 cells, release of Ipa proteins occurred efficiently from bacteria interacting with the basolateral surface rather than with the apical surface. Moreover, the interaction of bacteria with components of the extracellular matrix, such as fibronectin, laminin or collagen type IV, also stimulates the release of Ipa proteins. The release of Ipa proteins from Shigella required the surface-located Spa32 protein encoded by one of the spa genes on the large plasmid.
Article
Full-text available
Pathogenic bacteria that penetrate the intestinal epithelial barrier stimulate an inflammatory response in the adjacent intestinal mucosa. The present studies asked whether colon epithelial cells can provide signals that are important for the initiation and amplification of an acute mucosal inflammatory response. Infection of monolayers of human colon epithelial cell lines (T84, HT29, Caco-2) with invasive strains of bacteria (Salmonella dublin, Shigella dysenteriae, Yersinia enterocolitica, Listeria monocytogenes, enteroinvasive Escherichia coli) resulted in the coordinate expression and upregulation of a specific array of four proinflammatory cytokines, IL-8, monocyte chemotactic protein-1, GM-CSF, and TNF alpha, as assessed by mRNA levels and cytokine secretion. Expression of the same cytokines was upregulated after TNF alpha or IL-1 stimulation of these cells. In contrast, cytokine gene expression was not altered after infection of colon epithelial cells with noninvasive bacteria or the noninvasive protozoan parasite, G. lamblia. Notably, none of the cell lines expressed mRNA for IL-2, IL-4, IL-5, IL-6, IL-12p40, IFN-gamma, or significant levels of IL-1 or IL-10 in response to the identical stimuli. The coordinate expression of IL-8, MCP-1, GM-CSF and TNF alpha appears to be a general property of human colon epithelial cells since an identical array of cytokines, as well as IL-6, also was expressed by freshly isolated human colon epithelial cells. Since the cytokines expressed in response to bacterial invasion or other proinflammatory agonists have a well documented role in chemotaxis and activation of inflammatory cells, colon epithelial cells appear to be programmed to provide a set of signals for the activation of the mucosal inflammatory response in the earliest phases after microbial invasion.
Article
Full-text available
Shigella flexneri is a Gram-negative pathogen that invades and causes inflammatory destruction of the human colonic epithelium, thus leading to bloody diarrhea and dysentery. A type III secretion system that delivers effector proteins into target eukaryotic cells is largely responsible for cell and tissue invasion. However, the respective role of this invasive phenotype and of lipid A, the endotoxin of the Shigella LPS, in eliciting the inflammatory cascade that leads to rupture and destruction of the epithelial barrier, was unknown. We investigated whether genetic detoxification of lipid A would cause significant alteration in pathogenicity. We showed that S. flexneri has two functional msbB genes, one carried by the chromosome (msbB1) and the other by the virulence plasmid (msbB2), the products of which act in complement to produce full acyl-oxy-acylation of the myristate at the 3' position of the lipid A glucosamine disaccharide. A mutant in which both the msbB1 and msbB2 genes have been inactivated was impaired in its capacity to cause TNF-alpha production by human monocytes and to cause rupture and inflammatory destruction of the epithelial barrier in the rabbit ligated intestinal loop model of shigellosis, indicating that lipid A plays a significant role in aggravating inflammation that eventually destroys the intestinal barrier. In addition, neutralization of TNF-alpha during invasion by the wild-type strain strongly impaired its ability to cause rupture and inflammatory destruction of the epithelial lining, thus indicating that TNF-alpha is a major effector of epithelial destruction by Shigella.
Article
Full-text available
Invasion of the human colonic epithelium by Shigella flexneri causes inflammation that disrupts the intestinal barrier. Invaded intestinal epithelial cells are the major source of mediators recruiting the inflammatory infiltrate. To better characterize the global response of intestinal epithelial cells to Shigella invasion, Caco-2 cells were infected by an invasive isolate of S. flexneri 5a, and their transcriptome was analyzed by Affymetrix (Santa Clara, CA) microarrays (12,000 genes) and compared with these elicited by a non-invasive Shigella mutant and tumor necrosis factor (TNF)-alpha. The invasive and non-invasive strains enhanced transcription of a common pattern of 240 genes, among which genes encoding isoforms of cytochrome P-450 were induced. These genes were not induced by TNF-alpha. Conversely, both the invasive strain and TNF-alpha induced a common set of 18 genes, mainly encoding proinflammatory molecules. They also induced specific sets of genes. The transcriptome induced by the invasive strain was characterized by the induction of early genes (i.e. expressed within the first 45 min of invasion) and late genes (i.e. after 60 min of invasion) whose pattern was strongly biased toward stimulation of granulopoiesis, chemoattraction, activation, and adherence of polymorphonuclear leukocytes. When compared with a non-invasive Shigella and TNF-alpha, invasive Shigella induced a narrow transcriptome that seems to program infected epithelial cells to recruit a mucosal polymorphonuclear leukocyte to infiltrate. Dramatic increase in IL-8 gene transcription points to this chemokine as the major molecule orchestrating mucosal inflammation in shigellosis.
Article
Full-text available
Shigella invades the human intestinal mucosa, thus causing bacillary dysentery, an acute recto-colitis responsible for lethal complications, mostly in infants and toddlers. Conversely, commensal bacteria live in a mutualistic relationship with the intestinal mucosa that is characterized by homeostatic control of innate responses, thereby contributing to tolerance to the flora. Cross-talk established between commensals and the intestinal epithelium mediate this active process, the mechanisms of which remain largely uncharacterized. Probiotics such as Lactobacillus casei belong to a subclass of these commensals that modulate mucosal innate responses and possibly display anti-inflammatory properties. We analyzed whether L. casei could attenuate the pro-inflammatory signaling induced by Shigella flexneri after invasion of the epithelial lining. Cultured epithelial cells were infected with L. casei, followed by a challenge with S. flexneri. Using macroarray DNA chips, we observed that L. casei down-regulated the transcription of a number of genes encoding pro-inflammatory effectors such as cytokines and chemokines and adherence molecules induced by invasive S. flexneri. This resulted in an anti-inflammatory effect that appeared mediated by the inhibition of the NF-kappaB pathway, particularly through stabilization of I-kappaBalpha. In a time-course experiment using GeneChip hybridization analysis, the expression of many genes involved in ubiquitination and proteasome processes were modulated during L. casei treatment. Thus, L. casei has developed a sophisticated means to maintain intestinal homeostasis through a process that involves manipulation of the ubiquitin/proteasome pathway upstream of I-kappaBalpha.
Article
Shigella, a Gram-negative invasive enteropathogenic bacterium, causes the rupture, invasion and inflammatory destruction of the human colonic epithelium. This complex and aggressive process accounts for the symptoms of bacillary dysentery. The so-called invasive phenotype of Shigella is linked to expression of a type III secretory system (TTSS) injecting effector proteins into the epithelial cell membrane and cytoplasm, thereby inducing local but massive changes in the cell cytoskeleton that lead to bacterial internalization into non-phagocytic intestinal epithelial cells. The invasive phenotype also accounts for the potent proinflammatory capacity of the microorganism. Recent evidence indicates that a large part of the mucosal inflammation is initiated by intracellular sensing of bacterial peptidoglycan by cytosolic leucine-rich receptors of the NOD family, particularly NOD1, in epithelial cells. This causes activation of the nuclear factor kappa B and c-JunNH2-terminal-kinase pathways, with interleukin-8 appearing as a major chemokine mediating the inflammatory burst that is dominated by massive infiltration of the mucosa by polymorphonuclear leukocytes. Not unexpectedly, this inflammatory response, which is likely to be very harmful for the invading microbe, is regulated by the bacterium itself. A group of proteins encoded by Shigella, which are injected into target cells by the TTSS, has been recently recognized as a family of potent regulators of the innate immune response. These enzymes target key cellular functions that are essential in triggering the inflammatory response, and more generally defense responses of the intestinal mucosa. This review focuses on the mechanisms employed by Shigella to manipulate the host innate response in order to escape early bacterial killing, thus ensuring establishment of its infectious process. The escape strategies, the possible direct effect of Shigella on B and T lymphocytes, their impact on the development of adaptive immunity, and how they may help explain the limited protection induced by natural infection are discussed.
Article
The dendritic cells (DC) found in the intestine are involved both in the maintenance of tolerance towards commensal microbiota, and in the generation of protective immune responses against pathogens, thus contributing to gut immune homeostasis. There is an increasing interest in the use of lactic acid bacteria (LAB) as probiotics; among their beneficial effects we highlight the modulation of the immune system which is one of their fundamental properties. As these effects are strain-dependent, it is important to have in vitro systems that include DC and intestinal epithelial cells (IEC), which are crucial for intestinal homeostasis, to identify candidates by means of bacterial screening. Obtaining enough human cells, necessary to simultaneously test several bacteria, is a major challenge for researchers. In this study we analyzed the usefulness of the cellular fraction retained in leukoreduction system chambers following plateletpheresis (PP) as a source of DC. We compared the capacity of peripheral blood mononuclear cells (PBMC) from buffy coats (BC) or PP to generate DC using a short differentiation protocol. The functionality of the DC obtained was analyzed in co-cultures together with intestinal epithelial HT-29 cells, stimulating with LPS alone or with two LAB commonly used in the food industry, Streptococcus thermophilus and Lactobacillus delbrueckii. DC surface markers CD86, HLA-DR and cytokine production were measured. The behavior of DC derived from PP was similar to the behavior observed for DC derived from BC. When we tested the response of DC to bacteria, we found significant differences in cytokine secretion, especially for IL-10, suggesting that the system has the ability to discriminate LAB with different immunomodulatory properties. We also found that DC derived from both sources displayed a similar ability to phagocyte bacteria. In conclusion, we hereby propose a modification of the two-day protocol for obtaining human DC previously described, using PP as an alternative source of PBMC, to be used in co-culture systems with IEC. The novelty of this protocol is the combination of the blood monocyte source with a simple and fast differentiation method to obtain DC, and their use in a combined culture with IEC and LAB to model microbial-host interaction. Since the initial PP volume is ten times lower than that of BC, the use of PP minimizes biological residue generation and reagent consumption. In addition, monocyte-derived DC from PP were suitable for use in co-culture assays as a first screening step to study the immunomodulatory properties of LAB.
Article
In this study, we investigated the interaction of 19 benign strains of lactic acid bacteria (LAB), bifidobacteria and staphylococci with enterohemorrhagic Escherichia coli (EHEC) strains of different serotypes and virulence gene spectrum in a HT29 cell culture infection model. As markers of infection, the secretion of interleukin 8 (IL-8) and the activation of the transcription factor NF-κB by the infected cells were determined. With 12 of 19 tested strains, a weak reduction <30% of IL-8 secretion of HT29 cells after co-infection with EHEC O157:H7 strain EDL933 was observed. Six strains reduced the IL-8 secretion up to 60% and the strain B. adolescentis DSMZ 20086 decreased the IL-8 production about 73%. In further co-infection assays with EHEC strains of the serotypes O103:H2, O26:H⁻, 0157:H⁻ and O113:H21, different abilities of the LAB strains to influence the infection with the different EHEC strains were noted. Therefore, the protective anti-inflammatory effect is strain specific for LAB and also depends on the application of EHEC strains with different sero- and virulence types. The differences in efficacy of protective bacteria against certain EHEC strains were unexpected and have not been shown so far. Furthermore, we could show that the inhibitory effects were not attributed to lower adhesion abilities of EHEC to the production of organic acids by the benign bacteria. In addition, viable bacteria are needed to inhibit the IL-8 secretion. Moreover, the NF-κB activation was reduced significantly by all tested LAB strains in co-infection trials, but was not strain-specific. The model described here is useful to screen for basic effects of protective bacteria that are able to counteract EHEC-mediated effects on human cells, and to study the molecular interaction between bacteria as well as between bacteria and human cultured cells.
Article
Shigella is the principal cause of clinical dysentery and an important cause of morbidity and mortality among children in impoverished regions. The purpose of this review is to present key findings in the areas of epidemiology, disease control, and treatment of shigellosis. Recent research activity has advanced the understanding of the epidemiology and host-pathogen interactions. Increased investment and activity in the area of vaccine development have lead to a diversification of candidates and ongoing technical advances yet continue to yield disappointing results in clinical trials in endemic populations and among the most relevant age groups (children under 2 years of age). The description of the rapid spread of quinolone resistance requires monitoring to ensure appropriate case management, particularly in south-east Asia. The evaluation of adjunctive nutritional therapy in endemic areas has supported the use of green bananas in shortening the duration of Shigella dysentery and persistent diarrhea due to Shigella, as well as improving weight gain in early convalescence. Despite a great level of activity in basic sciences, there continues to be a large gap in the ability to translate these findings into disease control measures or therapeutic options for individuals living in areas in which shigellosis is endemic.
Article
Kefir is obtained by milk fermentation with a complex microbial population included in a matrix of polysaccharide and proteins. Several health-promoting activities has been attributed to kefir consumption. The aim of this study was to select microorganisms from kefir able to down-regulate intestinal epithelial innate response and further characterize this activity. Caco-2 cells stably transfected with a human CCL20 promoter luciferase reporter were used to screen a collection of 24 yeast and 23 bacterial strains isolated from kefir. The Toll-like receptor 5 agonist, flagellin was used to activate the reporter cells, while pre-incubation with the selected strains was tested to identify strains with the capacity to inhibit cell activation. In this system, 21 yeast strains from the genera Saccharomyces, Kluyveromyces and Issatchenkia inhibited almost 100% of the flagellin-dependent activation, whereas only some lactobacilli strains showed a partial effect. K. marxianus CIDCA 8154 was selected for further characterization. Inhibitory activity was confirmed at transcriptional level on Caco-2/TC-7 and HT-29 cells upon flagellin stimulation. A similar effect was observed using other pro-inflammatory stimulation such as IL-1beta and TNF-alpha. Pre-incubation with yeasts induced a down-regulation of NF-kappaB signalling in epithelial cells in vitro, as well as expression of other pro-inflammatory chemokines such as CXCL8 and CXCL2. Furthermore, modulation of CCL20 mRNA expression upon flagellin stimulation was evidenced in vivo, in a mouse ligated intestinal loop model. Results indicate kefir contains microorganisms able to abolish the intestinal epithelial inflammatory response that could explain some of the properties attributed to this fermented milk.
Article
Shigella dysenteriae Type 1 dysentery is a major cause of morbidity and mortality in children from less developed and developing countries. The present study explores the hypothesis that lactobacilli protect the host cell during S. dysenteriae Type 1 infection and its mechanism of action. Caco-2 cells incubated for 1h with Lactobacillus rhamnosus or Lactobacillus acidophilus at the multiplicity of infection of 100, either alone or in combination followed by addition of Shigella at the same multiplicity of infection for 5h served as treatment groups. Cells incubated with Shigella without lactobacilli addition served as infected cells. At the end of experimental period, cells were processed suitably to enumerate adherent and internalized Shigella. Reverse transcription-polymerase chain reaction was performed to assess mRNA expression of interleukin-8 and tumour necrosis factor-alpha. Immunoblot for heat shock protein-70 and cytotoxicity assay were performed. Pretreatment with the combination of lactobacilli significantly (p<0.05) prevented adherence and internalization of Shigella coupled with reduced expression of tumour necrosis factor-alpha and interleukin-8 in host cells. L. rhamnosus and L. acidophilus, synergistically offered better protection during S. dysenteriae Type 1 infection by efficiently inhibiting adherence and internalization of Shigella coupled with inhibition of pro-inflammatory response.
Article
The ubiquitous transcription factor NF-kappa B is a central regulator of the transcriptional activation of a number of genes involved in cell adhesion, immune and proinflammatory responses, apoptosis, differentiation, and growth. Induction of these genes in intestinal epithelial cells (IECs) by activated NF-kappa B profoundly influences mucosal inflammation and repair. NF-kappa B activation requires the removal of I kappa B from NF-kappa B by inducible proteolysis, which liberates this transcription factor for migration to the nucleus, where it binds to kappa B-regulatory elements and induces transcription. I kappa B alpha degradation is incomplete and delayed in IECs, resulting in buffered responses to luminal stimuli. The stimulatory environment partially determines whether the effect of NF-kappa B is protective or deleterious for the host. kappa B-dependent proinflammatory gene expression, particularly chemokines, major histocompatibility complex class II antigens, and adhesion molecules may be extremely important in early protective responses to mucosal pathogens but, when dysregulated, could lead to the development of chronic inflammation, as seen in inflammatory bowel diseases. The key role of NF-kappa B in regulating expression of a number of proinflammatory genes makes this protein an attractive target for selective therapeutic intervention.
Article
Many clinically important enteric pathogens initiate disease by invading and passing through the intestinal epithelium, a process accompanied by increased epithelial expression of proinflammatory cytokines. To further define the role intestinal epithelial cells play in initiating and modulating the host response to infection with invasive bacteria, hybrid selection on high density cDNA arrays was used to characterize the mRNA expression profile of approximately 4,300 genes in human intestinal epithelial cells after infection with the prototypic invasive bacteria, Salmonella. Selected findings were further evaluated by reverse transcription-polymerase chain reaction, Northern blot analysis, and protein assays. Epithelial infection with Salmonella significantly up-regulated mRNA expression of a relatively small fraction of all genes tested. Of these, several cytokines (granulocyte colony-stimulating factor, inhibin A, Epstein-Barr virus-induced gene 3, interleukin-8, macrophage inflammatory protein-2alpha), kinases (TKT, Eck, HEK), transcription factors (interferon regulatory factor-1), and HLA class I were the most prominent. Furthermore, the transcription factor NF-kappaB is shown to be important for inducible mRNA expression for a broad group of genes tested. These findings expand the repertoire of known epithelial cell responses to infection with an invasive enteric pathogen. The results also show that evaluation of mRNA expression profiles by cDNA array analysis is a powerful approach to characterizing and understanding host-pathogen interactions.
Article
The pathogenesis of Shigella flexneri infection centers on the ability of this organism to invade epithelial cells and initiate an intense inflammatory reaction. Because NF-kappa B is an important transcriptional regulator of genes involved in inflammation, we investigated the role of this transcription factor during S. flexneri infection of epithelial cells. Infection of HeLa cells with invasive S. flexneri induced NF-kappa B DNA-binding activity; noninvasive S. flexneri strains did not lead to this activation. The pathway leading to NF-kappa B activation by invasive S. flexneri involved the kinases, NF-kappa B-inducing kinase, I kappa B kinase-1, and I kappa B kinase-2. NF-kappa B activation was linked to inflammation, because invasive S. flexneri activated an IL-8 promoter-driven reporter gene, and the kappa B site within this promoter was indispensable for its induction. Microinjection of bacterial culture supernatants into HeLa cells suggested that LPS is responsible for NF-kappa B activation by S. flexneri infection. In conclusion, the eukaryotic transcription factor NF-kappa B was activated during S. flexneri infection of epithelial cells, which suggests a role for this transcriptional regulator in modulating the immune response during infection in vivo.
Article
An early step governing Shigella flexneri pathogenesis is the invasion of the colonic epithelium from the basolateral surface followed by disruption of the colonic epithelial barrier. Despite recent insight into S. flexneri-host interactions, much remains to be determined regarding the nature of the initial contact between S. flexneri and the host epithelial basolateral membrane domain. Since the lipopolysaccharide (LPS) is located at the outermost part of the bacterial membrane, we considered that this component might be used by S. flexneri to attach to the basolateral surface of the intestinal epithelium and promote a proinflammatory response. Therefore, polarized human T84 intestinal epithelial cells were infected from the basolateral surface with either wild-type S. flexneri or one of its isogenic LPS-defective strains with mutations in either rfc, rfaL, or galU. We found that both adherence to and internalization into the basolateral surface of a polarized intestinal epithelium with S. flexneri were highly dependent on the length of the LPS (i.e., rfc > rfaL > galU). Furthermore, the addition of the anti-inflammatory LPS (RsDPLA) considerably decreased the invasion profile of wild-type S. flexneri by nearly 50%. Since LPS is associated with host inflammation, we further examined whether this molecule was involved in Shigella-induced inflammatory events. We found that S. flexneri LPS plays an important role in mediating epithelial-derived signaling, which leads to directed migration of polymorphonuclear leukocytes across model intestinal epithelium. This signaling most likely involves the activation of the mitogen-activated protein kinase extracellular regulated kinase. Thus, our findings have important implications on the understanding of the mechanisms by which S. flexneri can elicit mucosal inflammation.
Article
Chemical and microbiological composition of four Argentinean kefir grains from different sources as well as characteristics of the corresponding fermented milk were studied. Kefir grains CIDCA AGK1, AGK2 and AGK4 did not show significant differences in their chemical and microbiological composition. In contrast, protein and yeast content of AGK3 was higher than in the other grains. Although grain microflora comprised lactobacilli, lactococcus, acetic acid bacteria and yeast, we found an important difference regarding species. Lactococcus lactis subsp. lactis, Lactobacillus kefir, Lactobacillus plantarum, Acetobacter and Saccharomyces were present in all types of kefir grain. While Leuconostoc mesenteroides was only isolated from grains CIDCA AGK1 and Lactococcus lactis subsp. lactis biovar diacetylactis, Lactobacillus parakefir and Kluyveromyces marxianus were only isolated from CIDCA AGK2 grains. All grains produced acid products with pH between 3.5 and 4.0. The apparent viscosity of AGK1 fermented milk was greater than the product obtained with AGK4. All fermented milks had inhibitory power towards Escherichia coli but AGK1 and AGK2 supernatants were able to halt the bacterial growth for at least 25 h. Grain weight increment in AGK1, AGK2 and AGK3 during growth in milk did not show significant differences. Despite their fermenting activity, AGK4 grains did not increase their weight.
Article
The characteristics of 58 strains of Lactobacillus spp. isolated from kefir were studied. These strains were tested for adherence to human enterocyte-like Caco-2 cells, resistance to acidic pH and bile acid, antimicrobial activities against enteropathogenic bacteria and inhibition of Salmonella typhimurium attachment to Caco-2 cells. The best probiotic properties were observed in L. acidophilus CYC 10051 and L. kefiranofaciens CYC 10058. L. kefiranofaciens CYC 10058 produced an exopolysaccharide, which revealed that it was closely related to kefiran, a polysaccharide with antitumoral properties. This is the first in vitro study about the antimicrobial characteristics of the Lactobacillus population of kefir.
Article
The follicle-associated epithelium (FAE) that overlies Peyer's patches (PPs) exhibits distinct features compared with the adjacent villus epithelium. Besides the presence of antigen-sampling membranous M cells and the down-regulation of digestive functions, it constitutively expresses the chemokine CCL20. The mechanisms that induce FAE differentiation and CCL20 expression are poorly understood. The aim of this work was to test whether lymphotoxin beta receptor signaling (LTbetaR), which plays a central role in PPs' organogenesis, mediates CCL20 gene expression in intestinal epithelial cells. CCL20, lymphotoxin beta (LTbeta) and LTbetaR expression were monitored during embryonic development by in situ hybridization of mouse intestine. The human intestinal epithelial cell line T84 was used to study CCL20 expression following LTalpha(1)/beta(2) stimulation. In vivo CCL20 expression following agonistic anti-LTbetaR antibody treatment was studied by laser microdissection and quantitative RT-PCR. CCL20 was expressed in the FAE before birth at the time when the first hematopoietic CD4(+)CD3(-) appeared in the PP anlage. LTbetaR was expressed in the epithelium during PP organogenesis, making it a putative target for LTalpha(1)beta(2)signals. In vitro, CCL20 was induced in T84 cells upon LTbetaR signaling, either using an agonistic ligand or anti-LTbeta receptor agonistic antibody. LTalpha(1)beta(2)-induced CCL20 expression was found to be NF-kappaB dependent. LTbetaR signaling up-regulated CCL20 expression in the small intestinal epithelium in vivo. Our results show that LTbetaR signaling induces CCL20 expression in intestinal epithelial cells, suggesting that this pathway triggers constitutive production of CCL20 in the FAE.
Article
The gastrointestinal tract is a complex ecosystem that associates a resident microbiota and cells of various phenotypes lining the epithelial wall expressing complex metabolic activities. The resident microbiota in the digestive tract is a heterogeneous microbial ecosystem containing up to 1 x 10(14) colony-forming units (CFUs) of bacteria. The intestinal microbiota plays an important role in normal gut function and maintaining host health. The host is protected from attack by potentially harmful microbial microorganisms by the physical and chemical barriers created by the gastrointestinal epithelium. The cells lining the gastrointestinal epithelium and the resident microbiota are two partners that properly and/or synergistically function to promote an efficient host system of defence. The gastrointestinal cells that make up the epithelium, provide a physical barrier that protects the host against the unwanted intrusion of microorganisms into the gastrointestinal microbiota, and against the penetration of harmful microorganisms which usurp the cellular molecules and signalling pathways of the host to become pathogenic. One of the basic physiological functions of the resident microbiota is that it functions as a microbial barrier against microbial pathogens. The mechanisms by which the species of the microbiota exert this barrier effect remain largely to be determined. There is increasing evidence that lactobacilli and bifidobacteria, which inhabit the gastrointestinal microbiota, develop antimicrobial activities that participate in the host's gastrointestinal system of defence. The objective of this review is to analyze the in vitro and in vivo experimental and clinical studies in which the antimicrobial activities of selected lactobacilli and bifidobacteria strains have been documented.
Article
Regulation of gene expression in the follicle-associated epithelium (FAE) over Peyer's patches is largely unknown. CCL20, a chemokine that recruits immature dendritic cells, is one of the few FAE-specific markers described so far. Lymphotoxin beta (LTalpha1beta2) expressed on the membrane of immune cells triggers CCL20 expression in enterocytes. In this study, we measured expression profiles of LTalpha1beta2-treated intestinal epithelial cells and selected CCL20 -coregulated genes to identify new FAE markers. Genomic profiles of T84 and Caco-2 cell lines treated with either LTalpha1beta2, flagellin, or tumor necrosis factor alpha were measured using the Affymetrix GeneChip U133A. Clustering analysis was used to select CCL20 -coregulated genes, and laser dissection microscopy and real-time polymerase chain reaction on human biopsy specimens was used to assess the expression of the selected markers. Applying a 2-way analysis of variance, we identified regulated genes upon the different treatments. A subset of genes involved in inflammation and related to the nuclear factor kappaB pathway was coregulated with CCL20 . Among these genes, the antiapoptotic factor TNFAIP3 was highly expressed in the FAE. CCL23 , which was not coregulated in vitro with CCL20 , was also specifically expressed in the FAE. We have identified 2 novel human FAE specifically expressed genes. Most of the CCL20 -coregulated genes did not show FAE-specific expression, suggesting that other signaling pathways are critical to modulate FAE-specific gene expression.
Article
Seventeen heterofermentative lactobacilli isolated from kefir grains were characterized by molecular methods. Bacterial isolates were identified by amplification of 16S rRNA gene and analysis by Amplified Ribosomal DNA Restriction Analysis (ARDRA), using the restriction enzymes Hae III, Dde I, and Hinf I. ARDRA analysis of lactobacilli isolates showed, for each enzyme used, a same banding pattern between the heterofermentative lactobacilli and the reference strains Lactobacillus kefir JCM 5818 and Lb. kefir ATCC 8007. Other reference lactobacilli and one homofermentative isolate showed differences in at least one of these patterns. The 16S-23S rRNA spacer region was also used to discriminate the bacterial isolates at the species level. The data obtained from the analysis of spacer region confirmed that sequencing of this genome region is a good tool for a reliable identification of members of Lb. kefir species. Genotyping of isolates was performed by Random Amplified Polymorphic DNA (RAPD-PCR) analysis using M13, Coc, ERIC-2 and 1254 primers. Patterns obtained allowed the differentiation of isolates in three groups. The three clusters showed by RAPD-PCR analysis could be correlated with at least three different strains of Lb. kefir species in the group of heterofermentative lactobacilli isolates obtained from Argentinian kefir grains.
Article
Saccharomyces boulardii (Sb) is a non-pathogenic yeast that ameliorates intestinal injury and inflammation caused by a wide variety of enteric pathogens. We hypothesized that Sb may exert its probiotic effects by modulation of host cell signaling and pro-inflammatory gene expression. Human HT-29 colonocytes and THP-1 monocytes were stimulated with IL-1beta, TNFalpha or LPS in the presence or absence of Sb culture supernatant (SbS). IL-8 protein and mRNA levels were measured by ELISA and RT-PCR, respectively. The effect of SbS on IkappaB alpha degradation was studied by Western blotting and on NF-kappaB-DNA binding by EMSA. NF-kappaB-regulated gene expression was evaluated by transient transfection of THP-1 cells with a NF-kappaB-responsive luciferase reporter gene. SbS inhibited IL-8 protein production in IL-1beta or TNFalpha stimulated HT-29 cells (by 75% and 85%, respectively; P<0.001) and prevented IL-1beta-induced up-regulation of IL-8 mRNA. SbS also inhibited IL-8 production, prevented IkappaB alpha degradation, and reduced both NF-kappaB-DNA binding and NF-kappaB reporter gene up-regulation in IL-1beta or LPS-stimulated THP-1 cells. Purification and characterization studies indicate that the S. boulardii anti-inflammatory factor (SAIF) is small (<1 kDa), heat stable, and water soluble. The probiotic yeast Saccharomyces boulardii exerts an anti-inflammatory effect by producing a low molecular weight soluble factor that blocks NF-kappaB activation and NF-kappaB-mediated IL-8 gene expression in intestinal epithelial cells and monocytes. SAIF may mediate, at least in part, the beneficial effects of Saccharomyces boulardii in infectious and non-infectious human intestinal disease.
Article
Kefir is a fermented milk beverage. The milk fermentation is achieved by the of kefir grains, a cluster of microorganisms held together by a polysaccharide matrix named kefiran. Kefir grains are an example of symbiosis between yeast and bacteria. They have been used over years to produce kefir, a fermented beverage that is consumed all over the world, although its origin is Caucasian. A vast variety of different species of organisms forming the kefir grains, comprising yeast and bacteria, have been isolated and identified. Kefir is a probiotic food. Probiotics have shown to be beneficial to health, being presently of great interest to the food industry. Kefir has been accredited with antibacterial, antifungal and antitumoural activities among other beneficial attributes. This review includes a critical revision of the microbiological composition of kefir along with its beneficial properties to human health.
Article
Shigella, a Gram-negative invasive enteropathogenic bacterium, causes the rupture, invasion and inflammatory destruction of the human colonic epithelium. This complex and aggressive process accounts for the symptoms of bacillary dysentery. The so-called invasive phenotype of Shigella is linked to expression of a type III secretory system (TTSS) injecting effector proteins into the epithelial cell membrane and cytoplasm, thereby inducing local but massive changes in the cell cytoskeleton that lead to bacterial internalization into non-phagocytic intestinal epithelial cells. The invasive phenotype also accounts for the potent pro-inflammatory capacity of the microorganism. Recent evidence indicates that a large part of the mucosal inflammation is initiated by intracellular sensing of bacterial peptidoglycan by cytosolic leucine-rich receptors of the NOD family, particularly NOD1, in epithelial cells. This causes activation of the nuclear factor kappa B and c-JunNH(2)-terminal-kinase pathways, with interleukin-8 appearing as a major chemokine mediating the inflammatory burst that is dominated by massive infiltration of the mucosa by polymorphonuclear leukocytes. Not unexpectedly, this inflammatory response, which is likely to be very harmful for the invading microbe, is regulated by the bacterium itself. A group of proteins encoded by Shigella, which are injected into target cells by the TTSS, has been recently recognized as a family of potent regulators of the innate immune response. These enzymes target key cellular functions that are essential in triggering the inflammatory response, and more generally defense responses of the intestinal mucosa. This review focuses on the mechanisms employed by Shigella to manipulate the host innate response in order to escape early bacterial killing, thus ensuring establishment of its infectious process. The escape strategies, the possible direct effect of Shigella on B and T lymphocytes, their impact on the development of adaptive immunity, and how they may help explain the limited protection induced by natural infection are discussed.
Article
Eight Lactobacillus kefir strains isolated from different kefir grains were tested for their ability to antagonize Salmonella enterica serovar Enteritidis (Salmonella enteritidis) interaction with epithelial cells. L. kefir surface properties such as autoaggregation and coaggregation with Salmonella and adhesion to Caco-2/TC-7 cells were evaluated. L. kefir strains showed significantly different adhesion capacities, six strains were able to autoaggregate and four strains coaggregated with Salmonella. Coincubation of Salmonella with coaggregating L. kefir strains significantly decreased its capacity to adhere to and to invade Caco-2/TC-7 cells. This was not observed with non coaggregating L. kefir strains. Spent culture supernatants of L. kefir contain significant amounts of S-layer proteins. Salmonella pretreated with spent culture supernatants (pH 4.5-4.7) from all tested L. kefir strains showed a significant decrease in association and invasion to Caco-2/TC-7 cells. Artificially acidified MRS containing lactic acid to a final concentration and pH equivalent to lactobacilli spent culture supernatants did not show any protective action. Pretreatment of this pathogen with spent culture supernatants reduced microvilli disorganization produced by Salmonella. In addition, Salmonella pretreated with S-layer proteins extracted from coaggregating and non coaggregating L. kefir strains were unable to invade Caco-2/TC-7 cells. After treatment, L. kefir S-layer protein was detected associated with Salmonella, suggesting a protective role of this protein on association and invasion.
Article
Shigella spp. are gram-negative pathogenic bacteria that evolved from harmless enterobacterial relatives and may cause devastating diarrhea upon ingestion. Research performed over the last 25 years revealed that a type III secretion system (T3SS) encoded on a large plasmid is a key virulence factor of Shigella flexneri. The T3SS determines the interactions of S. flexneri with intestinal cells by consecutively translocating two sets of effector proteins into the target cells. Thus, S. flexneri controls invasion into EC, intra- and intercellular spread, macrophage cell death, as well as host inflammatory responses. Some of the translocated effector proteins show novel biochemical activities by which they intercept host cell signal transduction pathways. An understanding of the molecular mechanisms underlying Shigella pathogenesis will foster the development of a safe and efficient vaccine, which, in parallel with improved hygiene, should curb infections by this widespread pathogen.
Article
To assess the effect of two lactobacilli on the biological activity of enterohaemorrhagic Escherichia coli (EHEC) in vitro. Strains CIDCA 133 (Lactobacillus delbrueckii subsp. lactis) and CIDCA 83114 (Lactobacillus plantarum) were studied. Hep-2 cells were used as an in vitro model to assess the biological effect of a clinical isolate of EHEC. Preincubation of cell monolayers with lactobacilli before EHEC prevented detachment of eukaryotic cells and minimizes both F-actin rearrangements and morphological alterations. Interestingly, the protective effect could not be ascribed to pathogen exclusion. In addition, viability of the lactobacilli was not necessary for protection and other species of the genus Lactobacillus failed to protect eukaryotic cells. Our results suggest that lactobacilli are antagonizing virulence mechanisms of EHEC either by modification of the microenvironment or by interfering with the signalling cascades triggered by the pathogen. Our findings give a rationale basis for the use of specific probiotic strains for the prophylaxis and prevention of intestinal infections due to EHEC.
  • V Gupta
  • R Garg
Gupta, V. and Garg, R., 2009. Probiotics. Indian Journal of Medical Microbiology 27: 202-209.
Flagellin stimulation of intestinal epithelial cells triggers CCL20-mediated migration of dendritic cells
  • F Sierro
  • B Dubois
  • A Coste
  • D Kaiserlian
  • J P Kraehenbuhl
  • J C Sirard
Sierro, F., Dubois, B., Coste, A., Kaiserlian, D., Kraehenbuhl, J.P. and Sirard, J.C., 2001. Flagellin stimulation of intestinal epithelial cells triggers CCL20-mediated migration of dendritic cells. Proceedings of National Academy of Sciences of the USA 98: 13722-13727.
Safety characterization and antimicrobial properties of kefir-isolated Lactobacillus kefiri
  • P Carasi
  • M Diaz
  • S M Racedo
  • G L De Antoni
  • M C Urdaci
  • De Los
Carasi, P., Diaz, M., Racedo, S.M., De Antoni, G.L., Urdaci, M.C. and de Los Angeles Serradell M., 2014. Safety characterization and antimicrobial properties of kefir-isolated Lactobacillus kefiri.
Functional properties of kefir
  • Z B Guzel-Seydim
  • T Kok-Tas
  • A K Greene
  • A C Seydim
Guzel-Seydim, Z.B., Kok-Tas, T., Greene, A.K. and Seydim, A.C., 2011. Functional properties of kefir. Critical Reviews of Food and Science Nutrition 51: 261-268.
Prevalence and characterization of human Shigella
  • S Xia
  • B Xu
  • L Huang
  • J Y Zhao
  • L Ran
  • J Zhang
  • H Chen
  • C Pulsrikarn
  • S Pornruangwong
  • F Aarestrup
  • R S Hendriksen
Xia, S., Xu, B., Huang, L., Zhao, J. Y., Ran, L., Zhang, J., Chen, H., Pulsrikarn, C., Pornruangwong, S., Aarestrup, F. and Hendriksen, R.S., 2011. Prevalence and characterization of human Shigella infections in Henan Province, China, in 2006. Journal of Clinical Microbiology 49: 232-242.